[62341e]: / segmentation / trainddp.py

Download this file

271 lines (229 with data), 10.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
'''
Copyright (c) Microsoft Corporation. All rights reserved.
Licensed under the MIT License.
'''
from monai.transforms import (
AsDiscrete,
Compose,
)
import argparse
from monai.inferers import sliding_window_inference
from monai.data import CacheDataset, DataLoader, decollate_batch
import torch
import matplotlib.pyplot as plt
import os
import pandas as pd
import time
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
import os
from initialize_train import (
create_data_split_files,
get_train_valid_data_in_dict_format,
get_train_transforms,
get_valid_transforms,
get_model,
get_loss_function,
get_optimizer,
get_scheduler,
get_metric,
get_validation_sliding_window_size
)
import sys
config_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..")
sys.path.append(config_dir)
from config import RESULTS_FOLDER
torch.backends.cudnn.benchmark = True
#%%
def ddp_setup():
dist.init_process_group(backend='nccl', init_method="env://")
def convert_to_4digits(str_num):
if len(str_num) == 1:
new_num = '000' + str_num
elif len(str_num) == 2:
new_num = '00' + str_num
elif len(str_num) == 3:
new_num = '0' + str_num
else:
new_num = str_num
return new_num
#%%
def load_train_objects(args):
train_data, valid_data = get_train_valid_data_in_dict_format(args.fold)
train_transforms = get_train_transforms(args.input_patch_size)
valid_transforms = get_valid_transforms()
model = get_model(args.network_name, args.input_patch_size)
optimizer = get_optimizer(model, learning_rate=args.lr, weight_decay=args.wd)
loss_function = get_loss_function()
scheduler = get_scheduler(optimizer, args.epochs)
metric = get_metric()
return (
train_data,
valid_data,
train_transforms,
valid_transforms,
model,
loss_function,
optimizer,
scheduler,
metric
)
def prepare_dataset(data, transforms, args):
dataset = CacheDataset(data=data, transform=transforms, cache_rate=args.cache_rate, num_workers=args.num_workers)
return dataset
def main_worker(save_models_dir, save_logs_dir, args):
# init_process_group
ddp_setup()
# get local rank on the GPU
local_rank = int(dist.get_rank())
if local_rank == 0:
print(f"Training {args.network_name} on fold {args.fold}")
print(f"The models will be saved in {save_models_dir}")
print(f"The training/validation logs will be saved in {save_logs_dir}")
# get all training and validation objects
train_data, valid_data, train_transforms, valid_transforms, model, loss_function, optimizer, scheduler, metric = load_train_objects(args)
# get dataset of object-type CacheDataset
train_dataset = prepare_dataset(train_data, train_transforms, args)
valid_dataset = prepare_dataset(valid_data, valid_transforms, args)
# get DistributedSampler instances for both training and validation dataloader
# this will be used to split data into different GPUs
train_sampler = DistributedSampler(dataset=train_dataset, shuffle=True)
valid_sampler = DistributedSampler(dataset=valid_dataset, shuffle=False)
# initializing train and valid dataloaders
train_dataloader = DataLoader(
train_dataset,
batch_size=args.train_bs,
pin_memory=True,
shuffle=False,
sampler=train_sampler,
num_workers=args.num_workers
)
valid_dataloader = DataLoader(
valid_dataset,
batch_size=1,
pin_memory=True,
shuffle=False,
sampler=valid_sampler,
num_workers=args.num_workers
)
post_pred = Compose([AsDiscrete(argmax=True, to_onehot=2)])
post_label = Compose([AsDiscrete(to_onehot=2)])
# filepaths for storing training and validation logs from different GPUs
trainlog_fpath = os.path.join(save_logs_dir, f'trainlog_gpu{local_rank}.csv')
validlog_fpath = os.path.join(save_logs_dir, f'validlog_gpu{local_rank}.csv')
# initialize the GPU device
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
# number of epochs and epoch interval for running validation
max_epochs = args.epochs
val_interval = args.val_interval
# push models to device
model = model.to(device)
epoch_loss_values = []
metric_values = []
# wrap the model with DDP
model = DDP(model, device_ids=[device])
experiment_start_time = time.time()
for epoch in range(max_epochs):
epoch_start_time = time.time()
print(f"[GPU{local_rank}]: Running training: epoch = {epoch + 1}")
model.train()
epoch_loss = 0
step = 0
train_sampler.set_epoch(epoch)
for batch_data in train_dataloader:
step += 1
inputs, labels = (
batch_data['CTPT'].to(device),
batch_data['GT'].to(device),
