Switch to unified view

a b/scripts/input & loss based/Leukemia_redesinged.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "markdown",
5
   "id": "76545c73",
6
   "metadata": {},
7
   "source": [
8
    "# GPU availability"
9
   ]
10
  },
11
  {
12
   "cell_type": "code",
13
   "execution_count": 4,
14
   "id": "c99b9828",
15
   "metadata": {},
16
   "outputs": [
17
    {
18
     "name": "stdout",
19
     "output_type": "stream",
20
     "text": [
21
      "['/device:GPU:0']\n"
22
     ]
23
    }
24
   ],
25
   "source": [
26
    "# '''\n",
27
    "import tensorflow as tf\n",
28
    "from tensorflow.python.client import device_lib\n",
29
    "def get_available_gpus():\n",
30
    "    local_device_protos = device_lib.list_local_devices()\n",
31
    "    return [x.name for x in local_device_protos if x.device_type == 'GPU']\n",
32
    "\n",
33
    "print(get_available_gpus())\n",
34
    "# '''"
35
   ]
36
  },
37
  {
38
   "cell_type": "markdown",
39
   "id": "f7c1ed2a",
40
   "metadata": {},
41
   "source": [
42
    "# Free GPU Memory"
43
   ]
44
  },
45
  {
46
   "cell_type": "code",
47
   "execution_count": 6,
48
   "id": "59db683a",
49
   "metadata": {},
50
   "outputs": [],
51
   "source": [
52
    "import tensorflow as tf \n",
53
    "physical_devices = tf.config.list_physical_devices('GPU') \n",
54
    "tf.config.experimental.set_memory_growth(physical_devices[0], True)"
55
   ]
56
  },
57
  {
58
   "cell_type": "markdown",
59
   "id": "90d8aca1",
60
   "metadata": {},
61
   "source": [
62
    "# Libraries"
63
   ]
64
  },
65
  {
66
   "cell_type": "code",
67
   "execution_count": 7,
68
   "id": "ef94c0e3",
69
   "metadata": {},
70
   "outputs": [],
71
   "source": [
72
    "import numpy as np\n",
73
    "import os\n",
74
    "import cv2\n",
75
    "import matplotlib.pyplot as plt\n",
76
    "%matplotlib inline    \n",
77
    "import operator   \n",
78
    "import tensorflow as tf\n",
79
    "import random\n",
80
    "from keras.preprocessing.image import ImageDataGenerator\n",
81
    "%reload_ext autoreload\n",
82
    "%autoreload 2\n",
83
    "%matplotlib inline\n",
84
    "import os\n",
85
    "import skimage\n",
86
    "from skimage.io import imread, imshow\n",
87
    "#import ktrain\n",
88
    "\n",
89
    "import numpy as np\n",
90
    "import os\n",
91
    "import cv2\n",
92
    "import matplotlib.pyplot as plt\n",
93
    "%matplotlib inline    \n",
94
    "import operator   \n",
95
    "import tensorflow as tf\n",
96
    "import random\n",
97
    "import skimage\n",
98
    "from skimage.io import imread, imshow\n",
99
    "from keras.preprocessing.image import ImageDataGenerator\n",
100
    "\n"
101
   ]
102
  },
103
  {
104
   "cell_type": "markdown",
105
   "id": "98565dbb",
106
   "metadata": {},
107
   "source": [
108
    "# Directory and params"
109
   ]
110
  },
111
  {
112
   "cell_type": "code",
113
   "execution_count": 8,
114
   "id": "77e05db1",
115
   "metadata": {},
116
   "outputs": [],
117
   "source": [
118
    "\n",
119
    "height = 210\n",
120
    "width = 210\n",
121
    "crop = 210\n",
122
    "\n",
123
    "best_model_name = 'HRD_EfficientNetB0_MOd_Mcc_loss_test1.h5' \n",
124
    "factor=0.93\n",
125
    "patience=2\n",
126
    "epoch=200\n",
127
    "\n",
128
    "#'''\n",
129
    "'''Baseline path'''\n",
130
    "TRAIN_PATH = r'F:\\Leuk study re-designed\\C-NMC\\High imbalance\\Train - 1 to 102 ratio\\enhanched'\n",
131
    "#VAL_PATH = r'../input/5x-aug/Aug_5x/val'\n",
132
    "BATCH_SIZE=10\n",
133
    "r = 4\n",
134
    "c = 4\n",
135
    "#'''"
136
   ]
137
  },
138
  {
139
   "cell_type": "markdown",
140
   "id": "95e0b6e1",
141
   "metadata": {},
142
   "source": [
143
    "# Crop"
144
   ]
145
  },
146
  {
147
   "cell_type": "code",
148
   "execution_count": 9,
149
   "id": "3206d41e",
150
   "metadata": {},
151
   "outputs": [],
152
   "source": [
153
    "def crop_center(img, bounding):\n",
154
    "    start = tuple(map(lambda a, da: a//2-da//2, img.shape, bounding))\n",
155
    "    end = tuple(map(operator.add, start, bounding))\n",
156
    "    slices = tuple(map(slice, start, end))\n",
157
    "    return img[slices]\n",
158
    "\n",
159
    "def crop_generator(batches, crop_length):\n",
160
    "    while True:\n",
161
    "        batch_x, batch_y = next(batches)\n",
162
    "        batch_crops = np.zeros((batch_x.shape[0], crop_length, crop_length, 3))\n",
163
    "        for i in range(batch_x.shape[0]):\n",
164
    "            batch_crops[i] = crop_center(batch_x[i], (crop_length, crop_length))\n",
165
    "        yield (batch_crops, batch_y)"
166
   ]
167
  },
168
  {
169
   "cell_type": "markdown",
170
   "id": "aad63243",
171
   "metadata": {},
172
   "source": [
173
    "# Data generator"
174
   ]
175
  },
176
  {
177
   "cell_type": "code",
178
   "execution_count": 11,
179
   "id": "0086bcb2",
180
   "metadata": {},
181
   "outputs": [
182
    {
183
     "name": "stdout",
184
     "output_type": "stream",
185
     "text": [
186
      "Found 3422 images belonging to 2 classes.\n"
187
     ]
188
    },
189
    {
190
     "data": {
191
      "text/plain": [
192
       "'\\ntrain_datagen = ImageDataGenerator(rescale=1.0/255.0)\\ntrain_batches = train_datagen.flow_from_directory(TRAIN_PATH,\\n                                                  class_mode=\\'binary\\', \\n                                                  color_mode=\"rgb\", \\n                                                  batch_size=BATCH_SIZE, \\n                                                  target_size=(210, 210),\\n                                                  shuffle=True,\\n                                                  seed=42\\n                                                  )\\n\\n'"
193
      ]
194
     },
195
     "execution_count": 11,
196
     "metadata": {},
197
     "output_type": "execute_result"
198
    }
199
   ],
200
   "source": [
201
    "\n",
202
    "train_datagen = ImageDataGenerator(rescale=1.0/255.0)\n",
203
    "                                  #featurewise_center=True,\n",
204
    "                                  #featurewise_std_normalization=True,\n",
205
    "                                  #validation_split=0.1)\n",
206
    "train_batches = train_datagen.flow_from_directory(TRAIN_PATH,\n",
207
    "                                                  class_mode='binary', \n",
208
    "                                                  color_mode=\"rgb\", \n",
209
    "                                                  batch_size=BATCH_SIZE, \n",
210
    "                                                  target_size=(450, 450),\n",
211
    "                                                  shuffle=True,\n",
212
    "                                                  seed=42\n",
213
    "                                                  )\n",
214
    "\n",
215
    "train_crops = crop_generator(train_batches, crop)\n"
216
   ]
217
  },
218
  {
219
   "cell_type": "markdown",
220
   "id": "2d981e8b",
221
   "metadata": {},
222
   "source": [
223
    "# Visulaize"
224
   ]
225
  },
226
  {
227
   "cell_type": "code",
228
   "execution_count": 12,
229
   "id": "f93932b5",
230
   "metadata": {},
231
   "outputs": [
232
    {
233
     "data": {
234
      "text/plain": [
235
       "'\\n\\ntrain_batches\\nx , y = next(train_batches)\\nprint(x.shape)\\nplt.figure(figsize=(15,15))\\ni=0\\nfor img in x:\\n    plt.subplot(r,c,i+1)\\n    plt.imshow(img)\\n    i+=1\\n'"
236
      ]
237
     },
238
     "execution_count": 12,
239
     "metadata": {},
240
     "output_type": "execute_result"
241
    },
242
    {
243
     "data": {
244
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAJ9CAYAAABEj4GcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebht61nWCf/edowx51xr7b3PyWlISEhHgiEkwTRAgAB+9CQ0Ik3oDIQmhIAggUhjg4qAgoqRJjQWpaXWVzYFSAHGAkstqQ8+ocSmgAIFRJEk5+y11pxzjLd/vj/eeQ7IBwJWTvY5yfhd1752t/aac8853vmO533u576ViLCysrKysrKysrKysrLy6EHf6SewsrKysrKysrKysrKy8l+yFmorKysrKysrKysrKyuPMtZCbWVlZWVlZWVlZWVl5VHGWqitrKysrKysrKysrKw8ylgLtZWVlZWVlZWVlZWVlUcZa6G2srKysrKysrKysrLyKOMRK9SUUh+mlPpZpdTPK6Ve90g9zsrKOzLrOltZeeRZ19nKytuGda2trPyXqEciR00pZYCfAz4Y+BXgJ4BPFpF/+1Z/sJWVd1DWdbay8sizrrOVlbcN61pbWfn/55HqqL0Q+HkR+XcikoC/DXz0I/RYKyvvqKzrbGXlkWddZysrbxvWtbay8puwj9D3fTzwH37D738FeNFv98VKKdF6HZf7veKt5/5b93Pr7BZSoVVoDVoTam00aYhArRURQQFKgVIKrRQAIg1pQmuNduquCtK/XikUCui/Bk6/g96JPf3Z6Q+VVjz0HZTSCP1xlFIPf7/+9RqjNUoblAKt1eln0ApSSfzsf/4ZaqtvuxfzrUBr7S0i8ri34UP+ntYZrGtt5bFPaw0RUW/Dh3yHWmejH3nCXU9gtzlDCVChVmgCVQSRvse0Vh96L1BKA30f4aFdQOT0g9NWcdoHTn9vtO77Ud+ZQKRvJiIorR7+Hn3b0IgITeThvQulHv4eWmsUYIxBaYX+TVeHVg89h9/wMw8/1V//89/0dyK//rMIKH368dBTRjiGmev5irdcv+Uxt2f917gD6wzWe8eVd0B+p3vHR6pQ+60W93+hsVRKfQ7wOadfs9lsHqGn8vaJNZYPe4+P4m991V9HriEc4fbtxmGuzGHh8vqKOQbAEOdIWGamwaEVjINjtAakcDzsKbkSUyG3RlPCsgSWtLAdJ0bvyLVCyTQa23ECZWkN5LTJimlQT8WfU0iFYRoxxlBKQ2FQaMZhQmnNOE1spglvPcYorHVsp4HNRrHbwSx7/sL3/Xm++R/9xTv9Mv+eOBwOv/Q2fsjfcZ3ButZW3r6Y5/lt/ZDvEOtMKcW7P/Hd+JMv/xo+8AUfhAsOCZAXOCzCW24Hrg6BguIYAiEszPNMSRmtHU0llvmApqEq5JoQbdHakkvtxZQGpKFVZbT+9PPAYEYalYbGKYM2mtYKICijkaZIpZJrxRgBBbvpAgWc7zaMo8UazcX2DOcs1sIwWqQpEBjcrx8oGqse1hLlCNaBNNAOlOtvbC87IWcoBZZFKBVaq/hBsdkajAe3AzXArz34a3zL3/0WvutHvour5eoOvYNvXe7AOoP13nHlHZDf6d7xkSrUfgV459/w+ycA/+k3foGIvAF4A4Ax5q0/KPd2jDGGZ9337nzRH/oCZIYaoBaotZFSouSKEoXXjiUkcsoo6Ztgbom6RJr3lHDkOB8AS22CWKhFKCVhtcZYjbZgmxBKQpRiCRHjKg2FNpZWWz8RFfqRa1MorSEtaMypswdOO6zxbLYepQRawRiHtZZaKzk3cjBkBxc3d3ziCz/+MVeo3QF+x3UG61pbWfl/yDvEOnv6Oz2Zr33F1/Hi57wvrjlIIAnCIhz3kcPhwPGQsG6khsxyCMSYEamISigl1BoRBaUWtNK0WmlFEKWw1iBNKDnQWuUyH5icxZ0Zqq6INLI0csv0Nl5jHKd+ly4gp3t4jcJoi1UFpTUilZwabrNFRCi5UXNDCjhjESVkNFIqoLBaI6arOFqjdw2bIAVU6kWc8oCC2iClfiDZpHHYJ/QMOY8oDdOs2Fwo7j2/l1d/3OejxfL6N34zIYc79j4+xlnvHVdWfhOPVKH2E8DTlVJPBv4j8EnAyx+hx3qH43Hn9/P6r3g9z7n3PZBLSBkOx8YxJuawkFMBBU4bAgoh02rheB0RVVEIxTskVZpoSsukXNDVUCpgLNYI2mqaNIzRTJsNMRZijX1jxiAqIKUAClEWbz2DdyiBEAJGW2ptOONAQ0xHpt1ISYmshHEcKLnhvH5YUlITSASD4eZ0F7eXB+7wq/2oZl1nKyuPPG/36+y+W3fxHV/4nTznue+JCQZmkAwlQs6NmDK1NlRrHI9H9scDIQXmGGlSUKrinKM0oeSCNsLoHNRGjg03ebTWIAXRCikKrzzeGGoopJpRFjAWUZVaMjSh1C6vdHbEaIVQgYozllphN4wIjaogpoDRmtF5dIPcMmIBAyU3NIVWFNZamgJtDNooaGAUhNQlkn6CtkAGqkBKDesUiEK0JcVIYUFy43iwXKSJYYRb5/fyRZ/0hRhRfP0Pfv2dfUMfu7zdr7WVld8rj0ihJiJFKfUFwA8DBvhuEfk3j8RjvaPhGXiX8yfxLjeeBIuiVjjOwmFp5CzUXEklEHOGpsgpMc8z0zRAUcSQSTkiraGknGYGFFppSimIaizHI+fnZ6giFEo/dhRY8gGtLXEJKA1iDPt5j1OOzWaLIOTS0Frj3UBtmdE7tLK9cHQWgyLXzHEuCIZxMMTkOD/T6K2mNYUsimc8/Rl8+2d9M5/w+k+50y/5o5Z1na2sPPK8Pa2z0U8P/3rynj/y0V/Mi57+/gzK87znPRuVdK9QCtQghAAxFHLo+0nfJw6ENDOHhVorTXVZYY2ZHCvLvDBtHM1W0hwQUUhWKIRaKmebDdlWttZSSyalTJWIqoqmC84rrDFgQFRjPiasE8bB4lQvnlTfgDjMC85p7GiAjMkZEHQteOOppaKUYpg25KqZlwNWW1AGhWKYHFlptDRyqWAMl/uG0pppclRgCRGF7SMAp1nwNCesNuRiOB4yORlUgYt7L/jSV3wpuUa++R+9ntLKHXqnH5u8Pa21lZW3Fo9URw0R+V+A/+WR+v7viExmw3s/5X34pj/yF7hQN2gRjsfeUcux0Qo0DdpY8v7A/nAkxECjcZgzqlVqa4jup4TDYMlxBlE4ayk1E+aE0o1lXlBTResuZwypkJMQypHa+ozAuJ2opaKN7rIWKtoOKBFyjigUtRYqBWM00VT2B0Fh+2B4E1Ly3Dw/ByDEyuQMTSucMTz+rifyrvc8g59708/e4Vf+0cu6zlZWHnkeq+tsM0zcd/MJIMJ2mvimz/82vBqgNRyKJ77LEzi/sYUEalHIAgSQBZYZjnPhelm4Oi7EUiglE1MkxYBSYJxCVUWKCW0tgsZZC83QKgzbCdV0H2im4pWixYyUSMoD22lANUUWyDl3k5LU1RXOO0JqiBGsVVhtoDWUKFopuHFgXmZKrsgRdhdnONOQlkhhodU9m82WzbhFlplyKgqLrkzDiEIT5qW/UEpRpVERcq60CiE6Qkgo62iy0ASUNmhr8Ti00qSUaBnK4EEs+kFhvDnyZZ/zOtzg+ZY3fiv7sL+Tl8BjjsfqWltZeaR4xAq1lbcuo5t436e/H3/8D38VT33cU5EZ0gIpQoqNnDO5RKzShFIIOXEMR2prKKXIJVNLxCrDuNlArX3A2zqkNKyxpGxRKqFrA0mEOdOoSGuUKjStmKYNc5hJrVBzw7hu1diUIAilBLbDRD5Kl6k4i7WWVAJpaafuWmFwI6VkaqsY70i14hfH3Td27MRDUjzzKe/GZ3/AZ/K6/+krqbKeTK6srKz8TlhjeK9nvh+jG3nXJzyNV730i6hJqFV4ytPuxWKgdhfDFqA+AFTQrc87p2N3eQy5MZfEcUksOTEvR2JeqFmxGQfmnCmiKXkhLkf8OKDF0tB449BNA41aC60KSjTaaHLs82hi+9+No8NUoYVKCAHtNcPoaE2htSGXjBFopdCkggHtHDFnpEGqBUFYjhFqYdpsSDlTcwMSohxuO6K0AVG02p0ocynUkhEjoA1Lyt3ARDRWO47HwJIixia0UtQGwzhSU6VpjbaeUivd5zFSW0XpAeMUm/u3vOpTPp+mG9/xxu/kcr68g1fEysrKY5m1UHsMoJTiPZ78bL76c7+S577zc+Ea4jUc9nAMjXlOxBTZH67JKZNbRWNxfkSXRGuVWCIKsEqRu/MI3jhqKdQScU4xeEuKwjBuGMaRlBP7/RWlZQY3gLdgBOMUbc7EeER0I5XK8XBAK8123GCGCbGFWivOGIzR5KpptZBSQus+ZK60QRmLmWf0rkGpHBaD84ob1qFHywve9UW8/zPfj3/ys//k7cr6eGVlZeWthVKKd3vnZ/LBz/lwnHV8ykd9BmfDFt00j7v7BkRoEeQSqoaau6NhipByRWrFK0NcMjloKpBL5Gp/YFkSy7IQ00wumVxO8S+totFoTrb4QKsJBGJMNKfQSpDSekRMUbhxxHnPdhy6JNEYnLeEVJjnBWNMHxizhoai1UZJjVkOODdilMI5jzRoubsWizSmzUSTLv3PKRBipFVFLjNaaQ4UvDXkmlHakEokp0I92RfHmogpoNA4N1JLIpVCTIm6JKQBVbE736KMA2MhF1ptOGvQxiAFwuI57OHmDu7a3MXnfPzn0mi84Ye/Y+2srays/DexFmqPASa949n3P5vnPfV5cA11huVaOB6FJSRiyoQQWeaZWhvHEKAJRima1rTa+mlfFYoVjpcLyjS81tSYumRRN5y1aIHaCqUUvHNspg3HcMBaizaOufRNu9ZKlYrkPmQd2sLoPYYKUrBGo0TwzuGcQ6Q7R87zET8MPQPHjIzWEeOCsZoUE8fjnv28Zcl3cdfFxHOe9Fz+7Mu/htd+z+v4sV/4MZq0O/12rKysrDwq2E4jf+IP/Rm0TDz9aU/hvV7w+5ECkxvQSSMF2oPdFTjOp1myBsdjI9dCTBBTZJ6PDMZALRjtKdIIS2YOR47zQoqRJUVEhP31FaCZpjNEwBuFWNWdDkWhmqbUhNXdtKOVxjh4pOY+G93AGd1zOrVCaqPmjFYaN2iU1zSplJIBMKJo6O5GPG6wZqCkTCmFq9tXTNsRlx1uKKRq0KfO3DIHxnGL9xajFVlXQgoopQlRY5VwmI+Mux1hKcQUaAIwd6/+Ux7bfplRYrHGUg5HrHVgPNYbDOCHEbQmt8YcMxxguq0ZkuK+i/v4gk98De9864n81M/8FN/zY99zB6+WlZWVxyJrofYoZ1AbXvLM9+NPvOZPwBEI/TS0ctL0SyO3Ss7hFGwN83LsWTLeEnJhf9wjTVFbpqVMlYyrhloUStNPKa1Da8W03QIgrZGWwOg9rXmUgRQCJReMMhSdu8dI03hvsc50S3+l0KqgjWX0HgRqKRitsVZRW0NTKaJQqhBSwDtP2R8YvKFKQTmD2R8x2iDK86zHvwff/rl/lU/6i5/Bv/5P//KOvh8rKysrd5rBe77wo76YD3/OR/LuL3g3dDUYr7HN9JDmK6gLNKAkYZ5P3bMC0oTlOBNKpdbG/njNMgduXIyEudvKK62ZY+Z4OLDEBWntFEQGDUVcZqQpRj+hdOudtBRBe/zgySFTUkVr2AxbjG6Uoqi1USVx3EuXN2pFNY7cBEylhIYzHuN1d5VcZi62N7CnzpsAx2XGuC6FHLeeaZoYpxGKICpyTIVychserKIsmUOuiKq0FruDpHXMOePdaV5aGkZ7aImQEmG+xo9blLMobTDK0gSOxwPeecZR472nqkQqgVwDWllKaVhvuL7WbLIwVsVd27v51I/+VD7uQz6OFz39RQyDw1sYRo82mjAHtHa85epNfNc//u/56V/5N6c4gtV5fmVlZS3UHvU8/tY78d99419jUzZw1YM5FT2ks4rQSka3RM6ZVCPz/sgwQamZeY7Mxz1aKhiFRXO+OUNohJgYB4dDUFRGa/qwtu0FIFpTcVjrmIYtt/eXGGv7JjwvOO3JtWKtQ2jQGt4blCmYBrvNhtYyIUb2h5kqjVYdovtsQGmC3VSUcswlcz5tUEUhGJbUMMdDd9hqZ1g98MT7nsIP/vG/z4f+qY/m3/7qv7rTb8vKysrK2xyjDffceByf+JJP5ktf+aVM5wNcg8oKAtBAZghHWBZYipCKdPngYSbXSoqRWhKtNYwxLIdrRDmubh+Zw4EmfZ4sVkWriZobIS1Yp1FaYRUwjuQYKTnirIOmsM4itUBL+MGi0bQSSWGPNEFJd35kVF1BkUGJRkxkWXqBtMSElw2uOGrJaKMpqqJiQihQCkppxrZBj5odI360IIkmQsh9vlpEaDWyXB+Y/DlKmX4QOXqUtoSwUFulNofODWMdpVWsHlBSiblSWfBqwjhDeWiEIC/kmqhKoyaFMRovjZwKSmWm0RBD4M3HxPnZhvMysi3gdwN+6/mUP/gpPU3bgzJA4uGEbQFe9Oz35/rqLfybX/o5vuL//VXM6Y6ETq+srDyKWAu1RylKKW74u/iAZ39ADx8FsH0APBYIgZ7rIvQNl0arFaNhtzmn1D63ptQGKUJrlVQTg7egBK0qm2FEt0KrCtUatVSstQzOorVhkUCMM7k1pu2OkAO1NZruuTTmFCYqUnHagjTSYYa7RqBLWTSCqqU/N69YsnCcF9w4kQ6BWmeG3Y7FOprXjNOGmIXaEk1F3OKZosMdDBc37uYNr/orfMCf/GBKy3fy7VlZWVl5m2Kt4WXv9TK+6fP+MuPZyGY7wkx3abzdDUBaE3KE60WIi5BrI4RITBEAJYoUIzHOiMhJhSFoU1nyAgIpFUorWLtFMKAS23FgyUvv/qBRqneinHUgwmQcDUVC8Mbh/UgICw2FbYAIxmkG77Ba4azH2YlSErkJWhm00QzDQGuJmisWTUqZ2AJVW5wopJQePp1hu91hnSPNEYMihAU7DiijCcvc892MRsKMsSODd/2UUwClyE3IrbsTD6UhCvb7a7K0Lt3XvYMYQ6G1SikPySYzInvQwjiOeHHUUkHB3PY4rVBATonDXlGKYQiK4aDQVmNGhXL8+nNp/YfS8Pue/CzYwPNf9GKKqnzXj3w3v3r7P3E5X92BK25lZeXRwFqoPUrZDhs++cM/ka/47D+Gyw6WbplcltMgeBGgQAsMRhGdZXIOq2A3jeRiyCnhgNQqpWaM0n3DpGERkIw1FkVFicK5vjGmUthtzxkGS6WglEKbgVorKQdECcZaqH3j98OItEqrhd3ZDhq0mrHW4f2Ad5FcA854Qsl9Pk1ralM9BPV0UrnEyFgL282WmAWixQfLeLQMfuJsVtx9dg8vfd5H8Pf/xffe6bdoZWVl5W2Cc5aXv+RT+HNf8A2c3bvpnZiTFF72UCMcFmFeKiKKWoX9vDAfF8rJ+EMhKHQvjLSm1J6pqQ3EIJSae4FRCrUVlErMh2uM1ZRaKKVSSsUqaC13JQUO7y1aGuO4wcXaDUEUGONoJaCNJuaMpjeTtHVUEUo6QhNE9Zk17MRx6Tb4RgEotNG9SELwbaBWYRwc4ziAVOb9TMnCOA4454jLwnR+xrjZ9EJR95dKtYI3I6lVajxSq/Q8NqMpMXMskdq6RF87gx01SmuMVihlKVUhjLSSukFKa3ht2AyWnCreOVpLaKQXruNEzoWSF+ZF4UzDWsP5+Y5x0ojqjsnWK1SjF2zSfyKCcZY//NGv4MXPfx/+7o/+Hb7zh7+by2Ut1lZW3hFZC7VHIUop7t7ew8s++GVcuAu4Ag7dtSvPQIHBQnGKEqDmgm2NrRup3iG1QW0YAWssTRUwllQWEIs0cMbhlGIwGlHdu8tqxbIcuoZfgTEKqxUYTQiBlAOtCRqNaEXK3UnSy0Q7pZ5qa8mtcHu/MLqR0W/QztCCpmqFMopp3ODGgZzheDxirUXZ3hE8HK5AhGFw5KRYoud6jvjBo7Xlvpv38wnv/Qf5wX/5RkJZZSErKytv33jn+OwP/Vxe+8ovZ3dzggO9+gjAAuUAIQnHuXD7ekFLl0im0DPPcu0GTCKNmoVSK1oJpZRuL597NyjnRFwWjPe9kCuB+TjjR4vUypICKSYGP6KVZTPucE5htUaJZj7O1NLQxuKsI+WINRYkY4xBWrfFRxSHecZaw2A0NQutCrlWcivkUqm6oZQm14RC492OmCOtZDbTgDYwjp4UFrTuknllNUZ6Dpp1nnHbTayWNNNyIdZAFQjHGe8GtttzBMWSr0mxUEvh7HzXlSDagNKn5pvqB5paAIdWPTaAKpRY2fgNm8HSWo8fqClz+zAzbrbd7l81Bm+RkFDGEoun1opWit3W471Cm94R1UBNoATsduDd3/U9eNzdj8NgeP0PfivHeLxTl+HKysodYi3UHmUopbjn/F4+6+NeyXOe/h59My69SIvzSc5uQGfFqA1mO7EvFYNidIqCQ1FZlkiOfZNurTFYh9YDUgvGekotDHrAqEYTgVqItSI0Ru9wVpMj1FpIJRNTIoRALBVjPdpqRCqCoLSglMY4S06ZSmOejwSXuNgpjHE4X7naX2G0IaTCEhfAQGnE5YhCU5XQrCblRJWKsZbchJQqJQnHY2M7Gd7ruS/m0z7gk/iOf/Tdd/jdWllZWXnkcNbyig9+Ba/9vNdy654L1O3TLFrss2glAAoOs/DAZWCeF6TVPnNVMiKQckPRszTDSQLZ1RKGUBu1JBRCnAMhRwbAeU+cA8Z2M6icKzSNcw4LOOcYvQEEJQWlHcu8kFNjmCY0FvNQYaYVgx+opRJTwRiLwuC0orRGag1qt/KvKVJyxY4eozUAogRrDUaPVK2wxpHyzGa7YXtx1gtNVN9DlkatiaZOM3M0FMKw8WglULuFf9WNw9LjAEqtKLocE6OJS6YScMNAE0VrjWmcaE0Y3EhSCa00IgJZME5QNIwIDiFRUApiTtRaQTVCqxgactD4UGhKoCm0dtSm+rz5af5cci+sfdFsreLezf18wSd9EaoYvuEH/vzqfLyy8g7GWqg9yrj7/C4++2Wfxed/+ufhg+8b8tLDrVvr8S2tCXNcGIxiGgbMDUWuCw9eBgZrKCJIzcTlQBWF9SNaKbz1LFd7iimcbUe00rQcGa3GjlPfkKohp0IsjZIrNDjMC6VWRColRpRoFBZUw7uR1hqtFGadsXZLDJEaIqkWhs2WjR/xo6MeClkqqXR5Za6CNxMqFyqw2Z5hlEGJ4KxBUSn5SE7CkjyIpdUNN89u8vve6d3ZDWcc4ppNs7Ky8vaJt56nP/vp3Hqnm6iD6id1M0jqro4xQylCLKBMn1nOqXanigo5VmopNCqpRERVUqiUZkgxMh+vUUrwdsB4i8kZKUJIM601cm5YY7Fa93YPIDXjnSOVhHcKaY12+jqMwhl9+hqD1hqlXJe6W8Eai7EDUjOt9UO5VCraaLa7c0IJjMMGN3ly6+Nbzg6YwTM4KLHRWsK5DbUmnBugQowLzo1sdjvg9FroSmmNFhohRrbjRGkNZxWlRqZhw/5wG6VMV3DExLKfSaFQlWCWSKoVby2jH0kx4zYe3UBJxTiLVqrL/jMM3iBSGbyHVjhc7ylKsMMGqeVUNGaCzYSY2U1brvYBMzcaqnfulDnJSoVRBpYknF14Lu65wZd+3pdCE/78D33jmim6svIOxFqoPYq4OLvBKz/qlXzZa78c9Z9V35ADSD1lTRvIWZgPlcFqWq74yVGTYDRsN57lsKBNn0/zbgQxhBwwk+5duM2At5rRe0bvGLQml4RSCmMs4+AJPnN1dSCWzJwWYkrEEMiiMNZgvUaasHUDVRXCHPFmYDkkJFec8SSBUir7eUGZoQdce0M4BHJONIGSC00ENw0YCtqB0kKrgZIM+xiI84K+UAxuZHPrnDnCmbJ81se+gqtwyV/8/m/marm802/dysrKyluV7bjhsz/ys/nMD30lalFd7jiDlF6khQT7CLevE7U1SikoUd2Jt1SKFEI6MC+JmAuxZrRVGAw1ZHKeqakyTiNhPiInS+FaC1Z3oyhvXTeQqoXRD937QvtexMUjqlqMdiilsdpzcfcObRpaCaoa/Cn0uomiSTcg0aripwm0wCJd6lgyIeyxemDYjDQaOSWMGCgVa4VKQURItWBMI8yJcWqgG9NoEQUiwuA3KIRUI9pZ9LnpeaMhMo0DNRm0FubjASUGbSHmiLTGshxorZJLxbktWhRumri+fIDBDdQYCcuRzWai5khBoQeLM54cAsYZyJVhGBCtmMPM4XiFNh5QpGVPaxWUphY4LIHz7ZaQK5qGMwal+yz5EgqiM7lccJf1DLuRP/p5r8UOjr/4A3+JY1plkCsr7wishdqjBI3hqbfelT/25V+BOipYoF32+YN0hMFDrcJ8LCxpwTbNYAzpuJBLRNNoqRdcWik200BpmdJKly9GsEpzNm1RCkopVJ0YzjYM3jD4gZgDKQQUXbIi0hj9QCyFlBIWzeAmRCmqrjSgpoZWmtoqrTWuj4HtJMSUcVpztd+zhEiplSKZKho7eFoVmtH00TaFMYawRPwwoJTFIX3gm8LxeMXgwJCw+hbDNOBvWP7oJ/0RSiu8/gf+KkuKxBru9Nu4srKy8v+YaRj4rI94BV/9qj+JO7dwmz6bNnfJ4zLDnGFJjeP+yOFw3btVWBQ97+tyvuRwnBHRlNJYSkKUsJ22iCRUE6ASliOjHUjlCALWDLSqsNqS5CTzM5pQEkZZlIKQAq00Wst4rRi8xZixf5Yrg9Ma6ww5z6ANxmicUZRSaaWQY8EPE9MwQlNgFKVWplFAGjFkpGZG6xmHDbVWWq3kUFACsQV2my1OaYwf0A9lvNWGc4baMlagUVHWYkdHNInddsei4Xq+xpy6f40uiVQoau6jAppucmWtR1pDW0duPcbGOwutgmhKXWAc2TiHmgxoQ6uFphVbM5BSRiQ87LAZwkIuhc20obUF5xytCkqB0Yp9Cihl2E4jphpSy4ia0dZwIxvGWyOf9fGv5Dru+ev/+L/n9nx55y7SlZWVtwlrofYowBjDO58/ic/++M/sxiFXvUjL1xAWKAVS6UPSOQYkV5RuuMHTYsI0GJxjtx3ZHyJoxfluR5XC7f01zvX8tZgigxvYjCMpd3mFKMVuu8EaTcyJkAN+nBhHR4uQSgHADwOIAtMzeYoUUgrUUtjtzqml0qShtSHXbnUsxlBFcYgLJRes61bOlUqjm5iA0E5yHUXhEAvKGJzXCIo5LJQUcUqRYmCZ97R8H/fmc8a7HK/9xD/KPU+4l1/+5V/i9d//Vwk53sm3cmVlZeW/Ge8cn/ABn8xT73sSX/CK1+DPLOyBA8gBWoDDEfZBCKkrH/aHPfvra7y1KCxawTwfubq8JsaIHQaktS6HbxlLn1FrtdvOK2k0ZRiUI5aEqD5HFnKgCQzDRAz9M79KBSWUHFAieD+i6LNrGmglUwGjLCAo5ZCmUArqyVgD1brJYc1UaUyTR1vP9fGqd8SGkVr6YWETIaaFnHN3EPYD3loGP/Z9y8LgHVIaRjvsaImxYEzPYaMqrFEEKT031FlqHTFpwRqH9Zbl2LuJ3lrGaaTkjLGGUoRUFkw2LKEyjRtE+l44Os3GTHhrudids9mOlBIptYE0aigIlpobVnlqayzzgcNhjx8mUokYo8k5k1NCa8EYiDGgMMTlyDANWD+whMTlVaTWicdZuPvibr7w5a9hGB1v+KHv5Gq17l9ZebtmLdQeBZyPF3zFF/0x/tBLPr4Pi8