|
a |
|
b/segmentation/inference.py |
|
|
1 |
#%% |
|
|
2 |
''' |
|
|
3 |
Copyright (c) Microsoft Corporation. All rights reserved. |
|
|
4 |
Licensed under the MIT License. |
|
|
5 |
''' |
|
|
6 |
import numpy as np |
|
|
7 |
import glob |
|
|
8 |
import os |
|
|
9 |
import pandas as pd |
|
|
10 |
import SimpleITK as sitk |
|
|
11 |
import sys |
|
|
12 |
import argparse |
|
|
13 |
from monai.inferers import sliding_window_inference |
|
|
14 |
from monai.data import DataLoader, Dataset, decollate_batch |
|
|
15 |
import torch |
|
|
16 |
import os |
|
|
17 |
import glob |
|
|
18 |
import pandas as pd |
|
|
19 |
import numpy as np |
|
|
20 |
import torch.nn as nn |
|
|
21 |
import time |
|
|
22 |
from initialize_train import ( |
|
|
23 |
get_validation_sliding_window_size, |
|
|
24 |
get_model, |
|
|
25 |
get_test_data_in_dict_format, |
|
|
26 |
get_valid_transforms, |
|
|
27 |
get_post_transforms |
|
|
28 |
) |
|
|
29 |
config_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..") |
|
|
30 |
sys.path.append(config_dir) |
|
|
31 |
from config import RESULTS_FOLDER |
|
|
32 |
#%% |
|
|
33 |
def convert_to_4digits(str_num): |
|
|
34 |
if len(str_num) == 1: |
|
|
35 |
new_num = '000' + str_num |
|
|
36 |
elif len(str_num) == 2: |
|
|
37 |
new_num = '00' + str_num |
|
|
38 |
elif len(str_num) == 3: |
|
|
39 |
new_num = '0' + str_num |
|
|
40 |
else: |
|
|
41 |
new_num = str_num |
|
|
42 |
return new_num |
|
|
43 |
|
|
|
44 |
def create_dictionary_ctptgt(ctpaths, ptpaths, gtpaths): |
|
|
45 |
data = [] |
|
|
46 |
for i in range(len(gtpaths)): |
|
|
47 |
ctpath = ctpaths[i] |
|
|
48 |
ptpath = ptpaths[i] |
|
|
49 |
gtpath = gtpaths[i] |
|
|
50 |
data.append({'CT':ctpath, 'PT':ptpath, 'GT':gtpath}) |
|
|
51 |
return data |
|
|
52 |
|
|
|
53 |
def read_image_array(path): |
|
|
54 |
img = sitk.ReadImage(path) |
|
|
55 |
array = np.transpose(sitk.GetArrayFromImage(img), (2,1,0)) |
|
|
56 |
return array |
|
|
57 |
|
|
|
58 |
#%% |
|
|
59 |
def main(args): |
|
|
60 |
# initialize inference |
|
|
61 |
fold = args.fold |
|
|
62 |
network = args.network_name |
|
|
63 |
inputsize = args.input_patch_size |
|
|
64 |
experiment_code = f"{network}_fold{fold}_randcrop{inputsize}" |
|
|
65 |
sw_roi_size = get_validation_sliding_window_size(inputsize) # get sliding_window inference size for given input patch size |
|
|
66 |
|
|
|
67 |
# find the best model for this experiment from the training/validation logs |
|
|
68 |
# best model is the model with the best validation `Metric` (DSC) |
|
|
69 |
save_logs_dir = os.path.join(RESULTS_FOLDER, 'logs') |
|
|
70 |
validlog_fname = os.path.join(save_logs_dir, 'fold'+str(fold), network, experiment_code, 'validlog_gpu0.csv') |
|
|
71 |
validlog = pd.read_csv(validlog_fname) |
|
|
72 |
best_epoch = 2*(np.argmax(validlog['Metric']) + 1) |
|
|
73 |
best_metric = np.max(validlog['Metric']) |
|
|
74 |
print(f"Using the {network} model at epoch={best_epoch} with mean valid DSC = {round(best_metric, 4)}") |
