[9b26b7]: / deepvariant / data_providers.py

Download this file

669 lines (559 with data), 23.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# Copyright 2017 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""Data providers for deepvariant images.
tf.data.Dataset and data providers for standard DeepVariant datasets for
training and evaluating germline calling accuracy.
"""
import itertools
from typing import Callable, Optional, Tuple
from absl import logging
import ml_collections
import tensorflow as tf
from tensorflow import estimator as tf_estimator
from deepvariant import dv_constants
from deepvariant import dv_utils
from deepvariant import keras_modeling
from deepvariant.protos import deepvariant_pb2
from google.protobuf import text_format
from third_party.nucleus.io import sharded_file_utils
# These are empirically determined to work well on TPU with our data sets,
# where lots of buffering and concurrency is necessary to keep the device
# busy.
# These are settable in the constructor.
_DEFAULT_INPUT_READ_THREADS = 32
_DEFAULT_SHUFFLE_BUFFER_ELEMENTS = 100
_DEFAULT_INITIAL_SHUFFLE_BUFFER_ELEMENTS = 1024
_DEFAULT_PREFETCH_BUFFER_BYTES = 16 * 1000 * 1000
def create_parse_example_fn(
config: ml_collections.ConfigDict,
) -> Callable[
[tf.train.Example, Tuple[int, int, int]], Tuple[tf.Tensor, tf.Tensor]
]:
"""Generates a function for parsing tf.train.Examples."""
preprocess_fn = keras_modeling.get_model_preprocess_fn(config)
def parse_example(
example: tf.train.Example,
input_shape: Tuple[int, int, int],
) -> Tuple[tf.Tensor, tf.Tensor]:
"""Parses a serialized tf.Example, preprocesses the image, and one-hot encodes the label."""
proto_features = {
'image/encoded': tf.io.FixedLenFeature((), tf.string),
'variant/encoded': tf.io.FixedLenFeature((), tf.string),
'alt_allele_indices/encoded': tf.io.FixedLenFeature((), tf.string),
'label': tf.io.FixedLenFeature((1), tf.int64),
}
parsed_features = tf.io.parse_single_example(
serialized=example, features=proto_features
)
image = tf.io.decode_raw(parsed_features['image/encoded'], tf.uint8)
image = tf.reshape(image, input_shape)
image = tf.cast(image, tf.float32)
# Preprocess image
if preprocess_fn:
image = preprocess_fn(image)
label = tf.keras.layers.CategoryEncoding(
num_tokens=dv_constants.NUM_CLASSES, output_mode='one_hot'
)(parsed_features['label'])
return image, label
return parse_example
def input_fn(
path: str,
config: ml_collections.ConfigDict,
mode: str = 'train',
strategy: tf.distribute.Strategy = tf.distribute.get_strategy(),
n_epochs: int = -1,
limit: Optional[int] = None,
) -> tf.data.Dataset:
"""tf.data.Dataset loading function.
Args:
path: the input filename for a tfrecord[.gz] file containing examples. Can
contain sharding designators.
config: A configuration file.
mode: One of ['train', 'tune', 'predict']
strategy: A tf.distribute.Strategy.
n_epochs: Number of epochs.
limit: Limit the number of batches for testing purposes.
Returns:
tf.data.Dataset
"""
if mode not in ['train', 'tune', 'predict']:
raise ValueError('Mode must be set to one of "train", "tune", or "predict"')
is_training = mode in ['train', 'tune']
# Get input shape from input path.
input_shape = dv_utils.get_shape_from_examples_path(path)
def load_dataset(filename: str) -> tf.data.Dataset:
return tf.data.TFRecordDataset(
filename,
buffer_size=config.prefetch_buffer_bytes,
compression_type='GZIP',
)
file_list = [
tf.io.gfile.glob(sharded_file_utils.normalize_to_sharded_file_pattern(x))
for x in path.split(',')
]
file_list = list(itertools.chain(*file_list))
ds = tf.data.Dataset.from_tensor_slices(file_list)
if is_training:
ds = ds.shuffle(ds.cardinality(), reshuffle_each_iteration=True)
ds = ds.interleave(
load_dataset,
cycle_length=config.input_read_threads,
num_parallel_calls=tf.data.AUTOTUNE,
deterministic=False,
)
if is_training and n_epochs > 0:
ds = ds.repeat(n_epochs)
if is_training:
ds = ds.shuffle(
config.shuffle_buffer_elements, reshuffle_each_iteration=True
)
# Retrieve preprocess function
parse_example = create_parse_example_fn(config)
ds = ds.map(
map_func=lambda example: parse_example(example, input_shape),
num_parallel_calls=tf.data.AUTOTUNE,
deterministic=False,
)
ds = ds.batch(batch_size=config.batch_size, drop_remainder=True)