/dPKRKr42UEQ77RggBJxVnexGTc+4ncUax3WwYvMP7zH6JNCpm0UjLtJJR1jFMHn8aAK+1gvRg7JDotsIna2EQxslTMZTWB653xtMUHGOgttpli6livUOLpuhGKg0/eqz36PLQ0LimpkrRgpbWDUNawyiH1oZSSi/eSgFnaa2RYmDwCueGbhfdKodlJpQEbLjcB8ZxpFbF5objFR/4CvbxClWEv/wPvpXU1s7aysrKYwvnLJ/90lfxJa/6Em5sdjjn4QFgD/UaahJuXxXmJCyxsj8cePDqQcI+YLUmxsCyREJYUChSSgzThAKUs8QUqHkh0XBuh+gGLfcOmIXBjtRa0FpoUjgejgzThla7aZQICH3Gi6Ix2jCYETd4oM9txZhwWKwS0JZpGBntQK6RRt9nzMajlMKbkWNYaLXhrWEaRlLJGK1wXqGtI6TC/nCkpESrjXHwbM52DN4zTSNOC0Yp/G7EqBHVNM4WUi7gGyVGrNb4aUJU39uUUoxuotWClMJmHFmWAyKF0TuWUyeu1UopieJOksuc+v+hQS3dXn90Q7fmzxVnLVYL+31gXhZEWUpNGGfIoUsma24UndBOmGPpr2kpWKMRBGu6hFREk3PpZlo0Mv2g1pgNt7Tl3rvu4/M/8QuQVPjmH/pWUkl37sJdWVl5RFkLtTuMwXH/+E4878nPw1xa5Kp3v1LooaV56RLEJQRKDtiTht2iqJJBKptxoIkQoiLECJJ54PaDxJIYhwGk0bTmxvYCYw2tVba7sUs9mvRulq5YB7uzM0JMhJxpBZSCyXm08Tx4fY0ChsEwDJoSPank7srVLLtxi9IKVRShFow0LBplFVMbEaNBGiUGGplhsAxuQETRdGYO9VQr9pwf3QQ3epy15JIRYMmZq/2B1oTzZeRm2nGreHZnF7z6Y17NYT7w93/8f+bN+weoqzvWysrKYwBrDS//A5/Kaz/7y7h19znqWiGXXeaYriFcCynDg9eZw3FProXr/ZH94YBVA8Y7lv3MEmdC7Db51mqaqhitaTVhNQzKgwhxiYwbixs8VnmaOEJNpJKxSmOwbIaBlBLiuhmIPrkwTs6BHaF0t0QpDes9aI0CznYbjBJ244gznlIT0zRQUkOJgHKcnY0oHH4cOR73fa8aHeWQMdpwsbtBKQlpM23acmyW1CpeK7IURjxOCZSCHQcma0m5m5KcbzaEtHB9CLhNV4JITMTcmCYL3uPdQEkLMUYKrcsYY6VqQWFRrf9f/WBB9Xy1FDIxLIzOkUJBpr5POW85201dmplzl4yGRGgLS4ZhckBDtGXYaUqu1NY4hsB2GkmlcEwFbzW2aJTKTOoGlIK4ileKWhvSQD0gWD1x0znuuvsuvuQVX0bLim/64b90h67clZWVR5q1ULvDnE9nvPaLvpRnPP5d4fIhaYtwDHB9nVmWSIwLWgQjFbtxqNJ1+LopGkI+5eGklJDWiCmTc0I4bSRuR6yBJBlbMmGJ7IYNYgSDwlpLLo3DYUFUZUmp2/uXQhONNbZ3tEKg5sywmdDO0lTFOU/R/QTTWYO2mpYM6ThDVYybXhAyCBRItc+2pWWhieDHiXi8Zpy2TJOl5EZrihoztUUG79D009WaM2ExvCm9BZGCUhplCqk4pmvFxcU9fO2rv4GveeVX8Mlf++n8yL/631cr45WVlUc1zlpe+r4v42u/+Bs4uxjhP6suczzC8QpygeMiXF8tHA5HQgyEnLvtfoNaA/t0ZL+/IsWAUopGIWYhhIIx6uEIlXFwhJhpKiNZo5QiloSSfHJ5zBg9gQFrW3dPLBnnR5RUpnFkOdnap1oYjWEaHKN35JoZtgObwWFFQe2ZaOM00ERTT26RV8dLtNlglGcYBgY7ksuCk5G779oiIiiBYBw6VEY81nmu99eoVsgxso+Rw/Gae26cMTaLNMHoyhwXdtPd+GlkcoaSKse8UEvmfDxHWQ0l4bXG+HPekt5CzQ2DplBotRv9+8GBamjjsEYRl4JWEMKeaXsXm82GcRxxw0jKiZgtBoUoQdmK0Q2p0vfnVIghIqe561grcS6EZUZyQmlNEUWKmVoK1nv2oTE4h/E9JrxaxWbo83vXlwGkcZEGdhfnfOUXfzWDVnzTG7+FWFbp/8qd4WJzgTOWHjLRf7o6XpFrvqPP6+2BtVC7gxhlefr978oTz94ZdVS0I+QiXF83Lq8zIcyUmjkeDoybgY0byLky2lOGC90x+Xh9iRk8Icw0gdFbpmGg0EhZk2rA1Aa1UFCUUljUQkFwXhArHK72oCqihP3hyJxCt8MXKLVhjMV5h2jdHblC74wVo3DGM46emgqtNmrNOKPR3tFaQmtLSZEqmtYK2mmc992dclnQRlC69pydkjDKdcOTVrm+umJ3dobRBqWgtYYoTa5CLJmr455jmjmvG3LV3JCB4dZd/I9f9Tf41D/3Ct74L/83ymplvLKy8ijEWsNLX/xSXv/ab+NsN8FbID/QbfdrFHLsnbTD9cJx3pNyYomhm4S0dnJqbF2J0ITaBDcMlBBpUrFWkaUhWWgiCNIlka1/xkprPXy5Nqwfcc4BPQIGwOr+matFAEUu6RT+DBcX50ipONe/12gdzhq2w4jznuP+klwihHYKjjbkVkEpbu+PGL2wa+coBUormjQmNXCMC9ZoagqIFKT1YsVZh9Jdrg+GSRtq6c+ztkophfPNhHKK3TgRY+DYIiVU7r51D7kJ83JE1YKSbg5irKGkmWkzMMjA5fGamitxyQyjplVLyglRGms1gx9puZKqcOQIFXZnAyEnnHWUnEEPNGXBNByKlCLSBN26GUptiULFeUtBYVqmlIoo07uSWiPaUJRBsqImAVUptZBz4SocETYMzmKVxRvPa17xpVSEN/zj7+Zyub4j1/LK2z9PuvuJ3HfjPpTSD9djD6mg/sKnfT3PfvKzwfR4DO0tr3vD6/iJn/8J/sUv/GSfb135b2It1O4gO7fjo17ykbzw6S+EN0HYw3GBq+vA1f6qz2ulSK0FaZ5cM9ZrcioY0ZjBUHPPiDGtF1NLWlBK2G23zHGh5IqkhBYoqW8IRveMsmGYqAXCHGhymoFzDm89uShSLczLkZgjbtoiugePoqCkQKJgcJRWMU0Rc0SnfiL5EDkXjAFtB7xTJIE091O/aZywfqTkgMGRS0UrjXYa7x3GCCX2mxBrHULPayutssxHSsls6o7zizNqE64PkRQyN5aRzT03+a4v/jb+6Le/jr/7f3w/aT3VWVlZeRThnOWTPvAT+YYv/CZ2ZxPyIOTbsOwhJWFZKssxk3MjxsgSjuR0OsBLCZDu7Fsa1nqKQKkFSQGrHU1AK0WIhZQj+SS5ExrGKmKEkhJaKlIrO2uwusv0ljTjvaM1gEotAWsNXk1UGqIS3nqUcxgLPfFM8K5nrpkm7KYzgj3SGsSUqKqRYpewD953Xb0S0F3eX6Ww38+UlplbpUpDmqA0eKMJQUihsD0/Z/KWwU9Yb6itknJP/s4lc25VN/WgP4SzjmGw6FaIsc9Ll3TA2Q2tVbQyKNP9MhVCzJEmmjIXBMFpg7cDztqH3RtjLVyWhCJjpzNkaTjbpaLaCFUs0jIGQytCSrWbgdVCqYWmGtp5Si2kUnsguEARoZRCmC85252jtKIWR22ZB3Mi7iYGpxj9SAzC5EB5OJvOedWnvAY7Gd7wD/8abzk8eGcu6pW3K172vA/jcef3wmBBwce+10t58e97X6zyYIBKD5GPgh41SisYTv/Ywdd95tcT8szX/M0/zc/+x5/lR376Rymt3MH/0WOTtVC7Q4x+5P3e7SV86As/tJuHZIiB/qFe+yYV48ztB29TSuaW3MVmGtiNZ1hn0Vp3S/20x2lLywVxhtFo5tazamgVVTPbYUQbS22FuR4Z/chmmnDG4r2m5kRSDVGC8yOkgrVClobxntFZlpwx1oFRSKNv6ANoY0FDiokUMlorjOouX62WfpIKqJZR4mm5gj7NoBlBIRhjqJIw2jMOI5vNFmpjM22w2wGjFCVnhnHoBVtrlNxQqqGVgaaY55lSK0cUpQq3mrC76z7+9Gd8Dd46/tY/+3trsbbyiHL3jXv5mA/+JJwbEYFf/A//nn/2k/+Qw2qhvfKb8M7xyo94JV/22V/O9mJCHoB0CbcfhJwgh8LhuBBiouRKijP7wwEKhCVyPB5ODooQU6Zqi5RKa0KNCZqitorxihhT77Q5jxdFKAvzMuO0QgO7aUMMC0hBlKK1QkqRVhraDlhrcM7ijD0dpClyFZo0rNaEkHHG4J2m1sphv2ewnnGasGYgScF4yxICS04M40gzwuQ3aOOxTpNSYbADV9fXJ4fIihkHts6ilOE4z92WPxZiKt3pkco8Z2qubDcD1mq0NdSmeixNymAMwzCSao+pge6y3IyiSKS2TK2ZcJ1RutEafRQgZ5bYD0md8TD4boxVEwrF4DTTZgBdelD2HMB2M6zttCPVzBIircE8B1AahUZhukMYvYvotCeUhQaU2vPbMIoSA0et2fiB2q7ZTltAuL685sbFREyRMEey67mmNLj7/B4+95NejTWGv/j938I+HO7U5b3yGORP/sHXcvNxj4cCPTCx8dL3/nDuPr8XtXH9Ru4hZWM+/TBAVRjVpdoYUJEu9eq+dYznG772VV/Lf3jTf+Crv+sr+d4f+/5V5fR7ZC3U7hDPvP/pfN1XfS1P2j4R3kQ/3azC9dxIuUs/stbEFJCaSXHBKYjDgC1CMWDRnG22jN4wzzPKag7tiKtCkYqUQmsFQWOspcaA9/10UaneHRvdQEKR52vQEGPmGAPLMqOMxY8jrQmpCK02WtU4M+AsWLFUCy1XBj8y3BqJISAUvPHkVLG2X2KtFFqteNVPQGmNmjNm1Gjp3TKtLc46ai5sthsoIKagjcbSkBzRRuG976GgCPPhGmsNpfUizGiLNMg5EeaRex7/zrzuE/4Yyxz40f/rn/CWwyWC3MF3fuXtCe9GPvAFH8X7vOcHcfeN+3nv93xBv4Yr/OpbLnnx815KyEeMb/yt7/02/u9f+uk7/ZRX7jDOWl7x4Z/Jl37ml3Hr7BbqUlEOcP2gcHXd0FqzBOHy6kAujVILcZk5Xs0IjVIytfYoFWM0MVbmUthMWzCOkhMpLV0e3yKhJFppDIPFGkWuhiZCQ3G2GZmGscerFAGXKaUw+AlEM04WrQzeDT1PDSGlU2SKVig3knNju7nBzd2OFPY9+kUUoRRyg3EaWeJMTJVWuzzzcAzEpNlNhhGHGzbEMKOcgqZQqkEr1FoZN1usNoyDQ2plXhbG0XXdRksYpUm5x9WUVvuJvRjE9Ew5rxsiQomFVgSjLU1vKHUhLEf2x5lSwHqP0MglElO/W7XOMXiHG1S39j/tY8ppFIpjCBQMg99A01RplCY9N84b5iUiSmg1cZjnhzuaTTdEIOdIqYJtrR9yaiHnhDKWWgv7Y6Kd7pBvuB2tFpQZEDRzCHhrEOXYNIPyilvbx/E5n/hqWhb+3Pd9U99rV95h2U1b/vbrvpvh/BYE6R0wBTQB3++hyA1i43nPeh7DuO3N8Urvdg8KquIhU3DC6d8nIIJEkNrNwnMBpXsXuwC19T8/U6A2ine+/4l87ed+HYflyBt/6n9d/QN+D6yF2h1g0juedvOZPOnWE5E3Q5thmYX9vvLg1W2urq/QztFaY7PdMF/toXXZ39WDVwRvmMaRrbcYOzCMO3KOvOXqNqVWau2yRUwfZl7SzBKPSK24cWCcBrQYYozEfDpJpRJLpZpCiN1eGAV2HMm1cphnnO05NsZZkkpI0dSY0aobjuzOdlRJSO6zE/N8hKbJpVBNQ4nqgahaYZ3BWgeqP8fWYLfp7mKlZFI4UjNspw0p9xPIYdDo1qgpo73BWE8rwtUDtxFVUcaeAkQb0gb28xEB7n+nJ/PNr/s2lss38ZF//OP5t//x/76zF8DKYxatDVopnvLEd+WPfc7XomXkSfc/nYvzW4SoiLPmWPu80KTu5f2f91EMI/hRePenvJg3PfDv+dc/+y/4Oz/8nTx4/WvrZvUOiDOeZz7jGdx94y54UNGuYX9b2B8rpQpxDsRQWFJGKUVtjRwL4zhyWPbkuoBuNGk45dHWIekKRBFzIsVAipGmGkYMtWaUEmJOzIuggO00UGIhHCNeGc7GobsA10pr6tQ1yyxL7nNZFRDVZYJKkCanWa2FJpZSMk369zbaoI0i5kJImdQiuVW01tTUCEvFeEttFaWEVgXwuEGDDizHPVr1eIFT4lrv5GnNZjv1zpk3FITBWIZpYpwGzs4vmOeZywcexPqBcZqIIZFyJuYFqUKOGW0G5iVQasFay/luS6mG/Xwkl0SV9vA8jdSKVjCOHkWXJWoUm2FLzQtIQ2rrBZTSKCVc7R9EKU9r0k1c0MQ4s5smUJBqIdaMMRZrLeMoHPbX5NQf0znLEgObzRbRFmmVWBOX86EXc5dXaColDQzW4ozBKN0VZxUuzm/xRZ/zWnabia/4W39m/Yx5O0VEesi9Nnjr+NGv+Qfc/U7v8uuSxCVRG9zz1PtQaAiCPFSoKcAqVBMk0wuwAnJb9W6Y9GwoVU+/r/SvS4A/fT1QgtAUlHqaq22nis5pSmsorRhmhc5gt4r7bz2ev/ba7+Fjv/pl/NQv/vQaK/G7ZC3U3qYozuw5H/LsD+ENf/YNyFtA9rAE4XAo1NoXn9G2zyTsZ1IIODsiCKVFlDLs/JZxVIR4zRwVei48cHVJLgV07xdZN2JSY7TCcDbSRFjSglaWmhVGN5Qu3L686tb3SjNstmhjwGpKrWjnCDGRasFZz+5sizcj1/OBOc2Ypvvc3DAitRJTZjMOpBJYloWcMoN3DF4DG6Ra/GiwoW/sOR5Jc0UpzW5zg7REqopsdhOjHYn5iDPC4AyizMOnNbVGDpcLm3HHOI5kaSy5gFGM43TqmFW0En7lV98E3MPN+7Zsbj2ZH/zjf4dP+6ufw5ve8hZ+/j//IrXV37a/ZrRZTyTfwbHGcdfNuwHFdrzg4z/s03nBc9+Xm9vH8YS772eJPYD4V3+tsMyBmAIKTUv0DrEbu8R40tx7/i489d4n837v/oF83Ad9Kv/D9347P/zj/yMPXj1AKmv23zsCm3HiMz7k0/mE9/lk1JVCZpivhMvryhIDpQgxZtLpxj+WiBIDpiGisN7RZAIV2Axd5mc9bNV5d4DMlZAWtLM47cgnGSSiKLmgtEK3blAyWNs7bvOB6a4beDtyvD7ibL/5O87HLs8zI5iC1Q4R6eYe2qKUppSGkIk5crW/5Gy3xRJ7gaUboipXxwXne3aatv2gL+eKEs1xidy4mLDakWPrM2XjgOSKo7HExHzYQ3VMwxY7aC7ObjAMlphmTK3sNgOb0aGLsHUT9mzq02YiHPLM7cs3sZnOCCESc2VwmlKhFIXzZ734qQlc6xE3qVCN6Z3N4wFBUApsU2AV09QVKa1ZSim40RBSwnmLdw5VhMvLN+PdgKRMCQvWeLTuckevutMyYmhUytLlrcsyM04jc5jJTfpN7ujQasJZR4qxz6znjLUWe2FZYsWoTK2VVDRb+uOM24lXftprWMLCt//I93B1vGLJqyPkY5mHDOQABjdw38U9/JGXfgGf/iGvwCsNNwYedvgQYOlFWHsLkARal1W3BoMHSYJSQs2ZWgu1Oay2aKNotWKUwsy6exUpaKV/lGgD2ilqFpYo5AK5NVIqNGp3ICqW0hqiG4eguOvCMxXwk+Jse8Ybv/5HuFwu+bCv+BB+5j/8LE1WldN/DSWPghfIGCObzeZOP41HnIvhJi970Uv5s1/yZ7iRbyIPQtgLl4fKYcksh8z1csn14cAyL6SUyCWijWFjLMYoRme462LH5A2SF27szpjcwCHMpJxJpXG5vwJtiCFgB0sqtTuC1b7ZNwpGKaRVrvd7GvR5A28JMTOnheP+CMqijMJbT22w3e5IKXWTkpYpFUJemNyEVRrtNZtpS0iBywf+M8ZoNsOEM74PYTeDNYqUC033giuEjLaG7WaH1bafkA6ezcaT5ohSChHY7bbc2F7QlHC1v6SJMG3O0NoQU0F5i6Aw3jEMI9vt5tS9E842W27d2HDX47Zs7hpQF8JP/+sf59v+wXfwv//b/w+/+uCbfv1NOg23nznPS97zA/m+H/tBYv7dnfocDod/ISLPf2SunrcO7yhr7bfCG8eT730CF5tzlFKgNdqYbn6j+iGkSM8WbAJNKZ78+Kfxyk95DRWPZM2tG/fh9EhYGvGYWY6VMCdSyqRUKDVTFejmemdBFE4r3GA42zg208jZ1rE7V2Qq/+ktv8Df/oG/wY//zI/wi//x5wlpvtMv06OeeZ6ptarf+SvvHL/VOlPAez3rhfydP/u9nI875ArqHq4uG7/25gOhNmJMHK4PhBhOc/qCanKS90Uury+xVvcuTkmEkIgpoexArZnD8ZrDvAc0Z5szRFdyzLQqaAfTNCGtYZTG1IqWxuQdxiicN6jaZ6hyrlwfj5zf3KGNprWG0h5E0WpGS2MwFj9NaGMoJbMbByY/kEtEKU09KSWujuHUPTIIQiyVYRiwGrQe8Nb07hMV6yy78YzlcAQKTSpNNH4YerFkLd4PjOOIiDBaxW7o3a5x3FBqZZo8SjlCDDx4+0EO80KtjVKFXBs1C8flQMgJq0fMYKk1s6SFKIkH33IbN2xIJeGs4Ww3MtgB0wBV2Y4T3jkMMG03gCaXxuhN7/814fbVdTdDqZBSIeaGOc3blYdmAUsj5IWYA2HJoIRpHPu+GhYubt6gGc0weLTWxCUwDP31Oju/4K7zG9y82HK2GTnzDmMN084xTBrlBXUOscz83C/8n3z3G/86f/Of/j2WtPyur+HH6jp7e0FE/ovirHVnH97/We/L8578XL7yE17L7tYtlLHIDLWAZKEWQVpDKUU4ClU0+TT/qJSiloLBoGhY07oba8mEOWCdx9sBaQXdDE4bxo0m5UIp9A6xtv0wEiHmcjIx6te5WCg0aukHDUr3fzMMlhvnI+dnFj+CnkDt4Bd++ef5vK/7XH785/6/79Cd39/p3nHtqL2NuNhc8Aff72P4sk//cm5yEzlCPMLVoXB1NTOHxLwslJLRaMZhAqX6xU4j54SxA/OyoCm4G2cYpC+g3LX8zlhCvqa0hMGTqyCpoE5SFGcMuURS6UYhmsZ4tgV6xk3Kucs+qiY3i6LhjKPRwMBhuSal2rtMSqA1VBGUE1KpWAUL4WQW4rpcBY0zup/IpEqI6WGr5loqhi71aNKz4BRCPkRUmxiHkRBCD1otmVoSogRplc24ZXCehgZrqK0RcqC2hrOWEGYU3T3ygdsPEuNMTIm7jhu2N0fe40kv4vWvfi4/8BM/xL9/0y/39r4CNGgrnA8b/uAHfhxP+I77+LZ/+D0sae14PFbRSvH0+96F/9d7vA8f/sI/wBPveReUcSg/YJxDYUELRSCLZs6NWGARzXR2xrjZkaIwt8IDb4KYrgkhk+bS5cNLhNpvfisKrSzQZ2dME5pSkBTH4Mk+E/cj88GzvXA86Z5n8Ec/46v597/28XzH3/1m3vhj33dysFt5e+Nsu+XjX/JJnJ/vkAcg72E+NJalEkrkuBSW49w/V6VSYibliigYvGVJMyksyDCSYyblQEoBEdBGE8JMjgnVYNwMOK8oRTEMntoEqzWIYLViciOS+8HCEiPegpYJYwxaGZawMHqPNx5ohNJo9Dlg7y00jfb+4QP8hwoo6xw5Z0KMWOdQSvDa0Fqjtb4PxHDEGoXzHqSyzAl9yvPEarRWjKPH2xGl4fbVgY2fcBZEKloLTgpKNJMd2Y6bXrwiaIF0LJQWKK3grWUcNyyxdw61VkybiTn0UYAiCQlCbrHH1sQAtTsk55Twm4GaGsewx9lu2iGlMQ6W7TBweXmJdSPDMBFLV1+kWDjfXjCHhdgizhtqK9SSESXkWjDO4gZFFU3MoHUjV2EpGe88dhoJrc/UiYJSMgaFq4aihFZq92tQGiM9L65Io+4btTq0V+iUMZPj2c94b77o5r3c2N3kp//dT/PGf/VP7swCWPld8VBB9hsLtfd+xgt532e9GC2GV3/U5/O48/tpSij7LklMQZhjoZZGSIlcEs57chbAEnMi5m6mo2qhtd4xc66bs7UKKS2MIxhdoAlWGbQI+qhoTboakga6xyvRICGI0jRgjpGWuvQx59Jluwqs64eSNll00LikGLNiaPDUe57GN77qm/jyb/8y/vnP/B/v0MXaf421UHsbsBt3fPR7fTSv/Ywv4/GbxyOXIHNvQ3fdfOSw3/eTUa1RJ12+UQY7bDCqcshdWqXJHFvggVa5eXHOce7iYmcNbtigtWbynuOSEGkcl4Kxvbu22+36/FdOWGcpCpRyp24bNDE4t8XVxDT1zaE1oZQuYym5UVrri9z2XLNpmKD1bBtN1zMbpTnbXgAVJYIoARHqSY+sUPRk0YrSDSOClIQoi9GKabdluxmRCsYazjZbnOnD2zXn7hh5mlloTTgeL3HTQKsVZxsl9pPQ2gL7eDw5he0oTbi+vubicseNiy1+GviQZ3wk+llgfHewPMUHoa1CrPDal7+Ocdjwl77/W9di7THIE8/v4+Uf+DJe9KwX8vxnvie76QKrHIIB7akCqSmKQGq9UNMGdKnUVLi+XfjVX73dr6FcqEkoqVBKz1pqrSK1YQSMclT6jHYVhTcaazRUqLWQCrRUuotfSoQ4MoeR3dbzzCc+hy94+Vfy/Ge/mP/5H/0N/uXP/sSdfulW3src2t3kMz76MyBADTDPcPv2ydUxNObjkZQC3lqsVdQls8wzTRrJ2X5YZywxLBznpRcm9FmyEU+K8RQqbdhMniYNI43aurPuZpzQStMoOKUJIqS4MGjTbfWtfVjSOE0DRvdA7BQzoHDOIwgiCq0UVRQ1F7wDb7vsKqSA0pyy1Vw/QLRCLAWRgrUD3jpqTYAjnTo82vabOm8npJZ+OKcMSk5uldZg7Sn4RTUGo9gMO2KKaBE2g6OUgtKOq7RHS8MYQ0iRGBZqLZTSbff16fXVSiOq0eS0L4li0B6167EEIr0roZXgBk/N9Ey02s1Zcm4Ya9E14KzH6/4aWj3gtSWlREJO+3k/C2yqMQ4TzhtQjWYbUq7Q2qC0JtZKSEes9xwPC1Z7YuyFnZKGcQ7dBKMaSKYsRwKVqIQ2C3505DogVjCmMQzCuZzx5Pufxpd8+mt58+038XXf/bX87X/+9+/AClj57RCR/6JAe4j7b93Hn/m0P85znv77eeYT3w0VFRTD4boScyVnoHZV0Rz6fhRLdyutknpOYG6knEBpQi4oyTjraLkhcjzFPymMUcypIXRZ8mAHjO6zaiiQ2qBJP0hIEOvJwds6isASuneASCOmTJHYo0Mmw1YmREVKE7zVbLLlZtX4reI93uU5/IXP+0Ze/c2fz0/+wv+5mr39FqyF2iPMOIx85PM+gq959ddwl74LuQQW4fJ2n9eEvhkaBcZ2zXuTRm2VKj3HRaqQc8YgKCvsDzNU8NZzcTaijafq2vNotOUQEqUkkF7IhOuFOfUTQ+0Vg/dY3cM2obentTbo1ki1ompjO0yo7YZ5OfYiqwpaQ42FRv+9s5bBdVkj5pSxZuHs4oLj9QO04oCC854UAt5YKgatFbUmrN1SSwYB1TTGaozWSC0c5wPSFNPYbZe9dSzx6tTNM8TU3bIESDGyPTvDWk/TCt2j3ihNU1olxkyTI7lWtsNASsLxWNhsR7zTyKmbpqyi1YYzlmnwXJxv2N24i8/5qFfxn97yq3zP//a379h1tPJ750nn9/ONr/hyXvyCD2YcJ9Qp+LfURlOKWApLKsy1kpTi2CpzaBxjIRYh5MRxiaSUibmfbrbYg3VLqeR0uoE13QRHtYLRjmwUgqbaRmlduluAqSmUNYiE7sxXEksIHDee4+K59+a78Ic+9FN5n/f8IF779Z/FT//cj9/pl3DlrcTZZuIvf85fwTdHvYRwEEKAB69mFK0bXiyRpjWpKlLosm/tDXnuTozOCKgu05MS8eNATJWcC6OvPQy6ZJwZSEtEpPsKaK379QYMw8jGW6Q1NOC9xxpDPOWpeecB6QcM0g/GlOqfqUZ1k6p2yjar2fZDuc2It5qrQy+QrDEYY7C6oUx3cLTaUktFI0zjwJJCt6RvGaO6ZLBKJZVADAe24w6vDc57bjpDrQWjRkZncd4wDiNGazbDjrPzDVopcgkPRwZ0pUnjeJjJJWO958aNC5aUWfLCEvtcThNhdIZa2ikDrRdxg/XstiM5H9HN4NWGIBFnPEpaX/8lc3G+6/NwBZa8oLXFGEuRhKqVGAKtNhSGnBNiDW4YEKl93jpl9scD2nhEDYiiH+KUrjzBa6z2kIX20D6lesGaw8IhL6i26yMCQFOVWjO5BqaLHcdQwXi2GHabm5zdd5OvfsWfYDnu+d5/+Y/uzGJYAX69IGut8VuNIA1u4G++9m/wgme/CB0M6RJKqaSQCVGYU2YJGaM8oJjDQgVSyuSau2y4Neop+6+2xhJO3TQxKF3pFo8Kq0dsgbmlnrOoNcU3EM0wuIc7yUpDioFWZ1LpnwvOOKJkagWbLc0pDjkiQMmld/K1oule8G3GgVoySg3cVAJG8aynvjv/w5f/TT7yqz6cX3jTL77N3oPHCmuh9ggyDRMf8ewP41u+5ltxe49cd4fHBx6AOZTeySoNbRylVuIyo5RGgOP1JSmHHiDYNKiGt57BWSbnsEbRRKj03LKcG//x6tf6PFUVcslUMYDCDpYzb0gxEI8Jqwx2cByPB5TSbLc7nHPEtFBF2JxNpJQoJSOlYLRi3GyYY6Q+nFXYi6RSM360nJvzPqQ6DajWjUhSXNiMG7y32KYwY8/DEWtAOxSK7TQwXy/4sQ9XSwtsphto5SgpYlCUUri+usSPjnGa0FWxhECpM9vNGePkoVTGaWQ/z5Sq8W6L04Y4RxCF0QZpgHHsD5mY+4mUqNP/Q9V+I14q1ljOz7akpLirbNiac552z9PYjVsO4XiHrqaV3y33nt3ks17ycXzkiz6UZz753XFmoITGXCopAVUorZEkcQiF65iJojmmxOVyYJkbuRZSrFR6JEXMC7VId7MRoaXSuw8NRFnQXfsvrcHQTydDiIQibNyEt47YCtaCaooYI2GJDNsNIQUOs+Ow7Di7MXDvvU/i9X/67/GT/9c/4dv/xl/gZ37hp37LjXzlscOtzV288EUvgr0i7+HqujEfa+/4xEwMmVxqd3BUCoyBWvvh1ukAT2FQwDhssKYHGg2DcL7tMzpWXzB61x+wGayu/eDJO4ZpxIomxYjQuN5fY7TrWZVWoxjRVRHzgrWOlBPO9C7dME5oo8k1UlvjcNhztjunqIRgCDGz5Mzxsrs17rYT4ziylIJzmlZbl6R7T6utF4WnA0rvfD98E411AyEGjDTCcuhqjuORu27ewFm4eWOHs4ZhsBijaQXivFByz2JzbmSOiYImVmGOy0lhMiLS1SCD973L5y0Kw9X1HpqjiqGkTCkLdtixudigLJSoSHPier9nszujZoWUU/FqLQ9cHdlNwmANuVZqhUGPDBvdg6ztQNSFw+GaVBROG0pOhGXBek8TuHHxOJaU0c5QW+9GprTghrEXy62iRsNoBsjC5mKHVgpEI9Kw2lNqIpZA04IaB2IuLA8e6K4Suj+vWbHbDDzh1hP5hA/8WH7gX/3ommd1B/ivFWjeeiY/8Z2f/y18wLPfn83ZLeQSDnPhwcuFVBqpZCqWEAulPtRdhVQSKfWZVWmCNpqYEqEEjPGUUwSHCBSVaLn1LrUSKolj6QcqGtX3yBooAm5paGMY/IivBqMMSRqxRHJsONfjJI5L6AHxoyfmhHIOnCYLHEJCmREhA5ZjTVCgJcvNc4ss8PjHP4F/+lf+OS9+zXvxi2/65bWv9htYC7VHiLPpjJf+/o/iL73uL+Nue9ollAIhNHITQiiEkGhS0fTiwNoeKBprRmmYpg2tNlLKaOkbm7WGwWwZJ481lpgiiu7olUtGKiwxc1wy42gZnAGlaQLn2w2H+UArhWPcU/LJ+EAprPMo7dmMmpwTzjlKjmw3G1LOKNE4LGYzonSltESOlZgD5VAYR8243SLA1eHAaB2bzcToHBs7Ys43tJOk5XCcITWsd92oxBdiLFjT7WZVg1AW0hIow8AGcM6jq8E0TciZVgrjOJFSZLc7w1hHrg1rLEuqPHj7Abz3FAEzDWBs37ze/CDWGnZqQ6oz2mhEK2LOiAHVBKsqKIczEUrl1uM2fMYf+MP805/95/zDn/6RO3xlrfx2bP3Ik+95Ai9/nw/nlR/5aUzDBS0WQgiEnInVEnMlpEoqEEWxVEVscFwyV8eZy8OBlAVBoVrrc5OiyLm7rTnbOw408Ho4zV72DRIaw7AFCeRYSCX2gWxj0IV+SplBVOs24VYRj4IOiuogxMTVYeJGOOO+dzrnQ97/pYx+wze+4av5+V/6N8iq339McrbZ8J1f9l1s2SFHWBbhcMhcXu05HgOt9exMUZqWe8f2+nhAGsRlIcWApmHHCaEQlkzJGe893hu06soBVRt37W7SSp9VcaNiPiascpSlYkaPqMR+3mO9pWVNOmVg6nbKBlPmZOAhiG74cegy+VapuTGfDqpEVLerl8L1colWimOKDG7kuGQKCu8HWimUnDG+m3sYY4CTZD73ItKrCaUsuQRuXVz0OTqBUrtr5HI8cOvWWZ+f047BeLTVRMmIdxxSZsAiQg/8pjsJG2NBKQTH/njNEivWQ64VhcIYhx8GpBaMUYitNITNmSeVxGQcJUmfq1YNrwUGy1IDaUmIgSKWYBNj9kgr1KZZ2kLca4zSaKMZrEPOzpF5QdFYwsJx3uPLwHa749xeoPWeSiNJxVpDLQYrmkpDpDK4rl6xKIz0DmnWiovtOblEjHFoDGkJ/eNJaY5pYXQjMVZSLDhjySrjjeU9n/ICPuH5L+Xv/9QPsawzsW8zHpo7e0jm+BvZDhu++GWv4Ute+kWM4zklKK7fVDgumWPIHOeZlBtZFK1FaulKKxGDdabfz7WTYVyttFpYloTSpucL1oJU1e+/dGMzDcRY+9+XI8uh4E+HIIou8x03A850r4FahDoOaJVBG7S36JjIOZPmBeUtuUbynKkitNw71MZ4YpsxWlHbQM4Fa05r0O4YgqAqOA1nuzO+/xt+gPd91ftwuezf9m/Qo5S1UHsEGP3ER7/4Y/hTr/qTjGEivrlnTLQKV9eV46FriHM9hWe2SsqZ+TjjrO2nEtZSpXb3HQQlQghHrGkMbtdlJNLNOKwZsNqjreV6v+8WwMPQ0wcBQZFyxGjPNE6kGCi64rVFaNRcyKnLQDbbDZthx5IyZrfDGc3hcCDlija9MzVNW1JJRBtw5TQoLoUYZ1rpg+Wj2zBNBoMQ55nahLPdWQ/erv0GWGr/f3d5jJw22tNQaqn9ZBn65q6E7bBjDjPH45GYEnPs7mIozbS9QVO93adFkVvh9tVtUJph3NBMIdceuDqNA5eX1ygt+GGDnQZUfyVpFLSxVDEsoWK1YjMrQhV0cycXyvWs59HI89/5mXzjK7+Kd7p1H4PZniQihZArMQtzSN0kpDSW1AhZWGpjTpnjcWGOM8uSqM2idX+v8xLB0If1KUjuOn2jDUJEVHfNQilSbegyU+jypW5xbDlGBa52tywpWDRGpFsmq8QSKllXdAjYELp0qVxw63GOFz33g/j8T438lf/ua/h3v/Jv7vRLvPJ7xGjN85/2Qp7wpCfCrEgJltAIscsZteoHadYMxHgkhshSEkvsBVw4HGgtc3a2ZckRbzXhcKCUimoZ1SzOeiRXJucwulJ0RjlFq4pp6DNnc0yEsCAajPg+29YK89URqJxtd9SaaLWxhNRNrE77C7nvDTEFtDY458kl8pADU8o9Pw1taFpIUtBFYazBaouxHmccblKknLHa4r1l8ANy+rwvrXbJYBFGb07yKCHFiveK1mCJEcgYbRk0fV6rZLTRTNNITJX9dZc6xpQoLfebYjTTuKG20LNBtcU6y3UOOGseNqOS1vpBaVqQkMjJMs9HaiqMoyelwG470rxBaw/akOmyzAcv932EwGgG47BuANXVMiiNbgatQ++MKmEzOoxxSC2kU4fOKqiqEeKCQtGk4v2A0xqVu3NnURrappteKU1MmagUrQVyKSijCHXuipYqtBZpNIwCLTtqSuzE8vh7n8aXf+pXoJ3j7/z49xFW6/5HnG6o81sftn3se30Mz37i7+PVH/kavLtBPFaurzKHGLieY88kDJlcCkuuWG3IKVFKA2Uoh8LGb07u2plUMqX1Tm5tDWsHjDUsIZNL6HNkYe7OpAIVRU2FgS3OGUqKtFqY0wFvB7wZSb6x6Y4iiFRqPd2bKo1Yi1UKpbuZUBGhSL9vlVSZBkuYM7k0jM1snGH0isMcQTzVa3aiGS5gu9nxfs96f37wJ39o7fieWAu1tzIKxc3hLj7mfT+Ge+w9lCtYEsQEMTT2h8hhP5PiQs4Jbwyjd2iBsMyUwZ5muAopR6BbGqcccEazhCNKgWmZ7XZk9J6UE4KQS8X5EbVkvHe96NCaKg13Osk0SjEOA6VWku6dqpxTn4uTSiP3k0D6AtbKsJk2GBPZzzNWVXJOaK0Z/Yj4kdYaMc3U3Ki1YgbNNBmkZFJKqFYZp4ke9NOYNgOlZmLqlsTaGVwz1NIDRUt13SmyVErOhBCxxnCoB3LK5Fq785DzlNoowIOXt/up5+DZTOekVNkfZpRuzPOCQlBaM202QB98z7kSyxFbMptp0x3OtOsSlrAgtYBsmYbE+Y1zXv5+n8hP/vJP8qbrN9/BK2zlN3PX5pwPft778JJnvIB3faenUnLjsJ85ZiHlbsk9h8YxFHLrHbQ5FA4hcYyZw7KwxNh1/EWQEmkYjNZoZZDY5yAbFU7zaK01YghUKkYblNFk1WixYqwmlYVWBKdPp6etUcVSjcUri9G92PNZo1ulpS5/06EQU2JZMiFccFfe8uLf/+GgRn7yZ36UH/1n38+v/Oov3OmXfOV3gdGalzz3/flTr/gz3O/vJz4Ax6Uf2uWce6RDnqm1G9PMhz1zCCw5IFVhB9/t2psmp8Q4Tj230muMbTTJHOcFaxwK8M2wdVtoCm8txhquj9fkrNDakHMG3c0tcs2n+d3A5VVBRLPdegq9IHPOUnIPto4lIwqM6WZPpSRiTLRextFaxWrNbnMGqt+4VRHmELh1doEbPNZaUk7UnHuXS4Qwh96x1o7xFLi9n/e0NqCUMA0jugipgG+akDKttq4OYdtlkzWjaByOgf0hsMwRUXCMB2JMOGfRFox2eOe4nvcoUcQaUQ32+yNKg3UWZweM0eRcKDnRmmVZFqwxtCrEujAOFj96pPQD1yUvGOOopQAN5xyMUE7xNzZalDnNFSL99dEaayZaboQSUdqwmXaghXj9YJ/VFov3jnEaKSn1rqQ1aDTbYcSo7uLZu7EZtEKhUEp184h0oGGo1RCWAK1btk+jIhXFXc7wlMc/lS/+2M/ln/7cj/FLb/6VO7pW3p55SOL42x3wvvojXsVXf/JXs3U7YtRcXkaWubAk6Z20EEmpMYeFUAqpVkYzIE3IrRLDgrWWWWagoZXq95KtoFWPmck5EWKllO4wm1LGOUM+FY6lQi2ZWAtK9by/WgrT6EglsxsNee7yWoXuEn/qKWwdtB+5OmYK4MyAtpbWEpTGMmdKEbwbMcUyjluM0r3b99CsrBpwi8IPcNfF3Xz9538D7rsc3/dj378Wa6yF2ludG9ubfMoHvpwXPvEF1DfD8QDXB2FeCvPhyOEwk1MkhyMhLF0PfNry7GAZp5FaK8f5QK4VpxS1BFKOaOUwYvrGqDRahJwrkGkIznpKDYD0nLNcKboxjRPa9m5TbgVpFa3sKSizMJxOSGsWvB2pUlGq4K2DKlhlqaYyjluE1otFLEobhsExDYbRb4lLYpHYN9d4ZLQe7RQbf8bZ2TlaK66P17SlonWXzkiqKG8w1qFNozWhtUw1Q+9S5EyImWEccMYiIuRaMcZQm1AQjuFAjIWKMJRurpJKON1cF1oNKC1M08CZ2/XWptaEEPHDhK69AzIMI6AprRfKYj0hF5acucuc815PeyFn424t1B4liAg3xh2f+0GfwKd/2CdyczwnpEbKwvVSuZ776WOujRALl4dTV1UZUslcz4n9MhNT6bKz0get05LQ2lK1wzuPagZo5FK7g57unWp1ypExFuzgccbTdKZU1YNpkxBJGNVnOXMeKM4yWIsxBmc0DOrkigpaoMZEq/GUh9MDjOv9O57/3A/gxe/zQp7/nPfmz//Vr1iLtccAxhhe+B4v4NlPe3fk0jAvXfY4z5GwJHIupBS4ffuqFwe152q11j/Xh82IMZaaFuISUTSQxmbjmYYd0hohBA7XM1opprPdKd+ryxetMXjvCOGIYkAZObkt8rCroR9GRDVCTkzNU1uXO3rrMaZPOJWSaLmCUjTaKQPNs6RAzolaEto6vFek1MiSUNIzw2prPXS3NfbHA7V0g5F5XhCRrmTQwrjbkuJMSgFyYbAGcR5tGuGQKN5i7UhtjavrS2qr3DzfUWs95ZbNpKxwbuizzbqbU5VW0SmDtYTUD0et9kiVLvvXimH0FGlstiM1KbQtKDLGWsZpQ86F2mC3vSCkiph+yHiMgRASdvCgFKVkbE0UFEZXnMBcI6U1tKoo3SMImvQufKqZUgubSUEuGDdilKWZ01zr4BiGDdX6XqgZ28cOSsY4jZCZ55klJsbNDm+7K2dDIVUQLczHGWO6bK2hyEVjCpTccCnzlMc/hY9//ofxl374r/VZwZW3Kr+dzPEhvuilX8hrP/a1TP4GIcDldWJ/iKScOC6JJURi6td4zN1NUSoseqEJSKnEWHr3vQWg4Y1G5YalkarBayG0jBL1/2Pvz6Nu29KzPuw3+7X23t93zrm3OgmkEkhgWYJIIBACIdRLIJCEZASSUN8AIRlI9AIGEU0MCLCHEzfYMAg9Dt1AIMCYnjhj2KAQwI49cBQnxE4QUlXdc75v79XM9s0f77pFRVZLNVdVdecYNe69de85Z5+z9lxzvu/7PL+HMdqRjyeIi9Si3/NSG7fbDRc9c5oAodSCdWda7cRQSM6y74UYZiXANmH0opm920IVw23biDGpiqmpdLmUFTGG2ippnIEAVT+7kRNONOPUGcHvhtMEH/byh/OJH/uJ/NV/8NdeL9R4vVB7jy5nHJ/xcZ/Or//qX4t7fuL2CNdNyHlwu248Xh/IuRJCwvlEjA0Zhdo6t9tCmiZq1fF2ro22beyAM5oN1lplih5ndXJ3WzbilPSiB3rg7J1mBkMMtXdsH4TQMUZfFmMYlmVjSoEpnniV+mi8