# Reference: Alpaca & Vicuna
import argparse
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from utils import get_prompt, modify_special_tokens
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--cache_dir", type=str)
return parser.parse_args()
def main():
args = parse_args()
tokenizer = AutoTokenizer.from_pretrained(
"decapoda-research/llama-7b-hf", revision="pr/7", use_fast=False
)
tokenizer = modify_special_tokens(tokenizer)
subfolder = "result" if args.model_name == "zl111/ChatDoctor" else ""
model = AutoModelForCausalLM.from_pretrained(
args.model_name,
torch_dtype=torch.bfloat16,
subfolder=subfolder,
cache_dir=args.cache_dir,
).to("cuda")
prompt = get_prompt(args.model_name)
while True:
example = {
"question": input("Enter instruction: "),
"note": input("Enter input: "),
}
text = prompt.format_map(example)
tokens = tokenizer.encode(text, return_tensors="pt").to("cuda")
output = model.generate(
tokens, max_length=2048, do_sample=True, temperature=1, num_beams=5
)
result = tokenizer.decode(output[0], skip_special_tokens=True)
try:
answer = result[len(text) : result.index("</s>", len(text))].strip()
except:
answer = result[len(text) :].strip()
print(answer)
if __name__ == "__main__":
main()