# Limit the number of batches.
if limit:
ds = ds.take(limit)
if n_epochs > 0:
ds = ds.repeat(n_epochs)
elif mode == 'tune':
ds = ds.repeat()
# Prefetch overlaps in-feed with training
ds = ds.prefetch(tf.data.AUTOTUNE)
# Distribute the dataset
ds = strategy.experimental_distribute_dataset(ds)
return ds
class DeepVariantInput(object):
"""This class serves as an `input_fn` for the `tf.estimator` framework."""
# Calling this object like a function returns a stream of variadic tuples.
# Essentially it is a buffered io library, that handles concurrently
# reading and possibly shuffling input records from a set of files. It
# knows how to parse features we care about from tf.examples. It records
# some extra information about the source of the input, such as the name
# and number of classes.
def __init__(
self,
mode: str,
input_file_spec: str,
num_examples=None,
num_classes=dv_constants.NUM_CLASSES,
max_examples: Optional[int] = None,
tensor_shape=None,
name=None,
use_tpu=False,
input_read_threads=_DEFAULT_INPUT_READ_THREADS,
shuffle_buffer_size=_DEFAULT_SHUFFLE_BUFFER_ELEMENTS,
initial_shuffle_buffer_size=_DEFAULT_INITIAL_SHUFFLE_BUFFER_ELEMENTS,
prefetch_dataset_buffer_size=_DEFAULT_PREFETCH_BUFFER_BYTES,
sloppy=True,
list_files_shuffle=True,
debugging_true_label_mode=False,
):
"""Create a DeepVariantInput object, usable as an `input_fn`.
Args:
mode: the mode string (from `tf.estimator.ModeKeys`).
input_file_spec: the input filename for a tfrecord[.gz] file containing
examples. Can contain sharding designators.
num_examples: the number of examples contained in the input file. Required
for setting learning rate schedule in train/eval only.
num_classes: The number of classes in the labels of this dataset.
Currently defaults to DEFAULT_NUM_CLASSES.
max_examples: The maximum number of examples to use. If None, all examples
will be used. If not None, the first n = min(max_examples, num_examples)
will be used. This works with training, and the n examples will repeat
over and over.
tensor_shape: None (which means we get the shape from the first example in
source), or list of int [height, width, channel] for testing.
name: string, name of the dataset.
use_tpu: use code paths tuned for TPU, in particular protobuf encoding.
Default False.
input_read_threads: number of threads for reading data. Default 32.
shuffle_buffer_size: size of the final shuffle buffer, in elements.
Default 100.
initial_shuffle_buffer_size: int; the size of the dataset.shuffle buffer
in elements. Default is 1024.
prefetch_dataset_buffer_size: int; the size of the TFRecordDataset buffer
in bytes. Default is 16 * 1000 * 1000.
sloppy: boolean, allow parallel_interleave to be sloppy. Default True.
list_files_shuffle: boolean, allow list_files to shuffle. Default True.
debugging_true_label_mode: boolean. If true, the input examples are
created with "training" mode. We'll parse the 'label' field even if the
`mode` is PREDICT.
Raises:
ValueError: if `num_examples` not provided, in a context requiring it.
"""
self.mode = mode
self.input_file_spec = input_file_spec
self.name = name
self.num_examples = num_examples
self.num_classes = num_classes
self.max_examples = max_examples
self.use_tpu = use_tpu
self.sloppy = sloppy
self.list_files_shuffle = list_files_shuffle
self.input_read_threads = input_read_threads
self.shuffle_buffer_size = shuffle_buffer_size
self.initial_shuffle_buffer_size = initial_shuffle_buffer_size
self.prefetch_dataset_buffer_size = prefetch_dataset_buffer_size
self.debugging_true_label_mode = debugging_true_label_mode
self.feature_extraction_spec = self.features_extraction_spec_for_mode(
mode in (tf_estimator.ModeKeys.TRAIN, tf_estimator.ModeKeys.EVAL)
or debugging_true_label_mode
)
if num_examples is None and mode != tf_estimator.ModeKeys.PREDICT:
raise ValueError(
'num_examples argument required for DeepVariantInput'
'in TRAIN/EVAL modes.'