043iHNttZ/KeFCf6aAwAV5nPJ3IpTFNiW3Y1tge4PV55cv8UF6GXjJHBOU54DDhD8JYpBKwXSkts2wKjY43h/v4Jz6/PMcbhQsS0grGe63IjxshAaK2zXTftis7xyGaLVCPctoXeB7U1Ypgw1vGO6zuoOVO6ys/mdOb+/p7T+UJyVgU7w+BkECwEY8j7wmNv3D99ieg9rWkH6zxPTD6oAbe112WPPwqWHBSr++nE1/zsz+frP+tLecP8Rh7XylJ2tmy45c4tF7bWWNfMsje23GhNGAZy6zy/3VQeJI4xGs45lnUjb6t2/aQgoxPjiRA0iwqgq/YD4xwuBqztyOhUMtYFRuu0Kip/HJ0UIrYWxhjU4jmdT7ghzMMRZr1U56LFYYye2ivL80dq7Yze6Rhe6heeuTOf+kmfw7oV/r0/+Jv5nrf9T6/xk3h9/WDLYok9YVfHeoVchbx1bteNIQaspw1P7502BB89k51pA4Y8YmSwlRtjdOpewRlia/gpknygj45NF+wTlU4igkWzyvyhoEg+gTyybVdcmrAepAnWQzCREHS6xzBaPLYda8B5DVm+pAvII4WGC47H6yNjdO4uT0g9kPeVeToxpTO1igZal51aDFNIbPvONE3se2FZFnCOiYkmevmsdaML4FTeCA5/ihjryHum5kLtlj4cxiSszQxWrtcHQJijZys71+tKiGcqjX3PCk4whmXNpGRZ9kdCtExxpvaGUPFWp1tidFI1BsTJUYqSIK11lKITu9EbY4CPgYdlYVs2bvsN8Za8t0N1ovTK23IlpcQIk6pajMHbhPiBI7LnjHVFnx+QS+dyHpR8JWKIYdIMOHchWUO1ms+YUgLJ+GAP+mPA+k6yE8Igj4ofiS6VvTaGVIwDi9MMrA7iDbkqtXIUhzvf8w0/92v4j/7Wn2R7/UL8Hluv3hN6//7/TA2Gr/msr+WbvvDXEO0TlpvwynUhl3E0EDPbpoU48urdrbOXRtkqzlnO80RuHRVsCMkG9nJliMNZgzGedVuwNh5xFZ6aDaeUuC4719uVGBKt7GzrgumwXTN1LxhvcdawboVgoNTMkMiohRAmes1EZxliEFGOwj4gukgtDWsz1hv2faOWhbwb0ulCSlZZCkMYrsF14I1lXT369TNgPKdh+JrP+jr+6T/7p/y5//Of/6Av1l4v1N6D60l8xsd+yE9mzif2CnvXzmXJGegk7/EcxLe8I7VgTGcODs4nro+PRwAh2AFdhqLnZzVlO2fANEbNtAPRu28b+7ZhnJqk933Rwsp4xAh7qcSm0hMDCJ3z+Z4+BrVVppg0y8y6o6CKTE8il1NiWW9spSHimMOJXDNzmHA2kmTBBshlI7iJvBeQzv3diUs8g9Xg1fP5zLpV6uiELrRekQHblikG6osHhnHE6BkDmlhOwROHwlIaEL2jNNELS+nE6Cg0am5se1ZvgTvhUsQ4Q96101lqwXlPPM+k+USwBoQDCAGn0wUfNAR83Sq4zJo3Xnr2JqZp4hQjp3ThlCZigrG+nvDxWq53Pfzu05mv/5Qv4Nd+wddxnu54eMy82DLvuGWupbI3w7KpTHbJnb021mXTLBhgycczj4G97hgUqFOKAn7W7VEvi9KIoxGsfmcwWrB3GZAz00m9JnnfKXXHpYAZEQN4D60bxGi2zeidyk6TypwmqnFkI5xCJCT9+dsQsEdOVa4sj49YI5jRqPkJT97o+PRP+UJuy85/8sd/O29/5XXJ0o/GZYzhCz/pC/iaT/5G8gOUHbalse6d3jujVwWEOMN0mvBdC3sxBm9hOl1Y1xcEb2DA6TJjRDA+apBy3g8CYsJjmGPAWYe1lmBh9KEByF04pZnNFnJrmNYJkxJwg/PI4MDDV6y9cD6fyNt6TLsMeGFKJ2Ls9FF5crlj2zeMGLwPTJM2May1DBH2bSUFjw0OM2B5UKn+5B3n+cx133nHK8956eWXwDgwEWcgbzsppHfmvU3xjKHqPpJI8JE9b2DVu+xdYtsy27bSpVLGoOUdsNReaKOz5Y1137DrDR8mTDGM3qi1sZdK6+BCJJdOiBYEWu1qNchFowuC5cgJJveNUR0yNK/s6fSMYR1bLnQZWAzWWkQq277puSRerXzOY4aluYrxQh9Df/timeeAEYMRwzRNiOmcw4yRzr50QvCcpkCvmXlK7Lcb57szpRe00ar2BhmdXnVSudyuCMLlyT2GQS47r7yjcToHQhhcg8eJ4WSFJ2l+Z3D56+s9t36gIs07zxf/rC/ht3757+Dkn/CwNNZcuG2Vx2vmtqiXcdn2w8+/HbGzSvEedExrvHjY9E5nBC8ze9uxCHnLXE4nmgxAGKPgw0xpmRjh9mIDKZxSog8ly7rzhW0rDK/n4DBHtEcQci74EigvrlzuLpS68uR0JphBroPaDcY6ZmvpfYC3jN6IbmK0yvl0YVlXnDH0PuiyqQasT9jYWBx4C7llRDzWnIkucLo/8x9/0x9kyxt/5Tv/6gd1sfZuFWrGmH8OXIEONBH5acaYl4A/A3wE8M+BXywiz9+9j/mjf1lr+clv/Un8+q/6tfS3wygwMuS9c70+qnThyJMoeWffd5zpBAelquRKRFi3HW+sGjJLxjvD5XKPNZ1y4FW7AasNU0S0+LHDsptChwPKMTTUsHdyyYTAcfgq7CMYjxmGFBxD9GIhbdB7401veAkDbPtKijPgqUO9OCEExS17y55Xehvc303IEFqHU0q88dkT+th5eFgwInhneLw9IH2w5XZQwbRL06yGJuabenasd+RiVYKGxalAEoPDMRGngHRALMtyI2c1Qdux4avqqrecqb2TQkJwlFp55fn3MgfPFM9UpwCT6B0uHhl0gA8T3nqkd6TpJd6aSggDFx1bfmSM9j9/+O+D9cG+116VkIgI9+nC137KF/Crv+BrSH7m8Va57pXnt8p177yyFa7bzpLVdylitFlw+NDaPnjYHsBGzFBJ47AG1wdGOsZaEI8xkPeCnbxKI0cDZ9j2QmudNDntOPqJVneduq4VQYOJezc0GeTSNTi0K3QkhsxaM9ZYzuNEn07MMTJEccoichC5NFy3dqVKbrmxlnuetMRnfdov4XFd+VN//tt45ZV/8Vo/ng+Y9Z7aZ1NI/N5f/u/x1N+zvQP6BjkLt+V65DrKQT2LXC7PWNdFm0B7IbfCtl4pdaM3SziiTLoIxohe8I0ht461jb1W3vDSSQOTc1ZJXets66a5fcZwOp8Y68bjduXcJmQYhrEYLPPlRM2VbV9I6R6s07OmG/q4Yow2uASH8xPnk6eOQu8wuuVxW7m/nAnJcXd/f8TFFHAqxNu3nR4D1jkQR5gSIc6Ufae3gQ+OKcw454nJg7HctoWWK+c0cT6fcd5o9IwMrPOIGZQts7eKGMG6yFY3jYUSo1671jT/MziqFIIN9DEopVGb0HrDO0fwEWsBOxhFf6/OGryxYAJLv5GmmSlN3JZH8r5pQLUx4BvOGJZ9w4gnpIBYC2NQa8XSMCEgRvMbfdAMu+lywVmDE/A+cntUZcjJR7wNzGFmCFTJWDf0UDeFYD3GeqQOJFj1Eo3GXjSWoPdBq4WtDM6zxyI4F6i1UZtOJ+cpkPyK84Ywe4wNfNSb3sp/8//57997G+v7rA/k8+xVxcf3t5x1fPEnfzG/+2t/L+fpJV55KFwXzevc9saSC2trGtfRB7nujJ5pueCYGMPA6HTTNLtTHL0XdlmwInBMtNd9xTr9bqm9plPrTqkrxjSCt4xe0bm/Zc0ry3bFes28tdbSg6Pug7xtBOvordCbBS6UXGh0WgcbIs5YSsus+0pMCeM8pW7cne9ZtpU0q5Ul7xtYmGI8/pxgiCGXQneW7IW9NLbVcxaDe2L547/hT/INv+9r+Yvf+Zeo/bW5f73W6z0xUft0EXn7u/zztwB/W0R+jzHmW45//o3vgV/nR+2y1vIRL72VX/q5XwFZJ9V9qA4cGTgspVasc4r8Lht13bAny7pVxhiHNNEQggYK9t40CNt5DeY0erD01pic5jY5Z9Sn1TrWCwwN4N2zJtRbp2G7a12ZJdFqI4SZFGYMohvVClZtyEjwpKQyv21bkSF441R2ubeja2todEJQA2oK8Z3duDmeOc8JhyH4iLnXc7O2Ts2VzuC27Wyt4WJiniJDDGMMtno7LiIKB2l105eSQfN8WqG3nXlMWixWwXhHlIh1hm4NuWpHtY2jkyQDH+bDj6AHd/SdeErE6BDRl2nH4LzFDOF0mvDOaPe6d5zR6cZ2W/j2/+qv8I7ba3pufFDutXct0l463fF1n/oL+VW/4Ms4hTOPW+HFTbitnXdcCw/bzrU2brmzFb30tt4pe1NJYusMDB0YeaOsm4a8e0dyEeMEbx0NYSgfQBHIVichvQhVOo2BqwmkUmrTvEFjMPagl/ZGH46t7jhnmENSv6RxyCj03Ikuse+K09aYDIUwMIRtr1jvMB3q1nlondwKy76y95d56S1nft7nfTXhNPHf/Xd/n3/0f/37vO3t/9/X+lF9oKx3e589u7zEs/M98lybdjkPyrbTR6OLFjDIoLVMzjt9qDRWEHLeaftGaxk3RWoXJeAawIJUi7iBdIHcCD5SW8N5R+1ViySjF3ipjcvlotMoKqMOzNkyjFXisIHG0GYfwsPjA97B+XxHTO6dHrD1tjIEQkxgOqUOQpgwThhSePHwyPlu4jSdCMEzTTN9NIo0pOoZl+YZ7w3OJ5w3GOcQKtZ6QoicLjOCsG4rDs20lC6cLxe6aGRN1WOSZEGcJe9ZZfNGcD4c1LuBdIUqnOaJGAO9d/a9sOVKae2Qyie2vHI6pJsY4ZZveh6LcDkrFKFLZsjRHDWvFltgo2NbN9bSaCIM6UhDPT4ih6Q+U5shhMb5eA4yOq1mBEvtgncVEKbJ4aw2NpP3tDGYzpOaV0UQsZS6cz6d6V2Dj43Tc60KrFWl/lYM1jtsiJTeiEm9ScYItYNvQuk6Keklcn76Rn7f1/5OvvVP/9v8g//hn76XttT3uz7gzrMfjOwI8JWf+VX89q/6HUzhDTx/aDx/2LltmettZc3qU82laibZEIYoYK3WhmNXv/RRkJmg+3eMTt4z1phDJr2DDJ16J8fd+Qk5r9Sy8fj4iHiDNwoXsi7oz38okIIBYx21Dkwz2GkiHNmMYnRKWLaGO3W8aF4voxOTeiQ3s2l0iDG0XmlVp83Rp4MUOWilIqPDEEwX9j2QvCoCDJa8F7J1BPFELPYC/+H/6g/w5I8+5Y/9/T9OafV99DR/9Kz3hvTxC4FPO/7+jwF/j/ezzfYjXS+dX+Z3/orfyef/9C9gPEDLwDGlitYxp0DfnXqp9h2pleiFfVlUz+v9qyR9RfD2rsh6car/bYK1CtpgCF0cyXmsE2pTvK83ESn6gpAje22MAcYwTZFl2xi1Ev2MdxEfHdI3nLM4o5fhLW80cQy006FKal3BWYUfiIJM7k4zp6QkrUGnZ0VNh6CyLysWby1rzuylqEF+DGJKdOeoudNtxftIyZVhjiDHov4IQ8eJxflIbR2RgfEW8UosG01BKKDR270L3lhKL9Q2oAvWOmzPiPHE5IjeE2PCR+2aWqf+BMZAaNSiYa5nmQink6KcjeCTZTc7/+j//U+45R9Vgdcf8HvtXYu0l0/3/LLP/CK+/rO/mMldeFgrt33wfOm8WBoPy8bzZeVWG1sb6q8cUEpjWW7sy46IqFfHaPOk9q6hod1BMljnaaPRxQL2uNxkah1YG3QSYgRvQWh4GxgywFi6NIx0nVa0Bs4jvWFNYNSsGPbgkK5ZWTiOw3UwjDZ8ok8Ya6kiJOvwXi9nba9ce0H2G/sYZBrP7D2f+dlfys/93J/L3/gb384f/qO/i+fPv+e1fmQfiOtHvM/e+PRN8Ah1g1qg5Mq2LkgXUvTsubLvm6K0S2bPWTPASsHQ8cHj4wlGP4o6i41eizOs5phZg8FSe+Udj8+xxiqkySpx0thxSN5VMmyGwXTHEM1L60boMpQ26q3mgPXKeb5jCjP7vml2mejPcL2+IMyR3iDNF+zogCH4QN4KtxeP2CdCcHf4A7gDkOZIy5VcMj5OhJDQRhrEeSKlCbEGQ6cWoeWOOPAhMM+TNjGNnqe9d40RsIaUJqxzmi01CiF0WhuU8mrWm2hRfEw3RtdzZM8FHwOCodXOxqbUxxBpvWnjRITrciWESAqRLoPeFZHvnSOkyDCDzSVSdHoxbdC6hnfb0fDBaoanqCTSOm0IlrrT10rwAR8cpRWcDQgd52a892COIOMxiM4jFkQsbhj2bcO6RBtZzy6jRM11vdEZUIU0ncn7xojwSsnM00TwgTAMxQp7bUzds5dOKoFP+vjP4Jsf/gVf9r//5vfYpvnXWO/359kP5WH/X3/hN3GKb+CVh87jUnjMheuycd0Kfeie2GujjsoYGelGp1el0ffMNE8Kk0PIQxi9s20bvVZs8JSy463j7jxjD4BH7Tu1Vnrr6kdtEE8JY6CUDWcb1nROIWFDII+CQSFy1lqcc2yL3hVLbZT9FWJ8M8Z6BuAcdNnotZGio+ah/723mIPMLftB+LYWi6HXQkaNk3mcuO4rcw/MQRkCWymE4HC7YK1hup/433z1t/Jzfsqn8mf+iz/Df/adf/2DCn7z7hZqAvwNY4wA/4mI/EHgzSLy3QAi8t3GmDe9ux/yR/uKBD7xY34GJhtEG6XqAbBQascZy5wi+7rReufuNPHiejsABoZ+ADRCcpRi9ABpDcFwvpyZ08yy3bDW4aLFBYd1Rjv9wDxNeBdY9w2GMET19ljw1jFNM6N1winSR9eR9P1L6ilYFnyMzKfTUaztrOyaw+YN27oiVRTAIYIPkbrveAQ/z6QpMkpBQgTjKGVgaAyxWBOxptFy5TEvxOnEknd8jOAdxhpaGzSpxOmMq43leqMx8Naq30cEUP1+ms5Ya9n3G7UWSi7M8xmwBCt4r/ARRc8mAHqvRG8wXQPDW8vkm2XNN4zzhDThUtKMq6DEssEMh1ckOiFG+K7v/h9524vvfe2+ZB+Ee+1dJSRPpzPf8BlfwNd99hdx9vc8fyxc986yw8MyeNgq172w1MptVz9Oz5XBIfX1gc1oodZrxU6ROKk3yOeiuUReCaxG8QEMqXqxDk6hA7bopWuonIwhNFvwoq/RLiDdIa5jojkKOsuolVIawSekGLox9NKxk6UOxxhQb1dCCBSnXU7vPdI4Op9CbxlvdK+0t38v1Q2GhSFPefMbn/Hzf+6Xsi2FP/Gnv43H29t/4D/U19cPtd4j+8waQ99h2yAfocm9D6R3QoxYOtt6JUwTc4qkEMilkKWRwsQWHPu2YGKgjca+bgSnhZmxBhec5l+qJpE5BNblhjUGpB3TusZkJko98ihRJYaVAMoyoWyFkhtTAmO1CMHCtt9YHm+ElAjBMXrDWcOQQWkDkxdyDZhhOZ9m7i8zy/KcaUpHYQm9HRepDlWEUTpPJ0P0sK3qr5rSrHsLoeRM3ivBBay1nM5nzudZY2esxQyNi9nqTjeex4e348JEb4L1Qi07t+sNF5xGBHTY1xuXaSL3fjxamE8TwUe2fdPzojau1ytTmhARSssEF44wYbDWI21gjcc7Rx0V69T/t+0bIQWiizgac/AEa3DxpJmJTjHkvXeW65W97rRSCDFiTESk4wRyXhVAMgZ9dF688jZOT+5IViceIQZ8DJAi7BqtsOfKVjImevYq5NzpQ+U8xiz0tjK1E7nu1Dzx7MnLDGfZ94a77njnuJwd981ii+Oly8vvhe30A64PuPPs1YbiD7R+51f9bn7sG97K4zZ4vmrc0dYqu1QGA6zXgPtScFisWB6W5WiXO1orPFyvTD5AMPTaGU0J4S03XIykFPFB75C1V+I0MaSz1w0MnE76zyJCy5V1X0jzjDEd5w2td1qp2GFwc2SOidIbflIbjWb5Op4/POc0n7g7XxijUuuOjIGPkV4EMYPeIZeF6CclhTvHlCI+Bow17PvO3d0FI511K0T7hC13nAlsthPsYFThLI6YDE+nZ/zCT/8ifuZP+lksy9fz9/7b/9MHDdzt3S3UPllE/sWxof6mMeaf/XB/oDHmlwG/7Pj7d/NjvHYr+MCHv/RWfFE5BAWGQKuiF6y64w5qlKERo4c2MMNhbaHkzF4H02QwxhGipzZ3hN5mHlcdpeeWST7howc673jHC3wMpGA5zxfG6JxOF67XG0MGITr1XIVA8AbrI/3orTYZrMvCKDtVCs5YWmj670Wzc7yPGG9ppWHQHJ40B1rO7G1XKpYLRGMws+JcW4FhC7XrJHBvhTV31tJYl0LtnSyG677iTeJWd/a6cJnvdKRvddrxKqofsYfcsxBjwhpLDIkSNqiCsUrZMoARlZSKaL4b1hJcQEbDMGitknOjlMIeM4+3leAdJtyw4YRxwukyvdPX5w+Euo+J2/7In/q7/yn/+H/6b17Lr9oH1V77vjr/J+cLH/+RH8vd9BLrIqx7Zrl1HnPncalct8qLZWWtm0IG1l078EYwuyO6wBSTSjqch2E0jzAIuABNcEYDfPdtoSJYr4fKANwRyL5mNXaf5oSxKm92AYIN4DrrdSO3xnxKhGiJeCoFsY5uHLU0sGC8p/SG1ILrnRQToxb2XMBbUpgBqE0PzxAM3qljs+bM9soj6zQzBuRt5o1vmPmFX/QNXLeVP/8X/l3W9eG1eXDv/+s9ss8+/I0fTq9QipD3Qhmd1hutZyQL+7YxpLLe2uEBG5hRCd5iXGDdd6yxuBAww9OTNt9y3YjuoK9NAQakFLUoskKvHemd3nZc0MaclEJKM9Y6nj55whhOszeDwfnAlIZmqLUdOwQzhGW7qY/aBwiOaZ5x3tNGJ3q4LgtQiT4yesBPlvv7p6qmaKJqh9HoteBOM14Cp9Md0xxhNKWo9qoxAsYwSkeipdeVu9NLnOYLMU1Ya7i2hSQRMXo5dSZwXR4pe+F88Rob0Ae9ZUJwhBjJuSBFcNaT82BY1RcPYxiSsd5jo4PdYFzCpxPDDkruyLDgDCKOVvshlBa1MqDywpYN4pNK0+rgFCPRRZVKlkwyjm4UJmatEvSG0Qnnq17Z2hZ8F1yYCdHTW6P1Ri2FMHkeH288u78nGs0U7V3YR8H7E9JVYbPlnbpZulUljvROCh4Zwl4N8yURRbDGMlqhyuB80by7su+UZWWLwtnPfNSP/Vi+5Kd8Ln/uH//n74199X3XB9R59kNh+H/rl/82fvnP+0a6JK6PjeVWuK2Vh/3Gsq0EN5PzdmQrVsaWMXaQcwU6dghpDlyvD9zKSvAaRWGdQTpM56j5m/tOK55WDubBIYk00tnWhdHABUuvQ2XHriOjYK3TSbDTpolxlt4rb3/b96gsWFR+653BHN65y92Zfb1ijcWHwLZVRLRJGlKi7J056gBhX1eMNZTiSGHi7v6OKQR63inWM6WJ3Aqnnsi5YK3B2kztTt+DD+BO+qzfdPdm/uyv/3PsLfNzvuWT+ZcPb2Mr2/voSb82690q1ETkXxx//V5jzF8EPhH4HmPMhxwdkQ8Bvt8xxNFB+YMAzrn327L45fll/rff/Dt5Ob2B8QB5h22BbdWD2SAEYHJGQymdFkHtcqE9VIpkEM2s0IujhljqdGiwrjeCBTM0RNebidwMo0MrFYdjk5UYFcGakuV2WxjG44IWTG14rAHL0O79yGyAjEFKM71r3krtg+RP2CmwHfk4YBkOUvIggnNOk9+kM/mA97NS80and7DB4YNnrwsijjgn7GqJI/D4cGMETxdLsZk6tGOpwdS6CccQLF0hImbQjcpJ8nJjapmaEq00vE/ECLW2wxivQay9w+n+HuvUa5emk04lWgVpjOEO+ZrGFxgLwVfqXqk986aX30LwgVYa8T4QYsCFgnWoxO01Wh9Me+37Hnpvvn/GV33aF/AJP/7jWdbBtne2Yg4wTWFZM7dceVxXSj8MzsbRj2yygeiUuxtabnSTsc4ABufN4cMxDAPBe0TU49JqBunE4BnWYXDEOGnGnnhyrdAbeXRGDIDgkmdyghmV3gVjIiYY/HBqDBfhFGeaNFrXzMDkEs1YOMis1mhGUqkqFYkxEkIg+UTpmTEa+8MDL4ZwesMTynqG9hJveFPiK7/819By5du/499n3V4v1n6k6z21z37aR/40qV0US79ulNLwzvP8xQPG7AQ78Nazbfs7ZfIWq7mYtYIIl+lMZZCPHEjrPMkmetnBWsbwOKNG/K1WjBlYC3YYnj55A7dlJ7pEqYW8V0aD+ydPef74wL6uxPMM1uKmwN4Hk48MaYgdOO+YLrPuBcA4i+kW7xytVqYUaMNgCOwHGfjp00TdMn6a6K2zLQsinWXdCXYi75neNFC3D92XfoDBcooe5wb39084nxLn+4lSBtuuYdXrsnCazxgxyBCCjRSaXh7RcwAxnOeTAgf6q1Jky939hYfrA00q1jhiCjhn2XOntEGwnb2uRO/Ag+2WeT7RW6HsmxZa3ih5dcvvDMeO6UydlTosY1DLjveB0yngnWC7TutOp0DwntvDQkiReP+U0lTq2oZ+zpQSOMfeKsl7BgaMw3hHG4ZaM61kTAiYupJ7pRuDjZGedTrpXECGZQj0ZrDRIX0QYiB6j3Ue7zU7yxAornG93ricA3NpvOFNH8qn/tSf/T4p1D6QzrMfLMwa4NnlGW9944/DuMS+wNoru3SWntlLhiE8bldabrTW2FflA0xhwllD2QdiwfbOGANrLQbHvmbSlJjuzuSSaf3wMrrGMDtSG9M8U4c221uD3gviLWvVHDYfEyGqhNFUo7+2CCF6gnNsvdO6yim9DzjnmKYL83G3vG0bThzn+8D57sz18YF5PlG7xVqdrF9mJdOOobFRl8sZOYi0rRjWftU7pffcXKB6JX5n07HG8pgLzUTOHdxi8DOkOJMuM//1f/Tf8o/++T/iW/7Qb+C7vvv/wTuur7zPnvv7cv1rF2rGmDNgReR6/P3nAL8D+MvAVwO/5/jrX3pPfNAfjSv6yM/4mJ/BW85vgQb7olKXWoUpWPCJJVeic5yePGXzgdu+sJeCOI8NFlMDAcFER2kbLXfWJSMyOJ1nnQqIdjFgsJed5AfWG6ZJYQa57Bq+W/Tl3TGqaTYZVyp353tq16LIG4ONgdYbcwhaDG4ZZwfOBtJpVoMqmjXVa8MNi3UNLzDPkTRNIB1rHVvZ2ZcF5yxiDLl2BSI4i/SmHb+mWGnxiVxWhjg6SuRzPmioaCuUWulA2Qs9uuNS0NhbIzhH69DX7SCFBYKNh4enYo1exscYWNQfl2tjiODnSFuFWjNDOi400hQRA1tt1O3VkHDHw/WRFBP35xP35zvOpwhTxXn7g38Z3ovrg2mvvasnDeDNd8/4lZ/1JXzFp38hTiK3W+W6NG5LY8kqH1n3wbrv1DFofVBywVrLqz4YxLCXnZwL4/h5S1WQjlT19Hgb8NYioodDcNo4MKLm7mm2dOGYAgi17SofCw6kU/IOQ/Ah4VNgjPpOklxreoE2zuCtMIyGj1oMEcuQRh2ZsleVsRklZCGNgaOJ4LynjkrwkXzTpk7fdm5vE8qiOVhjPOWNb0587Vf/BlKM/N/+2d/n//5d/4SHh3e8Ng/z/Wy9J/eZCOR9aLPOWfpQGE1yXt+dzhPcxJAVK9Bqw8jAG0PuHWe6AiAwROdZe6eWjRBnwsVrI6FUbAzq5w0BKw0jYAO4FJmGQcbgfLqj9abv19HxXvBBp8TBOSodHy12DFoelAE5V+RVNYVzRzGie0eMwCHrNcZqs51BHxacZyvl8BR7PB5KgcnSh0Wyh0O5kcdGiiqfSrPDWauSUSs8XK/I0F/biSeEmVzUKlByIedCcIbRKyFMSjC0kTjNyLYhUhm1ktIERv3e51NidPXlDVE4y939E/K+Ky24aX4UIrRh6MMwrMqc5zghZcd7r94YqdR8w1o4XS7kkqmHZzXagPeOboye360h1nG6zMc5LEwpgniW5VFtEjExRBUfy9o4398xh0Qdnbyp6X1ZrmTpRH+iM8ilUFqhiiXOiVOc2GVTAq110KCVxnQJKIhSiZBTmmhV4SytB/K6U06JWAy9vffrng/E8+wHm6b9gp/xBXzOJ3wuuViut8a6bqzbTtlVEi+j0YqeIX1UuumEFKkla7HUlFJdRe+AzjqsAyPQqCwPi0JknKG3/qojFW8s27ozTTPrcsVZiw+qfoKMsx5vI70reGiIMM2RPe90uk6+HVgMp1PCGKveVyrgyUsheMcYhrJn8toRsaQ4kcRQumFdFjoQvKUPMMbpvjzPCF15lL2xLQstTFoMGsvjeqONxDBnIpb82FhLZE6OWSyxGlwHO8EnfNQn8De/7W/zp/72n+C3/8nfwXe/+Jfv/Qf+Pl7vzkTtzcBfPEbPHvjTIvLXjTHfCfxZY8zXA/8j8CXv/sf80bmeTk/5gp/1Bbz15bciyzEd7oO8VfBCcAZ/ZEQYq0biIeM4GDreJrzt4IU2lKRVW0ecOczijhAmSq54DCF4RhPECvOcmOcJb8/k/UbeN0rt2BTIeaNjscGT0ozBYp2jt0ZtHWMMKSZyF0ZVGpQxQ8fp3tIRxAhpSmy9E6wn+QhDcD7x8rOX2fIG1hGcZUwT+75jvWUYNXCPahELrVei9+TcVFJiIjIgxQiuM4YlBU9pKlVjdFoptDqY54S1GpadUqK2yrbu1D6YAe8DBghBPT2tVfKyaHj4KapZHUcuWYEn0qB7JSg5T0iJtWT2PROnmegte9nYtoX4pjeT5kRM8KIuvPL4ttfyq/ZBsde+b5H2IXfP+NWf95V8xWf+ApxEnj9klqWybo3rWnm+7ry47bxYKo8lU4ah9aHS4z5wxtGlM+pxCMrAeQ9GozO8M4gxOADp1LJjnAFjsLwK+hBaz6ymY7AHuEYDrrGBKXoNGRZhDOi1YEUI3tOHXmatt4zaCHBcFDuOoJP0kdWT2QccwbTGCmFoeLALifHqe6NWvHF44zHWHtTIytZuWOOQLtj+hJffPPNLftGv4hf1X8K3f8cf5//4F/4A1w/QTuN7eL3H9pkMVVX0AV3MO7vuBiXxttrpvTHHEyVrzEgMgRg8TRo+TYxqwQwmYxkMtq3Q8o51VuV+Q1QyabShMLqQQmSeEo7AaQrIcYHzUYFVxgW2RbicTgeqPlNbYXIT83Sml6EAKbHk2rEOYqs4p3TfIYAd+q4+voenNJGCZ9tv9N6xxnGaJ6z3jL1oI6JkqgyCn3EuEFygDIdzjj4aYBXEYTp9CNbp1KDmyjydgYM4Vzo+eqI0Wn01VsVhvfq612UF4DxPTHHSzMOqUTXRR4YRrvvG6IXgLM4Gms30Q2mh/i7981aCX8eI0Kon+onz2bKuV/Y9g6lYo/v/Ml24P12Q1rRRaPS8djiGDRSppJAordKahg8bo2z60TtdBsYaRu+U0SkvXiGnWfPwaqNLZ8+NZgulNTCOJkahCzFqcHbeaa3ifMAY9cg6GfTc2Az0YIgh4GcNRR+tkWvhtqxMJ23SvvXlD+cjXvox/PNX3qsE2Q+Y8+yHkjx++Jveymd/ws/Dmpnn152HJVOK/q81tXfUCq0WQOOTgvNKNbVQjeAN2hg85IcgChDpGiWTW8YgtH3HWYcUoXvF5r9K8O4H4doZS22dFCd8VE/kdd1UqmwhRCWWqrLD411gdA3YNsYSnGa5iSn6TkGYQsAMYS8dZw193wnxmPyjBaAVh/Va6PXaqNvKNEe8dXrmj07rhYeHB+y9xZrElgtjGILT72uoO+c2c26JeXbEYnA7xBlchF/6GV/J7Gf+h+/5f/H7/8LvZS37e/8L8D5a/9qFmoj8P4GP+37+/3cAn/nufKj3hxVc4DM/4TP5tJ/6aVCAAtFDFsFIJueBeE8Mhl4KdSs83B5Z10UDN/dHSlOd+FYKZTQt0DAMDM56eutYa1jWG945XDxxOc3MKZHCBGMwJU9wF2pr2DGUMNdFi5Jh4NWNmTQHQ83Kg3W/kbeNy+mOeY5Y6xgYcivk3N5Jb5xSotdOroXoHDFq+LZ3gxgnvHfEkKh9UFsjhUTeF8Yh+6htsBcNng7JsS3oIWU9EPB2cFsX2lCJTUwJa6CMjdYr3nicd+RccN5hrMNW9fN5Z/WykYu+ANqgtkGtG2105nMibyt733XiJxakUbuhtY5PnpQ8ncawnToMLs4QFNoyKDQLf/Mf/i3+2j/5W6/Zd+2Daa+9q4TkI1/+MfyST/n5nPyF67Wxb8K2NXLWoM3ShCyDrQ+aWGrT6avSUQfeiWYj2YEYe1DgtCtpg0pIfLCMLkhXglYfQpwSNPDOsZcdYwejDHLfMAb8MV2d56iuz1pVGpI8+7rrHhYU0W0h945QaE2lvX10puSp0um94p2n90pv9dj3hjp0sjfh6Nay25te+krGiiNMM6YPAvpZ9scHai0q9WyGp2+cefnlD+WLPv8bWa4b3/7X/hDrdn0Nnuj7z3pP7rMxoMug9s5esl6grSWkyPWaaS1Tq152yibcnU+cT4ckiE70Z+zFMUbnttwI1tJDZGBoWyOeA9F69eD6gGfQrGCc5mHmupKmmev6iLNq4jcCvWemOWGt57bf8LYeRZF6M50XvAkMOR0F1CDnDesM8YBS9ToILuK8vvdLLhgZlLozpBPcDLgDUOAxOIYMja8whugjp/Md81BvsLGGXBs+OtzRZEkhAZaWd9Y9M2rDBkcvlTAlrPNQByJaoIEBMUeIt2LDjVj2vGMspODVY2at0h2lK3ShaXB3rxXnDHUvhOgxKPilFsFbw7ZXmmv46LE+4vogOEfuDYdwOSXoQhPdj9FFqjRSNOpF3Rt7r0whkftG3hXYdT6duK0bpQvRepw/QbkhplNG5nF5JJfGGA1xelG3YvCTQr0AnNfJ4uhqTUghYewgusj9q9EMou/W2hptdELSTK5cOo8UTtPO04vnEz7q4/mZP/Gn8s//q/deofaBdp79QLLHZ5eX+He+4d/h5/wvPovbqlmeay7sBwitVQX+7NumSiCjObttz9xq4xQTzhjSHLADatZmx8PDFWtB6NTW6KKxTeZgyNF1goUYxA56a3REZY9FFRzORnCi51FTCI1OtyqHS0cz+lCa93JbmWLCJUuKln3ZmKYTxniETnAWawARalEfpxPDOZ7ZijbCjVicD9zyVZuiVPxJQV9tdDjiLV5cXzDamSmpp9x5zYPbW6f2wZorcwlMITIFj18MpwtMT+CLf84votH40Cdv4df+H34tyweId+29gef/oFh38x0f/eaP5k3nN8EL6JtQCrQy1BMljclr8KUxamaefGAzDsauen0zMN7hJdB6Z8igFZVJMfTH3K6LTqVCVBKiMzjrcFYfnnGDp3dP2HOliRY0A8EYh3We0gpbvRFbwhvBecXvO+sxLiLWIkYYwwKNsVdac8ioWJuY5kiRTN0GI1hevKKTQemdHj3RBIaDMM94kaOIi7zy/IW+wIYhhkhujVaF0+lEKwckQoQlLxgb8EZ9OF2q6uw31Awem3ZnrEYTPL1/yrZmMIPeB3veKTVrt9oYYoxwcPtSVBpX3irbljE+4GYl+1nxDAY+TLjW6HRKzjirNLXWm14GknBbXvC22+sTiffm+r7wkB/30lv4X37+l3OZ7llujX1t5L2R22DNmTV39qIB6lupGjJrFJbTuzZAvEOjKJLHRc8ojVe7lvaQbNU2wAhiwQ2j/tFWCSkwzMB2h6keQ8eMoRfV5vDRI6VinKWWCgzSFAhOLz/eCad5xhphNA2sNs4f+YaO0XdiTBASWIN0R5NM7QPTBmIA40A0G6fknRQ81QWmMGFTwBiL6R3THaYbervyKJo91Wuh7TMvvfQSX/dlv56Sd/7Sf/6HqTW/Ng/4g2wJR6ZSr5hRERpmqOQcYyitY4ynl4qPicsUOU0T+1ZI1uCc4IyjGSV+WiBiaAN8jJzShBHYc8aZwfl0z7Ypkc25SHKOF49vZ9tXQooYO+himOZE8DMGh3GW5XrVz8SAaKCAjZ7LyWFt5eH5DWzF5aKXpS3rBSkl9tbY1kUnSO4CWC7nC2DIZWdKSpecTxdaKVjvmKYTrevEuZZOH41gLAyHN4ZSdOo9gNGzQrh85OU3vpmcC8/rK0jrBGMotRFNoOx6GfM+EIJCCYyBva6UfSNMkSFRvc55IYWZ8zyTUuTFOx45n2bMbWCsJ53A+xl3CLxSDIwh5LZSuyGYoDRl5/B+Im+3I1dNGFVjN4wx7PuCdZFwmvAS9WxxXqXP1hJCIMYLeytYsxOMRdpARsN7y76pTHqrG60o3IEj73S4wb5nSilHkSk0Kn00nA948UTUU9SHEGPEhUDZFbvee6evK8ZajA0kb8gNbW6GyHm6vEa75v1v/WDTtPN05qf/xE9mVM++Kx6/9c62VVrtDFFrScmF0Q32sLfIGLReaJ1DemyP6CW1d3Sj3wslYg+mNHGtNyarACrjACuseWGIME8To2vDvA8huUSXxrJuYAx1ZKx1tFbpVIKLtHYEAgPiPL0M+tjoo2HtHblV+uMLntw/w3ahNSEFo2NA0/DWksJEN4IPhr00Lnf3OCxMDutO6r92aBE5KqNt9B4Jw3GTTvD3FCqX6al+jiFsW9Vok+KxITIHz/k0UW6Ws1jmZAgXz5d86i+htMK3/PHfxPoBUKy9Xqj9a6z78z1f+xlfwzd/1TfDDVQnBXkTrBOS8Zx8YJ48dVuIPnCJJ6IL5Lyz75bkLA9rZZ4DxhnKrbDcVpINdIfKEY8Us8tp4jRHZh9hF5wbEDi6ZzMhBu6f3lEx7Hs+grIDBsuyroyuE7H7y1OsMSy3KzFEnj15ptLCmAB9eewtQ2/Y6JiSwRrhydN7nr/jkdoHsBFHwjDY9kIujSkFgrPsuVBzwdvO+XzhYXlBHR1jLHYE7s8zL7YFH3WkfstX9c05OLkZGzTzysXAthtkdAyRXjW7qlQ9aIROsI5t3xmtMoV4FGiAqeA1fy2FCSMWqNTadBrpTshByFrWjRA7zll87XTvETNwXih1PRD+98Qj8PH19d5b71qkfej9y/yWL/nlfM7HfQpjb5S9spfKmivLlnnYMo+18WLPLLlShxqTq+ms64Y4QZyotJfOKBYxmm/kBYwZiFhGUD+jGVClYbzHAb0Ncs8KEcCRgGI6rh9BndKwwVCK5hi1vTPswNtDvlIrzgaCEc1Oczo9cwcwQgb4ZNW7YpwWcGhHdSCKMRVBpLHUG3kc+X/+HoOhSMP3rgFdgBkdjCHaib4VXnzv91DqM0bu+H7Hy28886u+8d+m7Z2/+vf+CLWV1+IRf5At4Wh7I2KILnBdr/Rc8WbgnaF3zXO8TJPmUUojd31/y+jE6NivK845aA0bA1FQNQDqKwkWLucnGGt4en9h23b2snKeTsznM/iASKM3wU+e1hvRR4RO8g57d1LJIZBLIc56JShlxzmVnEsXbaK1cagYGqN7yqaXxVoq2SltVcbAOcv5fGGOZ7LZuC4rBnhyRBHozCkj1hCDBk1rQK8SLI2BkjdybZxTVL8m0EdXeeAwSIzcvzyTvGW9PagUbCjdN4RAaYVSBWLAWJVYhmhwWbhcZpDOfls1s254nlzu2PaFPgKMTkezz0T0s6WksQMyDFYiLlhu60ZKAWs8XQalFmptTDFyutzTys52XQBh8o5pTphuVPVi0cu5MTy9e0brjcf1psHeWM6nRC2NJhWTEljFswsVS6AZwUwJF1RdojRbbVK21o+8toWyLbgjI+7p5cJ5VphXk44Twcuk1ghj6D0w3534+s/+Kv7L7/q/8J3f9T4Nv36/Wz8YRORNT9/Et/+2v0yK97x4qDxcV65b4dZW9rqRRyfvlZIVhmatJcUEtdIYGB8Zored0vLhrx+MPvBGWEph9EFInq2u9ANIZNR6yZ6veOtoVdhFJ2NiDHFSeiq9YzFI1/DrmBxLqTgTMM7RW2UtN4KfoVaC0bgYl07U0mEoT2DPC6f5RHAOGZrj2EqmjUxyiXmaaK3gkqXtK2E6cX95QhuVZXnkNM2MWnGAdRGCx1nLeToTXGTNCzHtuseGwTmHC4G9WWhNp/W3Rp8CTYTWYK4wTYGv/uyv5brf+La/8G08vp+rSV4v1H6EyxjDR7/5Y/ht3/Tb4TnIBmOFshqsGMX+DsH2wcgNK0IrAxMqozdGbURriCkR2qAWJRUicJ4jbW+kEA+T9uByd+YUI6d5JhqnF0urnoc0Xaij8y+++7u5bivrWlhLwfvE+e4O6yK1DxpZqXEhaabYqWENuCMYdUonghe29YYxFgKKA48zIp2H51ela1l7HF7a3aHrS2rdK60pVjaEI//JN06nC+12w3nP3f3Mv/ze72b2s2a0WcW/JpvwMRxTCUNKibILd1Mi05nSTK2dvO2cLol9y0iHdFGSlouRMZpORY7mVtkyMUV28nGwj8MzVFhKZ55OKDyk0EpnqwXnHPMpIgze/uIdnOfAh73ljdBFc4FeX++19X0Pu1Oceeuzt5AksrZCa45aKqOqnr8UIW+drQ6WXahd2KWylQrRqk/EecUSW/UkGlvVhG3BiKGMTi/9kD52yp7BC+IBcXjn8c7DUQSZOmCANIEAow+MZJUS18EwkW4VKxxcIFgNCjbVMvuEP6mcsfZCmiY6g2H0cy51pRz6fmd0yjeGeuSmSbHqDthbxms+O2O7IQjeBoKD4HU6PrCYNrjlt2G3Hd8Hoz7hjW8M/Kpv/DYanb/1X/yn7D+6gts/4JYA+74jxtKB2+2GDGitUfcNa73m9KFkz9I018V7j7WajTYQYnL04VmbEmqtOObLTOsDbw2ncMY7jW7oQyW8DENphWY60ymw70IfipB3zmkHfwz9/jinvk2gN+ijwDAEY2lSOU8J62fOlzM5Z0ouIMK6qR/GTY6RFOJzd3c5NFMDS1AgiXjEFHLJzH1iz4VRM9YaTqc7FI6g0zEZGsLrU6K0FcbQTEHnWdZH9gOeMacTy6JSrNnNWAzOHuRH7wnBk5JDpBDEEpwlJKd0zRRoVSeUKo92hGOCV11QsrJLTD5BMBijgeKtF/ayUI/G5LbvCFCqoYdBiJE0O8RmzpcLz57csy2Gh3FFRLDWMcekEThF2EulSeF80uy2NgxtJJZt4KPTC3l0lL1h7fHuEMX776Xiok7ihzGYVimrgoZ88vS2M5pO7gz63Xjy5MzkE6MXrBuqxrEOGxohztQh5NKZ7ZmP/fEfyxuevE8z1d4v1w80Tfs33/rR/LFf/8f48W/5CbztHZnnDysP68qyrix7Zts7NVdaqcgQnDeUdcfUhhFtBu77hnde6cWlUEuh1spygHKslyPrs9OrpZfBYjaCtSolbI1uBGkd41T630el7HrXCdarjzJ6QrQYLM7Wd0pkxxCsBMq6MZ/OGOB