[9b26b7]: / deepvariant / runtime_by_region_vis_test.py

Download this file

191 lines (165 with data), 7.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2020 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Tests for DeepVariant runtime_by_region_vis visual report script."""
import io
from absl.testing import absltest
from absl.testing import parameterized
import pandas as pd
from deepvariant import runtime_by_region_vis
from deepvariant import testdata
def setUpModule():
testdata.init()
# Json strings of dataframes from testdata.RUNTIME_BY_REGION.
JSON_DF = (
'{"region":{"3":"0:4001-5000","2":"0:3001-4000","1":"0:1001-2000",'
'"4":"0:5001-6000","0":"0:1-1000"},'
'"get reads":{"3":0.148,"2":0.145,"1":0.139,"4":0.153,"0":0.095},'
'"find candidates":{"3":0.2,"2":0.197,"1":0.188,"4":0.204,"0":0.186},'
'"make pileup images":{"3":0.366,"2":0.315,"1":0.257,"4":0.104,"0":0.176},'
'"write outputs":{"3":0.016,"2":0.016,"1":0.016,"4":0.006,"0":0.005},'
'"num reads":{"3":36,"2":33,"1":37,"4":39,"0":37},'
'"num candidates":{"3":3,"2":3,"1":3,"4":1,"0":2},'
'"num examples":{"3":3,"2":3,"1":3,"4":1,"0":2},'
'"Task":{"3":0,"2":0,"1":0,"4":0,"0":0},'
'"total runtime":{"3":0.73,"2":0.673,"1":0.6,"4":0.467,"0":0.462},'
'"Runtime":{"3":"0.73s","2":"0.673s","1":"0.6s","4":"0.467s","0":"0.462s"}}'
)
JSON_BY_TASK_DF = (
'{"Task":{"0":0},"get reads":{"0":0.68},'
'"find candidates":{"0":0.975},'
'"make pileup images":{"0":1.218},'
'"write outputs":{"0":0.059},'
'"num reads":{"0":182},'
'"num candidates":{"0":12},'
'"num examples":{"0":12},"total runtime":{"0":2.932}}'
)
def is_an_altair_chart(chart):
# Chart type strings look like: "<class 'altair.vegalite.v3.api.FacetChart'>"
# Chart, FacetChart, LayerChart, and VConcatChart.
string_type = str(type(chart))
return 'altair' in string_type and 'Chart' in string_type
class RuntimeByRegionVisTest(parameterized.TestCase):
@parameterized.parameters(
dict(sharded=False, expected_regions=5),
dict(sharded=True, expected_regions=96510),
)
def test_e2e(self, sharded, expected_regions):
if sharded:
input_path = testdata.RUNTIME_BY_REGION_SHARDED
else:
input_path = testdata.RUNTIME_BY_REGION
html_output = io.StringIO()
runtime_by_region_vis.make_report(
input_path=input_path, title='my fancy title', html_output=html_output
)
html = html_output.getvalue()
self.assertIn(
'my fancy title', html, msg='The title is missing from the HTML.'
)
self.assertIn(
'{} regions'.format(expected_regions),
html,
msg='The subtitle contains the number of regions.',
)
self.assertIn(
'regions account for',
html,
msg='The Pareto curve may be missing or it changed title',
)
self.assertIn('bar', html, msg='Vega specs may be missing from the HTML')
self.assertNotIn('sdlfkjdkjf', html, msg='Negative control failed')
@parameterized.parameters(
dict(raw_seconds=5, expected='5s'),
dict(raw_seconds=3600, expected='1h'),
dict(raw_seconds=62, expected='1m2s'),
dict(raw_seconds=7200, expected='2h'),
dict(raw_seconds=3661, expected='1h1m1s'),
dict(raw_seconds=0.0001, expected='0.0s'),
dict(raw_seconds=0.001, expected='0.001s'),
dict(raw_seconds=0.1, expected='0.1s'),
)
def test_format_runtime_string(self, raw_seconds, expected):
self.assertEqual(
expected, runtime_by_region_vis.format_runtime_string(raw_seconds)
)
def test_read_data_and_make_dataframes(self):
input_path = testdata.RUNTIME_BY_REGION
df, by_task = runtime_by_region_vis.read_data_and_make_dataframes(
input_path
)
# Compare as json strings.
self.assertEqual(df.to_json(), JSON_DF)
self.assertEqual(by_task.to_json(), JSON_BY_TASK_DF)
def test_chart_type_negative_control(self):
self.assertFalse(is_an_altair_chart('some string'))
self.assertFalse(is_an_altair_chart(None))
def test_totals_by_stage(self):
by_task = pd.read_json(JSON_BY_TASK_DF)
chart = runtime_by_region_vis.totals_by_stage(by_task)
self.assertTrue(is_an_altair_chart(chart))
def test_pareto_and_runtimes_by_task(self):
df = pd.read_json(JSON_DF)
chart = runtime_by_region_vis.pareto_and_runtimes_by_task(df)
self.assertTrue(is_an_altair_chart(chart))
@parameterized.parameters(
dict(dataframe_json=JSON_BY_TASK_DF, msg='Histogram of tasks'),
dict(dataframe_json=JSON_DF, msg='Histogram of regions'),
)
def test_stage_histogram(self, dataframe_json, msg):
df = pd.read_json(dataframe_json)
chart = runtime_by_region_vis.stage_histogram(df, title='chart title')
self.assertTrue(is_an_altair_chart(chart), msg=msg)
chart_json = chart.to_json()
self.assertIn('chart title', chart_json)
def test_selected_longest_and_median_regions(self):
df = pd.read_json(JSON_DF)
chart = runtime_by_region_vis.selected_longest_and_median_regions(df)
self.assertTrue(is_an_altair_chart(chart))
def test_top_regions_producing_zero_examples(self):
df = pd.read_json(JSON_DF)
chart = runtime_by_region_vis.top_regions_producing_zero_examples(df)
self.assertTrue(is_an_altair_chart(chart))
def test_correlation_scatter_charts(self):
df = pd.read_json(JSON_DF)
chart = runtime_by_region_vis.correlation_scatter_charts(
df, title='chart title'
)
self.assertTrue(is_an_altair_chart(chart))
chart_json = chart.to_json()
self.assertIn('chart title', chart_json)
def test_individual_region_bars(self):
df = pd.read_json(JSON_DF)
chart = runtime_by_region_vis.individual_region_bars(
df, title='chart title'
)
self.assertTrue(is_an_altair_chart(chart))
chart_json = chart.to_json()
self.assertIn('chart title', chart_json)
if __name__ == '__main__':
absltest.main()