)
if max_examples is not None:
if max_examples <= 0:
raise ValueError(
'max_examples must be > 0 if not None. Got {}'.format(max_examples)
)
# We update our num_examples in the situation where num_examples is set
# (i.e., is not None) to the smaller of max_examples and num_examples.
if self.num_examples is not None:
self.num_examples = min(max_examples, self.num_examples)
if tensor_shape:
self.tensor_shape = tensor_shape
else:
self.tensor_shape = dv_utils.get_shape_from_examples_path(input_file_spec)
self.input_files = sharded_file_utils.glob_list_sharded_file_patterns(
self.input_file_spec
)
def features_extraction_spec_for_mode(self, include_label_and_locus):
"""Returns a dict describing features from a TF.example."""
spec = {
'image/encoded': tf.io.FixedLenFeature((), tf.string),
'variant/encoded': tf.io.FixedLenFeature((), tf.string),
'alt_allele_indices/encoded': tf.io.FixedLenFeature((), tf.string),
'variant_type': tf.io.FixedLenFeature((), tf.int64),
'sequencing_type': tf.io.FixedLenFeature([], tf.int64),
}
if include_label_and_locus:
# N.B. int32 fails here on TPU.
spec['label'] = tf.io.FixedLenFeature((), tf.int64)
spec['locus'] = tf.io.FixedLenFeature((), tf.string)
return spec
def parse_tfexample(self, tf_example):
"""Parse a DeepVariant pileup tf.Example to features and labels.
This potentially stores parsed strings as fixed length tensors of integers,
as required by TPU. They have to be handled properly by consumers.
Args:
tf_example: a serialized tf.Example for a DeepVariant "pileup".
Returns:
If (mode is EVAL or TRAIN) or debugging_true_label_mode:
(features, label) ...
If mode is PREDICT,
features ...
"""
with tf.compat.v1.name_scope('input'):
parsed = tf.io.parse_single_example(
serialized=tf_example, features=self.feature_extraction_spec
)
image = parsed['image/encoded']
if self.tensor_shape:
# If the input is empty there won't be a tensor_shape.
image = tf.reshape(tf.io.decode_raw(image, tf.uint8), self.tensor_shape)
if self.use_tpu:
# Cast to int32 for loading onto the TPU
image = tf.cast(image, tf.int32)
variant = parsed['variant/encoded']
alt_allele_indices = parsed['alt_allele_indices/encoded']
if self.use_tpu:
# Passing a string to a TPU draws this error: TypeError: <dtype:
# 'string'> is not a supported TPU infeed type. Supported types are:
# [tf.float32, tf.int32, tf.complex64, tf.int64, tf.bool, tf.bfloat16]
# Thus, we must encode the string as a tensor of int.
variant = dv_utils.string_to_int_tensor(variant)
alt_allele_indices = dv_utils.string_to_int_tensor(alt_allele_indices)
features = {
'image': image,
'variant': variant,
'alt_allele_indices': alt_allele_indices,
'sequencing_type': parsed['sequencing_type'],
}
if (
self.mode in (tf_estimator.ModeKeys.TRAIN, tf_estimator.ModeKeys.EVAL)
or self.debugging_true_label_mode
):
if self.use_tpu:
features['locus'] = dv_utils.string_to_int_tensor(parsed['locus'])
else:
features['locus'] = parsed['locus']
# Add variant_type to our features if are in TRAIN or EVAL mode.
features['variant_type'] = parsed['variant_type']
if self.mode in (
tf_estimator.ModeKeys.TRAIN,
tf_estimator.ModeKeys.EVAL,
):
label = parsed['label']
return features, label
features['label'] = parsed['label']
# For predict model, label is not present. So, returns features only.
return features
def __call__(self, params):
"""Interface to get a data batch, fulfilling `input_fn` contract.
Args:
params: a dict containing an integer value for key 'batch_size'.