8OmOcZd1uJJ8wvTFGVwm3idAHl/sLEhR20nuGDNIL3lrun9xjXdKoGxzJjuNupWCk2jt3dy9hDLRRaXLCusC+F5ytdAyJE10quEKIgVsZnJNh5MFeYS+Wp3cTVWASy6/8vG/itq38h3/t33+/LtZeL9R+BMtay4fefyhf/hlfCi9AHqAtUDLULPTRaKUgZRCcEKzFDj38bAcnnZg811U3eIyWkR09ayHlTGTnRvQB6wPbtmGCVSmLD1gBZ49O3xg8Pr6gtKqTN1HggDFCnM+IcdRWMBam04TH6+QoWFJ8yhyTyivHYNtujOAY0tX/FiOtFoIx1A7BGmzw+BBVt5w1/yaXTIoJwRB9YErpCDLM9D7AzYoD7p0iGug4TZY4JZblhgOmOZJLBwbSLUKjjUzrjWkOmmbvICSPwWj4qtNQ0OB10mVMoHX1JGigsebOBZewKG3IxUTPFemVGCrOeKyxlNbBWEJI+tI8OsbrtinlrBucjUQXKL2+Zt+9D+T1rgde8oGP/bEfwZvun1FLpfVBG7A3Ye1QhqFg2Yeig9e2kUunCkdnXvPO+uiINUjvGKeSIae3E3pX340MbT+OrhlUpWedwMpgthYZFSOCFY2ysNYRg1XaIwafonpGTFUyqlfJrRmWGBXz36VgsSQXMabi4sBboeSiQAKv3kxn1DNnvUdGp9ROPL7f3nulx/WCVGg1U5zDW88IFWMT1IL0ASaAaYToWR4eoQ0N6+1PubwU+WVf/luZwsR/9nf/BMv+Or7/vbYEhRvtjV61oMcYYoqaEYkjl6Ed731nmgLWgXWW3jzGeM3TcpEROt4HWgepQ7PWpJOmiLca6XCaZva8M2bBWMsYne3xER8T53lmz5VXcylzqZSSEQNT1He2tRak4416iUttmjEYNULges346IjTpETH3g8wimCtoeRKN8DomtmUbwDEcNIMznimlcZ6kBJD9PTeCMEwhkoJRx9Ib1gMAYtYT8076Zz015EGrVFkP84fKOEw1GDwTqnD3u+k6cw0GW63m5Ibh+aO1aKkuRg81kK0FmHgrCX6QC6ao4lvR/acx1XHnjsiQ/PlSiWlRJpmeu9c10V9sYfHyHlL3neWbcWi2VTWHdM5hBQjYUrEvdN7wWDoHaJ3tBjwIVKPjFVzFODDCDYck7vWiEYv2q3I0ahEYRBHRqQ9ZJLeq0Q656LqVgvTNMNoPN4eMfaOUzzT2mDfG21r+HPg4z/8Y/nr/+jvvla75/16/ZYv/y38xB/zsTx/0Xm4FmoZ1L2xbpXcBnnruv9EmyXSmxIQxdCy2jiiS7SWyU0DsLUvPjCmq7qoFOQA8Fijz9mKaEg7+h7xxh6Ua0utisqXNnBOG+PdDIpR+at3QgoTo6s1oKPTQrWOCel0wRrIZaW2jLdCcBMuOOYp4Z0nBIPtCvaRXolROQvJO6bTRHAOawVnYXRLOD0htx1rFfbTUZuMoNO+bX1gni7UMmhmMLCMsYK1xBSRIgxryLlxmWeCs7RuwQbmZqlVOE2WX/dFv4lTmvk9f/53vd961l4v1H6Yy1rLhz/7MH7zV/5mvuRTfzHjOZQH2HftcJe1cLvdoHWSU8lLmmdgEGbPqJ1hhNYqa16xpkPrxwVQmOJEqSq3muaJIZY0qeQPUA9ayViEaYqc0syaM7VlrPWENDMlEKPQDQ4NPwijGMI8Eb1jShPJeYIL3G6PWBFiCEzRYd1ZDxux1DIoZdcsshSJU6K0QWsdYx0MJTr6GvFB0cpT1ADQpd20u2ccfTY83h55fHjk7nxCrIFh2WQQvSU6x6DjrKe1Qq4ZPXQjiBrEU0zEIyAVEZxYnLPUplMSvcTC6TRhW9Pw02NIE0LUwwvBn5J6CLC44DiFMyMXPeOsxwWrZEvr8V5/v6NZPumn/0x+3n/9Gfylf/g+CQL9oFrvSnkEuJ9mPufjP4kf95YfQ10HdQz2PNjrYG2Dx9p5LI1tKLre+Igz7Qj41P1krFEPjlENvzUWA7RcFbIjFqmGzsAUzSCCo7grGTEGYxqyyjHxOLLWnJLU5NUfYVWe7JwH0zAh4JrCS1q3pBSRNtBrk1C3FTEqz2q5ql+kFPw84VxU4mtDmyPBKrULBQxpKLIcdDDo3dJMAQI+BKz1R9HI4V1Tk/h+W3g+dNpcx1OeveEZX/lF34zD8h1/94+xvl6svVeWDCHnRm4abjzNZ3qr5NH0mY6mMsJmMANoWlwHHzRTD8uo+j1zxnK5nNi2TDEVHxxmCJOPOoEDBUX1SnKOPgCrWP9SCnd3F/VFNoMxg3meFCKAENLEti6AAjyW28IYIDKUsOg6PVfsIVc/z6o6GEOouenv1Qq5dlrtOKvFyG1ddRJUG9N8wmKoXVSGGAKldeJQYAeAFcOoRafYZYABM9y/yteUwbqt7HvBB8FaLV50WqgyLMRh7CFrFsFYiNGhHXtzwF1U2VJb4Mn9GcSq38d2RHb1tLmAmQ0xOHo/fIYiWBNwNqg3LEb0d8oBukoEN0ghsmwrS1PP+ZTSES1T2PJG643z6UwwkeGFUjL2gK1YLNEqnlzQiRgi5D4QO/RiXjpxmrDy6lvL0NuRc+eMwo0M7GthnmecFWor9KVRfMMwuCAErxLa221hCieMFdZjghfuZ77xs76a3/eX/sD7bsO8n63ve2696+oN1h2WrZOLTpNry9TR9Z1cdrZ9xQyLdVCLguD2vuDE6Dt+GLbligsRa2CI4IzBIexlw1mPiAbWt6YxINEl7RVYxxS0sZ/HoNZGH+rh99Yf5MfCVldSnHAejA0ElzB0as3IaIgY7i5nVXRYHRKYkDjNZ7bbcwVfdW2SXE4TY21AIbqICxPBeda6cHe5JwSPtU7/zLpQR2Wa7vX9VXb2PthKppWdjhaVBo8zDR8i2/ZI653pfCYk9XzGKbGu5bj/NeY5UnvApaAySvQ6ex/hV33RN3E33/Nb/sS3vF8Wa68Xaj/MdUn3/Jqv/HV88af+W7jN01dYdljWSquNbbkhfZBQrL6VoV4WZwBH6Zklr5RRcT7SasYZ7bx7H+hij4mZw1lDzYV9vak/SiwMT/CedV25bjfup3tqrcznidoHUgq9NcYomGbBWe2cHes0JYUn1E4wgVIz0YJ3iaf398ynBBb2dWXZNJi31coYHRrE08xpOms22ShAQ4oa1+1B/Mm5KEq4dNa8Mp1mttwptZHiTBkZh8OFiHv2lFoy03yPc49s64pBu6xdvL7ARsYaDTgdY+CD16yr47KDs8QQqLXp4VvKgWpW31HLjRSF0Qspaic4Wk8tWf873DFRUdlcQvN4oo8YH3i87bQ6+JA3figf8YYPf82+ex/I6/sedtZYTmFGqmHfOuvSWffKsjeWXHjcKq+8eGQZ6BTNGowYjDeM8iqC2BxTqYIzDuMNZcm0njXfDPWJxGQO6pXopNqhdLcDAtGlYYcjuQQcxRoQoiLF+9axPugeF6GOQjs6ktEZrFECm3OdWjLOQbQzuRWaNTCODLc+wDbGyAwBayLeRaxzNOmY2ggpqASTV4PhB8ZpxpM9LvaacyPUlklpJohByiDLyivyvcgYMJ7x9Nkb+fIv+ma6dL7j7/wRclnfl4/8g2INEVrrjNaQIfgYtOhvBoo+I2ssKQasDHovzNMJaxx52zQ/DEdKnjkl1n2jlEyaJ2opWGO4mycMhtt6Y/SOPy7zxhjojvN0Zisb/Qg9NkGLJSX/doxzOOuJQQuQEOzR6BAwBl/0s9cotNJovmDiCRMay6bBuM54ehWC00nU3Xmmtcqyrkc8hTbbtGWieYDTNIMB7ybN6XSOlJI2W4ZB3NCpmvdY5yilYK0j53FkwR2hv6NDErCdWhrpuByqv7sriORocIyuv86wsG8VHwwlN+7u7kkpcL29wCKcp8AUE95pdqkZhilaclGk+dOngVtWiIc1CloIIdB74XK5xxvHdXmO6+qnaU2JjadpotZOo6sUG31HTdFjfcKWQjCd85xAOq883LDAMEfjycAQRf+HELBDXn0T0EQjBaKFUTKtDkpplF65f3LC4fDiGS0jdlBfNM7nREwRZx1bXpUKLSrJGzfLh33IR/Cmy0uv6R56f1xf9mlfyif8hJ/BlvtBvG7ccmVrSjbd9o11X6m5aGO7a5HV8qKo+qpTs1wLXTKSK6VXem+qTOqZlCYFVnmvlMhelPY6BtZqtEwtGYOjtEyc1WcWfaS3xr4vDBnEGOijYZqlCngXcNYQTyfWrSPd4giUsmHtIBd4ev8M7wIS7mijMJo7JJqd891JJc0xYqWRa+PZ3R0xOa2YjrZjHY3o3NF4V5+uM5Ypnshl03PRy3Gn3Fj3K9FP9J7Ztiu9BwYWH9U3W0cBq/LuFBtiPL1a5qjKl5Qs5wm+4rO/Eu8iv+GP/ur3O3T/64XaD2NZa3nL3Zv4CS9/FKkm5KaTtDqE0qoWKL1zjhFnLIZXCT1CTIHbstLxDPGa8TSaooxHI9h4BI6CMwG3G3or3Nardk6BMTrdGEYd5LIiY/BivOA831OavHPatNeNvWRCdxjb6ALPnjw5pFNqEO+jEp1njp5gJs5zIkadOJhRMUZ4en9m3Xa2NeOnqAGhpWHOg7I3alaIwjzPij5O7sicUQrjsi6sVWUbtQsihmmasFXJVWMMnIN0eoLzjjc8e8aaAo/XG701PAf22Hm9ZDjFWkcbqO1KPlgIMYSDcqb2dOc9xjviLOzLRu6FsVTuL0+wRjNxrBcu/g4XDA/Lxovnz+nA05ffoF6BKtzajXfgePnuGa88X3jZOp6kJ5zTiSW/fql9T63v25WMLvBzP+Zn86n/xifSikpxtlth2TPXrbPkzFIySxeWstOAJnIE0AoWMCHQc6aUHW/D0fHewAqjQUMjGhLxnZMu6wbTadKOHcK+7BhUCuXEck4J6wO39Uauje4MLh55bCPjUsJ4S84aKOuMIY4Eoh6XLa9IBYrBnR0ndyLnihXDPOl3Xbph1IrYwOXJCUDzkrxj2HbETjSd1MekwaO9Y8WwLjeVXLmTXkbHUJn1dEKwIJGaVx4fH9R03p/w7E1v4Fd8xW9BZPCX//Yffh0w8l5YvRt80PdnrfnwWRpq02DjKU7UVjmFyDSfiM6r9M/AKV3Yzap+3MmzbAYftFjvrTOnyFYyk4/YrjllIUbEWKaUKLWzlytpOqFpXXqO7WvFO0Npldl7essaXu0VXHC+u9BH16DuBjYFlU2aRi9V85PEc5kulFo0n7MPjYS4d8QQaTUgWLY9q+9p0imvNZ7SBz5XTqdJCcbO6z6znvPTM04Ga94xY+Ct53y6UKTQeiN4y5phywpcubvc061hve0aVRAd1phjigalylF4WpwXkMq23fAhIjIYNJ3ADcOUJrxzpClxCpPKQ2um1EYfjfMUuOWOtw4nQs87pVlCUpWIiLDlzPl0wftA3lfuTk8I06wS/WFIk2U2iS3vvLg+YATe9PIbtRhNlcfbgsGwrFecddS2M1qntYH1llI6WIfB0+oOXQgxcDlNx7TC6nkcDd1uOO/pWGpveGOwtioQYrJsJRNiYkoTfRRyy+zbzL535r0RU+CNr/vUvt/1g0FEPvwtP57L5Q3sxXJbMnvrrKVwy5V12ViWjW27KV16NNzwtNLwcca0irWW7Xalj45D2ErWqZOPGN+py05vOh0zYsk5HyAuYZjOnAK1Fc3SQ3Ap4W2g20btjfWqNFZhx4glWZ0MzzGAaG6it5boJxqdvSzMc0S6NtzHXaNnzfo0YpSO3AqIJyVLHIHpaPwwFuZp5jLf8Xh7fCfwLSHkojTXF9cbuRaagel0JoU71mU5dCTauDF4cFqoOgZb1kHC47Jxujyhtczog2m25Cx0NlVaDYuzhjkG3DBM58BH/7ifwBzn1wu1D8R1Dme+7vO/lk/+yZ+MvAJlhb3IgVkdIAbrI8uecQKbVC6ngO1C2Q23tZHrSs4LpRQ9lM533K6PdAbWmcOs+ZQQF2op3E2J0jshJXAGurCsN3K13F3umE8nvBWdOEknzJHpbiZvldtNjdhOYM8FmzdSmmAYxfO3SqcR58S6FUruhGRU4hgie9mpFc53T0hpYqsbo1Sutyvb3tj2FYd61qwVMoNpSlzOFyWWCTwNidw7tExygYFeFLz3tFIxY6K0Ri0VHyLzdNILTK0MC/fpZR735/RcMWKww2GtXnyNNThrSDHgTKLUf7Xp+uiUspNOE2XfMBKQMdj7BjK4n+946dmFOgbPbzess4yuNCXrHIJetm+rpeVCLjvOv8yv+aW/jmYr/8Ff+8M8brfX7Lv4gbK+v4PufjrzcR/xUbzx/g3crpXaK2V0rkvm7S8WXtTGWgd7zVy3VUPhvcqDMB2sVbmjM0fRbum1sl8rPmqOnkNgWNw81NNpjeZGdY7CSn1EKUUu04zUirEe04yGEbsj4sI6+hFgbFvDWccwA6yhi6HWzuN4JLmIHfbIMBS2fVMfmsB0cmBha+OYGFvsEYSrhu7KqDu9OrxTwNColSqD4ZTkttwesWiD4nRJmOHxB4jIWKu0ulepeXth4VElMMHxljdf+A2//HdhreE7/s4fZX+9CfEeXPo97KKUz0E+8tC8ehOHSszvTpF9z0zzmTaEU5q4DCGliLfjgA9UzDE5HbUxx4kU1KS/bhnwnE4zMhoER4iR0SsxzgxbMTiut4XWOnWvtN5wGFopdKtEUWstxlpK03/nxGGTPUhyjikG0inhXSDgCMGw3h5xKWCMI82am1ZbQRCmMBF9QNAYlWVfuD+fCX6i1YYZlhAswUX98ymFkBKtDeYYjs8fqD0Tg2PdKtP5DuM9j9crp/Md275xToGQEjVnYi3EuzuWdWeaIyFY9qzgjOgdIainpnerwdOlsTxeibPGDZg0HWdx0bPKWnpfkCFYDJRKPXw7rVem+SkAzidK3Xj+4hWuL14wn87M92eM8cSg/tJ1WQg+MiWrmVHoZXfPO8YYhgjBOZZlVfT+GJjRcSjkaquV4BOlN9p2+NpGxw8UZuQ6BocL+sxOp5la2xHX07CT2iGsF7Ztx1lPbQ+MJ8IbnjzhPF+IydO6wpGkyDtpm6+v///1AxVql/nCk/NT+oB131hGZquZOpQivPeOC5FTnLUwLhsOz6iVXAamdVpb8PZA9bvIPHtF5XehZKWsvkp37FTyulNK43x/Qtpg9I45wtod+r2M3jP5SC2VkAZNdiY/HWfiIO+F1iwyOt161roRUlQlQHAKRRo6Db8+XLk7neijc5pm7i4zc9KicF8z3XfasnOZTrz05KJ7RQqnKdFNJ4bE4+ONFBJbyRjTSNHhhsrF26hY54BGbYXW1OqzL52WN4Yz+DhRj0bq9cVCTI4hFecLzhn2dVCiwxIwGyxRM3dTNXziR30i3/rl38pv/CO/ke39KKrm9ULth1jJBz72wz6Gj/2xPxmTDfsj3B4HS+5cbzd6E3qHVjZ62bBelKiUtdMvPSMMcs3c8q6Y8X07cs6idsadPTZW0R/rHTKfsUXDSEOIPO439lzx3ugESSzDiHZQeqHUAtnQuzDPCSMoTn9UjFNJ4RgD34UtF5K/MCyYo+OYt6r5bSHS2tCupY+I6axbRezQoOHWyXUQ/SDNJ6K19LqoDAvD5XRHa4a17IioxKwbzQOJMbLvO4xXOzhy0C0FaYPkLFPy7KURJ8Oz8IQrD9RcFY0snRDSAYwQai2YoGNzKwZnHEhljgnnAwHNhxsi1NIQBlOMTGmmLAtTTNydhMfbjeuLV7g8eco8zwRv8c6x7FdePH/g2d3Ey0+f8Ju+/jdhPPzvvv0PcXv9Uvtur3eFiDw7XfjGT/kifvHP+nmUImy1cds71z1zzZnHnHmxVq61spaMmAFGO+ggDCuAhr5aY7ExKsmxC+kogIpVepYVYVvHIb/yOCfMZwNtwGHAT2HCG0sZeqEVhNYHDpUgm+DZc9PCqQ660XyscJroebDkTLIeO3uVQYqlm0bt4KwQQtSJnx84o946AO9htKKcUWnUfSdMidENMST1xoi65FpTGl0MM178ARNpiIActNN2hGinONHFMPZKdSvbY+IVb3nDWzzf/I2/nXme+Pa/8Ud4vD1/338RPgDXEI0Aqa0iUnl8uOl5IIZhLGIGuTYNZsaw7xU7R/WXYem9gbFY6yktI30Q3dEtP8i7UzqxswOO0zyxrCulZuZpZj5FSq88X26E4DHGcb7MtDR4x4sXtJIx9bjY2QshnvR9LCpR0gBpYbndsNaQ4oQxhla6ysNjJIVE70JIhor61bwFYzyIYdkUcuG9Bm7XViB3Lud7QoikNOON00lyNNxdVMqZc2YQwFhqraxbATEEb7FJ/5suqiRBDGmacAfefMhgPXLVTucJd/i+U0xMU0IQquUA/ShpjtoYQyWFk1fiZvBOc8984LY8YqwhBYcMwcyWOjwxOfZ1RXBY55hTolb1ntbSmC+Wcjxj6y02wF6LFrOi8JFlv+K8QYZRn1sMuBIot5UqYKyl1f7OiWkyDhct+1YRrOakzY4xKq1X6jY0zgFwIWiQsbFsPcPQ+8zsAm0IRqCJoXVD71YjTrqwNyEOg7Wvx9L8SNanf/xn8m992lfQhmPbMuve2FunDM1MM1YJw91CyZlaMtI1wHz0jBTNB+y26b3syMR0WNaiPtIYIzVXSisYF5TEPUVG1Ya/HFRwnbA1QkiUfdVmyBi4IxC+0WA4pjCRnp7IedEZlgxseLVh6bEC26jkmgl2EIaj1F2pj4AZQi8NM3tlK/RKCoHTeeY8TXgX6WOw5hUqek+1gy4q2XXOE0NkLZUmnW1dKbligyWdJtIUD8tO1sLOOs4uYqynjUGnMIai/MExnDCC4XY0QLxzLKUR9kiMQipqk3h/W68Xaj/E+sg3/3i+9Ru/lZ/9kZ9CfQe8eNG5rZm9FLatMGTQe2f0AdJ5eLiSrGfUxurVhBlCIJfC9bqwbjfwiZ4Lp/OFlKJ2Slujj0w/jKHOGC6nE2IG/ejeyAATPCY4sEq3q33gjNfpQ9lhKIwkxIgX0aBNcYzD55JCxFlDR1i3lWgdaYpEH49DbmfbGnUI217oop6765pVZmwspXcGsJcd8TMWz7IV1U2boIbtMWhNoR6tD+SAogQfkC4qpxmCjIKIZYoT1hr2phfx2+0Rg6UWJVeKDIxx9NYIXkfoparkNIXEPJ3wIVL6SpOm+SO9I6Jhrs55BEeug1ceHtiOXJJTOnFbV/Z9V3jKARGzDJbtyvN3BD7k6R3jxQl7PvMbv+43c/Ge3/3n/xB7214nQf5rLJ0W/asi7Y2nZ/zKz/0ifsVnfRlnf8eLh43bUrlujRfrzq0U1rKzlp0iAycDB0qrMwaMwRktyDEo0rg2TAXp4I1RqdMQrHPEqMHTY3Scc0rKunZCjFC16zmFAG1QayHvO97HfyVFbgLSkNJoVUNEp0kD241YggWbLDJU/myjp44Dwd0zIgHvLK1VpEN0jpYLIoZGw3ZB3f5CsgEG4A/il1issThjdCI4NHxeXKdsGy4Noj8mH9GpX9Yp3fKI7Wbkwn7bmVPi8e2OJ88S3/Blv5rzaebP/JU/yCsv3vZafTU+YJYIbF0DkPO+sWwLaT5RRPOMxBi6NbTDf4LRfD/HYFkWUkoEGxlS8c4ynKGUnRCVrjvaSgiO1gLWJ2JItGkwslKCjTHAgrOO4AISNMOv9c7ldOGmQQ4a0h4mWhXoFec8rTalvwm03jnNJ1JK5H2n10FzhpF30pQUbW+EfMtH1EtitMFed/XYDMvkJ87zGWME65TcC53lduP+dOHJ+QnO/avCS8QgpmGsJcSZgaWPzsPthdIhnWctK5NPhGli9E6wQYUnrXNKE97r1ME5LYqHNXQzjsw4jSQ4zSdK20nTrIREFw5feSJ5r+qP1olR8z1FBNdfvazq+8MYFHlvHefzmd46pVa8UeJdLQ3jhXNMxBhZl6IxIVG91yBYgnrRjMF4ryh1EZV8hQTSML0jRnOq1mVjdIVG5NaQbSi4iEred0KM6pOdJpYt659DCiCDnjPp6csYUQ/v9XpjignrPcbpZDUVx2W8StN8ff1w1huevJHP+emfx+RPPL92bnmnjqo2l5bJOaPuMX0nCIL3iVwXnLUwNBd3Cg5rI/u+YsTgnbDXwhCNlUlpAgNt7YzW9ZnKIMYENIwNBxAt4ExAaJShALWU1JcofbCtG/44C+WQ0EfvyLmQ5hOg50zZM5NNzOeTAm+MgBhtHDh3TNos0UQYVqfIaSJ4BbgxGqYLpolSXc3AWYdYvZsZIwr4QsibhrhbZ0lJYyuG6L6zPnI+G4a+KJVB0Hbd906QXrFmQsag1qqE0xCJIuytsdfAXtWU9FPe+gn81I/8qfyX//0/YMj4wR7rj5r1eqH2g6wYIv/Gmz6Gn/1xnwLfC/tVFKnc4fG6sG6Zbd8wNPKeKXmjtp3701m/bBiQhm+Nh9uNh9uicI6+M4ZjQjGlhkF0lu6VSth7p9eO2PHO8Ns2tMMaUtSA7J4JbmIrDTMKjMH5dFZDKIJxip43YrhtLxADcQSi94R55nSe8VanBduWmaeIEcOaM31YpnQGa7huK9Z4Wq9Y0UNEpRqQS+PJZSLFC3VfaTUz0NDf4BylD/oQci0M6ZxOJ5KfaaVoJ3V0kouUI09EgGmauAw1se97Y1928DBPF3yIUCEmr2CHAW0MWlUpSZNdpZHDqhTsNFNKJbiAt4lpnmnSWW7rO/0VMXgcGqK9rQtlNOYpEuMTUgis+8YrD488fXHilAy8NPPLv/TX8NH/5ifxN//Od/Bn/8F3YLAM0ayk19cPb70qHXnT5Snf9Lm/lK/5zM/nFE7crjsPS+a6V25lsObBuleNcLCOeGjPZVsZCDK6ypUE+tZxXjv4yMAN0U51ALwQKuTWqU0QGdjxqkF/MNqgdMEPzVLLOSO1M4ZgcPRhmL2DNthrQV4dOpSOc+of8jYitR8QG6cdVKth2uP4NWqrB0E/MKUJGzy57xpOCpRcNf/pFEEcKQWM9XqREhitYa2SwLz1dBo0g3FKvzMxErx21LctkyaLc54hHW9UCjpqp/idLUw6lbSRN33IU37+p/5C/sE//vuvF2rvgSUG1rwrWGPZyDlTh8oXZQija+BwDBYrltJ2SoVr10vLmlcMG94Hoo84l+gjc5dO+qxR+uAQsEDJjVY7U5wx1nN9eGR04TzP1NaordNFWNaVkLxmpwnaBJTOtmWsCJdLJKaZXAvLcuN8PnFKkypAZgWFIArgERR1343GDTjnGE1jMUrRxuEY2pwzYgjOI90gfWCMZq/VnOnxRAqWkts7C6whkFyAFIhxZt2zTrMMGHnAWctpvpBbYS0dK4osH2bgsMSUtPBxnhgDNmjxY32gdzAMxApxPim0pxSCs4AjpUk9hXvDR8+T+2dspXA+n3nx4pEy4HGs5N6wRrDBHLE5YILltuyEcA/icVYJn6VWzKiIDG00GkOtK+u6Y08OMORS2Vql9EFME+uulGcrB6yodEQ01iPFGawWYLVWIGs2qnNYY4+mkb4vct2ZzEkjc8bgyXGJve07dd+Ztptmo46Ed+BD57zC6/Gh//P1fZuMAHOc+d3f+O/yeZ/0eZRq1XN1EEbraBQauVZ6VV/XeZowvbPnDeeG7o0QkNxV+i6NOU0YA8u6UYrKG0NQ24q3GvfQR9OAdGsZsiFjECQwZFB7UZ9XU2R/irN+R0UbJeGiE3IzhuL9nRZmczoTYtICqqPnmNFJmzMwpRPRevK+ISI83l4wv/QSuWXS0eBsvauKrDeqsbSt0KtOhzW/EOoo6PB+8PD4gpDOpGlmz4XSO6fgWLeVLWfm+YTYQC2dNAX6ED1zncOIpdWCGZa83bDRaUPfgG9Fm7UuEZsj7okh8JM+/OP4uI/8eP7hd32nDljeD9brhdoPsEIIfOKH/TR+/2/8/cgLqI9C3aGPxm1defHwgjVn8lZAKiVvtKayh9035jroY+Ph+XOcdezl9v9j7+9jdVvX8y7sdz+fY4z3nXOtvfc5x3bt2CYfDsQBO58Q4hAcaJASlSKKiGhRQ0MrKNDSPxIh4dBSI0QSpahQtZFQKQgJQROkNmopUtWqn0qjViUlbQVFSkqABmyfc/Zac77vO8bzefePe6x1HGKSuFQ+59j72Zpa66y9zl5zzfmM8Tz3fV/X70JFkRBO82en7DvpElCB0ixvInqhO8vBmGf3oh6THC+0pIzeqd3w//V4IYdICEJOBkdYgnm5nA+MdqPUV5wXeptITHDmq9hDmfn8diCi3O87iCJhIV83RNT8dyJMJtv1mVErCjxfn0Enya+E4JnTgCFKoDeTncj58Nd2mOxldJxz9FEZvZ2AEws7VDptTEqrhs3fEvvDupTPnzxxlHb++hOjVY6yM9VkHxMhuUwdO/v+QFzAizd8sXgcBnuprlK0EGNiP3Z6aeZjEyssl5w4WofRqdVebuVoPMbg/cuN+31nuTlc8sTlib/hl/0of/X3/Fr+gb/jH4IocBt879/1l33T9uu34/rS5Zn/2t/0O/idP/o3s8mVxzlFe783bsfk0Sb7EJparpSXabl6IaLr4PZ6R70jSmQOB12JIdLulXpYKKh46LXifUAmBAxtrsiZzTtJ0WRWOiEsNq2+7wXfJi45/BJRPF48mhwx2IGLV+QizDnopaFiuTilDNR1lpyYLvNodgn2XlmWhSUlkrPnFa8kHLJlFLhJpU3FDUdItsdz8PTDZNMCrJugokSJLCnRjsGsFZctB6eUgpaDIyRSO7heLmzrhTZgObvmOia3d+8MSiCf4lLis7e/hL/xR/52/vS/9//i3csXxdp/kmWB0tD6oPVBncooD4tMUSsSntcrXT2MicqgjAPnk4UVT8X7gZuO5BcakzdvF7QXSq2oNkrrOJfR1mhq0zDnTpIt86TlGun3fuyoOvBQykEIasWDesporHlFtXMcr1zWK2vMxMtguEkIgnNCUM9LeXC7PxA5zxyx3KLsvTUUqYy9IyiX7cLokeQj6tSQ+QpOsn2NhmOKp2pFD7isz8DERXBnwbQfRkqM4nm+PjPHZPWJR6uklLg/HrR6ggaCNd2m2CVW5wdwVTxlXQIy6OMghkxpjWtcQMFJwEkkRMETqHpmkKaIAzQpzIT71PPVr39uShn1PL/5lNqa/f3moM3Jti1kt5hEH0W8NYZKN+6dDGtItjHJWZjTWZMoekrbuT/uiE94HwzcJUIbDZmnJBYrZlEx5QCTOY0WHcNC7YW8ZJy3DLUYE34KIgHxyjEaOEdn4sXzqBUdjcCVFIQcVo67TeC+WH/xFWPmr/2rfgvqVt4/Ku9vB8fRqK1zVCNH2x1pMOs8p7DT9oFbrVheN5SKR2l9MNukz4PSOuIC0xXqGPTDmtKqE5yyXC5wRmK0Yj77wfh490qyECThVdHeUTxHbVzW7ePnbx5VjwsesM8zhsyYgxkM21/noM2BUxitkkJmtMG6JUafSHa8HK+gmTfxDa1MWr8TfGBNmT4rIh4fM2Ue1KPTVbHd6zgOKzrLbAQfaKNztMbocL83GjfCOWkPKdFmpz+UfFmYiiGgk53d9XCkK7Q+uR32/ARvNFc8LAV+z9/6D/Fv/Kn/G3/s3/rj2IjgW3t9Uaj9DCvHzG/8Jb+Bf/b3/3N8Nj5j/IRyfw/vb5X7o/D+/edGUOyDORv1aJRZ8VNBJ5+//5wxOtfLwtEro5VTTpUIXuinX2x08zBMBzkm0uLpfmERj58DkUDpjTELj0fh6ZMnVKG3gU5lu2wwjYaV12Q+mHPAPqd10qZOLvEJlz3LuhJCPD1ejve3mx2462Kkr2bYZ/tHTfcfInkJiDpeamVLGcRztINtjQwZjD5NyjgGGEfvDPD15PP3y4C5NxCbgvTajATpHCEI71/eI3Tut4NHrafJ2pNCRpKndwsbNYmHkfza6AiJl/JinVaEPu7gElqtS+l8pN8fNDqyd0JoiIO4pJPyeDCGBaUu60pYEskHxmjsx84Sr7zed+73g/V94EICLSCT63LhGq52QYlfeNb+UpaqMsbgkhZ+52/6bfyuv+FvYQkXHofyeMDrY/D+Xnh5DN7tB69lcozBMcYJ6eikkHFY5pSgSDNa1ZI8bS8oik/A1NPfaEZsFJKLHK0abEQV3MS7hAuBiZn0cwy02S3LTybOY507VcpstDFJ3p+X1UBXMRnSo9mkQQezOkjC0Abq6TQjSXpHyBknjv3l1eSLHtKyWohuqqhLNv0oh5Fej4NRO/XRWLZIr91y1pyF2jvvieuC945OM3Kqy/asiTDapIXDwoe9ZTZONX9S753jsfP5V+1Z+dt/++/kKK/8M//SP/4FXOQ/wZpTqX3QZucYD/MnPcyf0XqDAe/2F0IR3lyuuDE4ymAJgW3LiD//Q6PxaHdciMSwoM7BOHi93WllkoLifTBfktj0ZX+5s99fmDrR4Hi9fc5xr3S1zLPLs/m8YoyMNtieFz57/pSvfv2rtGpRJ+u6EvzCvd6prRh+XxUfIiknmk5Kr8QlWcPNKeIGnkC6RFZZERJTlbJXQna0Xog+G3xAPUHMVzX7wnLdmAIe4ZI2lnXFh8DzNTJEkaHstbKt2XLCauXzz98Rguf5emUoOAzV/2FaX8tBcpl9f3C5XNBzKrDmlVKLqVVEaLWy5syS48fcUj+NKqxtoKKECfdSaL0iAs/PF8awd0WplT6Vo1QL+Y3jDAKHFAJThX0vTJTZCuKcxRWo8n63Bumbp+ePU3oXEsEv3B4vdOnkZSXNzHQDukeHQ4J5ctuYrGvGiTLaZOggECiPA8ThE3i3MMbA+ciyRKYOxixkiYTombURnp4orVJ7ZOjK/BAS98X6C67nyxv+lf/Wv8Yn10/4+mvj85cHL+XgVir32ulD0K7IhLLvBE3UYfes5JVyHKzrapTVYbEK85yaoiCuM3tnCSd9u08E8DFx3N8jM5Av21mQw+wNUIO3+UjtB9t6IQTwEphN8c7DgL0d9DFYxyCGQAoZMGid9IrgcC4y+DBNW2mtnNm1ZjHI+cKcwuO4c92uIOZbvY0Xem9c1wtHbWcD8wGHp47Ku69/TtoyrTvSstKB/XEz4FK0d435PT1tFrxThhO29EwvhVIPlqfns7E1qNrYz6J4u7ylPAphy4gqRRrVT+5HN89vFT755DP+Zz/+r/Lr/oFfzZ/6yX/nm7mF/pLWF4Xaf2Rt/spf9wO/id//u38fn/El9J1y3C288OV2t033wSjeGpbUIAQirRuxabss1N5499rMfI1D2qBpZU7P2+cnWq30ozC7FXFy5kE54LptHHUyseDQcnSWaB2y3jrBm8TCUt4trHo0ZWgjB89Ux5yDdd3Y1tW6OWLSLAHabOzHndEmb58ulvcyB+Ita63ud4Iz8/eYneFWmBBVEZ2oGGxDUW4vNxu5B4OCbOuVMTv1eBAcuOBxIfJ0WSywWwatTkZv9P5gTGfoWR089p29VvbHzhC1XB8dNuIODmXw8vKOWmyyZzk9nMjqRsyJIEYaM3+Qef98jGS/WjB4WlFvcJLH/mACPsDqMqRkwcEI9eg8QmO0d7y9Xnkcnc/f3c0LNQfeTfRe8TEw1DKtvlh/aUuArzy95Ye+/wd4Wp74/P1kL4P3t8q718L9mLzfOy/75FYO3t9vvN7vFlYujiaVdVuoClNNCx/bxIWF5SK4CUcpFO3ELaFOub/e6MO+X1tMdgie9EU9yan9aHjviOvCJVvHsR+N9683/Gpd/jHGGcZ5/k2cENWhCilFymwwJ25JqCiDcQZonxImZ940nGXXIEqYjtEqXSxkt8xxHpLOMq2mkJcNFxo5LPhsr20nYmG1wSF4ZHTDkYeIOLtsBjw6G9oDEoE58GKxCDF43PSMY9Kk8vq557J4/upf+SP80c++hz/zZ//tb8r++Pmy5uzs+4M5laMVC3Kdk4GdHVqVbX1C73feXja8TF72O02V65o5jleOx85le0L6sOaeDm63g+AycfP0AT54Rm9MY+EwdZBzoiPUYRS1kIXgEzqt4TCnmrRNJ4/a8C/v2JYFmQfiJ4NGSpkxOn0OSu/M4XAhsG0X7mVHEfZSWDZhzEk8ReR5XQBwLHStVqiJSRCNoAjrcsE5CNHxdLkyZbA4w/hPncQQ2LYNvEMHOKfk3ZOSJy+B17tQy2JBumGl1E7rB7UfvLy+A3GEYLEZrjuCKHiPT54+FILgfTqliJGUV/CO3hq1vCPGBdVh8kHn6adf77FbAZRjZtkCt/1gjI44z3W7fAyv7nPYdHNaqL3I5LpsjJw5SqV0g3fZRHLQ5+B2f1BGJSwBHwN5Lox2WGPosjCmgtuhVywlXVlSQjtMN2m9f4S5iA7u94I7pWLik3kRz/w+UHQoUZUtR0IMbIvl1jGtiaNfTNT+ouuf+d3/Ir/ql/9V3Hbl9V54PA6OvfOojdIrOsSAc2r+6H3fERy17mY9UQt/nn2aR740VAbiBkhARyAEx9GOk+hoHi3qYAmZSmP2A0dAdXzci3PYPTXmhPaJTysyYYyKNqU38y6GcxIO1thYlpUcMzkuHPtOLQ8DX4XM0QtK57Jc8T5w3G+g86QdR26PVw4t9OuV7KJZeIblLQrK7fXOFEfaFvyy8vnrC9fnZ7Q3Ys48PV0QHyi7ZR6G6VCntEdjr51l27g/HrjgICT2+0HONlGbOqm9Etf1BM09qD7jyHSntFFpPXJ7KMlHliLk58gP/9Jfw5/56r/3kcT6rbq+KNR+2tr8ld/8g389/8jv+jF+8fMvRr8K9QVe3ncepfDY79RmZuGjdvbHA+8cXQetHzz2YkGizuSAvQ9kNnwQwukTiS5bZyM0Zoys2SAES44wwDNAPDkFbo+dOToxgg9CnfPEHRsdSDCPzVEaS15x/sTrjkmOnsuy0ftgr2d6+yw4b7KTfS9cLxsahDoHx1GYw3TE1+vVPl8G/izclmXjszef2gsD4bJcURG8P31ujwfbshF9ZF0jDxHqfgcfSSmyrJkodvltrXIcO0epvNzvlOMOqqxpofVOigH1njY6tQ2CV7pW9mKSgqHjNJ0D2YJFnUssy4oXTpDJOI3dlctlBXUonhQ8Xc3T46XQWyOlDe3NcmhMPEPdKy/zxpt1YS+N1/uD1hxDB0tIpDWhbdLud1SEvH7xKP2lLFXr6P2Wv/zX8lt/6DdyPDr3vfHyOvjJdwe3R+XROsewyw5OiWsmtm7yWlWCD8SQcDgYnXXJ5OgZbSDeoAky9QykBbxHnp+p+4F+8JKoSXp7NX8N0zw3rRbKayA/G67cBUjZ/j9zANNyZsAUJ30MxpzmH03m5QGbZtU+QSchAmI5N3UOnE/Uo5sFpCtNC1MDOgd+JJoOxGXWuJAE+vl8CkKfDW2TJVv+oZsRmxwrvQsTxXVwfjJbZUggLpHgPBHzZKo2nEJ0q3XUx+B47IhzvOSFH/zeX81v/5G/gz/0R378PzYv6Iv1F1+9V3qzKUwfnVt5MPsg5cAE2pyEXvHBc9t3rnlhTuV+3BGvtKrgvEnreqOWO21OomDB0EzGaEzn8V7pc9KaQ3AmudNB781UG2o5nCF7cCZL760YiKpWytmsSHGhz87oDULgenk2YlsdnAkWpHVDHZRSzfekHnGK8xEYjN4ZfRKjUMcAsctRSt7Q/JhvNMVstFOF5AKXy4XgAsuaTPkBpCDm6XRiwfMexMP1kqltNXWJRKITXm+HSatSoNaBc86eS58JCiEk+jA4QUo2FSi7SbJUJ0cblP1GdoLOCjEw2yQlR62VUjsxr0Sxd1NrhVqLEeh6I6/WAHq97zYldY7jOOhzAs6aJgpzdProLGs2eeOcFokzG30oIQTLrPLQyoSuOBn2blFPvVujMaeEO7OmWjF5t4/ezr7WUGksccH8g+7DnIXoM4LSZYBP4KC1Tk+eqUKfUMe0qdoX6+P6mbD8l2WzidI+KXunlMZeGrVUSmn00tF2ZswellcXvTDHoDRTIN1f7gQXEYTpPDEG+hDm6MBgGsUNh7OoFVVwlUCwc2xMfDATSYwbY9rkyLnAnJ0+O/ttJyZvH2G1+2Q9zkmrt6w2FTze6LLtYKhFJ3Wdtl8mFhMTHOuWQBfEwZye1owAGZJBe/ZZWdbNlFFqcm9CYHbl8SiIt0bJHFBqodcdFzz7sTOnox2G5xdvBMu4RaoWehvM6nHqCCFSSzH/n9jepna0F3xIlONBDMKcwlEqr87xfFl4FCXeIj44/nt///+A/93//X/DV1+//nO/oX4W64vb5bkWt/EjP/Aj/Df/7t/Lr/yeH4Q79B3uN+X1sfPu5YX3tzutNWrvxBBo0VLbu3ZUzqnKtK6GF+j1sDwYvxjJ0Zvs4Gg7rVS2tJBTMuS+KCF5vvTZd9Jq5bYXyIHw/IYik/e3Gw4hOoc6iD4wRsF5qG0QgxHsfIjM3kkxkVMkek/wwl4q4h0ikw8sp1onUBEfaH3iXTD08ahc1pUQHL1XRCfXp40tLaQez/wpx5iCeMiXC4+HgVBgksLCmy8/8XjJjNnpvbEGR47rme0UmKPyta+/w4nwE+8+p9TCZduYZ+7OXo0cmZbMGJPHYZcdFxwMd9KLMM2+x8yw03xDfTZyznRx+OiILoIEpkCKHjegzsKSIilnWlWaeIaYyd0kMUqbnX1U3r2+4JyyROG+P/Pp8xOLAq5T6g54tpm+WVv322rNOfkV3/V9/Od+/W9hi0+8PCq1De5H47ZXXkthr5OXo/AYDQmO3g0ck/JiFLuYmMOaD87ZhFO7Mo8ODiNDKQQxhG/rk+W6kELgfr8DjnXb2PcD5zvew2ydWg+SM89Q2QsxBxTlcvkQQD0+Flg6bFI+5rAJ79TTh+DO+AxretTamGOS12CTijGpw3KqBtUCsoE+ldY8YdjnH3LFDU+MGe2e4CcSHMfxYPTKmiJOBREjqo7eAYdMD94+P+fFfAnDI1PQ0ZnTo97AD6gyjspwHhWlh8DjNTCeIl9+852cJKNv2l75dl6qShsNHwM0x6MdPI6HXZgHjDkZveIdBFns+9Z32wu92TvMBeYYgHmnSqmgSnWedPrRWquUcuC95frFMGht5zgqU5VbLVYoODWv5nBctifrvPtB8okcErVVlpS5LNliT8Saizku1GF+OD29Na2dKP4YEemoToLPRhcUD9MRomfooLfGdsmE4PDirPg5MdxFGiE6lpiILhJCZEkbKVleZkweEUU7uEXgwkfAhRN48+bCqPZ8Byc4Nu77jTfXZ3of9KHcjgc5JnJa8AFutwcuRi55RZzQj8L9cWcqpLQg3tFUiQIDMUrnFPs+1kpeEs7Bfj94HAflqKRl+Th9EmdTCjmJiSEEcs7sR7Gvx2xMZ8Vsqx9y6oTezcckIrTa6WNS+473BiSyz7WZQkQ9eG9kyTIsTy1lUvb4YB7FWudZrMuZ0fiBMmnPdB/9VKVM2oDXx24S7CA0TZSmX1jUfob100Ei/9kf+dv4RV/+PkqD0gq1NUof9NHorVkQ/BgMHUYJr+ZBY5g4sbcOY1px7hUfEn3slFGsSBuDOZTpp8U44YwwDnQdLMkoqe2o55XF44KAd6csf6E+9pMAC6VWyImcnMknvT/VIfZPzIHtcuFxuzFmJ6eFOYW270w/YSpTp0l8g9lRvnr/nMtywa8XYjZFiZRgfEvFnv8UjNyqjaNXywIcjWV94uidR31QxmQMZdsu3I5XOONRtSnLtrL3gYhFWDgsp5TZebndzkiBiBMMXOc9l2gwltYtumrqRgiB+34QfCLugZQgLt+MXfSzX18UakCSlV//vb+ef/L3/EG+77Pvg1eggDaYHfajsj8OWi08SsH7AAKl7ow5cKh15SiofMOaKBNDrzqDgthD13kckyUYrjfGiE6jdb19c+UrX/kOjvrgaz/xk+y5cD8q9zJ4hHp24gZrzHjv2dYrOivdWeF0Pv74KDgXCDFStBDSQpzK0/MzpRZmV277znSNLMvHhxXg+nTl7Zs3LDFa8KZ3+OAIzsOsRCeIj5ZjkwNrTjjnWHPi8/efg5+8fXoiLYnsAFUeD8vyWXLGR29egvWK6vmwv/ucGIUxOz5EXAjQK300wlxQwOPRGIlpxU/Fe+telqMgMgxZHswb4hC7uApEZ1khE6FP8xbV9sqoRlfz0TNQwx7vDxBD+fu8EpzDZ8+tFMpPHnz69g3bCnvt7C9fsz/TeZYtEkL+puzdb8f1g9/1/fzGv/KvoR1iwfEF3h+dR6vc9sGjdV73g30OxMHt5U5rhRAi00XG6NRaCc6xbOsJuVFkKpN5Eu4cBI/PkdEb7WjWTYyBPu0iLF6MEDrBA9flghOhY4XPLA+mDi5Pb2wijcF19FSN9V4sA0oxgMHo9IahgmMkJkerhaaKd1diDuCsK1q10rXZ1DolZDp6V3JK5LhS685RzfcqIZPWbIG13rLjlrzgg6PXZihk55mIESK9x0eDn0Tn8WJkrICjYrQ8J/7MHVSC9ybf7QJV2F/h1/zlv4lf8d2/iv/nv/9//WZvl2/bJSKoOvq0S4viEe947BVlEFD2WyFchDY7j4l5sOZkrwfqs8ns54OndGFZr4zxIS+wmby3d5Yg3I/GkgJ9DpPp6cCHCE2toAJ8cOS00pr5GFUnKUeC9xyPwn1XluCM3lgLft2Mqnq+T9tUk87XneAT3g+D+Ezzx42p5MXIbz4ExlTauLPljdEGw6kVHqPRe4B5J8UrKScu69X8q61SFJY147wiNhSDDNjADipIFqLzxM3j7+2cZDvuu7DmC3MRHvsdd0x6O4iXZ6Za84KpeBI6GmteuD92Zu/MYOAGESFvK8e+08WonFOFEE5v2QQVT+uNmBe891zSSk4R8Cxqk7OjNxjKUTtDla++f8eyRkotpLCgeNqogDv90opLFl8zWreGrwuAoz06TryRXr2Bubw42qimKHh6QmXANKl17520ZMqu4DmR8CCiPLSTokd1cNQBmiHY+6c1KFXNW/VNeWq+fdZv+dV/I9/z5a/wtRc4jsJRO20YwMc5m/rUOQ2k5k3+nv1GawfBZ1yAKQMW4VErcQzG7DBgjMno3QqiWYkSmF4pvZikMVoT0YmwLBfqURFVlMn0przyHLTRbBLtBD8d7lQcqU5KKTgRnAY8kKIYtOo48BjK3kclBM++32EKIWVab7QW2I8HvRaSi7yOyZu3bxDxZ46h8nq/k2NGxSJkJoLEdE57HaoGNnl5fTAUCI5x3NguK6XbFDLlDApt7MzpmXMnLwvilT4UE1IL3hsFuQ6ourNxscky3ZgN28JRDhyZ5GFNiVodlyXzT/7d/xR/3x/6e76ls3F/QRdqUTJfefpOvv/pL+Nf+H3/PJ8tn8EDOKC/Qj2UehSO++2jZGsJgTkn9/srox/WOZ3m90AnnoHHLn7L00bA0brJ/Fp7EH3i+e2GxA+yjEjOC1/50md8cr3ir4nrCCzec9wfvHt95fP7wb4fCIXWrGh883TFO3sAnVqHUxWcTIJ6YgBQeym4iPeRx32njkppgz4781DuAimu5HVlWTeiCyTv7e/rHQue6/NneOe43W5WEE5DfF8uK97bBVWnGjrWOwv4XTxLuEKf5OiQywbZI3WitZ7fgYYTyCnRx+Dl8SCkxJc++ZTxVQtfTc4zRWnRIcMjiHnnutG8lvyhJaLM0Vhy+iixrL3SW8c7eLNdqaOw7ztBJiEv4OBRKuoG0VlHqTweiPcs24UhgmigMRAnHK3z/nG371tUruuKc0bwc190H/+iS9UOlhRW/IzcW+NROrfHMMLmMbjXThkWfskUupg3Z6pS62BZs03Q5iTEwOxGQhQnuBUDekx7iUfv2I+D0htxMfLbUQspBoIIA/Bi7Y0QApd0odXGUQuzD6YT+hi8v93Qat40xYhbLpp0Cm+EUe8DOUec69zugzAda7xwyZF2FFxy9L0w2kSDNQdMumyHfCDiXGB/NOIiPI5CmY20LizTGiml2f5OaQEUN2EJySRNTnBinXZBodvl0D8tpJQRNdluyp45OsEJHiFmo02K96iAb4158/zS7/xF/OZf95/+olD7/3UJJx5ePvqJ8mITsvqwOAbxQus7c7MMy340eqt86bNPQIZRROckLhdKrdx7Y0nL6Uk7fURDeajyfHmits7og16VdXtGBB69ms9RBT+hd5P39rpbNER5cJwFWBBHG0qKAVKnNIPrjDNeAjHPiBuY9PE4p8UpUmpjSd5yMnUypk0BPrlulDKos7HFTEyZUQMey/769Pkta96IIbLmwOiNJZgSZFqGPM6ybO2j8HHIK8l+Hq+BqcpRlOuSkeVKrZUeKl/69DPQgHOKdIcjUM5zO8WA9xe2vfIoB9IOUrqgThC3IG6iunO0QisHKUXaYT9ODPpRu2U2PV2vhJAYoxO7Msak1YY5Xzzr5hBvHqG9NlQ8yTkQ2NsgeGFKZ+KRHMnJM14boopMC0Aus+CmI4YFLzZN9yFxuV7Z9wdtKl4AP4kJ1jVR9s5Qa+j4kFmy0Fpl9sa2Xsk+4ELCxUhnUNpB7eZr/2L9hZcjMIbY10ptytN7Z0ybAtOVXq2pOMdApfPu8Y44BktcUBX2veJlMkfn0GHERSKjD8p4oHIGzcuwxkSKFjKtk/IopCXjp2O9XM26VnfKcSBeTJaMnbsiHhc9Y3ZEBkGF6IRlWcgh8elnb3Di+Ymf+AlElBQyfQ5yWNmeVvpoHMUyIPscTJ34rBzNnu0lR77+/pXP3r5lLw9ShP0ovO53vvMr34XYhRTBk+SZl9t7juNz6qimfArWxFKZHHUnptX8n1UZfdJKJ4VACol4qgeMQzAJIds02kWiCD545jw4aidIYFlXJoM6KnPvBLexLpPoJ588O37lX/GDxBDt3fItun7BFmrJLfzq7/21/IHf80/ww7/4h+Ad8B70AHY4DqXVye1xPzvlxcIFx+D19mJhlwij2QutjcHTdTP/mPcfkcbCJPoFWYQlBnQoQYSn64YXoY+dLIH6uNFzwsuKBEd4+8R1jfRRjWwzlPf7g9p21MWPiNfBYGo3GVY1JLgPp++gPBB1hmpWofbG/Si0biGMOZ964/WJp+uVT9+8MSplM0rP03UliOfp6YlaKq0oMUZijCDTIgf8wratPB4HX/nyd5BDwF0zsgDVwxjI8wUWG7Mjnb6/GnlydJ6eNp5uFhuw12qXSkl4OLXa3QAQ24XeKy8vrzjvkRiZGG7WusWT4BPX7cISE3N06uFooRBDQGh4sctI9BcGQh8TL9VADzg+ub7l1d95lMLru3esyxvkms8ReqfVzsvrHZ2TL33yzOyT5RoIKQH9m7ORv43WnJNf94t+KT/2O/5+hgrv7gcvj86tNF5b49Yqj35w2w+mCEiklkFx84znhf04cKKIKo/bg6Gd6DxZrHBKfqF78zBWhVIHde70R8HXwFTwcaHORj0OljWjQyzbpTZKL0wHY5qURDQRYyZdsnkfWwN1eAfew+vrjTEqiw8s0WS6z09XUGfk1JBgMbPc6NMM3yhtDPMH4FmCt8m7Qm+Fozbe3V7wwX5N4yAvmTUtLEs0edxecAlyDgS1AHsnjhyjxX3USoqRoAGvWO6MOFITaquQIGQjV4rau8ohVuD1yTwcOT6T40Jpxzd763xbLp2TWgo6J5e88njsdISQI6XcmQjZJ479YFlX1HuOWtiPzuWamCK45Km9sN/Nr3z5jrc4N2liQbNOK+KVvRW8eMpRziD0YMCSgf2ozpQQw6iFeVno0y5BXuD5+YrDMYHSOikk7rdXm/ScBSNTGH0gyYNWA5d4C3J7uz5Te2FJidL7WUh46uiom5bfFCyse287ebnyvC5cLle2JeDdJMXMDJ6wRNJmcKZpyk/YsPNjOX8UoGHFWzdC45qvrGu0aXztoI4UE9u6Mebk3buv8cmbN6h/Sw4rY+w8bW94vd84SiH6laHKfr8ZuGUMjqPCGNZMZDL7wIWFieVXPT89mzxzTPb6oBzWhGy9E0Jmy5HoHWM0+jHQ4Hm6PNFHp7ZixXhXBrDmCxIss1GC0DyU0hHvyF4ILvLu/SvLooR8QfA4Osexs7fG1GlxOcXsGaFVUs6UU36n0oDEFEP5D8XepRiJVwiUMTlKYW/li2LtL7osaqHfG33AEGi10srBY9+53++8vL6gc+JjpFeltWJNDAmUR6GUhrpqYfSzE12kzYpLQp6ZxeWzQWh3PafgvCf7TAvmVTS6caFrxUskpgxOmdXiaY55sLqF1g62tLI/brx9emKRFbBQ6dd3N2JOvNmeaN0aPjkYMXXLV5wE1uxRB0JgzMkcwpunN8w+KfvO09s3PPYXxGEUcDEFy6NUej3oOtjWC3V2Hq2hHjyZp2eLb8J5fDIw0FTIccU5x6PuDBXEZ+oYzAaqYnEfYpyGy3Jhzs79vjNUWRaLjvJewUd2PdDsGSFyDHtHteF4vTmSj3zl7Xfw7vHyLevJ/gVZqCW38Gu+79fye/+ef5hf9Ut+GHagAnfQDqNBOQZf+/rnvD4sSFDn4Pb+PXut1HEw5+SybhQpqJoUQQVwgmpnDggkZnCMWfAusF0WBGWJixVVTwtf/uSZ7ITrdiG/vRqZzX0QIkYuTxfiImzbwn/w1a9zlMJtPwx3ehxGtfIB75yluDPp3eRYwmSUwtEn6+VKDJGcFBc8cQZCDIQQGLOd8BMzvK5L4rJtjNZoo9GbheUik5wjKVno9vWyIimYbn7dSGvG6YkeO0EfdLFD9SqwKzhHfHpmlkJ7PHi9P4gp45qSl4XSKoPOGMqYnZRWXAp2cY6wrqsFVQfzK7XaqO1ODCtrWHADnBtct40HytQEzuFDwDkLddyPAx8CWitRImU3UIVgPgWc5yDgc+JxHETvSM4xkkNVuKwXvEQzsjdhumIehi/WX3CJCG+3Z77zK99JeSnUNtjb5F4GRxPqcOxNOZoy5iTnAFOYXQ0gMwUvIF4ICNM5nHoL0VTwyUAJJkO2cM0eBqJXZp/o7Dgn9GFSyZACo5q8cp4k194HXY2mGlLEXzbzma4mDRLnSd7yo1qv4C2OAi+MZhPlHBO1KaUWPAFxjlYa0FnXxJyD0QUniekb7SSUOvF2WAHX60peMl68wYruhefPrsjA5FI6gWRSMBNkgevM2Wm1Ic6jwyY5Oho5RysGxyClxBaz+XZcwAeTDfeuODw64WjC7/jRv4M/8W/9H/jf/sl/7Zu1Zb59lyqj2vQK1CTyQXBd8A6brAJlPvjkE5sAtaMa+t5Z8yKoIzpHcIL4ySVvPMrd5OfOnw21Tjssh+1pe+ayXni933h5/+7E9js4IQSjNlywfeGiR+pu7hTn2Y9CDgtdDsAobzbxq4hEQow0nUQfPkJAWjAYQg6Z5CJrMhx/dJ7gvXlu+mCqsq2Bddlw4ggh8fbpLdF7owzCR5jP5boYAdkUTfgVS/Se58cHuG47fzTFI6pKXhOlmLLDe4e2TqkFJ5P7befolVl2Lk9X5jRp/O3xykC5XC+kvKJYBEgplcf9wewTVNn3ymULCI52EvWWnCwOAKh1fIw8CP6UPzp7N+UgjOhpl8ZPff1hiPwYeL3feBwHqoOnyyd4EdqoqA5uX78j3qIK+pwQFBmTS1opo9mEJgjqPBIi1EqrFSQQRFlzRmVSxw5iFgPZG/1oluMXDTBU5iSg+GgTlDEG4f5gje5b9tL6rbC+7zu+n+96+x30LtSulL0gw3yBbQxiWAixmdXinKKLmOohIpSy295Ng4C3wt7DqAfOCT7Asl6RPnE6qSdAqtZCiAknzkLRHzemQq0FHw2E9gGCBYM1rdzfv3JwmI/fmVR52Pa3xvjZ5NM2CClZRJNPlFa5xEypD/J6YckL4hyff/45QxtLviBMQoIQFkbv5JRIEplhIH5Qx+D9y+eUdpjPUgfORaZTSj142p7M96dq+bjN/GvRZYOCYUHvow1kNXBKZxJz4vF4xbvA0/UtvRlobg7lcn0Csfsw6hhDKf0FcW/ZvKN3jPyKMCZ8z5vv4x/9L/w4/+V/6ndx/xaVP/6Cu11Gyfzw9/wq/pH/6o/xm37oRz5KHbUC3fTntdoLqxwP9tcHbdYTdzq4bAuxmwywlYrMYYGY1oJH5mTMRg7mIws+wuJwLrAtKyKmjwX45M0Tby5PXNdMfF6RJ2/FzYeDKQRSeEusSnt/47JEni4Xy2yphZwcfYD2SWWaZOUDMjwElhgo7oBaTZqJ5aPFEFAxHX0dg9hNKvb6uJl0ZTpaHXgnFtjaGpfLleenjTk6TjLiTGKlbVBuD3AOuWQIAarprMkBPnxO4zT2YNlO+7Fz1MZjf1CmRQaMaQdQm+OjDCTkxYIeWyP6zLJALTteHNGc+IiLJO9ZciQ502HraGxLRpx5QkbruJTIKdHqMKlXnKQhFjqq2KHnIjFkUAvuVrXLuToLGUYdrZsEgJPA5FXYUvw538vfbsvAH47ZK48xKUPYh/LonUfrJglS8CExm03RvPeklNkPM9ubDFLI2wLiSAiMYQh6gcFkIqhYZpSISfycF2ofiHcGp9kPEo5liUZnVXf6ND1OIKQFnyJzmrejNUWHoBOKNnQKIXiTnvTAmjd0dGtqjI5MzPfSGyLuhA4EXNiYVfB+msekdsaYdFFyiqyrkbTyMJz5UEH3B+qmxVt4Q+8LAfGeNidDlSAe6cqcBQc4DSw+EAE/lezMT+nw5j9Qk404scJhNoWhuAgg0OGztyvf/12/GP7kN3PXfJsu+XApCZaPVBpdGlNMxsPpARl9cuwNj01WmI0j7FyuKyJiWV6zE2NiS0/s9W4XwbRyuV5o9UCjMp3ik0krRTwxBK6XN9TReByVMacVQAiIUurDABhDz4IMoLBthqmfAtv2zP3df2j+GJ3n51rwcWfJFxBPCoFwFn/KxMvKuiTERdRNYnNodGzbyvXyhJfIZVFyTKzryrYE1mTUROcNQihWW8IHyWPHGqn9/DUDnVqD9ZSc19IZapEtaGddAlMTr/dXDh7s5ZXbYUXQpFNjwgdHKQXvQEJEVamtUPdC3hJBDORhlOFJPSaTQWvmhb1uCZ2DEBM5e4t2OeVYiLd3ij8LHrVw6TdPzyiD0pspAKLHxUQ67wqK+ZSCO2l30eFJTDqzH7x5euLRCkOV3hrOuRNKI2zbRogB7Y3JpIyd2Ry481IeI8fxIPhACAs5Z/SUVY/eKRUWHylHZT/qF4XaX2D9Tb/2t/Mjf+Vfy6imQCq1WrE+QVRpOowUrCbl02k+LTexd4KfZ9SSZffJMEqp+GGe6qasy8p0g95sohucY4gwascvBr4JKdJn4+2bt0iAWhoqypyNEALeBdblCh68d+Yxq5MpcEkLY1RS2MxHJ554Fk1tdFKIxBQpL59T6wuiAx8XnBe8y5bb2Qw6knPksTdaG0wZtNpwAW7HnVo7PjiiS9z3gvPTQuxdpBwHVYRy8h9cTIhXRlCii6dXc9g7hW5/39HZD1N5BBcQBSQQPYx24FGOYsoxwdH1josWSzKwSIw2BqUPxgzUJmdh+627vsU/vf//riiZH/zKr+QP/p4/wK/6K34Ybhg05A7jAX5YZvP9mLQx8D7j/YE6x8RxuS6U0nBYMKfOgZwSFOag9dPk66MVZS4YnjuZdv2oB0Ecox38ou/+br705lObQKWIXCI8yTe+Ix+Aa80jX7diIOdIDIJo57Ks3I8d7yZtWLhqDBEVQ7zmy5V1SWxcmQNuLy8cfRB84KgVid6AAjFaNwWljWnY1laJPrAsER2dehwmqRqWGje1I31YyHRI+CXTa2GWAz8MmEDtVqhNDKZyCNx2MzDfHrx7/8J+7LSpPI5iumeUOg3j+vR8RYn0Odlvd1qpXK8XnBO2tBKcGrpZHc/5DUE8OXgzYPtASgkvkToKcQm0287t3hhqoNslZgRYF892FWoTJDqOPnjZb4RgxTVqXgvvPHMY/ry3yRxKvhh84rKubJdvE3zQN3F95+Uz/ta/9reiw3Ecg6NZCOXrvXE7iuHsxaHaQZqxwH1AhuGD26xMnZZFpsbK7xNGLzhRVIxeqskxZNJrY99vMDhz+KwUa/2g1mLTWu9xQw1O4gNNi8nBQiDGaJPyaeTJIB5xWDZWt4wanD3/bTT63sgh4kNExiBJpO4VPOToyT4g2MU4OIefctKwDKe85MT1crGLWo+kFCi9UxHmcDz2O8t6QcRZJpUKo1WyjwRvTRjmQFXosyJxwWEF4agNnwRxwpwOnZE5GrMKrUycj8SU8N7hx8B1Z/lMP41y9sX62S0JGIW2WAMKteZBtxwUFMVHU0RE5w0YMyazWXZQ3hYcQggrQYTeK0tYKOyWWNY6z9dnHsd+UuY6vXeWHPHeIBdHfeDgfJ+ZpJzZEHWoc4jYgdO1cYlPBo1S4WiNrh7vbMrkg0dGpbbCqJMYV0Kwi1Jwgnce75SUM8/Pb+jDgqJbq7Q2iWkheP+RSBxT4nrZ2HJg3TxzLMQsUEG9IulUYtjQzmAiE5ukfSjUItZkLXb5HaMxxkC9I7hITpnWOopNyYMP5Hwl5EAbjVE71+vVImyKUYX3+w1mI4aVcN1OyEc9u/7BPEgnsEgVjqOxqJ2j3ntUBlM8OgzsECRY+kebOO948/zEfuzUXkkhsKaNnBfwjuDCqQ5QwjO0YzKmZar1PmE61JlUtZwAJecmt9d6etysAVN7Z/bKxEh5Ofrz8m9y6HW7clme7K4SHbUVwDPr5JCCpExXGF8Uav+xK8aIC57H3Z7rMTpzVMYZA1GOQjkO8zrPs6GLMGk4nyxP0NtU/DgexOTIfjG6qk7zDjfzdH9oWBqt0+SDrRoRcsyJ+knrD54vb78xyR/wKHd6sOzRqBZnU0q1u6ua2oJpz2heElkCS47cH3dqL3TtHLXgQrApm0Bvh+2nqbR6nMTSQu/1nCArR+v0WZnHYIxphZ0PZ6SS3VXB5PgItD4obaLOgQpLvuBdxHvHUSttDuiVvESDrAyT6o5WOVRJeYFiVpkQPLU2A33BOZ232KUQok3zMDn4rQhbSaQdfvh7fw1/81/9t/BH/o9/mD6/9Wwsv2AKtRACv+KzX8H/8Pf/M/zAp78MXqxAY4dxwOOujG4v1P1+cByFvGSWI/HVd682RQG2deF+e1g/VDrRC+IUcY7gE3Mqo03Dh7pK3RXnHZfrRooLjMkY+xn+LHawOMzH8uGun7DvjIXMA4qIsq2rvcwlEENE/I4XT4iZRRVUiTGRUiStG+VoZOd5fr4QvOenvvaOo+xGK/QeREhnXs2Yk2VZ8AoxJC5PFy4pcigcdyuw1k+fAJDBN3wCOFLK9FL4/Gufs20b67bYtKlbMrAcB6NUe7i1cXt9oFMR75Ho8cPhukeHx/lJmZ3gEj4t3O53dKhJyxgEtZeG6qT1SoiBWht5C3QZOO/wwXx071/v1Fp5fv6UscDxuhOSR07/4KeffMZUjOQZIC4ZXwr7YZhs74XeLbjUwBCJdcms6YrHE53j6Xple3rCb19M1P5i67vffsJv+aHfgI7AoxZux+D1sXO779xudzqDqR7EIc4OJtF5UlUBHfhoxUZpDQ+MURit470wqsNlg89MUY5SGVNQLchw5LyRt8zt/Yt1C9dsxm+BkCLMicqk9EaYBd8CcUlGUQ2Gtx5t0npB1OF8RjSAg14qwiSde6TWigz5Rt9FE2GJaJvQBj4GLtsTb9466rFz7DvxNHvf7w8jeY3J/XYwTxqeushxVJ4/ebLpmBd6md+Qg51LLayJY7+zBIf4RD8Kq7dpmpuDWe+UXkjbFRBCzGRvHdiAI36A1X6LB4F+yy5V5lD6h0vLmRfmoifmhXCmebx52vBjUG8Hs3acTHwMp8fLDPlL7MQ1m0m+dj55ekbHSfTQyZoiX7u/klI2NLwowXmOVonOsS7RLvBtGokST0gfJLgDCSZVjN7TeyPFTIqRvRz4JTHqJISV1QfwwvuXV2otrOmKE8fjKKZoSGdh08/nccK2XHnt7+itU8V8wqKd7W1iibBtgZDOrqRi557wjaJsPX/tw8eDj+eiVoXdJkIhCOISX3//DnGWS1f7AUHo7WyqHYXl+sQchVm6fU1KI+WIq8roB/t+Y1sv9PINX6YRFiOX9cKtPij7QciOPibOBY6jsok7pW2Cd8LE26QOIy1KCjiXmWq5nzHaeZHPUG7xnlYMjODrTkgXWr0xe2PWiY6BnB65dmbvOR8JojQaR62GJyoNjY6psC5vcTJoYzDHYFkDOW9G/JSOEiit2fdyTTixaf1Qg0R8gef/Cy3L56q92wQL+2BOpCu9dMs3c46c7F7oVdhfD1xUWh/M0VE9iMERcdAtCN47WOPKmgPlaESnfCDrLDESHBTtuBFJPtEZjNl43N9Zpl6bDKc4H5hMVpdZlozOQRsHKnB1Gx6P8yujF8bjQNYL+30n+IBbHEfZDdHfJk48tbSP7412NESEZVtxPvJ43OmzWDEWzn3vPF6FZVnNj+08oxZavSMuMtUe9NHN5qIyz/ibwZqekcWKNecSvRZuL69m20mJUg5EPH46HrdXUky8f61cn5+p7WF5gH2YekEdhEk9LJLpqIp3k9g8r4/GEhNf/vJ38su/7wfw/yej9H6rrV8whdqXl6/wT//4f5cf+K5fhtwFfUB/B/srjKrUOrk/7hZUexzoFB71QZ+DtC2E0bm9vtLNQ81ljTATyMQ5w9WrKu0oiLPQyjlPx7MC2AhcgDUsSEjc9p3P3j6TtmxSD8UOpsxH2wkBK+JWj++ObVlMxmhNGtqYuNlNfhETKSWettUOL2/5SKV3Qgp89skbEJP5tTmJ0RD3KkrKkegiTifBB7sIBsd22dguK+RoRdcEZDB751EebHlliqO3wbJsLE9P4B3HyyuxmcwkRGE/KhI8x6Ec03F0LKDUO9BgWT2j83K7U0fHEfj0S5FtiwzdOEohqDMErcNeFqUTn6589vYTequswYKGBWU/7DCN6dk2gBjVMYTAvu+WMRfPi3prJhudQgyJTz/7Eu4lcNsfiMKog7BAiI41BZYlsa6ZT56fePt0JVwDcpWf6y39bbWcCGu8EN3KY588Xjv3R2EvnaN2Oh2dHnUTEYdz3kJ91fTvpRaT64riZBrFcCqtnchwCzej7bbX214JIRIvmf2BHaAqtEcDAm0U2kk/1GbeNT1nbtE5tE9K2al9J6WFFBPjmIypBJ/IOZ+XXsUp5BQRZ8/nkgPJWxyEshBCRKbjUQ6LoEiGM3fRiHmRK855ylGpxwsxR0JMPG4Ho09CCqQ3yfD8eHQ4XLSufcjZJHSiRBJeAjoqoDytGyFsoLavnY/n9yFTRzN4RLPwYWfpczisiRExf8x/8bf+Xfwbf+qP8yf/nS/0jz+bNebg5X5j3x907bTWCFvkdjsITkhLxjlIIX4MfW6zEFzAy0DcZL+/2mVfF7bF6G9jNKJcKdMIkc45+ti55kRKKyEnu9CPAY9GjpnL9cqYwsvL7URQT7SfahAHS86MXuh9Nw+LKjEu5u1oB8u2kuLGft/xrvJ8fYsLk1IPajHzfvcLIV5sytQqC54ULXPs5kwCWGdjDYn1eSF7k/1xZiWJAs/fiIlh8g1wyEl3JGBnowBV4dV+m3hwAcpdaQNmaxzHbtOtaZjv0Qp73UnDnoe8XoihE/CEGAne3v+XvLJdNh7HTimDZV1ZYmIJBl5YolHncoz0bpJS5wSwPDQrzIS8GAhpzmliY6csMbPXw6JzvMXaePUwDEIxUR77q+UyooQUeX28A2xieWqUCT5SRkdRhhPqNPgXbsL0eIWcNvISadWTguJjIqdASBlk4L2gsyEKTgchZFywTvHUSZs2nfti/bnLeyNPC469WJxDPZHPU5XSD14fO4/7zZRLYrEOvRRu9zs4xYVA3+/klEEHqu3MRNxZ3MI1P1nkyqh4gsVttM522ZhzUmtFpdjdUzOoSdjNkyzEKAR1uBgJKizrQgwwmkOdxTpdLlcDDY3dnDZTuD0ePF0uRC8cbZBi5qg7wZlPcqrJ84Vgnx+Yq6UfTO2s+ULtEwk28RVgrzt5W+il4YNaVEaMlpGm03J6faCOwZBmChFVlHdM2dCh+LSyBM+x7zgXaGOyLJHjteKvjlowG5IM+hGJMVHH4PK0mEIkQG/K+/sLac1ktdzC+14I3nFtkftdWCSTTm/et9r6BVGobf7KX/V9P8Sn66fIXYzuuEPZTztVx2iI1TpVPgTu951y7JYvpMPCDIttFCeB6Dd88kTvkNPLVesB3pGCkJ3g44WLAQ0t+V0ciGVgiE7GHDTtZO++YZYufNTdfwQJRtBgh+m2Lrx5+4Z3twPrw3SOVrmESMoJ0RNbPhtzdlLOCMKWNnJQ8IlSO+Icez1MZhECOSau62KKEu+NahkMxIFiYaND0fsEbZYmvw/kyeQ065tnxrDxdaudRynovpNyYOwWalx75/XeabPSajEaVelM0ZMiNOndgkYBytGJwfG0XRinf8k5YY7Kum7IImzblZgMCVZHxyOWUu+MgOakE0OiTSUEk6e8eX4ir08gHh8dF6d8/fN3+JQY4on+NLuHhd4KS17Ytg0vnjZg9MHb64XrZcW/zciz46e+9md/Lrf0t9363rdf5r/+n/k7+fTylq+9mxxDqVPR0/8HwnATPWEDZXQexx1ksKQLLiRonV4L6gIpYzmEzlFrNRhDtViIXrplpDnBZyHNSCuWQeiC4JPwnK54nIXAZstmG7VaKL0ziuI4LO9KpsmmQvKE6Ugu0FrFiaPtFZcN5hOSJ0d37lVLePHek+JKr5UYhMuyWVMGkBjND1APyuMBCjI8ThJBIGXHUSdBIikuxCUz2qSXB16VNW/WNe0fXhSKyPzYqPGY5ClEO3x89eTFU7oBBiyT18Jvj0NwLhJ9JDnwoiQnfN93f5lf+t2//ItC7We5VC3EXBz0vXP0wni3W76SXwyFfxy8VAurzimiB+hUWuu02IlB6K2i0yRFs3fWZaVNu9ipdkRMSiji2PKCOqwB1Sb7/jWc2H5q0shLBJ94POzzuGxP5JxxU1Da6aVSvPe0WsnJJnFK5NiPj4HJUxopLywu0nqzGsolAkrtlcfxyqdv3+Ij7LXytD2zbdspa7Kmx7Zt5CUZlQ2QD97sD8XYwTfk/6ZyNk9aw/xq513KRetYtqIcx0Eru1VtYhPwqUpphT4sDqfUSnCeGBNCxkd43HYej4flgV6eyDFylMq2BByKE+Vy3eitWuEaAk+XldYz98dhVD+RcwqqLOuF2mx6eIzKXop5fdTRzny0HBJjWEPKTZOPjdYIYtlbnQItEE9Jo/fQq6I+sGwJSqNPCx/33puc9gQSmQxVmLUjWIMqhkh0p39chCyCCwtNO72Zj65WizrJMdJKZX4xTf9zluUiKr/hV/xG/sG/7b+BJ7HXHTcER6K3h6my5rSYBu/wLvJ4fWVUa8ZclycLrp9QisXAjNp4ul6QYY1C1UGruzVxzmegdZP1xpRwCptbmAq3h2WWLWHhaIedOc5sG64PQkiIMwrpti5s2Cj/8bjjxCMqpLzhpoGP3JmHuCwLj/udJa4w1e6/x0EMkTfPb3jUz9EJMZ6k87RYjNJ4EN1CcNaYERFaMUKqCPjgSTnTS2Nvu8VAiSf5QG+KX8Bj2YG3x904D1rJy8L0WLNSjXosbiI43jwv1GPQRiMEAxQll4zCrMNy7fAkpxyvr2g2S4Dz5719DNoQ/ku/7R/gT/y7f5J/5X//hxnfYnv/532htvkrP/orf5R/5O/9Mb7/+v3oe/OjfZShOogJLmRqVOZUbq+v3PZXXl/fEYOj6eBxv9PagfeR6C2LBBJ9TOaoRGemUEt7t4yvNhuv953RB2/ePrEtF1I0JPbRBnE/iMlwqlntsDWSAfbhsYMpCZI8PgU4hNYacwg4R6mdNhotVVSmkRhF6bXRd4OIODwjKikllhPJ3FvnzfMTvXXaUSj3nV0db5+f+dJnb3Cr+0Z2TeVj0CijMephmz8F8+9op3UjXdZ3d1xwDMwndOwHtR7ohHe3O4/9MGO62rh79ElthTaGAUqcI4gZRuc0opbD8ebpidIqa07UPXHZLmd2lFAeO2N2craX0OxGsNtLx/l5Bsc6alOe1wvI5OX2oPVhcrSJdTijhc1y+no+fXqLnlMSp4oweNoWvvzpG7782Sdc3mbkjePf/6k/ze//F/6xn9uN/W22rsvGd3zluwkhUdudvcMxoKG41SHdOtSWU2Z+RQ3WBCkMuk5aswtqSBF0MrvBO2pv9N4J2eElkDZhOjtY+1FIaeF4vGOvnW1dcXKefkFwZ2h0G5UyO04tMw/F/GQCoyi77ka3S9Gmb7PinSOui02aRUhOub/eieIYTYkp4GLEBysw/TC4xLpYrotqOsNPPR4Par6lXhtuFZaUGNsFcYZ09zHBMOR2SpHg1YDq3qFMWjsMub0sbP7Cuq7gbEoWPKCDMSdRogGFGHRtuOlo0wJQU3TAggvujBIVo0V+sX5WSwEnjhgSuxSbhvWOzx7nYfSGDpPRhrQxB6QcGb0iCq10dMKcncsq1GlZj6MWYrwyp7JtF4K3C/pRK8U5vIdSdqLLHwPg5Wx9Lcky9eY40fHL1byOc/C4NcNdu0lQaK0iZEQ8+/HAhivCmJ777T1zTNY3b1niaq/ME1IyhzX+hsLLfSevC1vakBDZ0oJ2Q4p752xPxvO8+0B3zOcXMPCNzDSPFWqVb6hMhhV2sxutuNXBcTxA3En39TyOB1W7SQJlsiwXwIAhIo7ohddbobUdRGF6WusW5yLOMpuCebhv91eSj8RgftDWuoVgezGPYfD25zrH7APViSJs68r+MCBX7wY3cs7k+YnI7bbD7MRo48OpgXXJvNzfU6XzFC/cj8Jx1DMPalJapdRm/juvrNvGvoNLjiUZNdMun4U+jNTZqrKmaMHHzlFKJwSMsjyF19dXtu2tXaan4KaFe3+x/vwVQ2JJF0YTtAujdUymb56rvKw8TSO97o87Q5t5mYEQPcduzenZJqK29cbsFjskNo1HhxVu4hAvJMl4Z3mBTi3svbSKDFNGDR12romcJFdlyeapbG1yyRe888ZVAHQKpRdyjKd15cF0ylErY3bWmVnSwn1/4F0wr5eHPidff/+5nR290erAhYB30YBvLjJnNXpy7UanHY1t3TjKwyJuqoFqcsjsvTLmsALLgU5HbZ2UIs9PFzvXajXZOJ1RH4wZDPKGfe2S98SLZ8xk0/K8mdqmD8as0JTL+oZe7BysreNLxXvH07rSe6dWzxWLq/hWXD+vC7XFXfjr/orfzO/9+36MH/zeH4TPQR/w8gJtWE1U6ySK0HrDe8+j3LmXHXHKtq04D/X9K703YsiEEAGTOb6+vpgfIESGFK7rha6WTG/QiUE5CjFGaquMYUjft2/e0hHurZH74H7fiTHiEybz6HA2FaApHAp1gCqlVPb9zlFNd+68cAkb2UfqUbirEp+f7CBKkZwinLKm3prhucNpWm6DNUayE3objNFhVOTD4emAYp0gqsBUk1kRjCyZIrUP9v3BcZhMq9XOdBPBDsqhBllpvXG/PSDY9W8vO7UVYtwop5xMuxVxrdmloVdvIdrBMxRSNkPsumTcSSKz/9aN0SfihcdRrUPkAxI6PkVqG8wxqXPyaEZsdCHjgzIN9EcM7iwSDYfuosdLwifPti4EZ971N9eV7/zsUy6frMgT/L//7L/NH/wf/37+5f/zH/253t7fVmvqYM7K0MIxDo6ys9dKmZMpAQkebUIdjaAGbQE7UEJyVFEI7pT+qUkXnWPUSu8dUSUmm1DVanIKwTPqYLrBGCeb4AyyDieNLYRghd8d67rPToiB1gpOIYgHVbRNhlb6mVUUnEOc4sTIBuHcQ2M0eh04jEi5xsjs0zqACD5MtA6TLc1yFlEZVqUclU5jdusULslgJkc7QIXZB8FHcnS4MZh1x/mEOIcO6LXCnMTg0LgwaiXkhMqgD0dvB1sMTDLq7ZlqpZJTxgehj0YfkY+KJ8ESub8wq/zslwgxJR57wQfzXaaUEOwVKLPTmtFBe7GzRWSQV3tfe/HUvcCEvXViawwcvRXG60SGctkWUhSSDxxlRzFSnAGj7M8VNdrb7Mq2RFDPESIpLyY9ZHDfb9TRmKORl402JsELRyvMCZeceJTKXnacBPpQ3r37nCCJLa9YkQYxCEtaCEFos1NbpU0QEot4ejES7xI9tVfyCIQFK87+oxCtD3LHjvnSPvz7yDdkkBiteZ72tiGGiJzazW9c77SbNS9Syowx8CIE55lz8jgqOgfOJfPXTXh9vDKncMkbKUVyWkx27zzZb1zzRojC0MF930EiOSe2NdFqpfZGbYddEnXiXDJZcjDYSsyZcr6z2rCInWUJXLZMLYM2O+Iny9jQelB7M0918rQ5OI79DDL2H72Psw28tyItLxFFub/fmYyzeMS86ffJ27fPeBFurztTwQUH3jFmpdTDMkVlI3jLnPxi/QxLHPpBjTEdwmBqwzuIXkA9w3t6r8TgTBrrHMNNSrkhDNu0p3LIBY/Hpl+tHMzRTSY4Jl6UECxeobViBQ1Cb+Zv7KnbnWk0Ah7xBgMKLpBz5HW/4yeWLatGM9dRidG4BSFkckpEp6Ts6bXjxZ+AOfNdAnBCdYQDFTWaKUaXTN4xewERgg8Gh6vm0ZMo5/TQQuZVlb0c4IyKGvzysTAds5/B1d8YeJReqe2wvYrSz8BuBgYlOpUjKso484SDF/psFojdBhOhhUrKV0bvxBQJ0aKa5lBam9SpjCH87b/pP88f+3/8Mf7MT/2737z99TOsn7eFWpKV3/D9fw1/4Hf/Pv6y7/x+k03YeIbWlOOYtmn2nRA92gopCo/7e3o/WGLChQVnNjRiDOzHTh9KCImUBWWgQ+1liKJiGNVH2XncH4iPXK5Glgunf6rq4Fbv6EP50qefUo7BbeyksHJdvHnA4MMzDBP0UMrLjcdRECdcnp+4/dQ7I/HgUYS9HNTRQQfvRiVJYE1W2Igzstg8dcY+WJGVQ2Iw2PIbvAgxLXAcaJ9I8+YRELEiUeTsonTqdPQxGPVBKZ1B4X5/UKqifTJ1gOhJl4w48ZQxIdrL/ygFxdOn4/F647JtxBQZU3HBUepBL42cMksM9DGoxboz67aiWj9KNucc5GWhto5K5Kg36vBcLo6hnuO1EENkvV7JAOLX9QABAABJREFUzuNTpo/JGo2KFqLh2mdrlGGd7+ADPiZ83NDZuObFQCJrYI2ep6cVWeHP/Ad/mt/3L/8T/E/+9f85dbSfaRt+sc6lAyiDenRDaQ8D7tRqOX21Ke30k0w3zd+lHw4JwUvisnn6UZl6XkIR/LoQUWQKIQTu9xutNSMYOm9QH5R1yUwMGBLigs5xSpl28vWJ/HShNTWsMJ7gIk4UPyNDJn7Akq2Tp2MQvPnnhnaiT/b8z0lYkqGQnZAkcE3JaFjTUZtNiB+3QmuVGAJhiQzGGTdxetBwtMdO9iZRGhgcQHoHTRZg39tZQAVDFAcP0fDQOidTrHM5ejOj+3lZ1UfBhZVBQZxnCjgGTiLOO0SUodPIkBiYZHzRW/9ZLydCSAtaHkzxpGVllkYbpjDILhq4JVkjoB47ziu+C0vO6Ohct4XHvnMcBzGZjCd64f39leuyoc7x6IWj1JOYO9hiJKULhELdH8xuMvftEs13Nhtb3vAhssRE6VaE7P32sUNdekU1IMwzOP0NbRzcHi9ElwGPErntB713Zpss64qI+aaCBlwM9DnpR+O6TpiDiTVDdFhO2hx8A5j1Aclfzi/gn+NHO3/fTz8bz9/vhkGrJpMlr9RuXj+cElMyOt/otGrAk6mK9xG0QfIf/WXj4zTkwuISb9++QdWkiJeUcE7I4cKSE95B18513YwC7Wz6fXhHrDapnipEN1En1nBB6SjeeYKzhvD71xcGnud8ZcxmcSJMjsdODDYhePf+lX7CyvqJbQ9BEB9YZKW1Qivm704psZdGjO705EJOwaY1gkUFCdwfL9xvB0MFnyLbdSOlxfJigdIKIQTzTn6x/rwVvDOPnzMIjDKMuMvEO6F/+F/aEXVkvzLGYWCr0gGHaEDEADHOCaqB2dVokE7xzpF8prbdaKI6qX3QG2zbinegDFLyHEclhTMYeyghJ4IEWu3IWdA4D612bq83rtsV74Q1b7Ta6L0RQmKLV2o8cfrOst3kpNOWfrBuK84FVKBNRbCIJFX9KJOdKDku6LCcuJQ2+uwfi0STJjqYji4TNycdJaaFdjQjlZ5+8cfjgXo14FFWdDhEJoISYkQYeA/IZM5OFE++LMzjIEWTObfW8H5Bm1L0bvEj6NnsUNq0hkkfk948f/0P/yjf8clXvijUfi7WElZ+9Xf/ev65/84/y2fhs49ZaRRoB+fBWA39WR88P11wIfByf8H7xJYMOTxGJ/uE5sW8Xy5w7AdPT0+W0xADfTSGdlq14mSMQR+wt8ashRwXm9zMapryw7ofi098/d0725A7iAPVlTEabz99C+KYreKcbeDXe+FeC6U3Rrd5uYgjZcugOHYLcQ4oQiYvySAGYgXkbb+RYiB4CxFMceX5zQV6Y8nZJgsu0JNH4gcTDXbD1omGyCiNr7+7M6eS1shjL5RSkACfv1hQoHfODvt6MM+/A6IcxyDFwHEcvHt9b53lGHl/u7EfjeenzRqlIXPdHNU3tm3j6bKgqhzFJp6dSnaRNayU9uB2e7Bs2UhjeSUvT6g/MfuPB71WtsuVxfuzc9hxYhEC67riI9BB80KsAdQRkycuGURYl7cswfHp2wtrdlzXSHzj+KnHf8gf/MO/jz/yf/mf0r4