[304dd3]: / datasets / adni_3d.py

Download this file

139 lines (116 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os, torch, pdb
import numpy as np
import json
from PIL import Image
from PIL import ImageFile
import torch.utils.data as data
import random
import collections
from numpy import random as nprandom
import pickle
import glob
import re
import numpy as np
import pandas as pd
from random import shuffle
import random
import math
import nibabel as nib
from .augmentations import *
ImageFile.LOAD_TRUNCATED_IMAGES = True
class ADNI_3D(data.Dataset):
def __init__(self, dir_to_scans, dir_to_tsv, mode = 'Train', n_label = 3, percentage_usage = 1.0):
if n_label == 3:
LABEL_MAPPING = ["CN", "MCI", "AD"]
elif n_label == 2:
LABEL_MAPPING = ["CN", "AD"]
self.LABEL_MAPPING = LABEL_MAPPING
if mode == 'Train':
subject_tsv = pd.io.parsers.read_csv(os.path.join(dir_to_tsv,
mode+'_diagnosis_ADNI.tsv'), sep='\t')
else:
subject_tsv = pd.io.parsers.read_csv(os.path.join(dir_to_tsv,
mode+'_diagnosis_ADNI.tsv'), sep='\t')
# Clean sessions without labels
indices_not_missing = []
for i in range(len(subject_tsv)):
if mode == 'Train':
if (subject_tsv.iloc[i].diagnosis in LABEL_MAPPING):
indices_not_missing.append(i)
else:
if (subject_tsv.iloc[i].diagnosis in LABEL_MAPPING):
indices_not_missing.append(i)
self.subject_tsv = subject_tsv.iloc[indices_not_missing]
if mode == 'Train':
self.subject_tsv = subject_tsv.iloc[np.random.permutation(int(len(subject_tsv)*percentage_usage))]
self.subject_id = np.unique(subject_tsv.participant_id.values)
self.index_dic = dict(zip(self.subject_id,range(len(self.subject_id))))
self.dir_to_scans = dir_to_scans
self.mode = mode
self.age_range = list(np.arange(0.0,120.0,0.5))
def __len__(self):
return len(self.subject_tsv)
def __getitem__(self, idx):
try:
path = os.path.join(self.dir_to_scans,self.subject_tsv.iloc[idx].participant_id,
self.subject_tsv.iloc[idx].session_id,'t1/spm/segmentation/normalized_space')
all_segs = list(os.listdir(path))
if self.subject_tsv.iloc[idx].diagnosis == 'CN':
label = 0
elif self.subject_tsv.iloc[idx].diagnosis == 'MCI':
label = 1
elif self.subject_tsv.iloc[idx].diagnosis == 'AD':
if self.LABEL_MAPPING == ["CN", "AD"]:
label = 1
else:
label = 2
else:
print('WRONG LABEL VALUE!!!')
label = -100
mmse = self.subject_tsv.iloc[idx].mmse
cdr_sub = 0#self.subject_tsv.iloc[idx].cdr #cdr_sb #cdr#
age = list(np.arange(0.0,120.0,0.5)).index(self.subject_tsv.iloc[idx].age_rounded) #list(np.arange(0.0,25.0)).index(self.subject_tsv.iloc[idx].education_level)#
idx_out = self.index_dic[self.subject_tsv.iloc[idx].participant_id]
for seg_name in all_segs:
if 'Space_T1w' in seg_name:
image = nib.load(os.path.join(path,seg_name)).get_data().squeeze()
image[np.isnan(image)] = 0.0
image = (image - image.min())/(image.max() - image.min() + 1e-6)
if self.mode == 'Train':
image = self.augment_image(image)
image = np.expand_dims(image,axis =0)
if self.mode == 'Train':
image = self.randomCrop(image,96,96,96)
else:
image = self.centerCrop(image,96,96,96)
except Exception as e:
print(f"Failed to load #{idx}: {path}")
print(f"Errors encountered: {e}")
print(traceback.format_exc())
return None,None,None,None
return image.astype(np.float32),label,idx_out,mmse,cdr_sub,age
def centerCrop(self, img, length, width, height):
assert img.shape[1] >= length
assert img.shape[2] >= width
assert img.shape[3] >= height
x = img.shape[1]//2 - length//2
y = img.shape[2]//2 - width//2
z = img.shape[3]//2 - height//2
img = img[:,x:x+length, y:y+width, z:z+height]
return img
def randomCrop(self, img, length, width, height):
assert img.shape[1] >= length
assert img.shape[2] >= width
assert img.shape[3] >= height
x = random.randint(0, img.shape[1] - length)
y = random.randint(0, img.shape[2] - width)
z = random.randint(0, img.shape[3] - height )
img = img[:,x:x+length, y:y+width, z:z+height]
return img
def augment_image(self, image):
sigma = np.random.uniform(0.0,1.0,1)[0]
image = scipy.ndimage.filters.gaussian_filter(image, sigma, truncate=8)
return image
def unpickling(self, path):
file_return=pickle.load(open(path,'rb'))
return file_return