)
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
epoch_loss /= step
print(f"[GPU:{local_rank}]: epoch {epoch + 1}/{max_epochs}: average loss: {epoch_loss:.4f}")
epoch_loss_values.append(epoch_loss)
# steps forward the CosineAnnealingLR scheduler
scheduler.step()
# update the training log file
epoch_loss_values_df = pd.DataFrame(data=epoch_loss_values, columns=['Loss'])
epoch_loss_values_df.to_csv(trainlog_fpath, index=False)
if (epoch + 1) % val_interval == 0:
print(f"[GPU{local_rank}]: Running validation")
model.eval()
with torch.no_grad():
for val_data in valid_dataloader:
val_inputs, val_labels = (
val_data['CTPT'].to(device),
val_data['GT'].to(device),
)
roi_size = get_validation_sliding_window_size(args.input_patch_size)
sw_batch_size = args.sw_bs
val_outputs = sliding_window_inference(
val_inputs, roi_size, sw_batch_size, model)
val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]
val_labels = [post_label(i) for i in decollate_batch(val_labels)]
# compute metric for current iteration
metric(y_pred=val_outputs, y=val_labels)
# aggregate the final mean dice result
metric_val = metric.aggregate().item()
metric.reset()
metric_values.append(metric_val)
metric_values_df = pd.DataFrame(data=metric_values, columns=['Metric'])
metric_values_df.to_csv(validlog_fpath, index=False)
print(f"[GPU:{local_rank}] SAVING MODEL at epoch: {epoch + 1}; Mean DSC: {metric_val:.4f}")
savepath = os.path.join(save_models_dir, "model_ep="+convert_to_4digits(str(int(epoch + 1)))+".pth")
torch.save(model.module.state_dict(), savepath)
epoch_end_time = (time.time() - epoch_start_time)/60
print(f"[GPU:{local_rank}]: Epoch {epoch + 1} time: {round(epoch_end_time,2)} min")
experiment_end_time = (time.time() - experiment_start_time)/(60*60)
print(f"[GPU:{local_rank}]: Total time: {round(experiment_end_time,2)} hr")
dist.destroy_process_group()
def main(args):
os.environ['OMP_NUM_THREADS'] = '6'
fold = args.fold
network = args.network_name
inputsize = f'randcrop{args.input_patch_size}'
experiment_code = f"{network}_fold{fold}_{inputsize}"
#save models folder
save_models_dir = os.path.join(RESULTS_FOLDER,'models')
save_models_dir = os.path.join(save_models_dir, 'fold'+str(fold), network, experiment_code)
os.makedirs(save_models_dir, exist_ok=True)
# save train and valid logs folder
save_logs_dir = os.path.join(RESULTS_FOLDER,'logs')
save_logs_dir = os.path.join(save_logs_dir, 'fold'+str(fold), network, experiment_code)
os.makedirs(save_logs_dir, exist_ok=True)
main_worker(save_models_dir, save_logs_dir, args)
if __name__ == "__main__":
# create datasplit files for train and test images
# follow all the instructions for dataset directory creation and images/labels file names as given in: LINK
create_data_split_files()
parser = argparse.ArgumentParser(description='Lymphoma PET/CT lesion segmentation using MONAI-PyTorch')
parser.add_argument('--fold', type=int, default=0, metavar='fold',
help='validation fold (default: 0), remaining folds will be used for training')
parser.add_argument('--network-name', type=str, default='unet', metavar='netname',
help='network name for training (default: unet)')
parser.add_argument('--epochs', type=int, default=500, metavar='epochs',
help='number of epochs to train (default: 10)')
parser.add_argument('--input-patch-size', type=int, default=192, metavar='inputsize',
help='size of cropped input patch for training (default: 192)')
parser.add_argument('--train-bs', type=int, default=1, metavar='train-bs',
help='mini-batchsize for training (default: 1)')
parser.add_argument('--num_workers', type=int, default=2, metavar='nw',
help='num_workers for train and validation dataloaders (default: 2)')
parser.add_argument('--cache-rate', type=float, default=0.1, metavar='cr',
help='cache_rate for CacheDataset from MONAI (default=0.1)')
parser.add_argument('--lr', type=float, default=2e-4, metavar='lr',
help='initial learning rate for AdamW optimizer (default=2e-4); Cosine scheduler will decrease this to 0 in args.epochs epochs')
parser.add_argument('--wd', type=float, default=1e-5, metavar='wd',
help='weight-decay for AdamW optimizer (default=1e-5)')
parser.add_argument('--val-interval', type=int, default=2, metavar='val-interval',
help='epochs interval for which validation will be performed (default=2)')
parser.add_argument('--sw-bs', type=int, default=2, metavar='sw-bs',
help='batchsize for sliding window inference (default=2)')
args = parser.parse_args()
main(args)