[1928b6]: / train.py

Download this file

254 lines (227 with data), 11.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import dataset
import utils
from utils import EarlyStopping, LRScheduler
import os
import pandas as pd
import argparse
import torch.backends.cudnn as cudnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import numpy as np
import time
parser = argparse.ArgumentParser(description='PET lymphoma classification')
#I/O PARAMS
parser.add_argument('--output', type=str, default='results', help='name of output folder (default: "results")')
#MODEL PARAMS
parser.add_argument('--normalize', action='store_true', default=False, help='normalize images')
parser.add_argument('--checkpoint', default='', type=str, help='model checkpoint if any (default: none)')
parser.add_argument('--resume', action='store_true', default=False, help='resume from checkpoint')
#OPTIMIZATION PARAMS
parser.add_argument('--optimizer', default='sgd', type=str, help='The optimizer to use (default: sgd)')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate (default: 1e-3)')
parser.add_argument('--lr_anneal', type=int, default=15, help='period for lr annealing (default: 15). Only works for SGD')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum (default: 0.9)')
parser.add_argument('--wd', default=1e-4, type=float, help='weight decay (default: 1e-4)')
#TRAINING PARAMS
parser.add_argument('--split_index', default=0, type=int, metavar='INT', choices=list(range(0,20)),help='which split index (default: 0)')
parser.add_argument('--run', default=1, type=int, metavar='INT', help='repetition run with same settings (default: 1)')
parser.add_argument('--batch_size', type=int, default=50, help='how many images to sample per slide (default: 50)')
parser.add_argument('--nepochs', type=int, default=40, help='number of epochs (default: 40)')
parser.add_argument('--workers', default=10, type=int, help='number of data loading workers (default: 10)')
parser.add_argument('--augm', default=0, type=int, choices=[0,1,2,3,12,4,5,14,34,45], help='augmentation procedure 0=none,1=flip,2=rot,3=flip LR, 12=flip+rot, 4=scale, 5=noise, 14=flip+scale, 34=flipLR+scale, 45=scale+noise (default: 0)')
parser.add_argument('--balance', action='store_true', default=False, help='balance dataset (balance loss)')
parser.add_argument('--lr_scheduler', action='store_true',default=False, help='decrease LR on platau')
parser.add_argument('--early_stopping', action='store_true',default=False, help='use early stopping')
def main():
### Get user input
global args
args = parser.parse_args()
print(args)
best_auc = 0.
### Output directory and files
if not os.path.isdir(args.output):
try:
os.mkdir(args.output)
except OSError:
print ('Creation of the output directory "{}" failed.'.format(args.output))
else:
print ('Successfully created the output directory "{}".'.format(args.output))
### Get model
model = utils.get_model()
if args.checkpoint:
ch = torch.load(args.checkpoint)
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in ch['state_dict'].items() if k in model_dict}
print('Loaded [{}/{}] keys from checkpoint'.format(len(pretrained_dict),len(model_dict)))
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
if args.resume:
ch = torch.load( os.path.join(args.output,'checkpoint_split'+str(args.split_index)+'_run'+str(args.run)+'.pth') )
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in ch['state_dict'].items() if k in model_dict}
print('Loaded [{}/{}] keys from checkpoint'.format(len(pretrained_dict),len(model_dict)))
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
### Set optimizer
optimizer = utils.create_optimizer(model, args.optimizer, args.lr, args.momentum, args.wd)
if args.resume and 'optimizer' in ch:
optimizer.load_state_dict(ch['optimizer'])
print('Loaded optimizer state')
cudnn.benchmark = True
### Augmentations
flipHorVer = dataset.RandomFlip()
flipLR = dataset.RandomFlipLeftRight()
rot90 = dataset.RandomRot90()
scale = dataset.RandomScale()
noise = dataset.RandomNoise()
if args.augm==0:
transform = None
elif args.augm==1:
transform = transforms.Compose([flipHorVer])
elif args.augm==2:
transform = transforms.Compose([rot90])
elif args.augm==3:
transform = transforms.Compose([flipLR])
elif args.augm==12:
transform = transforms.Compose([flipHorVer,rot90])
elif args.augm==4:
transform = transforms.Compose([scale])
elif args.augm==5:
transform = transforms.Compose([noise])
elif args.augm==14:
transform = transforms.Compose([flip,scale])
elif args.augm==34:
transform = transforms.Compose([flipLR,scale])
elif args.augm==45:
transform = transforms.Compose([scale,noise])
### Set datasets
train_dset,trainval_dset,val_dset,_,balance_weight_neg_pos = dataset.get_datasets_singleview(transform,args.normalize,args.balance,args.split_index)
print('Datasets train:{}, val:{}'.format(len(train_dset.df),len(val_dset.df)))