Fca7fakvnKbeojlYtt6kNYXSTP06Z5uV0gaAC06R8c8Bxv5FCIi+ReWYMLmn5SJjjLC6OVq1IOfPMOtGCREPErwF3BtePfjD2zmvfmapccbjLxd4LfbJuDj+S+cHEYDIpJgtDh7MIaqgaCVaHdfCdN8mkBkP6iw+0oYQzZHTOwuwGNvA+ABM/Byowxfxr0Tm70KpNyBRY4oLLCVR5vN8RCeS4wFTEBxiCuoETz7ptdmgPUJRKN7+c83QcUTx7qdQJzk2S94woFvYd/AnqqYyutBnBG974i/WzWzqVY7+bsiEm9v1AHbgpOIT9fpBCJLhArZUlR0KyvVtb57IEtuuKuMF+HHzgynkXidnjg+M4kfI6J5fLYl33Pohh4F3gev2U++0dzgeCjyxLorfI26d5qkbs3EnR9IbhROh7PLf9hnPKkuyyaJd2pU8745a8ctkuOBWOcsNHu5yOIYQUmF1w3YrQ/b5zvWzklG2KnRzZZ/NNhoBTQdrpURPsVvLhlfoBvljOvoQDosI0WvOcGDVuBLvk4pkNXt59jb0cllsaL1Q5aGPapTQnsy/0nVoHya/EJZJzxjPx6gjBQu+zD/hTxr/6TMwBEXDdlB0f1ugWRxDC5Og7l80y2u7HwV4Ky3L6weoDhkN14n1gy+t5UVZ88Bz33Z63KRz7YVEktREitGI+7b1UfLB7RGvdIjeaUHonEqlTWfLG43jhKBWPZ1lMLr3vD8ZUulqMxyimCFpzoo2GO/NVUb6YqP0MS0TM2+4DTZTeTdLaWmeOwaiT43EgalyCulfLx4uDsF2ox51IouoBc+DmNF+amB3E5VN2KoH3txvZO27lTloyIqfORBWZ1aBbOgzuNjtI4LK8YSKIV6JEUoRSOrfbK0Eib5/esD8OUvSUx6uBaYpNll9efwqmEiWjIeIFZh/ky8pTfEMd3f4c69vb2SdWoAlCKZUY/ennTtT9RlgDqyw8bjecd4zRjVY8GzEGbuVOiOtHqvlRqvlK605aTMroN89+M9XZmi84NQ919omUF2o5bK7mlRw8PZzTymjS5UFAUZRGiFeTNqtn4LjtO9u20adjn5ArZ9A231LtyZ93hdoWL/zGX/qb+EM//t/n0/VTm6QdwA7zBsfDgBRpiZRm1MEQPPf7Ax3YJRGlNZuQqCppyTQdzHEQgoUV1m5aX+89c8KyhhNJOlm3REqB/Wi83N4TarJutTvzJFDm7NRS+OpP/BTrurCmDcVRjjv3wzJWYgisWfj6y42vvn/H/VG53V44erXmolfcEGI0kf8Y9tBot+7FEOX18QCEp+tqWPIlm5RrOhJvUD/JwdtFMHjiczzZqpzeAQ+Lhx2O0jgOO3z0vfLYd8QH1u2COkctBw4h5Wxj/mryjz4M7/rohdbMsNx7Z1lWPvnkDbfXG613Ysp450neky+bHYjuxPHjWNPFMO109roz5zn2nxOXshWQKXK0ymM/2HKg58ynbz7F+8BkkMN2kv08MTqit2BWbZWnN5+wrhspL6hMo4BdAmsOXJ88cQXewNfefZUf/x/9o/zzf/xf+jnc2d++y4mwLRtBA7VODvW04egyOEan1clefhppSSceJanw6MXkSjLppcDsyHTUo6E6mdoN7TsF8cmmZTpRhsFHWjVZsbN8FdVhncBLYnsdVFGSt+czL5HeAnPvXJ4uDG+AG0l2YWu1MHSiOgnO2wtdHDElo6aKo7TC7eVuQIIRwXu2EDja3SZ9cWW5ZgurTTC9kN2Comx5JUXPKJ3jKODAp8UKP2DgebpeMDolMCfj6AyZBO/Z4tXojqp01y3C8Bw9dBPMcJQXon9iiUJrsO+TbSi6rUSFMhxhOo4RaR8mHd9SR9a3xxJgjZFaboiKyZSqglvRs7lQ5yllTQkRBRVGn+gstGqZSfveiX5B+2RdTdaoc6eMRoqRrsLbTz9hzsHUg8bgdhxcUiYugeenJ26PV6KzUOUlCvUQZCjH42ESp9l48/yGOaG0YWcaSi2TXg/yGkgh8eb6bN7o9WJ4eGwytr7J9Hmg3RPDwvEwmdOSTadY68Hr+3f0dGHJkQfQy+CyLsxonj12DFiFfGO7jW98MdW+POBAC2iHo1vh0uqgN3tOFXh9feX97ZU+Gj5EC9ENifvr10g5GTynNMpeCQG2beH58mR+n+RorTKPg2VLRJdYtowjEERxHvpQu5A6+7no5Og2WattcNmulKPx0IF3io/Ky+N+ZtAd1pDyiW2zTMScMrXdGd2kbTFceHmYNHEJmRRXaj1o9cbRO0EWhoPxwdOuwptP3pyTSeUod2ZRy8iTifjJnI3SHsS84iXg/G5FffakLESXGN4AItF7ZH6YEn2x/qPLoSY9H445jOzpPigszsBoA/N4cEJAT5iIkvLGPHa8THQq9TAVT3aJ1jtIJ3uL/klPK6iSTwDIMWzS1Yejz8MyQF3AkVi3FXFKb9Bnox8H2yWDE0o9SG4jLhEdhTdPluPW5mCI0Oqd19tBjI7RQVKg18bUYbmPD+W8eFFbQ7yFSx9HIYeNPirL04Z4EO+YNFQGMWTojWMe4Kc1/MVUIClFSmvEnOit4Z1nnIWvD5bx2YsQQ6aWwiUvpr6JRrL1PtJaQV8HKSd0DHJe6NX+m0pGMkwmY06O48GSnhhjmCyZjgVkCOo9XRVt9pL5V//x/yV/5X/ll/Nn3/3EN2uL/Xnr51WhdolXfvMP/ij/2D/43+Y73nwFXrGXfTPK4/E4u3ADZqmggxgzr/dX7rdXnCpt2sPXamGOQU2RvBq+1zm7zCGWZP7YC0tMBJ+IziOq1PFgTAB3Fhry0WQqTkgxEDG0uDIYOKQ2vvr+BXlVvCjqlHJqjZUHUyLeb/g0mUGYDdNIq6GJc0gsMdGnXXCfn54MglJ2VCz8eSpM8TA967Kw5IVlXfAuI06tGNvkGzEBcPrU5OxuGhY/LZGmymM/qGOy5IBEb109UZyLlNbpiuViVJNLihvoVLy3QEO3Wp7MVMtvC9EzWuWx78wxuVw21ny1qea2kXNiDmGMAgreBSNeBc+sg7xtlFqJ4SSKXTbabt2g4COCSYpSMER5jgs5WMDvbIPrkwWArmvm+WkhZZsu5A3iAj02iut8/vnX+AP/3D/OP//H/8Vvyh7/dlyfrFf+zt/42/hl/6kf4M9+7eC+79x7O5sdamGsR0VCIjhPx4ioLgquWfd5dqNRGQzDokPHGMw5cAhxWcDb1SKnJ1qv7GM/p8oYyCEEjtvBbIO4ZeKy4HXAnBwvO/mSWK8XpA/j+YRAiCYdar3SHo05J3nJhgTHkaNJxBh2qIGQl4SOSWkFPYR6ZhXFtBCXRDlMh63dEaMnOmXZVruQTwEvLFlP+YzSWzMZqA+UUhnlYF0SwSVKt4PIrxm/RKZAaTvjsDF9Wi7EZcF1KL2DrGidtPlgDiPEhuZxhzul0da1zWukl8jwZsr+Yv3s1oeQVcS+rmEJ9AEyJ10NAIOCz4n+2Gm1QBmk4FlSJibPy7tX29sp4CXS+uBRdlIIBiNhx6nw8v6O6vFR+nTZnpBlIXpHmZjMfYlE78+MpoBcLrQx2Y8bIhBCRM9xdR+DMS1nM+fFgBkyWfxC7w7nHbfbnRDlJB466lG5XDda6YTkLCQ62P5dUmCvhZwvII5HaxY4PQwrf/ELfgrsJr2VbHS9uU9knN1thd4G6sRQ/mpI+z6mecLF044GbhBzIrSIDEeM8XxPnLLqMSitMZp19nPKdg6JEoOgE9acCQ6cJJ6eLoRkl3AdE0lCPCXZY0ycWBabysQFx0Li9V6YXhhzUuZg753aO2OChJX7/UZeYQmOJS/00lH1zO6Ys+Od2TJkwuX6fCoGsslUx5lz1huCycjGNJKkiGPWgXbLXU3JiGQhemIwCFmr32j6xCWR4sJEOOpuxF0xgq0P9j34Yv35y86DhpsnvAx47I1HrQwGDSMMzz4hKr1OJATabSfnBZcXOBp91o8qktYbtR5E5+CEfsTFPGvBR3pvjCGklGhHwTl3TpILyxYREWrt1H7Y9zFF0IjqsEG1N5l+chlRpc96RrbYYGIO5TEal3SxuI1akAieiHjBp8T9dqc1ZfWRECNjfyC+2Vh7qjV9ThmkDj2/To7gowW8x0Rvg3u5E1Nmu1x5fdyN5dBecdMh3rIel7QyW0dHZ8sLtVRCCvjTq+3Em5pkCqgjhEifExkQJHJ73AnZClWdQl4uxCUhzkjIVgwOwrIaRbJ1xnB4J4Sr4IL/C22Bn/P186ZQ8xL4db/8r+HH/t5/mB/47l8GN0zXPjBp27AAV+dA+6TXQhCodefl9ZVj30kpw6z0Wk3bL8qypXP6dfB6vzFUWNYLrU688+zlbmPXZSU5j3hHQim1E6Pw9vmZkAyd2sekDfNwtW6GSSdw9Hom0g8ui+ViiFiXpjYBCXjvqL3ShhrZzQm1NnupRocgJO8RB85ZkYeYubTVbpKGoaRL5HLZeNou+OiR2Y2qtfy0HLAP07R5/vyUqgcXTEaTHZeQ6eLoCnvp4IyU1Udj34tR47yja6XOQYqePoYFRYcIYi8LL8KaE5MGAtuSYSg5RK7LhTELo3Z8Mh9QyInZYcxGCJFl2Zg62Jt52oKLSDRzafaCiCenheAD27aRkr1cgzjWbFrv9c1b1sWTkk1a4ya4BWS1YvOrP/WT/K/+9f81/+b/59/k3/nJP80f/RP/i5/Dnf3tv5KLfHb5FBUow/ZwnZ3eJ1MtsD0uld5Pf5SDPjqjDstSA2pvjAnamnk0ZCBzErFMQQ9IU8PmRMsNm2lCb4RTklgfFZyzQ6sZzKPPSU52wPAoSHCog9oGUYR8jeAXRms0b9LF4M0ALtjFTnXa5M95XPJIdvSHSTi0V1zvGDHvDLcXmMMkuKNH/BIJ4i3EuIv5ClzGRaFN6Kdszrg3jj4UJ4Gck00Uuk2WDc4TDOl+GnlKa0wXcDkTXKaMSZwdNyCnBecdGszo3uZg7xOpk6XCdUI74T5frJ/9Gr3jRSjDgEut7CwpsWYjzY6uHPuODkOmyzBqWzoLtdkVpxOZdvF+ef9CvkZ6H4a9npXkTALsvbdMXCwoe6jyKJUxGqM3nBr1b7TOm+crS+3sR0HHwdG65SRhCpGhSkyZJVgI9uQwOvAww71W86J4MaH9hywk5+xz0zZO+bFlqc05aW2nLoUYEqMfrDmhrdJeXtlrIeVADKtl03porVHKQY62R1vXM9fL4TD0eamF1gdHM5qqOv//Ze/fY21rs7Q+7Dfe65xzrb3P+b7qbmg6GGhuDiEYJQZCEIgYzB82MaAI3yLHioic4Esi2bLBipSEKDgEOXaiINkhEcKOLQKObIFjAsFg4+AYEcTFDpAEgpt7d1X1dy57rTXnex35Y8xzqoEm4L5UfdXUKx3p1D77q732WnPO9x1jPM/voY+Oy4FVn6yJIwbRKmVnWS6kFCij44I3HzpCqwc1wHq50muD82CXg0k155g2LfgA2TIVKM45ZKrdQzLP5qsyMGx+18HRKlMHfdoEZlkT/fGC9MHlEo3KmAN9N8RlSst5Pig4P2nlgfeBIZ1lsSbv/Wjcy0m6XSLeC210YojoiR1XN82Pm4J9pnOi6ijHYQfh60mEDRjcoTTSspK3CyL99Cd9TW+fz+9SYE6bKItj4k4PP8yhyHTMUc88LiUQGKf/XVXorTG1232Ms0gYGiE5xjHoAbxLzG73wJCBPyOUFMe6PeFEaX1H6zgbgQMfxSTuo4M4WisgwwoaEWKMyKlnzSlRagMxouOyrmZZaTtRAjilt4nLzuizrVkTfE2MYefhNV+soeDMF+1E7IxaraEqIvQ6GDKJycLURdQsNq3x2A+cBFQqbloGYYwZ7+01DbVnqDpPyok5zK/mvMBZ0BkQLJJcMl/4Ei0f0ANq+6R34EOglYqPEWTiNTFnhWnkdv2c63x/yBRqzjn+1m//ifyUn/iT4c5XkPLm8bSIFg8pYKj2nA1BHAMpdKp0k55Mw8LPOUk5sO8P9KTqHK3Qp/KyF6IHfxYj2pU+m5kbz6wIJ0Lv5rnqszGj+yhN/JB8fhSTQSxh4dbvRB/xvnG8+Qydk5gj4BhqHpIQPLUPUOsqOiek+EGC8kFVqzyOwpqNgKejnjYzk1uG8IplS6yX5cTvn9CQD5THzleM3QAPtfdSOYuryRg2CvdxY3/cKbUgaqRHKybNT6EDpig+ekBxQai9WCF5vlanDpWKV0fOEaL5a7zzeCbzvIHa0ViXrxieLQfH6F37cRBTInhPivk8tDaWlFm2C5f1Ce8jPkaWbNKwp20lp0CKQlyFcIWwyMf3Yn9zg73ze/7gv8v//vf8K/w//9yf4Dvff35G4V9Py+KZLFK5TaULdDXSUlOl6aCryRQYdk0YOdXgNwzBBSWKMJ1HtJlHhU6QhJ8euqJqtEQXnKGKtwWqt7yUvZpk0QdGmBYUvBcrGMsgh4xHqMWCOocq6ylnWWNkb4UgQtgyKSaOdsq7loXeB/vLCz4EongDp2Coc3XKnBZwPObkqAUXAsELow28BJsUN8WJoYFUrJoLLjJGRc5JSB+DGANuWfHiwTmuT1eDItXC3g5wCy5aiLJzib03RJXlzJYaqqhWsssQz2eLV5AGPjCco8zOYwz2avfvGJ/vTezzuOYYtGnZZLN3Ru1EF0FtEqOqZxfcMNEeay6sKRN8Zs2RNS3sxw0QJH6IWYinb9j8biF6vIuEkMCbLEgVg2RdPE+XC71nFNjLgyCB7ALOO8osOGwiLGpUXxeUoI41J5Mce3jz7kErnYFDEZJPxBjwPhAdvDQDNrU+rOExPOuyMRn4mE5SXcBh0uBy3Dla4fXTM4NO3Ru+ebw7UMEod62z3+/E7FGJzOlY8krwHu3dpHnBPHkiRiydOk8yZkPnQE+ACcAYFvDtiCRnxmR37mlTT7S6mgeplMq6rPTROPaKdxCi2RY8/iv7o+jpp7NDcMSkYahNw1vveBcovXPfH6zrE21YXEAfleO440M8m7aOObD7XQJ1L/RusKOYIns9GE7xPuNFPmavypinWlSowxqfrRRC8gzt9KOTZeFxPKxZK+ZRH2rI9NHPRoybxB4ZvdNPi8Y3Aq//GuvMG5wfRrsaaUOY0+KdRIRWK4/jQMYkqBqJNCR6K+i06A1TTAzKeJDSymyGJg4STNGqptBQJuLAi6mCmKDzwKGk4Nl7p4/GJV9hdhyW/TsVQnQwFZXJHI0xx8ezY/CB2gtTYQzHsiR8yKgoOGEaaJyUE0etxLCYkuk4mGLZibVXVOBRdmJe8H5hxmrRI62Z1cSbnLqWSp/DoEhp4bHfEY0EH5l0C8Cek642MXRqtoLeGsHZWVvUxPwhWNra0QqOSQhijZJTpdlLo3kle2vkHmfB67SzpitmP7JmRqsHIwtTE2NC+BwydH7IFGoX/8zr+IlRoxpWcDTsgXoGZk41KcYYSnAe8RFGwaMELxZUOCd4Tzyr89v7F/bjRhcLMlQVyy4Tx2WNOJ9ICTz29eCU5DPXNbMfN5zPtBa4v/uMHCNTHUctpJAIzt7+D5Mov3qjyolhSGuZJG/oq0fZWdWCUp33CLDESPCOnBa8DzyOm206XrgdD9zkvHnEZGWKBQGfSEmpwzxoQb5SmDW+kmkDtgk0y+p5++7GmzdvKX1QasdHy6BotZOS+yjVCtFIeYp1GwHbBLvy5n5n9M7lshHENqA5Kp9+8ooowcbsWWEKc1aethWAPgwNW6qyrhtTjGJUij2wvHPIBzkoloEjKqwx8cM+ecaHbF1fD2vyXLNZRmUD+YI9yL70F7/Iq+crf/Iv/kn+R7/5f8p3fPnP8OblDV+6ffcP9uX7Q3oZG0SZRenNIiZqHdQ2OHpnLwXFNoc+O25Omp5jXZ2IH4gKHiFEx5IDsypOvWUPntJixDHapB2NnCOtNFq1cPQlX5ihISi1KX0UQ2ELeBdt2oUjek+MgVabdaUx3P9xr8xR8NEIaRMjuHaMOOeTFULHYZuUzx4wOhh+cm8PdCqZhafrZnERffA4XvDrM657orf3QNS259IK/fT6tGExFxPMVH3ZCDGch1RQNS+qiidvi4XoDodXxYVM/EB1q0org6GeR7+RfGBDKCiH78w5EfdMaY3bXvn0C9/M3/HT/i7+yJ/+g3zx7Xd+LS+jr6s11Qp0C3ON9JgBZc2OxxnVgIMpHU+yewSh98HwB+o8a9xwwfE47vjoCZyH8imM0lnOmJKujef0BWqxvLM5JriAqkm8L6tNqGQaPIZTnjTHGcmCnj66QJmd++NBjPYs7kOZwzr6a9qMYIrSx0EbA1X7+hSHC545baLnfDB0uYDOwZITIQq17ey1wNFwIbKuy6lrHCDVcsvqwLvJ3jtv9511fYXiUZnW/Gg7KYoRH8+xT1fleFSW1cBSdT/smQIMFfbaueYFxBHklEvOTh/KdYu0UihRWJcLYygv+0EMjjUaXbhLIOGZteG8w2X30RM2nMMFI8Ie94PSJqU1FMdx3CnD0JaPx82ujTmQELjvhW2xfNM54CgdHWfemnpSXEgJm8J75b4X2igY7sURfTCIUh345HAeclhx5/NWRInJ03pFh5zPFqHOg34buBgYzZDowTmWbWFqp1SMbCzfgAh9r8s5Jp4+lK5qoe+nHFa84M8g89E7l7DQSqEe3fIFW4fprZngPHNWtE1Wb6h4dJ52GWcSQh2oc0ydeBfsHKQOEU/MC600khe2/ETXyroEShm0dhB9Zl0StRbSYv7/vF64v7yFkPEh0Y4dwaJt9v0ORLN9qBBSprVCWtRUINopfXDMRnDpbMhbU3HoJDmTC44xrIGaAjEHxrDcwf048+RiIi0bIa3UvVuxN7CfUa1KUmcTbBEh58hxPOx5KA6vjn7mHc452A/LfHROaKWSlnS+d0qthT6sIaYLrOvVCOxYbAl6gn2cNT77VNLnsD/x1y3UROQ3AL8Q+KKq/uTza58Cvxn40cB3AH+vqr45/+2fBX4ZVh7991X1d/6gvPLv+Rpx/PSf9Lfzz/x3/8mvIHz1pES181kewFdYIuQg3KrncW+s63rmDBXevn9rYdTlAdq4HcKr5wtTr/RyQzWyl0FcIq12jtpYF2E4T23TLllxlLLjzz3EeTHpnnPU42CCGZfFgv1C9CeuXul9kJKNYu+lm1RvWeilcknmk/MiNvgSy0ZzE5wqMZjEgQGP4862rEbi6YUwPUu+cF1e2RTqQ4c8+Q96qq8gjyN/OUwEhdpRFzEcbGDyISvDkFxDB+2wUf5Uk5qIE9bLmbED3B93+6ycTRdSygQCqJCfNlJOLCkazEUBteBfrSZTeV436pjMudvDzjlqN/M84okh470zBLlCckJT5TkvPK0rMUWWxREWkGS/m7rJoPPFP/ed/J9+72/hf/Y7/heIWMFee/240X+11tfDvfafdS0+8kt+ys/hv/aT/yt0VbpOk4KNwbvHg71VhtOP15zznlJ2tBtxzlFxRGYzH5jzwuJXuExq2Q1LDyS/sN8LqtXw28OzpWyI+lJY04Jky1LCTaIGJsoYBrEJOZBywKmjHQejTorr3PbC6j2iww7XaoSubV1Z5uS733w3dSrBe47Hnd6ssPqA2XfeMRT2ehDjRlgX6lDu9xujTpacOGqxCV5WsmRmN8R2n44pIGoS0KHC7I3leiFE88z2YvJNp4ElRrQLrShBJjoGDk9rjcd+xzkHMo3qNhVBLejbe0KMaKvcBgx1SHDEvPCsCz/5x/1t/PBv+rYfMoXaV+M+c85Zl3d4tA9Cd7hVcLZJEKJ5oRGT4yeXid6Rk/m07u/vyLMnhIBzwqyVdUmkGCnHzghng2+aZPxxvKMPZRyFp+snhGQ/a6oyuhIQluViksFy0PsgpkiqwmQSXeJo1tVel83eJzo5ZOTVp+aHIuJz4La/PzHwidIrKS4IQpaI2+xIMbFn/fvbe7ZkEz32B7UN9kflsl14++5utN5gh16VwRIXxA3mNB/0mJO4WZ4U3g5oc04et53r9Ymoigo27dJCeXkwSqOPg+DtENkaNrEIEHIygMP5GTEP6jiIBB4PEPUmqRoWWp1iZn9UclRGFmQ0UlhIzt7fcqqCj1o5ysG72/uP+XM4qLNSSsH7fIZemzxlzkHKmVKLgR1qJ3tHHcqk4bwgLjDppuYplguFBKZYwUZwiI8klPcvD7brQpeOF8jJUbsV4k7MyzZl0opJ8q6XgEw5s0+rFZzDppMpZqy2/P7tfz8U9zMRMR5Ar7TKGZ+xW/alnKA2tWI66KC0O1PtnFdLs8lvbzhg8Z4hpiASPwhkJAajUzPJbmFkPYMChVYbS06WI4Yyh8N7k/B5b36y9thpw8LRY4i8ff8WJ96a4Kjl6aWEqjUCxVtEhQvCLMK2mo9MmTiZuBg4qsVU7PuDEAMxC4/bO1QDKUdmNz/kvhuZMYbMmJ0+On3v5BzxHuLqKG3QWyOtg+Oo1FLRoGgU/PAM33ncdp6351N5BaXsbOuFMBw4Z0A+PfskIdvzr76gCMtcKLUh4s9GlCLR05rgpz2XWm+kEE+C53mOln4Sof1XiLOfo/U3MlH7jcCvA/7V7/G1Xwn8blX9NSLyK8///StE5CcBfz/wXwB+BPDvishPUNUfVDf66/wFfsaP/xlEjUZ4bNjB75yuKWfRZJ8Icypahh2+guDEiGjXLXK72YTmaEqIDh9W4uKhHkwZhCzMkzb3aB0fhDThsd9J0RN9xLlohs68cL08E6OZQXsriJp2eIj72LF6vlxsatcPhhd7sJ6hg6N1cs64GRltEkMwjW49ACF4IeZATMKTW6nFxswhZNsUxkS843F/A7oS8yubJHkxDaZzXyluHZZd80Hq6AF1DA+jNlJMfMsXNt7fb/TeOErnqDuiAdVOCKZJ/nAYPO6Waj/GwDFBhNfXZ0qt5g3ojcvlwhidXjoTh8/5fK8a0U3EeXL2+BB5SkJ0wtuHBSqqKor58o4+eM6ZEPOZIRe5XDKfPF14ek7EzcEKuih9Fv7cX/gzfMef+1P88T/zx/i1v+t/w5v97Q/mJfo3un4jn/N77T/rCt7zI7/lR/B8/ZS/9OUHrXt6xeh2CrVPyynzCSc22UwpmayoW3C0GxBP5PeSFkQEhyOFaOHWwTNlsK6Zjm0yMQreZ8jGEg5LYp4/U7zDTcfT62eTZyyZOSfHvhNdIC8LTi0EXutAlshlfSJvieng7fsbaw62ETUz8ZdRqLUT44KkRN42QsiM3oheefWFTyw/Tib7fac18ycI9tqPZtmBPU90NvLMFgR6Hi7VfZAbR+YZfJtSwqeEloIGT0iJ0hutNdSbbNIO6oPx3nye6hQRj58TFyPzQ5PmnH6LdwZpaJ1aHtwfHiHztH6CE28ZiV//6zfyg3yfTZ20Zk3E5bqSsxFzy6PhxTPboOwFp+a/kPO69WlFcDze3+j6wtOTqSjWbcEH266jXznu72j94LIaHbe4TnIeFyIxOpaQyTGfk2FHcoKOTohPVKmoh3JMukR8MCJuTAE3laFiZLQeGQg+OHofNB3I0am1kPPGy8uNVg5evXakuFD7gVPP9vREPxp17HgEFzJ77bT+IIREzgtlKM6LZbZ1PfdoRwyD474DwtEqThy97EgKvLwYGbHXHWajlUkQT1wzwZlf5eV4b2RXEfbScC6fpGalj877x47DoX2QoyP6bNj7aEXal4/PQCHnbL4YhN4fHDPzKgdmhzoKWSaTifjI8bjzcj94ub1Qa0FV+eztW2JaWFLm/cuNqdM88BiVr7TGmO8BU+Nc8oJqY1kzCxkJFi3y2G9orTCt6FLnOMpEXCKmQJmD4S17ykAJg66D3k2iOW0ESxuT4zjQ0zuEBOY0T9N6WdABvdzJacWLMHr7Stjx5/g++2qvb/vCt/Ev/PL/Ja+eX3Oc0yhVy78b/WDMg6YNCd6maq2SxXOMRsyOOSNFG00HLkRCTIg7oxhGN7y8DMQ7yvHe7BznJG6MBi6fLhSTR+7lwdBGrx3nAz5FfB3osMB65wLerbT2lQJRYmDooJaKCwaLehyD5+dPTrnwMGmmD+yPOyoGu1EVriHiNOLjNDqqabAZU4k+Aed/j8l5SymE4E4ll0kXgxNub2+44AmLZ0kXBDsv7m0nLvHjNG10y0cUgTYbY042F4ghEpaIjANEmNPAQbW3s/lqBOg5QN1g2yJeEnME9tpQDi5rMv+fd7TWaW0wp/+KZepztP66hZqq/gci8qP/ii//IuDnnn//V4B/H/gV59f/j6pagP9URP4U8NOB/+gH6PX+VcsR+HE/7Nv5p/97/5QhfuEjAEP0K1jfD+QoplLrpPVGORouNIRJSpHZCkLHeU8Mg6mDz968o46DY1pmyXF0nLNqPZ6UuSnT5FCj4HxgyYth5mMyra3zpJS4bBt9Ko9SOHpjXZ8+ygXX5Wpgg2gymNj7idY2QNiyXNhvd4JzTB04N3Eu4gh4Z6GHpRwgHu8Cco5z07ISnWeORjxJkhJO2UaU0+9wntYGVtyeUlGq/QkSaNLJaeGolrGUzo0keI+bgmKdmUyi3suZBQOlHwY4OaEPKSyMrrx9eeGSN0TOeIFp5ugiIDrJ0RNdtEIteFrdaT6azy461AueTApiONbh6FOIcyIB8hb49JPXvPo0454FNlBt/Nnv+tP8O7/vt/Pb/9D/hd/7p37QLsvv0/q832vfl/XheTdUaAPGUOqpfRcRxHvAm/HfmfnDSyYmIc6BUyGKI4gFTasZMgjO4T0MscDO+6MRXSIidLEC0YkiCGGJXNdn6qi8efvd7I8DHUJ+dSXmbMb/1g3lLUJAiHFhunaS+TzBJRDzvziUfd9x3hGXzH0/QBxpuxqkpCtjOmatjFmRIQwm+9E5Skc66HCkCBI9j1KZY7KmBd8rMpRSzZuUcsRlx0Ct8zlN1jTc4HjcSMtqOXHBcQzLRkIFnZ0YFpiD8njQ+oPUV3sebBGHMFrDDUfwSjypdlMHeV049kJZAo/Hxrd+y4/n7/5Zv5Q//h1/hDcvX/7aXUw/QOurcZ+JCC5MRj1lvWq+FTfNnKKixOjw4gwKEYzOGIJRIocqcy9cU2JdFuLp8dJp8CknH2TzGIQqPxG8eTMv62aexnoQc8RLoLbGmhbG7KS4cNmEW632+YfAY38wh9J6ZajiQ+Sx32F6fBBQxSOWGVUMUpBCYE2vzFcXHKqeNhu1HLQz79MvgUd/QBOad2TnCXExJof2s9Fm+494TymDMc2rhToex4PoA6KJ2iaPx3u88ywpoMDRDkqvBivAokDaNKlnbQ0XFJ0Q5elUvZjvbg7lOO5s60r4cJgd9r1zdrQKMwRaKUYXHkqfQp0WUhyCJy8R5z3H7WB/7JTW2fdCLQfH0REawSeWZWOvd8qZ6wZKcMJsE9HJjCcp75S2ihNytEaQ8wEICAF1g/3YcT6gbdA/+tMcec2oCKV1Rmks23LmNyouelIwa8Ac3fbcFM+fCa+uT4w2GN2ms21U9ASjfN7vs6/2Cj7w6fOnJk//IMcXh/cWDD1qx09H64VX19c87u8ZrVjjpgy8WCanqoL0E6HQcTIYzNMvNunNZPc5Z45qofTbdiGGTDkeTB1M70g5E9IT+/5CHwMRR4iBnCO3eyH4FS9w7Df6UNZ1QWthWS8InrQE9v3O4/7C1GmgNzgbkJ0QMuo8aGRoY687OUOfA5zZeGIIjF6JYdKr+ahVxK4hMRtOcNGsRwjalakG8nv19AphGvxkWuafiDMpolq4+wc6eJ8D5zx7uaGspBnwUZh94qIAnTUuVNcZ0zxyy9NCm9bkbHSzS0xT7nA2fGGAS5hZ4fO5vq8etR+mqn8JQFX/koh8y/n1bwN+//f4vj9/fu2vWiLyjwD/yPn37+PLgE+3T/lH/75/9CuExw/V8AAcyHJKHxvnTQBThZAjvjfQSQrWtaje2cRqKD5mai+08Tgf3oPaK49jJ8UF5zzuzILofbDmjBKY4hg6TLaHnoGCJm9w3pvRUyCnyLpYd6SfxJwxBu6UI64p4Z0n+GgG4VoI3roGziXCMEnTmIP9cXC0ekI14mk8teybGCNP14v5F8Q25TEGszWDoJRC9hfDPzU9iVaKPtRGwRPKbobT2+1uEIVp4JIf9k3fwlELj8dOPd8HnBDcORIfyvvbQR+dFBOcMMqjFEo5WFNmzIbOyePlPdu24N1GDJEYvD38pgWJhxhAPIMM46D2RmOS0pUYFzrV0uZFyGvg1XXl6SnhPhV4gr/wnd/Bb/q//mv8/j/xH/E7//h/8H2+3r4G63Nzr33flqDqGWKKgsGJ3kbwMeHGQMZg6uQogySCCwm0MWdjCRdyjPipTDeoreDFsgidTqIP9GMQELwKPjuuy2J5LlO5XlfEO0Q6XqzB4Jwzap3n3EycmbBdskB49eTkmd0AC3MMjv2OJjOLm3TYOn4hRfQoTFV8EhBnhMWc6PUwHHjvtD4IKeAkUg+bNPgloc7IbEE84cSEj9po/WD0yWClnVMwFyLDgTDxp3SxHDvDD3zIZvLG4Zwj+WivSRyXdaONhnfJBuVqdNpRjYIlat4Vd0JMHBNGpzwO7veDpz3yX/7P/yx+6o/96fzeP/o7mPo5dFt//9cP6H326fbDAaHpRM9QarxDPac0LVpH/H4gTj/ahOeYBOdOutpEmMxpzUOnFvUgZ0MPZ76kWsyA7ZNRGpmd2Tqtda7pU7xYwHGpxQoX7xAJXLYLOKH1ziAwXbMenQi1FFqvgOcSjSzZ+sCJknJAMSn+EhaUjvdCiCv1pdlewySHbGCg0UhpYwzlcT/wvhGSZSkZhCvifWKMcUqjCh8yvGKICI7eK72OUxnj8DFhFa8z/51zzF6474cRWucg50xMmSZKXjzOrxylc9/vaGukEJgSUEnszeitfTSuS+ZeKsNXxAXKcTC18kbeWWEkyhgT7x3X7Yo/79neLPqnNaNwPo5CXq1xW1vh9nhHyIF1NSDEjJO2H9zvD9gUHwTvhdp37vudmBJThaaD2ie1DYOKeW/epTkJMeJdpPUD721KKWs2X9MZERTPbMnl1QJYTMEHoI0Xh1bzKDkRy8/qSkzpB4uE93W+n4F2k71GsSzNJA6ZNt31EmnDMkEF8OLpKqgOi2EQy5nVaQfUqZXZBb9EWjW0/NR+/pzJmM2ywBTEQWuV0iv7vvN0fU3OnmXdEAfv3rxhOhCGTXYn+OQpR0FxqAyOUllysrOxD7RmmbuvXr3Ckyx8PbqP155LILLyeBzm53IGrrrfdkIOFp3DxDvHGswfOpm0blLa3ivOWcC1uGgTSAxStd931rwQgmUbjtFJ3oYPMUREJsELS8qUR6ET8OIps/KoO/jImoKRmJ01suoojOlos7PmjWEbHmBNHImKTw4fHDoVGcrsENThP3jKP1gxPkfrBxom8r39et/r3a6qvx749QDe++/zE2HLK7/gZ/58pJ4ToQ+0x8lX8PInUlcESq2UMukyDV5QGmld2PKCzk6rjaad4M1j8FIKfUIpjT4HMXmEYTdNrfTR8WIQkBQij/1B8k8s0fxZt/uN1qrhjxUzM7tA6RW0U4eNmdETNeoLOUXiKXMJ3pG8SagmRlNc8pWx97PzCt45nA/kbLKwPi3Ic/aJS46UHbMbsGT0xv1+R3slIAhKLhv0fmbLWF9h9PoRjT6Gcn88zE8gFlD6+vlqxWaM9OMwmpwzbHPKnmVJMB173TkeBzIFmZ6hBwPzJbgUaGd2Uxfr5opc8G7SVPEuGRmtNRubOwO29D4M+iJC752jvmMoXGImRs/lsvF8fcI/CVzhu978Of753/Rr+df/w3/DyHg/NNZX/V77vq4hp1cGqKqUk/iIP4mlgBNPrTspZ0Qmoh3/oXEiYplAQ0D7RzrbUcwwnKZHkseLIy2JEMxMPFGQeXq4hOQDl23lqNXkTmXaZjMVLxGv9jMG5qMzy7jJj70KowyGKsu20KshrL233BunQvAZwZ4d4gzHv5eDPpWjdXxVthwMHeymSQ0dpJhxcyDWIGdoRZmog9I6VXfyesUNky15B+IcXSetTqIMFqAxmd0kbKX5s2uoX8mD6+NjVpobsC4rPtpTQIAYPMFFonq8s+dUOwb3l8EP/9Yfyc/7GX8P/+Ef+93UVr7al9DXcn2f7rMf9YWfpIqpKfrsHLWjOMSp4fad4oLDh2kgDYU5hHJMqvKR6HYcBzoGITqcG9z2O+vyRIrmye1t8igPXm4vRG+ZW6Uphza2lGz6ogbncEEYQ9l7ZegEzxltUk8wAuylnCGxHZxS2nFS1gKl7ohOUk4MPvwORubtfVD7blEVx4M5hxUfeCuidFJbpfeJD4HnzXIPSymo9rNIOZuD3fygs098cJADrQ728ji9W0qrk5wDIWIxM2JNkjHG6Y+LOJwdINdMTIk35WHTvnIQcKRlpRaYXjnaw+6B5Dh65Wg7+5sdCQu9VcP7rwkJwbr1tXB/PPjmV50xBik4Ysr0puAti2z6Qv8e92yKgdFNVWKEu4bGyHF7oDp4vl7wMYMK90cjT8eY5/s7MY+gDMYcRsOb1pz0zhkNVpUh4CMwBNWAA2rtdkD2kyVn7vU4FQ0e5xOtFwYGQylHZ7tm0rp+tYugr4v9zDiPej6rjXQNEORscM1J70YQfxwP+ujMKdZE1mn3HRa/UQ5TETGE3irujFoazRQjfU5arwSfPzY3ndivK8Gy10prTPV4lHVbad0gQRbe7M4wbm977Qy0NjlGI7vFVBVdcfhTggllb9z3xrJsgOW2lVIY085cQaJlyPnA/eXg8rQZhVLg7csNH4RWO4LDi8fHzKPuRO/prZLCAkAfhW0xG826bow2kOCp0+J04lBSst+r18KUE8O/LEi3hmI5HuTwZGfxXhnTbAg5XahNmLMzh6DDijN04Ig4Z+daO1M6m4yq4Nx5CX4Ox2rf10Ltu0TkW8+OyLcCXzy//ueBH/k9vu8/B/zF788L/P+3kix86/ojcOqsQLthHjX7TOzvNvxhDmU/Gk2FMhulFI7j4KgPxmgsa4J9fAzRffWFV5Raebe/43G/MbplQYyh4MVwyHPgxbqYA5MlbHGzDmXb8TGYlKApgsOJp/RKHRWdUJuheBFO74dtaHOePoCQiFlgDp5fXSnHg+Qjy5Jw7pUZJec4ryshrxczns/VggLX1chQDWKOSAFGR7uyzwOfAjI67t2dtGb2fUedJy4r7pSY9TF47Dvv3r1BvOfV0zMxLJR6UA+jjOks9L7jQmJJiUmnloL3iWVZGFhRLHyg9GWUByIO8Zl+vOf5+pocjGYkTNywR6IPwbo/LvDYD+5HN5CKeJx6Hr1xvNzZLhfc4i38O2fS6mGDN2+/xP/6X//n+T/8vt9sxfHX3/pc3Gvf96U4meCUyeAoRi4MKdq16wQ/AIQQArNXhhjUI7hooBwVApyyI0AUr0p0FvLpRAjT46Liuuc4brZBqqCiiAbip5HJgNHxOkzm5AdarfibteI3843qMLR29B4RxU/H0/XCrdzRo+KdMLPncT9wKrgATM9sCn5w1Du9doIbzGFSRe2OsAUGjSWabEpEYDo0TCaOIPawSutmB4IxTQHg7bArYkQ98Uanmq0zpmBbn8NJYEojB5Ncz5MgK0AKgYYwh73f0w1mc4QYWXwyX46LbIs1mBweN0Bbo5XGLJG/86f9Qv79P/Dv8Lv/8P/5qw7a+SqsH9D7TFG264XP3uw8arPMIoXgJjlGA1G5iPNQysElXUGF2UCcnk2wxL7f6d3gGcslM0dnlo6PC9u6UX1lqQE3JuU4yGFjWTJjeNbLSqs7k8myLoQo9HZwnA2K1jovLy9n/pftmXOeZLe9gFTmnJR6kM9g5m3LTJlo6fjsEdQUKw5E68cD5zVfQMVk9yhlr6ichFQ5Gy33nTGs2dHGQTOFkqk+VKmz4ivcHi9W2PROiJEUTZ4VU8BrYDaTTe9z8vp6ZSrsXRmzMc4Mu+PYcRIRsc9BnPlSYgzcjvdMNfBP8pnSLHLmOAZ93tmWhRAib968x0WPi57HsdNH44sv7/DTCrV13Xi53ZhTedqe7eghjaGdwWRZV7L37I8DHCcoxpOWZD8jJaZaQTblwV7My2E95wHe8rX6saMS6TrP/FEhOaMuq7ODuZ4xHPvREJksayZnIyjbM64zplrzVcGoa4qTaAHG6Dlh/wFfX9/7marFqmwQguPsp1NKpVdFPKQlU4/HGVadUN9ZYqarp9TC47jjdKKzwxR8COgMzDHNhzgUcZ6y33F+wQchhmzgp1bIPvOcLux74TgqdLvOL88Xk1z7xLEfpJx4eX9jXVfmmLiQmG7nslwNuMWgzgne6ME2CWvEYFaZvVZe7gaS8w4UoYzGu7c3NNjkP4RErTtz9I9KNuccKQTE+Y9RV1WVnAz9L9FxTVf2usPhOY4CQwjZs99fyNvVGjIt4oJjPw7WsDHFIjWSS1Ysp0hTI07u+91koExqO+w+DWZ3ad2myNvTs9GW7ztewa0bMs6Q7lGZIyNDEQPhfq7W9/VO/G3AP3z+/R8Gfuv3+PrfLyJZRH4M8OOBP/D9e4nf+4qS+ek/+m/n1/9z/zKX5fKVCVrHCrQHpoxoStmV+73z5uXG+5cXwGSQbQ6c99wed7703V+ijc7zJytf+ObXpJywtolnWTbW7YKPER8s2+woBylFni4XUkjWgY4b6ixT4ktv/hJf+uyLtHIwZjcSFB4ngcv2zNPTK6IPHwNBc1jYlpUlBRAl+kAMgZRWnIdlCazbQogJL57LGvn09Wuid+zHzv3+wu32gk7Tvz9dr3z6+hMu24YXz+IDnzw/k2LAO5NN3N5XxhRurfKn/8Jf5Lvev+Wz9y981xe/xNv3d47eef944XbcWJ8uXJYNeqPuL8iobCmQPXxy2Vi8kL0QRdnSah18bcQYCCERz6BpEVhWT8yez96/4bM338n9fsd5S7Afo+Nd5HJ9tpwLlJgWeldqP/050/KgJmYAvzxtfPLqiU+/8JrLdWFbI+4izHXwf/v9v5Nf97t+w9drkQafg3vt+7MU2Fujz4rz1u3NOXFZEjknlrySYjbk/GL/O3pPSubrzCGSgmf2Tq8W3OtVTyCZyWyfnq48Xa+syyt8BJ2V2U6t8xT84qm9sO87+1643R/k7FiWjcu2soaFa1zxYlKhdVlMFlIHEgPb0zO3+92w58Hz2Hd78G8bpTzMMB1NDjOGYw6PiGddn0lrJi2R63UliiO7zHa5ngGc52RqCk4mks5Ua1HrPi6J169fs+WAzq9Mgm8vdx6PgveBNdpJwTthyYmny4Xr0xM+LUaufDSkfZA6mwTZgTVCxiSoya5DiMw6aLVZ7tXZXXQTep3sD+X19sy/+M/8en7BT/uvfzUvoa/W+gG/zxqTvVZKtRB3FWES8NGUD8dtp5