[4988ef]: / preprocessing / make_instruction_dataset.py

Download this file

58 lines (48 with data), 1.6 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
import re
import pandas as pd
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--input_path", type=str)
parser.add_argument("--save_path", type=str)
return parser.parse_args()
def main():
args = parse_args()
df = pd.read_json(args.input_path, lines=True)
df["note"] = (
df[0]
.map(lambda x: x["messages"][0]["content"])
.map(
lambda x: re.findall(
r"\[Discharge Summary Begin\]\n(.*)\n\[Discharge Summary End\]",
x,
flags=re.DOTALL | re.MULTILINE,
)[0]
)
)
df["question"] = (
df[0]
.map(lambda x: x["messages"][0]["content"])
.map(
lambda x: re.findall(
r"\[Instruction Begin\]\n(.*)\n\[Instruction End\]",
x,
flags=re.DOTALL | re.MULTILINE,
)[0]
)
)
df["answer"] = df[1].map(lambda x: x["choices"][0]["message"]["content"])
df = df[["note", "question", "answer"]]
for col in df.columns:
df = df[
~df[col].str.contains(
r"(AI language)|(language model)|(clinical language)|(recognition model)|(extraction model)|(the model)|(summarization model)|(clinical model)|(generation model)|(AI model)|(NER model)",
case=False,
regex=True,
)
]
df = df[~df["answer"].str.endswith("?")]
print("Total number of examples:", len(df))
df.to_json(args.save_path, orient="records", indent=4)
if __name__ == "__main__":
main()