Returns:
the tuple (features, labels), where:
- features is a dict of Tensor-valued input features; keys populated
are:
'image'
'variant'
'alt_allele_indices'
and, if not PREDICT mode, also:
'locus'
Aside from 'image', these may be encoded specially for TPU.
- label is the Tensor-valued prediction label; in train/eval
mode the label value is is populated from the data source; in
inference mode, the value is a constant empty Tensor value "()".
"""
# See https://cloud.google.com/tpu/docs/tutorials/inception-v3-advanced
# for some background on tuning this on TPU.
# TPU optimized implementation for prediction mode
if self.mode == tf_estimator.ModeKeys.PREDICT:
return self.prediction_input_fn(params)
# Optimized following:
# https://www.tensorflow.org/guide/performance/datasets
# using the information available from xprof.
def load_dataset(filename):
dataset = tf.data.TFRecordDataset(
filename,
buffer_size=self.prefetch_dataset_buffer_size,
compression_type=compression_type,
)
return dataset
batch_size = params['batch_size']
compression_type = dv_utils.compression_type_of_files(self.input_files)
# NOTE: The order of the file names returned can be non-deterministic,
# even if shuffle is false. See internal and the note in internal.
# We need the shuffle flag to be able to disable reordering in EVAL mode.
dataset = tf.data.Dataset.list_files(
[
sharded_file_utils.normalize_to_sharded_file_pattern(pattern)
for pattern in self.input_file_spec.split(',')
],
shuffle=self.mode == tf_estimator.ModeKeys.TRAIN,
)
# This shuffle applies to the set of files.
# TODO: why would we shuffle the files?
if (
self.mode == tf_estimator.ModeKeys.TRAIN
and self.initial_shuffle_buffer_size > 0
):
dataset = dataset.shuffle(self.initial_shuffle_buffer_size)
# For both TRAIN and EVAL, use the following to speed up.
if self.sloppy:
options = tf.data.Options()
options.experimental_deterministic = False
dataset = dataset.with_options(options)
dataset = dataset.interleave(
load_dataset,
cycle_length=self.input_read_threads,
num_parallel_calls=tf.data.AUTOTUNE,
)
if self.max_examples is not None:
dataset = dataset.take(self.max_examples)
if self.mode == tf_estimator.ModeKeys.TRAIN:
dataset = dataset.repeat()
# This shuffle applies to the set of records.
if self.mode == tf_estimator.ModeKeys.TRAIN:
if self.shuffle_buffer_size > 0:
dataset = dataset.shuffle(self.shuffle_buffer_size)
dataset = dataset.map(
map_func=self.parse_tfexample, num_parallel_calls=tf.data.AUTOTUNE
)
dataset = dataset.batch(batch_size=batch_size, drop_remainder=True)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
return dataset
def prediction_input_fn(self, params):
"""Implementation of `input_fn` contract for prediction mode.
Args:
params: a dict containing an integer value for key 'batch_size'.
Returns:
the tuple (features, labels), where:
- features is a dict of Tensor-valued input features; keys populated
are:
'image'
'variant'
'alt_allele_indices'
Aside from 'image', these may be encoded specially for TPU.
"""
def load_dataset(filename):
dataset = tf.data.TFRecordDataset(
filename,
buffer_size=self.prefetch_dataset_buffer_size,
compression_type=compression_type,
)
return dataset
batch_size = params['batch_size']
compression_type = dv_utils.compression_type_of_files(self.input_files)
dataset = tf.data.Dataset.list_files(
sharded_file_utils.normalize_to_sharded_file_pattern(
self.input_file_spec
),
shuffle=False,
)
logging.vlog(
3, 'self.input_read_threads={}'.format(self.input_read_threads)
)
if self.sloppy:
options = tf.data.Options()
options.experimental_deterministic = False
dataset = dataset.with_options(options)
dataset = dataset.interleave(
load_dataset,
cycle_length=self.input_read_threads,
num_parallel_calls=tf.data.AUTOTUNE,
)
dataset = dataset.map(
map_func=self.parse_tfexample, num_parallel_calls=tf.data.AUTOTUNE
)
dataset = dataset.batch(batch_size=batch_size)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
return dataset
def __str__(self):
return (
'DeepVariantInput(name={}, input_file_spec={}, num_examples={}, '
'mode={})'
).format(self.name, self.input_file_spec, self.num_examples, self.mode)
# This is the entry point to get a DeepVariantInput when you start with
# a dataset configuration file name.
def get_input_fn_from_dataset(dataset_config_filename, mode, **kwargs):
"""Creates an input_fn from the dataset config file.