aJm4HtciEGT4w2jV2WTIiJZbngxfN4NF7eHFwur1k286nUuuOcsuWNvC6m9tCBzI4T8JLpqkw/8dGBTsK2EVKkT4Nq4RO1d2sozkbKG04iMWdSzIScKdp42V8o4+B237ndbvhsxdI8s4tabcgI5JiZZ46m86Z4GA1iSNa1F4dPmfveaXunHsrLy04/CrNWnCj16PQ2SDEaGXEvFgGTM+t6pXfD8Y+qyJmNqKosJwnVOU8KmTVv5MUAW3s5iH6y5cyr5wtPr5/PyXZkWzdyigztlPJgzMGx79z3m032xLxAj3rw5u1b3t8f3B4H+zHp2tln5/1+8Pb9nbfv3p0e1WmvcU72vVIPI5y97DsT84k55xEJvP70W4gxM4Z9/9EPjuOOqtKnUo+DeAYerykjwdNGQ52gU3Bd2Y9K2Q/qS6U8TtWKH+TNoWPyuD24vdx4ebkx2rTohOGYzc4mpR/00XAiqFcC7gfrrPp1vZ+JOJZkrbEP748PHnX+nH4OxE/AguO7NhyBLW2n4knR0amtWt5niOAtgFqC4NeEXxP77Gj2lGa5e3U0SqvMIextZ687MWajebpJyGfBcb4GH0ya78NCbYr4hPM2NYoeu7aG2XHarMwOzMDz9RMulycQQZzDu4R3JjdWoI9OiMLz9oQyeffuM/bHTp8mFxQRUlopfTBQ/HLh+uoLTFXL20VBB3086HWyXK/kZSHkbAXedgFgtsHLfufd48GjVu71jseI0Hu5U/qOl2ksBCB6y0e8bs+QAn0M6jAkq1Nr+gvCkgKvny88ncOIHD1+Kq1NtJt0+fOo7P8bwfP/Jsz8+U0i8ueB/zHwa4DfIiK/DPizwC8FUNU/JiK/BfjjWMn0j/1gUXs+WV/xj/9D/xjf/s3f/sH8cuIdgXAO0hqUpjwela5KPXX7797dGGde0ZhWtGivfPrqFTjLZrgdB7d3dwTrZvRamW0gEjn294bCdwblCCEwJnbAjA5PRAjUUimjcxyNOhqXzRFToM2GEzN5H7Wa/20WFrdRayWnzOWyEsWzeMe6vcZP5ZPrxhxKqZZJUeuDPga9T84YCt7fXshros1OipFPnjbcVNBgwJOzy3h73HAucT9g7O8Q5+nd8e64UY8d5zzX68a6BITEbObp+ZAl13olxmjvgwjbcqHNgURHO3aLEvCeUhs6OvRAqYV1uxh96/17Hsedp+2Jp8uV0ZXuLOz4aBPkYM6G95FBoIvSpXD0bp4fhLytLIuZyK/Pz6wpklO2h16CN28+47f+wd/+eWuO/DXX5/Ve+/6soxX+7T/0e/mpP/q/xI/9EX8bi4skN4goic7uHMpERFnCSnKK1MLqI4uPzNKQxfw86DhJkYaczkvGkYjq8C5SqGg/rxmnDO3EdTGk95j4GNjWlZwNUiNi5volmyRy6uTlcZzPhI64iR+C6MBnmMU8bU0tFVMnjK6WQ4hFceiw0G1lmiSSDL3zvF1wzjH6wRzlBB7ZlanTnSbrTnBGC1OdRpAV2NLGEJN7HdXuu+Qc3gV0TmYTNCvJB3B2P+oc1FFJMeGjZ0kZ9TCbY+gZGu+MOOd0Ir3jgk0wwxRccPSh1JPatb/3vI8rX/jmhZ/wI38Kv/P/8du+ZtfU93d9Ne4zHZPjccf7wLZeUFUj6Y3BnB3p9v56daScqLtdExaCjgUPz4lzk6PZAXqqoq3jcsQrBqRQmwyv8cq6JDtoY7IsgBwjy7KehdhkFmtYHUfhdn8xwFNM7EeFMTjOaJUkiaM3nARiWNFZST5ZCG30zGHZls7bVCiG1Xw02EFnzIm34E6imAel1oHzDu0N56bdo7Nz2VZSTqcHTViuK7XU8/pupDWBqmVP6cFsnfUy6c2dCpYD1LrmjkAdleAc4gOK+br3Mqm1WdBvTPQBpXecO8x3ek449l7ptfDucTeAh0xa33nUzpoWog88eqW2gxAj7+83ZldEO0vuzOgZSfjs/h4fAkuK1GH7lqo1WZxzxNj49AuWeVZKASbl2A1U4h3beqUcjfXpas8Db/7F0gehRLpXvGAKnd6JLuBjpI3OmMOyJK8XxknFHWNwv+3WEIgREcvOW9xCGQd9DJZ1I2VrBjv5kLb6+b7PvvpLmTpoI3KUQa2WQxclkEOkzWoKolMavIVISJG6HwiW4/V4vCeEBSdW+Ig6YnAsfsXh8U4JSQhlQaNRWGdrJ9W3wgwMHHjFZ2MVzDHxPtBaY9s2vA/s9SBl85KqKI/jTo4rtSu1lzM7dBJTZq8PrsGa42100pIJMXJ7PDj1YIawZ7BuJovdrptFhAzwwfJ9/ewctSDiuB87i0JthRAyIXgDrsyJEpFYqP3FyLc+YalskdEamuz6HGOarNj7swg1RY4OGPpgC9FYBsGhMtEgaJ2kaNRjJ85ykUOg94pqIMRsfvEpzDGtSF3tHBktwYbvbzTFD/T6G6E+/gN/jX/6eX+N7//VwK/+/ryov966hmd+zk/6ufyEb/2JVqB9wPF/j0pYO2eFLHSUl/t7vvzmyzyOg8dRSDEzp7Jm08E6LWc3wLLSjseNMQxR6703xD5CeRy2IYggqpaQ7s4cGJ14Z6hvHOCtKyExmOa4T7oeTFGe15X78aC3bp3tmEAHMXiu28Y1L7jRWVLm+ZJxfp6bxIG4SWs7tRuKP6ZEPTe52itxJqa3jKg5zIf2eLlxuDs5LTzKcfoGhklAi3VnusLjMGqVD559HFzLRk4bjMknT6ul3XthqmN0oxYdZedyWShtUPog+mC6eu3mr3Ce0ixoHHXUWhlzMIdy2a7I9NZ9nYPZu8kvABhQOtIbZQz69KhzFAWcs9E6BlUwIIsnxUiIAhH+/P/3O/gtf/Df/sG8FH9A1+fxXvv+rqnKF99/mXf3z3haI5c1sx6Te++k5kheOKb5HrMPLF6ILhLU/Co6MQ+LmHyv9s5QC7kuxfJjpgSWHBlFzfOVE200pFlnuJQKYeBjZFk3JpPjthOzp0zzPDoXTdPfjcSWXaT1Qm+VHTXpCEZ7rb3SmYxuG3V00YKGpzUyfBCIyv14UHujD+GoD4IPOJmoeno1idiYavjxk/S2PRkxVvrysZBDTOKckycvK2MMPI4AdIWBSbYtF8pyahidy7IiipncoyemTKWhzYhlMQaieKNc+mi0sBhI0QEeFTUSZOu0UjhuiVt2/Ihv+na+6dUP58vvvj5z1b4a95mcpOGcIpqFsu+0/SB44bJd0BZ5ed+ZzvwetVeSSyQbCVsWECa9leB4uj6R0mJSde/xfqGOaqHaeEKK57PZvEuC+Zvy9Wq5ZKK0qaQYcHMYcn9UgwnMeao+GsjAeZP4T3HkkOhDad2urRBAunmYnTNZkvOnzGl0RM3nFZMdLUZvpCUhURjVfcypTN4CaiVAcB7vPH4LMIWUFrzYdLnuJgUzI4xyHAdbXghiTVHnbA8fzYJ061l0Oe9oQ6mzUFtDh9FYWxvE1aR/a7JM0dvjRmkG60op0oeyZAOt1Nlx1WSA4m1K0W823Q6YP7W5iveJhjIn3B9WdPs5OMrBbNYwcTHgogcMjlX2nZwjeykGnNGJd2JSxpiRYLmpiL12dRPv1BQ2q0UAqShNsCaNGqL/GJ3RG/2ItNkhmPKg9kE5CsuymHfVOXKMSHfcb3e8S1YUDrVD/PfzsPpDcT8TBO8cYxiYzkmAEIgp4qNDGtDsvX1er6QQGbWyHw8mRi524gjR4735iGs5UEwWKQcgEx89eIPpjFlRmZQ6z8/FJMUOoy/mFPFOjJcQP0wpbP88jknKJsV2Yt7jPjqtVZZlxckJBFGxPOFpmW+Pfae3eaoZlTnKV6T3cnr1NNB1WsTDuuJDoNz3s4FkiP693Blz4MJmRRrYJFjVAHNqnjYX3QldqsxZOWrn6fIKRa0ZKZ5O46i7cRl8RFygHjdSWiwv0AlH2RmzsWzPHBVqH6zrgsSEYjlso1vjVqLQWiMEh0PQOeldSZ1TzfX5WT/QMJEf9LX5Kz//J/98/oe/7J/lx33bj7MvOqwH86FgC1hw87CueuuN+31n3yv34yAu2XD3x4OpkONCDIE6Bv3YGWMSYyKdWWR9Ks4FchIQT4jWsdYBIXtS9B8DOZ14xAkuOVStMzq6mRwNWSqAYY6jj+ariYF12cxkvayWZVGtA7NEWKPn+vSEOjhq4bg9cMFD65RSP3ZGRIQUEtkbWEGnUI7KZcknptlans5F+ih0xSQtdSBn2GltSvABOW+meoZ6i7cAzdkLydlh43JZeHm5o1MZrRNE6WKehdEqtXXctK79cX8h5UjZd/YzIDKnhVYnLgm9T5TOfjxoLfG8XW0i9zio7YUhlqV2O6pN3NxA0kGKyfKkvCOEaA+t7LB78vPVFfmbeTkRolNSdKxLYmtKG0aGGlmZfRCUj4AbUys4fBaUyRTwyYz2XiZOB7V0HqXiY6BIZ9SJ+H7ikgOzN+pRDCiiMB4PFjZ8dKTozcPSJ20qQw68CLMNvJjwx59melHhsj2hc1JGJ8QFUCQKvlULtR6Gut4uRuAKPjGHdQW9c6jAXgvBgx/jbKKAZM8oFrbJtvCkFxYXDMnfB0OxZ4ZORJ1JUHSQUyLEiCsHdCPQgW0wx+0d4iJRggWQpkTwgdmmFbDqyWtiyYn6aKgbuCx4MSiRnx6imeSn2j0862DslV42fs5P/Tn8nj/yM/hdf+C3fu8f9jcW4hxLjDg16e/o52fsbN4VUmTdLox2Z1kyvR4kb9I9f3ae7y87cyjXp43lslgjQI3Wxujma1aH95ElLcz+YQDhQa1Qk+DtZ2tjKLQe6aOjHwJpe6N1KyjERRSTKyLmVNyPnXIcNpVOiaPuxBB5WleTM7XKrIdhrnVaqHZc8PE88NMZsxFctIbmHPTaWVwi5Ywf3khxc3J5/URMiTE6eys4dXjvqUc9EeY2oVpzZInO1CsBC9h1jiVm1ukZ/TOUhM/Qd9sXn65PTO20oRyPnZQMtNFqx4sQgmNdNqIXni9X2lQe9aDVyrv372Haz+pjIN6TvOM025nXTIJ516NHWwdnmPV6HKg2K5B9QyLUeyPngPrAy+M9tVkx6gmkNXHsBfHgQuQ4Kvd9p9Zicrbo8R/UQAgpZXLI1LabpNlFWmskF5l9EkMy+mtwNF8YJ3QBMbDNYNqB+SLkvOKDMEannKj+b6y/fCl60nQhOU/wgegM5eq9Ne2nDEKKZHellp02jW/gfaC0CjQrmsQoijkvaKsE72m9mpxYHEHMM+qdySLtc7PJqoh9r5yvKqWNOSe9N+owZQZg4fUOWi9GQlZFdbDkBdFheYk6mXj2cqAitDLoQ8/JoOBUmHKeB0tnjkrIK69fPfF43BCZ9FaoZef+/s71eiU4d+YVNiREaquEsCJAn53WLItxdovSAaX1ZgwD57CJpOCdR6eBVJRJzJk4zetq1zZnM7QRUiR4QYnUusPwCBHnM7U2Uo4wbaJX206KidEcLomdz6cyOj+kYCJfk5Vl42f/2J/Nr/0f/Bq+9fW3mg/NY9lfCiSsWFMgWJ7zy37nu778Re73wzLAEC5pZX16Yn16YlQbnx6PGy8vD5Zsqeq1GlY0iKBO6K0zPhB4wsqyJcZ+ICgxJnJa6Ee15Pk5bJI2QaVzWSzjpE3LVzIyV0VQgvcWsus8r54sk+bYX5i18ukXPuFbvvWHEXTgc2S2Rs4Z74MZwMUS5f0IXFMyne3Z8TDKVkG2K+rk7KLB/Ti4151SD7oOjqNxLzveB1Qco5t6akkLKdnGen88WFLk3gyJLkHObvHCjYcR8Wanj0EbE7Ax9JzKOKEkiEk2cxDWmA1WEIWAJwZHaQeiUI9GviTanHQVaj0orZgRlkEb4E4pR+0NFwKvt5WcV/KSiTngzuvg9/3R//vX6Er9xvqe6wNswAfHsjqWh3DNiaNUtpToy2TfLTx0VANgOPEED07nGdwKU84A11NW4gMcs1NrR4PgfCCIY2/VcqdSJnqHzkK5m169+0otA1UTWrTz8OtViTEj0fISfQikJeEl8LRerGnQGk6wQjBGppu0YYeqOZXSLAT+6bJaJ7BVliWiRLQ3ajuYLjBaxSls65VIZHvaGK0gOqA3fDSpnIghj/d22MRA1DJ5ulph5TwzbwRXcGJBnaLWgdfZEW9RBKjSi4WFyoSYPEu2g32rBUKgI8zakTGJwZnsSy0Ee7bOOIQeBset8/QtX+AX/ex/kD/+p/8of+HL3/E1vLI+v0tETHI4Jr0ckByzmUm/HpU1g9OBTyu9Vy6XCzqUVhoSHaXsppLwIM6Q0cEFymy0MZjzDK9VWE5vNNGynDxygjsGn717S3SOOU2ONJLw8n5nihV1zgnBZdZFqL2jWPD8pNFlct/vHMUogT4GxpjM3sg5EVwAnfjg6fs4G5idZXvCO0/XynXdcOJRzBsz1QpRgNGMpDyl4TQgel7f0+HxtFrNCyeWqzaAZcnEnIgeQnTn9LihOgl5ZXY1wmLySIhI8IT9JJgOxyGFqWZZyHEjP3Xe3RtBM8sSmMMmitctoTdo5cA72OvOp8tr7vVAnD/lyJN3Lw8jS2ZvfrZxFriPB5KtYcvwHO1OChdyzh+npAi0WnAi5OvVZNW94aLyuD3oav9/H6Yj/jyYttEIaTUIyHQf44cUBRkncdkzxHzcre70AS5ZxuocFjJbP9Ct18CaDVTjifQ6DSTzOZN/fV7WnIqb8EEcKhhtUwWiT0w3UZ3c94PWKgx7lqcUKY/DCMNihfzonSWt5jnzEYIVJt555qxMhNF3wJGXSEoLKJanp6YgmTqZw+7nNhoM0OBRiYgXmy53K7SGGsmY3nAp4xFkqsmYcacVR5izWa6jTwa9U+zfBLrrJC/cj53SK+GctE3llDUKrdtZNIbEaIXsTaFiAdyeo59TNFWmmKUhhIjOynEURDz7fmdJF6abSBdCduCmkaG9ozXBi70HISVA6GfW6pj2LIw5MMaBjolqsN/FOeq0Am+JyXKH7YMlWQrUST///Kyvm0ItxcTP+jE/k9/4P/8NXOVqxdmHP2BFmgc97GtaMNPxUI7SGBNCTJSjUavy9s3NTPvlxmejs6WV5+tKadU8VcP08F68dTGdYa5FJnH1hBCJ10COHjcGOQrLmtAp3OtuG1uOpLiBN7kTKryUnfcv7wgucV0ylyWTYkBUuOaF6+r5ZPsU7z2vP31NvK7QKvR63uyJEAK3+06tjamCT2eQdY5npoyQfUYEXm5vuN2UIIpLgdGF2gZvb3frsotj3a683B/oHIh3aHccVMaMpOhJYfL2/o4osOWNOjzv7w+c90zg8vxE641eDmrZ2Yf5aZwXcMJxWPW8RWdevbwSxOOSsKSV2hop2qQxayYlg48cx8792AlpYYqj9mnj+Q5hyzgXSGExA7k6mEJAkSD8sf/Xf8z/5Lf/mq/NxfqN9XFtaeGX/Myfz9/xM342OgOESE5KHkY/bM2zJWdCvhlo+mCOk/DoAl0Hfe/WXQtiB96qTNsVyfJkTYBRScFxtMocDb8ZvKMejVatHyfOQodVJqWYjn2e3fQlLsS08PrZ8bjtXJ82UnSIKEEhhmD+HSwTp9ZqG4FfbZPGNqped96OSU4ObZNX12e2beXt+y+SlsQlXRixMc68LFF3bg4LqrDXxtM28DOi0jnqHVAcHfpkuy7Mbof/4O3gddTOmiJxCfTjQPxC7x8m4memjwgxRnLaWC5GAeutc1k2BKH2w7qsblLHQRADP/RpBS1BCbNxHIn4yPyEv+Un8rf8sB/7jULtr7G8c1yyxZ60diAz469KuVvxzrSsrdF3cojMOgnRJqmP/c77dxUFruuCi56jHDgiKsrb/a35OUNAxPOy3xFxtPZABJJ3XJ6vHEfndnvhsq14Nxmt4IspRN68eUNa8tm9b5bFtJ/kRe28e3/Q9DC5cTUkfYwBHzz1OCj1TnfmLRmtE08YwGXbEKwQuuTLR6/ym7dvCDmz+sTsNjG/1x3vPCkanKHUZvJOIEdDi9dejBQnytTG4zhQ1/HPz3gH+MBoBzFE2t5NIeMiMQY6sKTIaOYj0qksaeMQ85++ev1MrS/UFulTCZJ5KTdiUJwOooPsI7Jdef/+ncEO8sooBfHBvN+IyZ7HAD0JmBJAB95nlhwYzSM09lFN0RIs6zCGxOX6yjzecWEvB9KbNW8/ufDyfqcKzCmm0gl28B7HDadnLtVUymjM1vA+mX9JC601Ys54h+VmoTjnIcJ+3wmXBZ2QHEQR7u9eEHFseUNl0ot+v6WPPySXYk0+MVl/G5OBw8+TlCuOHALHXhhTTVLvB6tfce6kd2IS1SSK90KvO0GdZbMFj6jlfI7hyDnRmjfCpAR8iOiozNFJKZ/KDGtUgHxkFZTSGG7Shic6h5y08LI/cD7y/vbAlcpU4fWr10iYlLKfHk5Hr9b4q1oxEIdnyZvty90gJku6chyVIgURpdwbl+uF9y9vCTnhg+dRBzkmhloWcfaw7w/GPHh/vGFbn9Bh915wjbf7HdzAB8+yLozamFNos3IZG2tez2aREdcVGN0aVm1UQnhi0tn3G0vcGHNnuaxGrewVF05oibd7tM1KacI6Er0ZxRb/+Rslf50UasK3Xr+Nf/lX/Utc+1mkfZA7frgy2/mtDfqhZ6dcmaJsT8/0lzvaDp6fnmhTKcXwujIbS7LO835/WPAtljeyrStxSfyFv/Ql3JysIVJGY3/srHGyXiycOahyXSJMD1iBpGe22tv7OxRhS08QIMfMq+fXpJDxIly2leuaaOVBSo1X22uWJeHXiOQISdBhUwRFCcmR10x9884Kl2BZGIp1HQG8y+fBzOEE6rFz9EFqFecXamvWnXMme3jz/sZ3v/mMZV3YLlcLy3RQZyPiOVq1zlDOiEu46BgOvvz+5USMT6Y2bvvDQlrVzMohBuroOHFEwQJCw0LKAei83N7x0t6yPG2s56buTk0+YFKMZLSt2odJRJwnp4Ccsq4lRmat1GhSHkkOSTDCTv36JT3+kFhbWvgHfu4v4Vf+t/5Jtviaz94VfE6ECO7RCeLNhB0XphPa3k0aNQYyOscYpJisY9kLiYyIZzLpo5r3ynumTq75yvvHe6R2kMmx34nZco+oDlVhzoHzsJedcUYCEAPTOdo0T9vRCkMGdXSWfCE5Z/yzU+6i3kIyRxv0YURJW0qOQnAGRfA+nt1w6K2aPC3awSr6iHOT/V64bCbPyNlTy86Y5r1bshCmHYx7a4gqT9eFFD3NK2610O9HveGkG9nK4FYmh3PKmX5qSOlhoJ+nSwSn+AYXvzKlE3wgpO30BYk9F0XwPhlVK3imTNoYSKuUPdGHZ0kXvAsmyfnG+suWntli+26h56JKdBnZHLMpKVrkQvCZR6lkH3FJqKNwf1TKaYTXKbx9/x6A6/XKEiOPl4KuQF6JXnBhUsfNvFyi3NsJIHFnjpiAU89URyuFPgXEcXscduhUkwDW3mh7JeTMaAOit6JLdpY1syw2KZ5j8O79jW/5wjfBFB6P96Q0LL/w+gk5Zsv2dJ2UErVWLtuFPhXxgUd7AYXSDC2fcwRnG7kjgipzdAIBlzytDYvuOPOanDPycq1KDjZZzjGzLhuqk8tmGPovv7zlKBUvQtoW9AGl7Ta99hHVibjAul7M84wdlp8ur2i9ov2FJSVeXZ8Zo9P7JIkgS6b2hk5hCYk2hnltSrWu/CZcn1/hzr1qus799oahk+vlCSdiHvdpPzOckQTLMPBIaTvr9gnbFuiPG7MPJIWP+1kIlplays5RDkYfNnXUhg8QpqfMO/d74/Wnr7mkjSnK4+VO00m+rvQB1+sTIQiPl90yYk84Wp+DmP03CrXvZSnKbBOitc9EldoGtU0LUAaO46C1Tu2FNS7EFBhtcDwaKS+0eoCaB3URD0umyKSWYah+LCswbYl6VOKaER0sOdFaw3Uhh4RXa27jEkc72JYnxj7wkug68OrIOdLUGhhTz4ZdMrVKH5OjDIuB0I6ohznPiAwP4tBeAaHNxpjKmJBSQqbQuhVVNlmP9PngdrxYsZozoAxtqNi93U7qY1oWWjPA3v7Y2baNymDdrlyc0saCqtL6wLtAPXbyYl8rZ4M0iGPM/aPyJKYNncKYB8EvLGllWVf7xHpFfUR8Oq08G8EL3js8MIYwu8UK8EEB9jlbXxeF2hYu/Lyf/PO49IsVZh+k+A3ooB8maWqkx1qVOid92oEJEdqwUb64CXMgbrL4SAwLn16vaO+IKMmDDgvg1DlMphKjqfe8I6VAlLPg2lajHvZKLY3RH7y6vmKmzL3c7WKJiccxuB8P0+T7yHW9oDpIPhK8SZOu11fktHJ5XhDvIQaIH12b7KWZVKsPSq1nDkvi5XjgQ+Jou3UYptJqIa0rzgeuW6Yn4d3bu6FgndgBNnmGjjMFPnC9XPHxzHYi0ns1So+Tj5O82Tr3xzuEC0TPfb/jxQ6StdsNtCxX5gDXzYcTgueybaCDECJLXOiz0dwguwi+ImPAmDQ1eU6MG6UrrRUbQSvUYVOVLWcjHskHT85AR2DNlp8mXrjvd/613/ubGJ9HaNTfJOt5ufL3/uxfxK/8B/8pcvyUzx6Vd7tShrNgdKdML2iwzWZ25eiFY3ZaLXhRm8hKN6OvBPY5UG300vBB6AyCOHBCacXq++QwnaVjPwq9H/jkURzBWzc0OUexLRftjcFE/HL6B/SkTDmkDybd5JbzlBV2k7wsy0JXoY1JCEIbRsTKKfNNnz4RYzT5UmvkGNEqPEqxybaeHfVsofANNbol/pSyDEovJNehGyI/xWCeJxH7eScEQk4YUT120jk1kBO84sJCrRZyH2OEAfvLHcdkzRfLmiF8BRzgYPaK6ejsjwomDRGh9QFtMPrkW1//SH7Rz/6l/Ik/84f5zs/+3NfyUvtcLhFHb8ro01Qc5WBdsh0MFMoZZK194sT8v1JN7RDzyuYS27pQj4c9i2NkrxYLgTf4wxiDlBLXzXItexnEEAgx0lpn3RZQYb8/zP9Si0nhhprkcE4mw6iFzlHKQSsdnwLX68LRlO4GW9zwMVo+1zB57KvLE4JJ41tXxpi8ep1MAoUy2oGoRQ+k5CElxlTe3l4ohx0qn67ZfGyjMlpjDms2zG5G/qlCEk9ezLtXqh04Y1rRGWhzEDQgwTOdAVFSjhY74NQOtmPQRqONavmbUdBieVXv3r1H/DnVaP1jHMzsk1p2PI51yahOXl1eMSbcq91fvQ2aNroOU9V4IRCo7cC7SHCRlCKcGaI+ZerRKH2QfSAkCF6RYZi5Xh5secXLwnhUHvcXNEKvDRHYts24abURZKJ9WKaUDzzqQcwrrQ10GJCLIZad5z23+4tBVGJmickyGHvnfr+RxoLTybF33Bros+OCx3n9agdef50sgSioB/GntWOaVF4UxugwwZ9I/qnT5HiqDCpuerZl49hPWJ2TUzp7Yer9bEpOZjGQR/ABHZO9HiAeNx21m3xvMEEsFmZOKLXiJYBMcjDOwBgVL84y2PZG8IlyGKjjUQo+qllpmoHsxgQnnmXJ3B43xhyEsPB0ufC4vafNSasHEwdVSTmhOiml4H0mhmDT/X7Y/q3KUXbW9EQKC+3o9NCIOaLd3q/7fcf5QqdQ20Etlevl8hFcsq4rTjxOFJnTdm5Rlrzig2eqZfQip69cO+uSDQbUTKq9bDbtTDlylB3VyfWykf2CiPnpjLYsUD9/0+Svj0ItL/x9v+CX8uyfUSv+7Zxuz1V0h1GNuORF6MOKtEct7K1yHAe1NtPD+mndCHHUehBi4Ol6pZWCjEoKCR2NZfGE6PmLf/E78eJIZzZZR/E6yTF/RCDPacVfDI7aC0cpqMiZlC4msVIxrb4Ow6n2Sb4aLS6lxGXNRvz6kI5+fo94zzgK9/sN5z19WMdGmYSUWdRojeKEFBM61aZ83rPkaHhgTaxrw+HY67CgbG9FYOkHiLKui3nc1CiK++P06CHES2BJCwc7pQ36+/ekYD45MOTyUPMIqQR6v7Mfd/rsXLYrDuWyLgiOHBxuKEUnOgfBO3LM1FogerZlobTJ/XGj98p2XUEs5d6lQEwrAcG7QPSeNUZyTlyXhafNpjV/+P/zn/Bv/qHf9rm72f5mWj/mm7+d//bf9U8g7gt89tK5HXAMR+nNcqUQxjRiY52FR+lUhCGO7hytN4IEeleEiYg9oHur9HoQ1Fn2UW+MNphi0rEQAsqwCayaUbrVdk6LPDIVYqDf7wwmPkUYSuuVnAO1dNz0BCI6ISQ7qAmKJEdOmdIOfPQklzhGI0aPr8JRJ2NWGA18tNiN0WB/0GfD4/ExMVu13EW3orOhKh/KQQMcNDN8115IzrG4TPIOp54lLTgRKubdnD5T2k5vOzARHwGhtk7QYsSsacbrEGxDdkEI3gq0MYz4JTqZ1kTFI9QxKf1OWFficHgJjDIRH+hlEiXxbV/44VzWy9f2QvvcLiV5x5Iyx35HsDgFUWBUgkTrOaoVTIJwPKrta2qHcFMXOLxPzKkce6VoJ6dg/93jOGEbnRg9LkT2Vg1ZHTzOZ2Yv7K3ju33WIubjQC2axnlPTJ79OBhDyVvGecsh6ufeGUIAGdRyxyNcLgtCPKdxFoIdfCIHT2+F4Kx9b+ATIcR4BkhXAsplWQ3m4QIEAxnUR8W7hrZgdDjtBJ8JLjFp5zTcMOG9D4afhOVqURRDOWojecs+dSI4Lxb0i/Du5Z2FA7dK6SchWJX3jxdSiOan6zZt31LiOF5wImdOonkrlhQRiSzrwstRPtKLfVZqfbBcF3QGXLWMUObEO6i1s99vdg+6wHF/oCnzvH1KEKjthSyO0QtNbO8WF9gfL2iF2g/CYpOAx3HgzoiceMaaOCdcLlf6mHhxzGFTynM4zn4c1FI4ekHF4edEveM47oSzAaOj0nunjoG0gpuBOb8xUftel3BGu4Dz5pnCecQ1s40gOBdQP8hkSi30as97gLxmVDtLzhalcZI+Z2149ZgwwuAj6ABR9lKNojgGbXZCMKy8OEghgw/cH6ZmenV9on2YvDojuzpntMfWOynaVH1ZVxYRu7+dI6SFUh8I3sAzrVPbCS8RO3N+KDiZw37/aIHWMWW29Yl3n721vTYsjDkQOnHZmMVZtqBOy3Ac1c6ZU5A5adP8cW1vH6fDpVayF7b1wpRpYC7GeZ96PiDe87IhU+jtoGunFwh5ofWD1hTw5JQRCbRZCT4SQjhhKw7vxLJao03TR1cYwi//+b+cX/1v/XPs7fjer4Ov8vrcF2oOz6vwCUkTesCsdv16U/7Qm03ROPHYyqQ063QJyvuXF2rtXNbNEJ7es+SMtgWZZopMYjhR7xwpeFL2OLEO+je9/gQnd5Zhm6GMwroFvBglSkQoY5JyMGyrKr47pgr1BH6omsTFkPjHOcI92HpGYrSw55h4vl5Bzcipw3Sdk2gQErXDVxuT0ireZ2qfeO9p1cJ955jk7D++c612DhcY3dHaYI5Ga0oZ42yaT/aj0vpgDlhShii0asGJiKMzKe0wpPiHAjNGXh47Uzvb9gG7Kow2UR6Imv8iBAgipBTwLtFbReg47zhCQLmfndoA2jj2ihKJMdFco8wKh+P56RV52VDvmJpQ/RDqfeH5cuV5WXj1tHC5et7cv5v/7e/53/Hm/uZrds3+zb6++fIt/ML/6n+Ddf0m3h5KrUrrcHRHbY42ha6OjjBEKF24l0objYlyaKeNimeQfUIUejlM9uRBJSBeedRmMpTZEQ9JFrx4i38QsXvPKYhRq5yY76u3ZsjxcWPzV4OBMFniipuO3hv39+/xPiBXu4Y9JmfLIdFbo9WDZfNccv5IjKqnEfsoldKGTaqkcxTTal/WKzFFNCzmdRNv8IRRDKxQOk/XDQ3KoxSYigRPcuYVfc4r4rL5ZBMwBi/HO5iWeyPepBsxZ4NRdDOBf5CHMg33DMpj38F5fAzME7fuSSchUxgYcEW6bbh9AueBtrVKLYHj6B9N7N9Yf+VSxENeF9JhMiCmZz8e9G7eo5gSYcmgk9k7OqbRRoNy7HfuR8G7eBZskdYrzgVqnYSzGRd84P27G69fP6M6UHUce2PJHmXw/vHCnBCd57qu9Gkhsd4H+oTWJkg/vVPgkjMJZB8sMRlNUgwLP8Yg+kTtg33f2dZMPCVJ9/f3E2YzWXOmDZNe3o87Y3SO44GIocODMwhAaRUfYDQlumTFI9CHNVa2JZNCorTO/XEHCVy2Z3w4c9WOwRA7wDEHzlVciiwJg03Vg9IqfTrux43oA8xOiJYtdex3RO3Qjbf3LsZErSZdG9Oz18PCdJdI6wOnwuICy+XKXQ7iHIyy46aF7sZkBGi1Ux8BU984mQZYGEJOFpWhvdq9We0g/ri/5/r8ipA8Ka28PG6nXM3Rx6AUa6rmbA2q/X4HAjEHWrG4hJQiR3kYia8eOE14H1h84ANsoddCXiLRZ8RBLc2mETEQc8RhkrBvTNT+6vWlt1/kf/Vv/gv843/PP810ltM3FZiTEAIxLjY00IMYLCy6OMdeHrRhBdpscLk+U4/dCr8x2cuDFE3aqGo5nqDEnNhcBLFrNuVMOzoSvRV6U7k9CtElhjaGNpYlcpRC6c3UG94ZjdINei/EEHg8dnzwxl1Acc5oKFMGIok+BiE4bsfOfHTylmjD4DNjDKYOk1PPzmiTES1eidEI4YKo0Ftj9DuXyyccZSclI3f3tkOMyLBGgxODKC1hZXprWIozCX5tZ36jtzgc5xUX1J5DtRCOQJRAcJFRB7Xtpvh3iWMcLGlDvKOPSXDD4kzSZgHgcpY/4kzaPCezK6jw3/y7/yH+xd/+L36jUPsbXVte+e/84l/Gf/HH/BSwmBfqATNBCAZ97Gp2RzMsTlxwPN6+cC93vE6WlHEejv0grwtexNLW2VgsGJ4lJpM0LpkgZ6GC8HQxZPC7lxsSHHEmVl1RgeQSvRZIkW3NtNYMZcw5MXAmyZCotLEjw9DHW8yQEgJn6juUVrj1xCfXzTaPIYweePfyAiHS+kSSp+yFkJYT96xnEKEQXGTNCe+F6M03Mqvl2PRWT0+Otx+oFmJbWsf7xBjFQsKjI4jn0d5xvVxYlox3k9v9hTnsfcwpcN93dE6eriufvfmy0abUxvRLvrCmxGVZWVM4IwNs+uHIfOm737HkhHplbwXvViR6Wj0YYTJp1G4h45odMS10hegi2/ZMaTvHUdnyyqvLxqvtwtMS2JZITIZw/fPv/4Llx3xjfU3WF67fzE//W38usFLroFRHLYM5HK5HgpjMLgblftxMbkCkjcJ+WDh9GQ1tSs/gRsWnwGgKTUmLpyPUZqCNEDweT+9w08IYyhiNZYskb4bkkDNOvN2vCmldcFWIPpGXzJoW66hvmd4yzR300U95SrDGDaf8US0P5367sywbPia0dZZlofVOiIkcrZs6RmGoI4VE64VZK8rEx0jMC8FHug773t54964ytkErleSU/OrZIAAuINHMuHLS4JwT1pygT5tYu8x05n0SFt6/+wwQYlpow8zX4qwoaxJIS4ThaMMkcTi16V7rpCmoQDgF+6LgRCm90UfnVgY/9kf9VP7On/6L+Vd/x6/jqPvX5mL7nC4ROSdDFigrotT9YGA+FMEw0ZfnK4xBmJOhg+N2MIdwfdqoe6eOB95nXMJy/2rDS+Tpk08JKtTyAG9gDi16Nr06UwPDW6tv33eyNxw9IlyWJ0ov9DF4ud/pU1FnodohbvTROfbG608uPF+e+e63b0nBoXGgU3CzsW0BET2R3Y3SO5POell4d3t/Sn5Xti0xxsT7SJ/zBG4YIu5+e2HbLue151iy5cZpE4bAHFCkcN9fLAzXQ23NomSkE5yeHXHPQHg5KrUqy+LQ2TnKzmMv4B1r8niXGXPC6NRiwC8Rw4OLJAad2/EAIKVs8QdObKJwPwzklZJlYw1Fl0meA50rKS/kGKilMEantsG2XBCvJgFSRxuNdcssOVHuN4PH+ECKylTHUXab/vVB2c0q4Icd2FUnMUajeopw3KtNF6KnDcWFYMWq9yaD1DutDdyspLjggNKLUSlFSNsFJ3DUneYaThxTJ61Vsl/smfON9VetR3nwB//kH2IImHhBiMnBwzgB0Xt6DoR05XjcUOdBbJqdl41HKSwhsD9u9FrJYaG1yjibNClGoxn3Bzqht05eLwSMJOmnw8V4TsXVOAS7MPrg+dXVcA3NCrRlWXg8HvQxuT8qfVS268L7lxdePT/zuN/tvOw9wTmulwu1GWxInCBTmN2xbAt7PVjSQm9GdZ2zI85zf3mHRHBeuVw37kXxEfajMqYSdLDX94SYmNPR24PJZHbLDlwuz0QU35upPPaGJFN7DTVQSJuDdVssk/L0i/dp1prRFJ8U5xouWOxHaUaI9E5s91KMICvZMgb1Pc/XZ8gW6i0yGBpwJJN0gsEJP0eNis99oeZEeLpcyTGhDY56Kh77RxgiWicxCTEIexncbrb5jCbsRyHkSIor67IwarFMFOcIWe0N6JVLSmbMjp4UPDGbqVl10N92QrCA6CUtSAjM1i1wkoRPiSVGmFDbe3RCG51HbXaBYtKR0RtNK1MWJkJtB7CeOSeB/SiMzz4jhECvB4/HDSQgrhLWiE6PC4lyf0vvA38ieGOMNo73SoqLEXjqQXTWBUSnHTSdQ4JQhlKPgYuTFBK9W65GjoH7/U4v1aZn0wzk0WXTBevk/e1BH51Pr0/MLow5eTweIIEvvL4wR6dUJTvTcS+LBYBr6+y1koISkwEcnq+Tz15uduMNO8CUMVA9TlDIhneB3jqVQooHy5rZliuXNbIu9senSEwwQ+c/+X//x3zxzXd9bS/av8nXdHboNBrnwA1I6qz7hkdDpHWQZ0P93kclLYF9ZvLmkbZTayUER6sDnz37YbQgryZ/GrWd0BmhdfCr+XJa20khM/E8jsL1EvBLoJRKyIHRJzo92a+s60KIgcv1ghPPUCWHTEKYJ55+iYlltW5d6wPkOCl04OawAOxyp7RmOOLkWZfI6INeGrPb5luPAXQ7faqyPXk7nDuQESzDSs2XoALXV1ecWHZcWhLOOVqv1FIQPWlzAjFnwpKMABeiHUDF0auFHuOMZLXmdBZhzZ6NWukfsjyckpYVdc5y21TPg0ig1GbSGfUW8BqgameMwbc8X/iZP/Vn8m/8e7/hG4XaX7FElOsW6DNxlxt9TPJmwayl2KEkhkA9KjkKrVWcgxBMa5TjxigPC7xV5aiVLBshJLZttdiEOXDrgjbH7d0NEcinR80vVpTc75bBNf002Iha2OtoE/WeOWG9ZFpV7kcFscl2XlfzftYCrjOmMLr511LI9FnxErm/vFBKIWAyrs8++25yXjmjbVk0fnhDPoZkX6+vaK3xtK2omHJjKoxm0kwJk16Nj+dU2ctBjIneOt0XtrwxG3z53VuWlPn01SuLNEN5f9y4PUwm+bSsXK+R2rrJOoMjuY2jDd60u8n/T5kwMi2LKShreCbGSOu7NV+OyrIGnLNmhfcm+brkjb3tPK9PZhPwJl7Ol9e8efNlyv0d27awZTvoegfX7ZnpBm46g5q0ht8uaNvP6UYguALieP/Y8RKx8PJK643LtiBB6Hulz4mvDbcEcoqU5j7G43i/cBwP4vV83/opOzqns0bR9SS3Mh+DTqM8HizPF+vlAvo5C/39vKypJsVPQVgS3G5KipnRoHyIwZjgc2B/eSCifPrqFWV0xsj0fUcBHwL3/cGcnZACwS0oBYbQm8N7CGHDOaOCy+zWdAwLa77ycn+LOIhOaThTZdQd+/QchIXr9oqjPljzxtSF2RrrJZuyQgveO0QmVR+04RnYcKTU3Ro82XMcB+ua2fcHKQSYBugRUV69+mbGUHpVCJPFXenF7ABR7b6+rM8Ik1p35tRTWTYgCbW8kNcnIlDaw+wFzojDeDBEweA4HiZTPvNCR6+s60YQiDFS6wMfIi4lXIqIeIua6ICeP08DSw6WgSwTL5PjeLAkIc8INJPqRbHpzedofe4LNRRk6FcCrYfRM0f/yr/fa8EX5dXzSi2Nx2NnXRaad3z66onHsTPKAcHGxcsaeH25otNgAikGZA7SEkxSEg2iodOkClE8wTskBNKyMKey1xvCoNQHIUTuZfJye2FiVLXRzHtQWzUClzjc2aVwwGVd0JOk8+bdzTokE47a8MFz3TLOeVIIhoFt5id78/KOPmyEux8PcI6UMyFYbsTRdisw20Sc+cccQs4mGayto73ReueyXNlrwztrX+57MyDCGgk+Wo7SBB8T3jlKrdTZKPXBPhJ52dgun1DaIDhPCEJwntoOrusTy7KynJ1Jp5O4RsK80lVxDgslHpO93nBhoSnglBgSgkNcMGS4mCZbp7L4xLosXJbM6+sTOXvyIog0fs8f/vf4Vf/Wr+JPfelPfc0u128s+LNf+k/5jb/zX+Kf+MW/gh/5hR/FDGrQjmby3P3o5Dh4U5zl9B2VWjvEhb0W5h18HPjpCItS+s3ooViB1KqATns2EMDB49itGz+V2Ss5JXxYqDrR3SZWfjdvoz/bbOIt/2Xfjax2uWw8+iT7BR8c2s5Q4emIwbPfb9Aql2UD57kdD/O9DkAtR6ntk74Ogy7QcZqo+zRpmRMIjjkmtR7UMztm9QnxkbQGtjWRciJGR7kf7LVy84X1aeUY5usbH3T6ImeeouP/x96/x9y2r3d92Of5XccYc873XWvvc3xsfOFiSGNoMbQCgcGiUUirFJpSNaqjpC1NQWoTiYgKFZImKY0bmlAlBNpECRGJQK1onUBsg+3YBhzHEMc3zME2dXy3Mb6es/da7zvnHGP87v3jGXs7gB0SK2XvE62ftLX/2Wvtd75zXH6/5/k+n08IeuCyRqijMUTwcfoZSMgYinU+vDkhWPoo9OEZxlJbpzWFMFQ5qre2KWGzqzAVARfO6uiSTmuQ9vRmluVnWUY02RB8Z4knZHRaKZTRwQ+NO7amRDdTEackwBAdbjjSnhTF3gdDLEsMCncSw8iVvW/0kZUiGhQcoOqGRi2atqitEKaocyx94ING8+rWGOJYt5XaK/l1o/TE8vhAyQqGMhZe33bMEMq+E5eJWhJzjYqPD7Nu8hzY4YlTwBi4Pa+IGO0oiuG6rriLO+LClXma6KWxrc+kNCiicJTa4LKcdP5mGOLkwHRKHhi7sO6JOAUlCdeNUgtr2ricFsxVmEJgDGA0Utp4+623Oc1ngnPsNTN5/VypFbwNPEwaK972RKob3jm8D/Rm6GhHzFpDkMiLj1wYtaiiIx9+0FqZ5wljInY+00i0UgmXB9ZNhdrblvXdaS23fWOYrpv8YbDeMYxa79oo5NEwYcb0gaXx/LRSa8e7Wcc1JpWRDyBtSTvkcVHNjdHxiD6azi62ThWYH09YMaQ2MD7q7NG+Mc0TXgZ1T1hjWeYL