|
|
75 |
|
|
|
76 |
# get the best model and push it to device=cuda:0 |
|
|
77 |
save_models_dir = os.path.join(RESULTS_FOLDER,'models') |
|
|
78 |
save_models_dir = os.path.join(save_models_dir, 'fold'+str(fold), network, experiment_code) |
|
|
79 |
best_model_fname = 'model_ep=' + convert_to_4digits(str(best_epoch)) +'.pth' |
|
|
80 |
model_path = os.path.join(save_models_dir, best_model_fname) |
|
|
81 |
device = torch.device(f"cuda:0") |
|
|
82 |
model = get_model(network, input_patch_size=inputsize) |
|
|
83 |
model.load_state_dict(torch.load(model_path, map_location=device)) |
|
|
84 |
model.to(device) |
|
|
85 |
|
|
|
86 |
# initialize the location to save predicted masks |
|
|
87 |
save_preds_dir = os.path.join(RESULTS_FOLDER, f'predictions') |
|
|
88 |
save_preds_dir = os.path.join(save_preds_dir, 'fold'+str(fold), network, experiment_code) |
|
|
89 |
os.makedirs(save_preds_dir, exist_ok=True) |
|
|
90 |
|
|
|
91 |
# get test data (in dictionary format for MONAI dataloader), test_transforms and post_transforms |
|
|
92 |
test_data = get_test_data_in_dict_format() |
|
|
93 |
test_transforms = get_valid_transforms() |
|
|
94 |
post_transforms = get_post_transforms(test_transforms, save_preds_dir) |
|
|
95 |
|
|
|
96 |
# initalize PyTorch dataset and Dataloader |
|
|
97 |
dataset_test = Dataset(data=test_data, transform=test_transforms) |
|
|
98 |
dataloader_test = DataLoader(dataset_test, batch_size=1, shuffle=False, num_workers=args.num_workers) |
|
|
99 |
|
|
|
100 |
model.eval() |
|
|
101 |
with torch.no_grad(): |
|
|
102 |
for data in dataloader_test: |
|
|
103 |
inputs = data['CTPT'].to(device) |
|
|
104 |
sw_batch_size = args.sw_bs |
|
|
105 |
print(sw_batch_size) |
|
|
106 |
data['Pred'] = sliding_window_inference(inputs, sw_roi_size, sw_batch_size, model) |
|
|
107 |
data = [post_transforms(i) for i in decollate_batch(data)] |
|
|
108 |
|
|
|
109 |
|
|
|
110 |
if __name__ == "__main__": |
|
|
111 |
parser = argparse.ArgumentParser(description='Lymphoma PET/CT lesion segmentation using MONAI-PyTorch') |
|
|
112 |
parser.add_argument('--fold', type=int, default=0, metavar='fold', |
|
|
113 |
help='validation fold (default: 0), remaining folds will be used for training') |
|
|
114 |
parser.add_argument('--network-name', type=str, default='unet', metavar='netname', |
|
|
115 |
help='network name for training (default: unet)') |
|
|
116 |
parser.add_argument('--input-patch-size', type=int, default=192, metavar='inputsize', |
|
|
117 |
help='size of cropped input patch for training (default: 192)') |
|
|
118 |
parser.add_argument('--num_workers', type=int, default=2, metavar='nw', |
|
|
119 |
help='num_workers for train and validation dataloaders (default: 2)') |
|
|
120 |
parser.add_argument('--sw-bs', type=int, default=2, metavar='sw-bs', |
|
|
121 |
help='batchsize for sliding window inference (default=2)') |
|
|
122 |
args = parser.parse_args() |
|
|
123 |
|
|
|
124 |
main(args) |
|
|
125 |
|