[c1c5c4]: / configs / metadata.json

Download this file

106 lines (105 with data), 4.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.4.8",
"changelog": {
"0.4.8": "fix the wrong GPU index issue of multi-node",
"0.4.7": "enhance prepare datalist file",
"0.4.6": "add dataset dir example",
"0.4.5": "update ONNX-TensorRT descriptions",
"0.4.4": "update error links",
"0.4.3": "add the ONNX-TensorRT way of model conversion",
"0.4.2": "fix mgpu finalize issue",
"0.4.1": "add non-deterministic note",
"0.4.0": "adapt to BundleWorkflow interface",
"0.3.9": "black autofix format and add name tag",
"0.3.8": "modify dataset key name",
"0.3.7": "restructure readme to match updated template",
"0.3.6": "added train/val graphs",
"0.3.5": "update prepare datalist function",
"0.3.4": "update output format of inference",
"0.3.3": "update to use monai 1.0.1",
"0.3.2": "enhance readme on commands example",
"0.3.1": "fix license Copyright error",
"0.3.0": "update license files",
"0.2.1": "fix network_data_format error",
"0.2.0": "unify naming",
"0.1.1": "update for MetaTensor",
"0.1.0": "complete the model package"
},
"monai_version": "1.2.0",
"pytorch_version": "1.13.1",
"numpy_version": "1.22.2",
"optional_packages_version": {
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9",
"scikit-learn": "1.1.3",
"tensorboard": "2.10.1"
},
"name": "BraTS MRI segmentation",
"task": "Multimodal Brain Tumor segmentation",
"description": "A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "https://www.med.upenn.edu/sbia/brats2018/data.html",
"data_type": "nibabel",
"image_classes": "4 channel data, T1c, T1, T2, FLAIR at 1x1x1 mm",
"label_classes": "3 channel data, channel 0 for Tumor core, channel 1 for Whole tumor, channel 2 for Enhancing tumor",
"pred_classes": "3 channels data, same as label_classes",
"eval_metrics": {
"val_mean_dice": 0.8518,
"val_mean_dice_tc": 0.8559,
"val_mean_dice_wt": 0.9026,
"val_mean_dice_et": 0.7905
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Myronenko, Andriy. '3D MRI brain tumor segmentation using autoencoder regularization.' International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654"
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "magnitude",
"modality": "MR",
"num_channels": 4,
"spatial_shape": [
"8*n",
"8*n",
"8*n"
],
"dtype": "float32",
"value_range": [],
"is_patch_data": true,
"channel_def": {
"0": "T1c",
"1": "T1",
"2": "T2",
"3": "FLAIR"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "segmentation",
"num_channels": 3,
"spatial_shape": [
"8*n",
"8*n",
"8*n"
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "Tumor core",
"1": "Whole tumor",
"2": "Enhancing tumor"
}
}
}
}
}