tags:
- medical
This model card describes the ClinicalBERT model, which was trained on a large multicenter dataset with a large corpus of 1.2B words of diverse diseases we constructed.
We then utilized a large-scale corpus of EHRs from over 3 million patient records to fine tune the base language model.
The ClinicalBERT model was trained on a large multicenter dataset with a large corpus of 1.2B words of diverse diseases we constructed.
The ClinicalBERT was initialized from BERT. Then the training followed the principle of masked language model, in which given a piece of text, we randomly replace some tokens by MASKs,
special tokens for masking, and then require the model to predict the original tokens via contextual text.
We used a batch size of 32, a maximum sequence length of 256, and a learning rate of 5e-5 for pre-training our models.
Please cite this article: Wang, G., Liu, X., Ying, Z. et al. Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial. Nat Med (2023). https://doi.org/10.1038/s41591-023-02552-9