Args:
dataset_config_filename: str. Path to the dataset config pbtxt file.
mode: one of tf.estimator.ModeKeys.{TRAIN,EVAL,PREDICT}
**kwargs: Additional keyword arguments for DeepVariantInput.
Returns:
An input_fn from the specified split in the dataset_config file.
Raises:
ValueError: if the dataset config doesn't have the necessary information.
"""
# Get the metadata.
dataset_config = read_dataset_config(dataset_config_filename)
# Return a reader for the data.
return get_input_fn_from_filespec(
input_file_spec=dataset_config.tfrecord_path,
mode=mode,
num_examples=dataset_config.num_examples,
name=dataset_config.name,
**kwargs,
)
# This is the entry point to get a DeepVariantInput when you start with
# a tf.example file specification, and associated metadata.
def get_input_fn_from_filespec(input_file_spec, mode, **kwargs):
"""Create a DeepVariantInput function object from a file spec.
Args:
input_file_spec: the tf.example input file specification, possibly sharded.
mode: tf.estimator.ModeKeys.
**kwargs: Additional keyword arguments for DeepVariantInput.
Returns:
A DeepVariantInput object usable as an input_fn.
"""
return DeepVariantInput(mode=mode, input_file_spec=input_file_spec, **kwargs)
# Return the stream of batched images from a dataset.
def get_batches(tf_dataset, model, batch_size):
"""Provides batches of pileup images from this dataset.
Creates a DeepVariantInput for tf_dataset. It instantiates an iterator
on the dataset, and returns the images, labels, encoded_variant
features in batches. This calls model.preprocess_images on the images
(but note that we will be moving that step into model_fn for the
Estimator api).
Args:
tf_dataset: a DeepVariantInput object
model: a model object
batch_size: int batch size
Returns:
(images, labels, encoded_variant)
Raises:
ValueError: if the dataset has the wrong mode.
"""
if tf_dataset.mode not in (
tf_estimator.ModeKeys.TRAIN,
tf_estimator.ModeKeys.EVAL,
):
raise ValueError(
'tf_dataset.mode is {} but must be one of TRAIN or EVAL.'.format(
tf_dataset.mode
)
)
params = dict(batch_size=batch_size)
features, labels = tf.compat.v1.data.make_one_shot_iterator(
tf_dataset(params)
).get_next()
images = features['image']
encoded_variant = features['variant']
images = model.preprocess_images(images)
return images, labels, encoded_variant
# This reads a pbtxt file and returns the config proto.
def read_dataset_config(dataset_config_filename):
"""Returns a DeepVariantDatasetConfig proto read from the dataset config file.
Args:
dataset_config_filename: String. Path to the dataset config pbtxt file.
Returns:
A DeepVariantDatasetConfig proto from the dataset_config file.
Raises:
ValueError: if the dataset config doesn't have the necessary information.
"""
with tf.io.gfile.GFile(dataset_config_filename) as f:
dataset_config = text_format.Parse(
f.read(), deepvariant_pb2.DeepVariantDatasetConfig()
)
if not dataset_config.name:
raise ValueError('dataset_config needs to have a name')
if not dataset_config.tfrecord_path:
raise ValueError(
'The dataset in the config {} does not have a tfrecord_path.'.format(
dataset_config_filename
)
)
# TODO: remove this check once we're able to deal with absence
# of num_examples.
if not dataset_config.num_examples:
raise ValueError(
'The dataset in the config {} does not have a num_examples.'.format(
dataset_config_filename
)
)
return dataset_config
def write_dataset_config_to_pbtxt(dataset_config, dataset_config_filename):
"""Writes the dataset_config to a human-readable text format.
Args:
dataset_config: DeepVariantDatasetConfig. The config to be written out.
dataset_config_filename: String. Path to the output pbtxt file.
"""
with tf.io.gfile.GFile(dataset_config_filename, mode='w') as writer:
writer.write(text_format.MessageToString(dataset_config))