### Set loss criterion
if args.balance:
w = torch.Tensor(balance_weight_neg_pos)
print('Balance loss with weights:',balance_weight_neg_pos)
criterion = nn.BCEWithLogitsLoss(pos_weight=w).cuda()
else:
criterion = nn.BCEWithLogitsLoss().cuda()
### Early stopping
if args.lr_scheduler:
print('INFO: Initializing learning rate scheduler')
lr_scheduler = LRScheduler(optimizer)
if args.resume and 'lr_scheduler' in ch:
lr_scheduler.lr_scheduler.load_state_dict(ch['lr_scheduler'])
print('Loaded lr_scheduler state')
if args.early_stopping:
print('INFO: Initializing early stopping')
early_stopping = EarlyStopping()
if args.resume and 'early_stopping' in ch:
early_stopping.best_loss = ch['early_stopping']['best_loss']
early_stopping.counter = ch['early_stopping']['counter']
early_stopping.min_delta = ch['early_stopping']['min_delta']
early_stopping.patience = ch['early_stopping']['patience']
early_stopping.early_stop = ch['early_stopping']['early_stop']
print('Loaded early_stopping state')
### Set loaders
train_loader = torch.utils.data.DataLoader(train_dset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
trainval_loader = torch.utils.data.DataLoader(trainval_dset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
val_loader = torch.utils.data.DataLoader(val_dset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
### Set output files
convergence_name = 'convergence_split'+str(args.split_index)+'_run'+str(args.run)+'.csv'
if not args.resume:
fconv = open(os.path.join(args.output,convergence_name), 'w')
fconv.write('epoch,split,metric,value\n')
fconv.close()
### Main training loop
if args.resume:
epochs = range(ch['epoch']+1,args.nepochs+1)
else:
epochs = range(args.nepochs+1)
for epoch in epochs:
if args.optimizer == 'sgd':
utils.adjust_learning_rate(optimizer, epoch, args.lr_anneal, args.lr)
### Training logic
if epoch > 0:
loss = train(epoch, train_loader, model, criterion, optimizer)
else:
loss = np.nan
### Printing stats
fconv = open(os.path.join(args.output,convergence_name), 'a')
fconv.write('{},train,loss,{}\n'.format(epoch, loss))
fconv.close()
### Validation logic
# Evaluate on train data
train_probs = test(epoch, trainval_loader, model)
train_auc, train_ber, train_fpr, train_fnr = train_dset.errors(train_probs)
# Evaluate on validation set
val_probs = test(epoch, val_loader, model)
val_auc, val_ber, val_fpr, val_fnr = val_dset.errors(val_probs)
print('Epoch: [{}/{}]\tLoss: {:.6f}\tAUC: {:.4f}\t{:.4f}'.format(epoch, args.nepochs, loss, train_auc, val_auc))
fconv = open(os.path.join(args.output,convergence_name), 'a')
fconv.write('{},train,auc,{}\n'.format(epoch, train_auc))
fconv.write('{},train,ber,{}\n'.format(epoch, train_ber))
fconv.write('{},train,fpr,{}\n'.format(epoch, train_fpr))
fconv.write('{},train,fnr,{}\n'.format(epoch, train_fnr))
fconv.write('{},validation,auc,{}\n'.format(epoch, val_auc))
fconv.write('{},validation,ber,{}\n'.format(epoch, val_ber))
fconv.write('{},validation,fpr,{}\n'.format(epoch, val_fpr))
fconv.write('{},validation,fnr,{}\n'.format(epoch, val_fnr))
fconv.close()
### Create checkpoint dictionary
obj = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'lr_scheduler' : lr_scheduler.lr_scheduler.state_dict(),
'early_stopping' : {'best_loss':early_stopping.best_loss,'counter':early_stopping.counter,'early_stop':early_stopping.early_stop,'min_delta': early_stopping.min_delta,'patience': early_stopping.patience},
'auc': val_auc,
}
### Save checkpoint
torch.save(obj, os.path.join(args.output,'checkpoint_split'+str(args.split_index)+'_run'+str(args.run)+'.pth'))
### Early stopping
if args.lr_scheduler:
lr_scheduler(-val_auc)
if args.early_stopping:
early_stopping(-val_auc)
if early_stopping.early_stop:
break
def test(epoch, loader, model):
# Set model in test mode
model.eval()
# Initialize probability vector
probs = torch.FloatTensor(len(loader.dataset)).cuda()
# Loop through batches
with torch.no_grad():
for i, (input,_) in enumerate(loader):
## Copy batch to GPU
input = input.cuda()
## Forward pass
y = model(input) #features, probabilities
p = F.softmax(y,dim=1)
## Clone output to output vector
probs[i*args.batch_size:i*args.batch_size+input.size(0)] = p.detach()[:,1].clone()
return probs.cpu().numpy()
def train(epoch, loader, model, criterion, optimizer):
# Set model in training mode
model.train()
# Initialize loss
running_loss = 0.
# Loop through batches
for i, (input,target) in enumerate(loader):
## Copy to GPU
input = input.cuda()
target_1hot = F.one_hot(target.long(),num_classes=2).cuda()
## Forward pass
y = model(input) #features, probabilities
## Calculate loss
loss = criterion(y, target_1hot.float())
## Optimization step
optimizer.zero_grad()
loss.backward()
optimizer.step()
## Store loss
running_loss += loss.item()*input.size(0)
return running_loss/len(loader.dataset)
if __name__ == '__main__':
main()