[9b26b7]: / deepvariant / postprocess_variants.cc

Download this file

134 lines (122 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
* Copyright 2017 Google LLC.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "deepvariant/postprocess_variants.h"
#include <algorithm>
#include <cstdint>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "deepvariant/protos/deepvariant.pb.h"
#include "third_party/nucleus/protos/reference.pb.h"
#include "third_party/nucleus/protos/variants.pb.h"
#include "third_party/nucleus/util/utils.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/lib/io/compression.h"
#include "tensorflow/core/lib/io/record_reader.h"
#include "tensorflow/core/lib/io/record_writer.h"
namespace learning {
namespace genomics {
namespace deepvariant {
namespace {
void SortSingleSiteCalls(
const std::vector<nucleus::genomics::v1::ContigInfo>& contigs,
std::vector<CallVariantsOutput>* calls) {
std::vector<CallVariantsOutput> output;
if (calls->empty()) {
return;
}
// Create the mapping from from contig to pos_in_fasta.
std::map<std::string, int> contig_name_to_pos_in_fasta =
nucleus::MapContigNameToPosInFasta(contigs);
std::stable_sort(calls->begin(), calls->end(),
[&contig_name_to_pos_in_fasta](const CallVariantsOutput& a,
const CallVariantsOutput& b) {
return nucleus::CompareVariants(a.variant(), b.variant(),
contig_name_to_pos_in_fasta);
});
}
} // namespace
std::uint64_t ProcessSingleSiteCallTfRecords(
const std::vector<nucleus::genomics::v1::ContigInfo>& contigs,
const std::vector<std::string>& tfrecord_paths,
const string& output_tfrecord_path) {
std::vector<CallVariantsOutput> single_site_calls;
tensorflow::Env* env = tensorflow::Env::Default();
for (const string& tfrecord_path : tfrecord_paths) {
std::unique_ptr<tensorflow::RandomAccessFile> read_file;
TF_CHECK_OK(env->NewRandomAccessFile(tfrecord_path, &read_file));
const char* const option = nucleus::EndsWith(tfrecord_path, ".gz")
? tensorflow::io::compression::kGzip
: tensorflow::io::compression::kNone;
tensorflow::io::RecordReader reader(
read_file.get(),
tensorflow::io::RecordReaderOptions::CreateRecordReaderOptions(option));
std::uint64_t offset = 0;
tensorflow::tstring data;
LOG(INFO) << "Read from: " << tfrecord_path;
while (reader.ReadRecord(&offset, &data).ok()) {
CallVariantsOutput single_site_call;
QCHECK(single_site_call.ParseFromArray(data.data(), data.length()))
<< "Failed to parse CallVariantsOutput";
// Here we assume each variant has only 1 call.
QCHECK_EQ(single_site_call.variant().calls_size(), 1);
single_site_calls.push_back(single_site_call);
}
if (tfrecord_paths.size() > 1) {
LOG(INFO) << "Done reading: " << tfrecord_path
<< ". #entries in single_site_calls = "
<< std::to_string(single_site_calls.size());
}
}
LOG(INFO) << "Total #entries in single_site_calls = "
<< std::to_string(single_site_calls.size());
VLOG(3) << "Start SortSingleSiteCalls";
SortSingleSiteCalls(contigs, &single_site_calls);
VLOG(3) << "Done SortSingleSiteCalls";
// Write sorted calls to output_tfrecord_path.
std::unique_ptr<tensorflow::WritableFile> output_file;
TF_CHECK_OK(tensorflow::Env::Default()->NewWritableFile(output_tfrecord_path,
&output_file));
tensorflow::io::RecordWriter output_writer(output_file.get());
for (const auto& single_site_call : single_site_calls) {
tensorflow::Status writer_status =
output_writer.WriteRecord(single_site_call.SerializeAsString());
QCHECK(writer_status.ok())
<< "Failed to write serialized proto to output_writer. "
<< "Status = " << writer_status.error_message();
}
TF_CHECK_OK(output_writer.Flush()) << "Failed to flush the output writer.";
return single_site_calls.size();
}
} // namespace deepvariant
} // namespace genomics
} // namespace learning