+31lWRZKGbRyZ57mD6X498OwRPRQXqsSOI1ROJT1gqtHaqE1co44l2m1knolpcS+bUxmRozFGMM0W9K2432E3ii1MgQd1Rly0A4bfVR6ydqRNhUa6ssbqo1yXZhDpIxG7RCC15hjmNjzIOeN07wQ4sJAPcGnU8SIIdWdsndK6odYO1NKVeaBcSD6/52nSaXdh1tw9EHpm87kIThR/UPrgtigtMctsd13xGWsWKidIbp5H0Ofb+v9yjAC1hCJ7Lcd4w0xBLbtRhuDF5cXrPsdH4J2iI3DmsHWEm5EsOYYM1L4XR+dLSfEecgFVRcIvTZ9HjbDlja8teQMMhnq0D2mDsl9oJfY37Y+9Ae1aOIxJAwUlZaPAU4TSODgNEdareTS2e6V4ALWBYxJ5LoTQ1ApYK1Ya5mnyOmkqOtaCgKsT09YEzVCYC1t38kl0bvGMB4fH3HR03rndlvZcsIYQ+udsq2M3rWaJeboPjWlTGKwxgKitEYGeTS8DwQcZShS+fXzXcWmA0bOtFqIk2OvnpzUQN8OIpZ0gErKd6zRKMYwihcdw8BozGeFeOS06RxbKczzjFiv2IL7Rq2VkndyLTBEo47OEggq/bWWUhOtN87LCUSt8vteeae+gjpw3jJPJ0avrNudZV40ymYCxtr3yWSGjsOwl0LNmfuaud42np83hheMVdy5Mf6Iczr9LsQSvGU4pWst1vNiXphiZA6WOBvc1Piab/vz/IGv+gN8x0985wd3sb5ZAOx152s//pXQG//gf++3Qh985OEtftXn/moep0dSatzWzHQXgjVIdxg8r64rrRQSlslP6jwbggyHs0UP69aqxHMMas3aqT4IjhZhtKbepNoO/Llh8hFvrHoCh2bcpRtcEI09DcHGmdJ0M1dNJojFDIMVoTdHCJ1lmegCqQ6GwBIjt/2ODMMSAhwo/ZYOQX3bsc7gYgDAoK6alhu5Dkgrp8sDd5JGaJyndkjXKykEWitsqSICk5+I3h8zAA5jLLVpd+wg8NOK+nR6KQygH/MTZkCvlT70EOddYPEaasylUkrT59mwDBFs8HQZuDrjvGOvHY/BWO2aIENlvOM4fL5ZP8vSeJ+RgViD85GUMnUUrLE4NxGD4IKjbRljDaPqfEY8RUZXoJPI0FkS65nmiLWWfd8oecWIRqMcEKI/lAqW8+WB0rJS3BTbqYXG2vDO0yOkvZFLIe+JEALW6qx0p6LcRhSWZYVOZ183xihYBsiM65WUqh44eyYlw+m0MC1GC3bWEv2kESqxWNOJp8AcPMEKuzN4F9lrYi0rS7zgnFNy8RAG8j6uvLfOnosWH7yj1EwZHTGW0oXXtxvROawzPMwnnI86PmAcPk5YF6n9Su1KkGu94+OJ3rVzNyTiEfpQH6OrnnleiN4QnU4LNPQz+VnIudF8ZXKeKJZ5WWh9YU8bpRVu12d6qXgLo1ZabwTnqLmoQw3tZA+BYRtb1m5/b9qt2593pslTU6G2AkWl4iGcqT0xWc/ohVR3+oBRG7ihkbI+GOic+xxn9p6oo9JyZ2KGYVT/Ywx7XnEh4H0kXi60AaW+l1QAI29Oaj/b+rFP/ih/+Xu/hV/9i389wUdCzNxyRYxjGIsZ/SheDUop7GnTRESujO4Yot9T8JbUE2GOTFa9seYYWxEEbwWpBTGDdb9D6zjjaE33ZqPpbGYMgZoro2vyKxz7zcvDA713dmsx04Rzllp2BoNcs+LpXSSGiLOOWhujD9Keaa3QW6FXwXlhz4kBRPTy6BictRgqvWt0M+eOcUqCnf1EaoNhoOwr81lTIQMtIjWG7p+HNiisWHppZLNirHbJgndgGu14bjoLTgbSM85o8sMA+7qB05TcoGGcqjRELGYIbXSC10Op99qp1Lk8R2uqW6hN46l0IL9HW//wdJQ/1Ac1bzy/8Zf/Rn79L/8CKDAS0KF1/fc4BJNTNHTrSTljTCValWUawAzDqIoAFtCXHupUEuuIxtFSQQwavzsysIiQ96rdLDqjV6Rm9pRYt5UhQh1dcccIOWVu267eIWPJrZNbZ5SE9Z6cE7lobKP1wbonvLFYry9nZywOo52sVmAMcqqMlCgVzS4bS7Ce3JRe8/LyknmeACElPXAq9c0eczsDI7PGSUYnhogdQi2ZeQ7ct41tu3HfEstpQUwEwIrjaX3CWqPi0Nb1Jd764awI5H3jJ3/6p4gxEENgnmas9QhOiTu1UY4/Z4xoF3LX+aE9Za7byrqvbHmlN0+0jmE9VvRg60PAdYMzcFkmddo5x0ceHlimgA8WPxncDF/77X+Of/7L/nm+953v/WAu1Dfrb1t7WvlzH/9KvuG7vh4Y/IKXH+M3/bd/Ey9Pb/OFv+I38Gt/+W/gco88ridOcSP6SLDvYOwAa7D3jdXcydtO8AGkMUzHHtdTXu+YY3aDofdQmCdS2xnvzW+GQRCLjIH0A9Alg2lS/9f99kQejWmKBJxuAnvGi8rT34MuOKfx22g9zTRq26lVN+KLiZiTpw/LsJbmLKVmetFB6eGFaZqxYmgl0xkMyfRc8XMA02mt4yVixbCuK/v6TJgCy7wgfVD64JZ2Siv4rhHkGCPGWeZgoTtAK7q5VY1m10brsFedR3VOi1lDoDGoaFUztUyr4xAdW1xctFPXGq10vFMnmxMdPAfRqnt9by7VfJii/B+aJWIIfsaU49kpgp8CS9U5EOtUBD36oBvBO83ajFZJuSDe4K3F+ogL80HobJSaqCVhxfAe+Lh11UJEF+A9rUXT7xksY1RVpfigXdMOpSdCjEobjxHbOvfbldEb3jsV8w7B1I7xAYtVRLYRnfNGuN+zQi72zLwE4FCk0JnjxBQnkIGYoRRib1kOMXbMEWM9fnhcdmACuWxHYW/BWU9phdEgLDNTqThj2be7/hxOWE4XnNM58ZQzl7DgQ8DbEyFMFITXKdN7Y+2NtVag4q0nThOtFJw1GInaAe+DJcws08yyzIyaMAKjdd3gGY8gulH1htGLzrujiHM3L2xpZYkLTgxDKmJgWEMQQ0qG69Mzjy8eGHSG0Q4/QwjeMNwgZ4XzlF4QMThvSLVT9koblYG+g43YQ9WgMdslRkoauDixpp20buyy0dDnC0BtlQG0WnV+yDtVRJQOPjDqe3OKHus/ZNmvD9H63r/x3XzNN381v/IX/lqs88hx7xYKbQxabtSWFRlvHKUWRm/Y4aij0FB5ea5FASN+0kIbqp5wvTBGpdaGt6KKhg7OBHXQDk2UeOtUC9Myp9PMdrsyzyeCcdgQsM5x2266rwxGoVnVgDHUokmIkhO9dz10jXEMYus/QwzO6zU6R0M9YmxD9J1Wq3YL++gYY9Rx2hTs1VrHdmhWwHXtpi8TcTLsecces7upFUY9FBbdIK2DA2chektB8L5jDw4FR7e+loo1DmeMXstWFVr7uiOhYMyE9UHvk9FVhj15yhClK1t1VDrj1KE4DNL1gNYznP2Zf+If+Cf5V77iX2UvH3x77UN9UBMRPuPho3zW5TM4lBE4GWxJKxb60AKqU4EdlhAi1/XOut00WjJZrHWEobKJj7x8Gx+OzcXhE2koDdIevrRSEkaE02nmE6/fpTT1NG336/sUqfl0ZtuvOi834JYq1/sV4wLL6cJeKqUWfZHe1NEWw8QUZ4wRrtc75+WMHYJ3hkrDiqfVzmlZmLyjNp0PcRerlb9RGMMQ40RrjeW88PZbL8ip8OrpiXVPjL6DaGXMWR2onIMjhOkAewz65LHOk3NhCRNGDC54ck3crzpguq4rzhr84wv2dcMHS3QnYvSIiUSnm7RSGvNywhj1VLR2wAbWFW8FglLmRDTWmXJVDxqOYR1+mthLU6ytNSxRJeLzfMYDwVku5wuPy0xwjhePMzEaZAGx8LXf9NX8H/707+WH3v2hD+5CfbN+1rWVxHY85J73J37wp38YI4av/itfwa/7e76Af+wf+F/web/oV3KOgckK0otSCsXxajhkWHWooVhiYzreOXrXebWOVtTeK/wq/VQFuOa43+VwVtEq/hCzSDO0UslZc/9mFKQNRq1MyxHpwmCHKKlK62+Mimo4johl8JMetARyHzS0w7CtKtRtQ0i1MOyOFYczAkaIy8SQhA+KGS57otuBn0+6QRJ3xMusdga8ZS+qF7ExIt5R5XjJYMEIlUEvlTYapWu3a6+Jrex4ZhwdM44X0ciQ9WVXS2VYi1MjPdarbLX3Tm4ZEni/YGXQqoCttKwdjzcHtJ97GQPeWYK1ODGIGKKbsSfD8/1ORfBGvVXiHZV++MQGi3WMceDojQGDzhZm7ZhGr+4lxsA4LUrWrWKmBRh6wGHo7EgrbOudZYlKDj4gS8bpZt/5GbGWfF25Pesz3xirRU3rkDFoWbHw9YjTWu8YbTAtC+3WcTZQi4JFpjlihtBHZd2eEHRO+ewnluh4fDixrglrDD5E9l2x+vd95battGE4GY8/pNsSA/RGqpnT6VFx407wogLsaD1IgeiI8Yz1Z6wVirX85DvvcNtW1vU1xhudt8Pz8vwWb78ULn7m4aIzNSKwpZXOYJ483jZKR2l+1nOatGM5ji5pbSqD36837k0TMtY7xuhczhNWTjzfn8i9gTO40ZijZ9s6ad0O12HQToAbjKodzjUlUq20KljvtGAyCr0LKe8Er+Md1RSOwTxO00Lv6suyzuKaU5hR2jVeWQQ3T4Q5asHqgNkEcbTS6XRayRiEZdLCrgqPP7j758O8xlDycPAWa9RZ6YKFZJVa3AslJ2pRmnbwMynd6WMQrT8onhVnPbhMKlUF1c4yTUGTesUwnxQ+pyJzwYphNC18xDjTWiJMkeiigmMkMsUT0+TpbbDtK+tNQR7x6Lg3q8CYMQRTlXa83nes9/Suh7faO2GZGeLwbibX2/FOPd45om/ltO9Hw0OI08J2vR7PsM7wFbEeYwzzPOOCRqNHAbrR7nH0OCOkpjwF7wPeO7b16ZiZFqpkpuVC9LPGwc17cXAlQ9JVQUBRMM+0TAwsXTSZxTE2Y7z+d9Y6xvDqoDOG0iEiZCANKHWQK8xT5O//9b+Z//vX/D/eHNT+Tiu3zJ/85j/FZ778XH7n3/ePM7WZNQ9yUQ9DSgnnHPe28tblkd4Ht+uV5+0OBsIcQIRatbu2TPpll2zUR1ILpnd6b0yLwxgl4Ox74np7TW9Qmkdcx+Kw80TNjWY6a9lZc6XsG2FecCEQlxfc95W6rpRSua/HDdAab7948T6e+H4/jOpWmHzEWI1K7veNy+WQQ9uAsROn84JBeKpXcgFjdKj5xcMLVQPshVI3BhlHpZoOLWC91TiY8xqBMoNaElIqac/0ITjnuJwu2JJpvfDOq3dJSR0c75nhU91xTnj3E684nQrOCmGeCE7rudP8wJ7v7Led1ipzdOqvGf19Cue27+9XbgZQR2ffN57vG3vqhNPCIOBEIz/WBrwdmDp4mB94XGaWGHk4B+JJGKHxenvFN3z86/k//ZkvfnNI+xRYfXT2qqjbv/LD38l3//j38In1R/g//vb/M5/zkV+GNw/kXnBOGAZSKXQqYmfSbcXhEau+KWsC2XpMawr2GLqjaFR6U+CIHrSMetFkYMVjrdKx8r5jRLAHSWvURq4VNxv2slKKJ7rIHAIiljoG0ovKoQ+p7OK9IrAHlKJid2eEralTsY5GtYKMwbZnMAXFKnQER3eWnCsjV+3Md0hGYy/D6lyoAkMGpXdc6FTpegArTWckaMToNNrYKve8UUpDnGer6SDxQe6ZXAbeO0w3mkZIO300yjDYgzEQnMZZ2kFx9c4q/e0QAY9SqBVkFgIGi2CGdtnerL95GSNMweD2gBnq/bvvtyOe6Lhvd1JauSwL0hsigp8mes+s+4YbGg0y9phvz0LpjVQy0S3vu4TqteCCYTlN1H2njMHwg4GK1XttlFx4XSrTrJGpvnXmy8zojWAdpXXq2LHuGP2sDWsEZyda67TetduFMF9eMMYx6xEm5GLo44laK4PKtq94e3Rf+6DmXZU108QUI9YaTucLZQy8i+R8RbpCbF6+9bbOnArUXiBY9nQ/5iUNqazMcVICshPs6EirzJNjNBgtU1IiWVifd/76T/4oP/ZTP8p9e4KRtcjRLb/go5+O8Ms4f+wzaKlyPi/kvLOXhjSD7ULOBTMG0zQzTw4fI71kmnRsE07zGTMGp7cir+83Skm0slNyofeBnRRh7t7DnnfDKc5EHylbZsjA2M6gsd5WjDj2snNPSeXBPjKdAuu+6kytCJGFvRamKWKaQOuaZDGW+1aVctcKTgZxmrjf7gqYmb1ulLGk9MxpmjnNnloU2HS/JUZvvHj7BcscASFt24cp+fWhWyIDY4YWrMOhyvBKSCy1UrsjrzeMsfi44L3nen3FNM/ktBJDoHWloY5awDvtNDULoxOixRr1nI0xkKFjNuIE61TDIngEjxNLMRljBrWqSklHbwrTacFaxxIXcs30DvueMd0x/EAGTMvE9fnGssxIBKn1YCo48ihaUAC9zvYdHyJP777GBkPwjjpEacfzTFozFkFEtBudG+7FxJ5XLssLSrnTKVhv2JrqCYwX1RdMhVAFPNyuT0S/EOeFGCeenp4JEVK1eK+u0CFa+Hy/k2dUA3XfNuZoSPuGix7nJ+agnyHEGTM8XhxGnHbJTVfCZhukBucBhOPv/pC82z7UBzWA1+sr/qWv+r+yP+/8ji/4J9TJVCpjdHLO7GlHRNhPC7kV8ujkosOXOTcuh+E8TAFjDblkZAimDEbdMQymacIOj3HhcFg01i3R+8DFWaOWclx8IYI0pdCJYGIkHwhVydpBkwG5ZIxYTmcVwo6DkpOLSgPfq1q21pCGRqWObO6L08wyRToGI4Y9NUpJbMfg/jwFai2EEKhlJ5UdN4T58gBiuG+JPRegYp2lVp1z0Yq+xVmVp/pgGckwWcfwjidjqFji7AhzVLFoazhruZwUxR9C5DR0kDrYidp2LIPgHPNl1mikiTxd38FbofuoLw/3XjzLU7eEWIuxhtQqpsMpRmLUofe238l43jq/4OXjicfTxMMlYB6ETzz/NH/pL38df+Ib/gRf9wP/yQd3Yb5ZP+81GGw58We/+c/x7d/zHfyW/+5v4Xf9w7+HX/YZb2EF1tTJueGtHgbaPTNNgT0nGIIzAzeUUMUxPMwxam+DwWCQATKOrkPTyqfD0lujjkqMAUF0flLU/6T301C/kBh9SI9Bl4Z1M4vVbsFPfOInaa2zxAUrnV4qzhiNUovhaVzZ8h3rZ9w0k0vFBmhHtbK22xFXBBlND5XBgINyL/hJZ8TWfafVwjzNODvhxJJthdIxKRP9rAPfCClVtl0hA6YPcq1YF94/TOaSKBRsd0zOU8dgdG1F9t6pxWJiw5rK6NpDTKXgm9CdwTYFYLhggYYxQnBo15z3Yugfjpfah2EZEabJE9dEjI4tCz4Ebut2iKAdKW9wvTPNAWsE0wzDagJh3xPn84wxDTMaIXjyXlkePefzA8458pZpUyf6icvlBff7jVF3SsrU1AnBIy4yXzxpX1nXHUGYvbrbclppxoMxPJ4v+n7cK+IMDXB9YMVhbCCVjPMehqpk7DA4fygeZCAIxlnocghlhdEtU5y5XM6c5xM2LoidKGnnxYuX1NbxJZP3zmN8G0S7SKVk0rZqNKxUzg8XcrpSasWHjg+B+/2KiHCeF6KPDGsxOGrvfOL1u/yNT/4oP/AjP8hanmAkar0T/IzDkdYn2rbT686L+S1C78Qwk8pOPIias58QgfMc6DK4X68YH9i2XeOKMjCmH05XR6ra5a9GN/BP6/14B4Pznsogp115fF5IKZHLANvYt419r9q1NwMXAn0MXr1+B2tnJbsCt+cbwXi27QZmEEPQ/UFOWrzunSnOeG8Yo+FnQ+9gmoFc2PsNZwOtJNaeyUULBMvlRN0yvVZq0j1S8J4346c/9/q3v/Lf4O/97M/nt/2G38a5Wl6tA9+EJCBRsC1gpxOjFErK5LIxnAIvTpcX5JQwQB1CnE6UslNz5bleiV7Ytsrj6YwxGkM3xjCFmS6ZPWUMVtkL71FkxfPwts6kxRipKWGWBzgOTansXK9Pum+0EyMaOjqS4rwD6cRpZss7RgIpJ0pZuZxnOETytVV6b7RywD68p/RK3jc6Kqcmg5s8zkcVVUe4vnpNmBZu62voFWMHtVWkW+I0kSThrB6JvI9M/kSpG+t2pW1Nx3pEgMDokPfGFGfq0MipcZ7R1INsjOFyeSTvSceCjKX1gRhLjAsYwVnHMI5uABcwxiuJsgtmoBv4Iu85tT8U60N/UAO47c/82//pv8UX/MK/j8958UuoVTdlzjm2fWXQuV5v6kgxmsd959XKHGe2pFUj1/RQcJkWptPEqA1jBi2no3rfmUY/BuYHMczsvetDMCf2VKi1se6JboWSK7ltxBCZ5wUbLDiNXVnrcc5rHrl3jXc4x2mZsd7gfWQOi9IrW0KMYT5NvLw8MEeLFb3o5jBRWyKPnegiwyuwRMSADLb9mXLEYYz3B0DF4g+7e2uK+XfGM6pGY3pTAg5Gca7ORaUqmsH5fMG4RAie16/eVb+GD7TWGDScc5SW2ZNhmhaFpVgLtVJ7JSXDFDx57EfW3epDwAoWT6o79/vKPW2k2jDBM8+TIqi7xkdmH7Cjcz5fePH4yIvLicvFYy+GH/7k9/Mv/nv/Il/yV/70B31Jvln/Nay9VH7gEz/Gv/v1/y/eenjkd/+j/xyflR/ZNuhZqXn7dtdZngQOh2FAN7gQqVvW50AM9Kq0xxB0llNGY3Yze96pa8KJI4RAjAHrvVJkBYKPxGgZFFLJ+DhRU2XdMmOZ8c7QSuMUNcbrguO8nCm5EpwnxKC4cutJrbLmK1YM5/mR+XzC+cBz2rmllV6z+gqN0SbUEFoF79Aqqem42WJFZzSld4qYwwuXqE7IZah82wiFxp6TOgqdxkFc8O8fCHtdMc7RB9SclDZnnb64RI4EgQJ8SmmUW6KdVFSPAQ8Mqx3OIUpqddYRw4R3cN/v/PBP/iB7eoPm/1uXMcLl5Nn2yL1UWC21AF6fhXM0yC2zrxul7HjnuTZwxvDWywe8c7R9pwOVhojh/LjgvXareu8Yb1mmMz46ffcxsGIJ85kWGzkVldP2Rs7lZ6KqHrCCD5HeurrMhkHuql6hV6WeGov4QG8FKx1voKZEiJ7eC1u6Y53FBssynbhfV9po5C3z8uEFp+WEoeOtsKVd9Q+ts+WVkxHqgG50JlWso9bO+voZpIMdWAulKDBloAoX0O7v5fygZgmvfk8hAoZPvH7NJ54/wY9/8sdZ0ytSuzFKhlFx0qnDsLbMj30CYpyIn7Pwwr+NjMZpOoFBAQciOKcggpoLpQ1G07GCNa2Hz8ywp139cMKRmOmUvtO6Eh4RYc+FPe/sadPZGgztgES0ksgMahfECr0NPSCZgXSFedHB+YD3gfvtBkbvyW3fsVLoo+CdqhZaL7RdoQrSwPQBtjNGRnpFrDCY2HMhl8QUFi3kWsN8UGKNCL21g4D3Zv1sq7QEbhAnwa8wxciWOz0XcJqE6KjvzziY/ELaRaPpdWCdB2eIot051SXZ4zuvSDdc7xsyKt4rhdt7dYVOpxO9aoTRGQPecjmdcdYee1fPvm1a2PCeMQxpz4wO1nj2lDlPLxmjcct3em2A5Xa/Is6otqIor+H66onl8ojYQesqwR5jKIymFIbtGOswbShRdJreV4cMowkYierujGGmi6GXww1oDakWRAZtVHxT8m2pO70PvJm0mBo93nptaliBqryE98jHfcAYhn3dsBen4KIpaCR6wDRPVGVgUXNiOU8Y56mlI4t+n8551WOIvJ9C+dbv/bYPjY/3U+KgBvCcn/lj3/hv8jt/ze/iF3/sl9B6Pbo9Ksq93e/qOULnUuY5HNCPQQwOF4TgLYWOyTtGDLWq7Xy0ShcwWQeKAV6cL1SB6/3OdQzuq9JyAHpplLLSe6FZHepN9531dmdN6j4xzhCMZ12Pgx6Ct4Z5Vq9KdAErQsnQauIUA5/zWZ+BcwYZBemK8d3WQsmZ3nTQV4yQa2FYfWmKDPUqjc5ACVOlasex96IDrUNfdtYlWlPy5KBRS6P2O36Z9AVtB9FZEAUhrNtGrO19spuIuqpMqqzrDe89KWV1zaWGEUuuGe/lQO83CND6INVND69t477eSU1tC5fzGesDPi4EaznNJy5zZIkTL88XLqeAexB+4Ke+hy/+934/X/odX/nBXIBv1v/f1i2tfN13/Ed80f/oH+Fjb/9SPnPtpCKMYUkXFdPamxyx3MG+71hrmfyC9KrEKFto3bLMCzntikc2x/C8DK32G0OvWbtnbmL4oA/m456f/MJ2Uyy2tR4jlvueoHVaKpSUiGKZYuA8nZhPE9ZZfPGkCqap+MXHRR1HwZLqTk4b+23DzwaDvhCcd4w6IAwGFcEodWsMhgxq61gUHOKsAzPY00bqcFrOnOOMl4PcmAtbPkiPY5BrY6BvJnPEQ4Z0ejM0yXCQH3sXxFhaR+OmtWOOF5oc0RJz4KeRjnMB59/rqMH3/vXv50v+wv+b23bV/+bNen9ZI1yWiadbxjsQ9LCj329njMoQ1bikWphip5eOnSZFYc8ntm1XcABwvpzAC4OOEaOH/apFir2sNGmUWmi90btGjWuu+GiVnOsC0Cmt0vrx/VqLYDBd6FSME8KkWpYYA8u0kGthmgM16ybNWk1P1NHJacc2Ty2VfS/02qldZbv7nrjMi3aaRcg50dYV6wu5Frb8miGW3CtDhFY0Gn/bVsZQVc57mP+0bzhvWOKJKYbDDTqYYqTnTrdNIVujcS8rr54/yfX6STobjkzwgjMe05U6B42Udn78p36Ml299OufTWzwuOr+1bTt7yfiXEzJEiYpt4GxgCKS6kQ+tTinpoGZO2tk3jdYrW0nkVmkCyKA37VqY4al7wkWHc4H79UoIUbvS9hDLd0Oj0UtHsOSmzytrNarYrV5D7ZgJ7L0jRgl3MjSetpedqgIprNWiTx8N6Tr3W8tQ8jMeRLsQ4iylNbwzBwJdXWtv1s+9/sK3fSVf+Cu+gNP8MeZguEdD3B3ZeHocTC1A87RcdJ8pOic5T7O+w+hYOdSaDHJrBKfz1cLQ78PCPJ9wRr9DMNoRkoYMJQWboQqp2hrOWbwzxBioZVPg0FCiq/cTOSdMDDT0WRJjoAe4b9v7RQIfLDJFqq10K9zvO2HRrpX3SmW1ZmDEUHolBKskSjGUVA8/IaoNpRHcRBudXBMuGIzTd3vpnWDd4QB2YIScM7UWltMDS1hoQ5U+xul9Ya1VX5pYHaPJmkBxISoWXYQxGtFPgKUc77TJO5yxGDPhfNR5TWOwVvDBacHSCuIEb+A2rvyhP/WH2D4kRchPmYPaVla+4vu+jK3s/O9+zT/F53z0F+kD66h+9VHYtpsOQB90KgFeP7+jB4ReWKaJWgu79XjnGS1ry1cMJRUddqyN4FX0TMuE6DjLiTF0Q3Saz9zWK842OpGcG3kv1A6tdqXMIPQ6aMcmqxi9AfaSQAaL9zgGvWVeXE44c+GjL1+wnGaMEzCRniu0xlIXvHfse2IrmbpdGa1TkkYlxDgmH6APStF5guA9Ke9acbGB5TQRnSelTXHKBlKphMkjuVFL5nq/kUti3/SF2fvgtCwYZ/VzGI8fAwmWVjO5FPaUuK+ZECxLmBRKECeFnhzMsT3tlFrJe+J0OeP9TIiFVqve1KI+Ea3eaRXKxxOX08IcDD4K3/dj/1+++Ev/L3zlX/sa3tT4/pu5vuUHv5N/4Y/9C/zTX/TP8Bkf++WUofRSocIwmN557lBKJ9ApveNdRIzOeNIDw+qgv3eemgu1KRY7LmdmF6m1kLeN4Dyzn7DTouSqpvdt64Vt2xAc0zQdctiGWHt0tQYSHMGqYqi3puJYsThTMaUz+0gIk27Y2s7z805dN4LTl6rOjILBYCd7dNVUx2Gcp5WGsQrfSSnTW2cKXmeAuqKETdIKK/Y4cAEVFdkba7HW0NBnoxpDOs47aunkkvBBM/7qpNRoc20VY7Rq2bwnWqtwMRnvH/qOpAlGOgZhS0+8vr37/obR2jekuPeWGGEKlhgMk/MsYaaMShxH5LErcn05L+SU8cEzXCPYoBH12jHOUXf1+50uJ/a0qqPr5GlZSYMD8MFzvT4zmiZKWi/QhG4giMUHnWtZr3dKK5zjA7kW1VKIwQbHvmVimAhRZ5mMMfhgsE6IztFnKKngsVjjKCOzbYV50o3jet+oDYzR90brg9u2M0+eJc6Hx69jvepvci60VrmnjdIb52nRpJFt7PtGzf79+RAzhIfpwjwtyBBK3gnBHdGkhhWw1tJKBiPcb69pdcWNirPCbAIxOh1JyIUyGn1k9rLzidef4CMvP8rjEnXq0oBBDmy4cNs3asmc5wftaLRx3FMGMZbhLGEKjCpsJdFkaPdNhC4oNMFbTB0EFxinE/M00Xo74seNeZkIY9Ba13u+dGrrrDkxBKL3hxdqpfSOtQ5jrYKURiHESK2d0Sxi5HCrCdU5lSm74+c22hUZ/SBNO4183fc7S1R1jz1Mv5ZjPvXN+jnXn/1Pv5Tf8Q/+k/zqv/fTWebAtDec3Y5K12BeFmpp5KyychFhnmbEOXyotDJofdAP0qm+FbRooYASjd+LKEl4UBFR+bMVp0j9VqE0XuWMtcJpWbg+78zzzBQc+3Zj3ZTlUPsgGkvfd8ao7KkxTRO17EpBFD2stK5RS+89TRzkld4U1GdEHYIuKDG2pKZgDquFvWYbrfZDiaWJlSGNLhVTDWkoE8L4wCJBk1rWwYHJX497uw/oIuSaDsKjpdWO+IGMfkBFGsY5YpjxRt9pvTctPohQaic49RrXlnFEnPUYUQiZD57Z20P6rZ1IH0Q/ixmU9uFxhH7KHNRAhc9f98NfzcWf+F2/4ffSS2E5nwghsvWOM0JtiSHqD5qizpOpoNCxzAvbvuOX6Yj/OHWkGI1S3tfEHI8O2Zp0INsYJmvxL17yfL3TWsPbt7iuhlIr+/rEtl11o1Q70c/koaLcYCKC4PwDPngsRulz3hKjw+JYouXtxxc6SG0FoijIbfKwexYfyLcr4oS6diTrC0crrQPEYt1CrxlDpdRG9AE7W7wL3G43FQWeLgypVPQBwRjknLHWst5XrA30PbFtN1LrTGHh097+NPZ8J+eqs2de2/U5DUrSKn7vgzYsW+1MpnHfNy6nM8gg9XZURQ0hakWy9UGMC41Et57aOh2lU44OLVd6HdALLnju5Zk/9vX/Ll/5XV9DaR+ONvSb9V//2kviy77la0ip8s/9o7+fz/rY59FqpJUzbV8hnbFdQT9rH9z3HWs88xzpvVJKRkyn5R0ZQyt/vWG6Z4pKbux7hWb0wNENTgxFtDIoAgzP6XRGusNbi8iA5qgHaON9ImQ30CutabTMBUv0gdoHT9ebRs9awY3K6TSRUybRid1jJLDmnb1szGHBRMsY7YhOdZy3R0diZ5ln3YyJvO9L626wpUSvgxuV03zifH7QZx7aQRMBb8KhL4DW1H81nKGkxp4avlcVlDbLkJXeDdYrVazsFZkMpnR67ZyXM+JULYNpKuf2Bmt+BiPyYXmhfWiWgXmCJThOc+ByudD8oJsrtRfKtkFrGGtw0XI6nZCiGGrNKB3qCW+xXh1hvjtIugn33tKLbvRt1HiuDCGGQJwmStO56XV9pteGsUo6CyZgTYM01CEaJhU1x4g/ymCtNRyisI++4/xCLhlnvLrRRFjvCe8C4YjkWWN4el45nc9cTmeWeeJ+v1Nud3qH+/rM7CPeBdpQ82GrCRkFO4S0JZo0PZyZQS6FXjPeLlweHpnCjAwl7J2XBaTz6t1XfNanvU30DuctUg3eGlqrx15ZsBiW2fPW6SWtV67PV65lJY9Ek07whjhFxZlby5Y3vLdstxtxitzuOwZIpmBF9Qnb7Y6fIqJTr3g3I+5QY8jAInh/xo+u8nABCY7JOa72pl3PMQiLp1YwThRUVHcVg5fKGAbnVW/wnge1VL2fxRs9TKOuu7ym94slOjSnm+bZR3Lvx7y8zuLUXIingJWGESFviTaE5iH6wBwjMJhC0G78m/VzrtYrv+ff+p38yX/2q3h5/nTWLXP3lhQnesqYEJkMjKlyKxlz8qzXGyNnFZt3/f2ezmfW6xVnHV5gLbDnzOPlAemZLa84kfdTCwPIrVFa4TQtNNuQoo61nFTMvo6VyzzThgOjHaVtW0GcalpqJpfEmhQaU8rOfNLvft8Tzjt9totgJkFMx8pgO+LYbejzwxiD8VYjnXSGd9R1Z44zw4vGQBs48XQpRydcKeG5V87xJUMKjMZ0nnl6ek2YTrTRD0dxhlbZhuE8nXHiaVRSrZhhiJPFH/vqYSyTV8CKdTDNJ0paMSEiRosd1jnagFYaThpNGgTBO0f0Rguq4b3f8odnfUod1ABKKzztr0n7zjLNXKaFNgpVdC7Am8jpfGHfC+8+fxLnHGMMvPf4OFFq45PvvsPj4xlvg9rSBwzbmcQflYrAkE7NiZISeTQVYAavzq/J8+Jx4Xa7MoXIJ18/8bwl5hjoTU/1qWbWvqlPxs1EHwjeItUzx5lznLGmI70yXWbcW0fUwKGV/D7ULlgL67qSa6MUHU4upapcGzBVwQmjaRsa0zEtKUSFQZz081hnCWaibTfEWEKw2oXcVdwt1jMtC/d0I287xlhS2Wm9kVsm2EgqhdE7OVVqb7x8eSbXgZOZ236lprt2H5vQhs7CEA1eDDXrJtJHIeXBqI5oI6PvyDBEr96dh8uFeTmxTBMxBv6zH/8uvu37v4XSygd30b1Zf1fWXhJf9fE/j+D4/f+rL+azP/aLoQ/GKOTawFleo7j92U+44PUwJTqvqoWHCNJpRcmipRYyhhfnE9YK5/NCiJNCNsoNamcYi3Mz0jOEiBH0YIPG1LbnHf9woXdLPXwcIpY+NM6s1dCBz5XTada49TSTq0GSoZ/O3PfMfDppvKJVrYSOQdu02grazfc+ME0BGRPWCQbDaPXQkTR6swxpGLrGHKns+c4xlkqpSm3tXQsgKO0fDkcMcHwyjeLUkZBuVI8xmgpXKZQdcto5ny7QDQyL7QZnItEZfBx/WzTqDVDkZ9aP/MQPESfPwxx5vle87NQ1Yw8SY86ZlHao4KPXQl4wSNHnvMXTUcKZeEPaC2lL2G5ADPMc2cbO06sV8uDy4qLWNHEgHvrg+fU75JwUJz4Ei/rdbLWIrbQ0KGtC4iPnKZBGY0sbTrxCe4bBy0IbXR2XwZL2QvCB+XQmpR0XHJOfoDdePOp9UEuiWIOl09vg3Z/+SVpv3OXKfd94vLxgDoc7Sgy2w7tPr5lP7zlCLWAYzhOtHqCaDKQP9qIS8PV+pY9EzY3oPKdlRrzjB3/8R6ip0bvgjSFYhQqtuePdcQ+MRuuFzopxgfPlDNYwhYk93fnpTz7h40LZNlK6a8FHDDHYQ1QcAHN0GLQ7OIZ2RhpD76ueEKN4/fuWmJeJRiN4BTXc1itiO6M3mjXM0fNcEikXoo0Ul/HWk0vCMmjdMIfImlZqKsTpPZeasLfMMs86SpEKW0mYLhgfGQVGsxqvvcwMA60U8EE3rBT1pxmFnuUK3mpE8s2M2t95fe/f+AGe9ic+49M+nbf6Qu5Q5YoxQsoFYwchBZbTmfv9yuP5pUb2UqaNTKtZqY8drG0Y4zmdIqMrcMiOxkN8QUcPVmL9QTgc0LXQdp4u7G2FI53UWmGeTyppD5FcO9f7HayjD4uZIoNOq5naKq13pnli21am04VpdoiBLd9Iaec0Lex7Bg9TnEi1kPfCMJW8Dyaz4P2Ml846lHS+5o1pVop3y53L+UTtjj0l0rZDcEQ3k4tGC6dworfKcn7ABU/J6nWcQsCORb1uZoB0vNE0SJwXTK/sST2sc/QYiVweFvbbTkk7UzjTnaV1Q2lJNTVo95qhChKLVR+iRZ8XsfNbf8//hNfb0wd7cf3n1qfcQQ2UsnS5nJlDZF4CrcLT07ucppkY1FPmz449n9lrJaeVV69fc78rYSv3RO8Tw1n6Qc/Je6JhmZzDese+r7RaFIhhPAbdYM1xPoYvE/PkyTWwxJlhPWupStq6D2pXQWdvjSYaYzTesSwL1hhab3z0xYVoPOfzrJse4YAMDNiV7ja6CgVfvfuKJO1A5nd+6p1PIkY4n14w184UIyUlrb65xLZr1+w8n4DBNAVKNaz7xr5n+oD77co979gw0XPXB8sIGEls+cr+0yvBBxVsnvTFWoci9p1z5L2z58o8Bw0t5sa97whPLMtEbpWT6OA7Ikg3B15dq4TdCIEJay2CMAWt2DqjNKDhN/7cd/95vuVv/JUP9Hp7s/7urVQz3/Wjf40ffOd7+ZyP/UI+eonc1zP3h0EVT94Km3eICfShYB3nIpQNpOkLzg0sBtMNzShZrdTMZAPWeI0Ltkxtjj6KOmKMBbvQb8/4yRAkkJvOosynWXUgbQfnEW+JbqavCeMcQ4RaEiFaZh8px0C4QY7NlMYGRy2I6BzmQKNS1+vKdF4wgGEQ3q9kDhyO1gp9dDqDngqYjHcRTCVOCoPYt0ycFi5+IqeV1Brd6Ixr6R3TDE3biITJ04YOeb/XDhPk8GepXJUBhUaICvqxRrACxhic19+hE6edyP8cvri1dtBd36y9ZWy0zFGjss4Il9NMu3a8WG4NpFl8cBqj6wqRESeUnLhvN15cXtBrZeR2HIo7vTXW6x0W4bbd2cuOHYYQF7pUSikMCjVn7rcVAYx1cMSZglPgwOn0gik20roBGsEiDSYTyaVgbcdIYIzOlhPeuvc7VXPwmAFSC2XdyKzMpwumalen5sRwlhijAgp8wKMd41ILaVu5Pt2pUonzxJo2dZeunWFFZ6KN9ovueSW1wq1pF3EKnuAdMc4YjGLIpSu1rXWs02JMyopJ30ph9Eprd0Yb7DWRunYfops4+Vn/PS/UvPPJ16/Za6VJUsBAiEx+wqAQkSlOqrsZ0JP+PvropJxoPesMoRHEBp6en0j7RmuVVpsCUpxgLDgPrUPvg8l6Rm1E62mhqwDbRNooCINt2ximgemM444bvVN7pbSMMZY9Z5WNG/DW0n1n21bG8fOJ9bQOtTW8N++7Yo1zuOh1fARodceaCMZpEezN+juu/+Uf+B/zH//hj3OeF85LIOWZURujZHJT6qfvkRfGsa4rPScEodum3W43YX3GisLj3utkjtEBq/dE98jItNKY/aJuzX3HBMsyn4nR8fT6GQArg9evn3De0sWwpY1K0+i+GFptWGcIU4SsM1k1V6ZpRroW8qKdMNGwhBPeBU7TINfMPa9qwY2OGCJjWLaclBmRE1AVhiNCzQpSmecJZx2pNp0LM8JonS1vCr/zAl5U7RE8216Y4wPeGAwDJx5jdc7WmMHoHTs7fU70oG5D62F4fZ6KYT4v+NJ0esEIYwhTnJnshDWB6CM+RqYwc549c3AHxEf/eXX7ab1nPyTrU/KtKtayzBOOhtCIwfKZH30LEYe4iTXtlHXDO0dtjWIUUdp6474qqQqjrpZ929nF0GoleMMyvcUY4J1jWhzeH8agActZvUTUzvNzoo2Gc8I0O/JWiQOMjONhDs/Pr6mtEM5RB4qtwRnBGpiC189xWnSTKOi30QekCjkx9sT1eWPddrJU9pIxbiLVZ/17XYTDBbXvOyEEfIi0lln3hBXBmaY32HrFhcAYhj60vf203hVMsifidMYYOJ9PWDMoNbGXQsqZy/mEkQ4m4BEYiZIz98ORU1qnj4pzjmnWAdBcGst8ZvKRYAwlrWypaMu+G41uHvlsGeCnCe8C1sLsDN5Blcpzev4gL7U36wNYP/LOj/Lv/Jk/yoO/8Kt+wa/jI7dH9mrZ9sqT6GHIiSWVDWsszhruRTBdDxtSB84IzTf1zgi01imjgzT2uiuKVwTEEUJk9kEHh72wpwrRIFgaTQmMxhw0RaAO8n7HARF/eKYqpWZcjNjgqC3roP+A8zRj7cSeM6VqdV6sEKQyHZteZyz0Rm+dlgulNe2sGcu2bbRUGaYRvFbOG4NWgaYeNmmFgGGIdtwYELylZQUHiNF5OGscvRVG1+h06wMrOk/Qqs4aeKdSVmfssRnuOGPxzuKdVh5H1wnCNw61n3213vjW7/8mPu+tzyc4wxI9e515+RDZ88bj5YEyd2QczjMrGGswA1pw2KoAANN1Xm0Mla6fzwt7yhpntZY4e3JFo0Qps+eN0ipyzFFxUOBKPma9Hh8JXj1CrcF8eQljkO53nAvM4cwcK9t2R7oehEwfIArwcGIwHWYXkFm7bcZZOpV5megNBYMwcN7zcHnULt/Qw8Xz8zNrLsynBS8qhffeYZ3jdt+ws1e307zQD89bG51ujPqWykYb4ZjPtgwjtK4Qk+gtn/bio9w/upHvG091ozQhFdXT9AZ7G4iJTO7ER19+jI+++AinaeE8O66bVtvDFAEHwxDjzOl00nuzFvZUD+JzwYq6rbzzuODprUOrzNFTascaC8e8n7GifkRrMa4zzwu3651WoeaOMQ5rHEaUQN1a03+PTpd+FINQOqfROaFUVnXMEZjOJ2retei0REQgFyhVKZ7OR51fmybECqZ3WqkYK+yp4F2kW8to2gWSMQ7tyZv1d1qvnp/5i9/5NfwPft1v463HQC2FXB21WEpJTEvABc96fcb7AGYQMMg6uKfCfcucpkguiVaOQ4c0Ukp0DDVlorX0gUKd5qBy+RgPTH0jl0rwiuvtA3Vk7hXMwLnIfr+zpx3jBt4FPfijJF+MMC0TW84aY7aWgejMZFEegbdOC46ieixjLK0ORCrRHsWm4JEsSju1MHqjlsFW92NWr2CcAQMxLtjRCXGC3jUN5jT+YQE5qKm1Fbp0HpePqGvSOXqppD3h5wnxjlI0qjkYrPsKZjCHBTGeIQMQpugQF8FYvPNM00JwluANU1hYZss5CmGCr/7L/yHb4Xz9sKxPyYOaMUZFj9IYtZJL4q0XL8EYhrMYB7VWJmcRAtYOtrTrpsTphiXnI3ZQC7l3GANLYF0z8zQIwbGcF61ftQYdzd2OQbnfiN5jO9z3wagF2wdOOntKbPtGKplSCiEG5mXCOx1+9ta9v72xBzFylI6UcWSXgGFoXSip8fz6zr1Vyhh0HMEHTqcL3RxIculUOq12au88+qidrzYOZwS6eeuDdc201rjeb8eQqh5enQ+EYI95MeHx8S1K2TC3OwyDHcL9uhFm3re019Y1juicDpMe38ueN7wJYHasPFBbQZp+ni2vrGkHCQwTKaMxEMJ8YgqzPni8JUaLj51v/YGP82c//hUf1GX2Zn1AK9XM137HN/Cx6dP4/P/9r+Htx8DWL9y3zJbulLJjWsEFh1jtWnsJSBB6U9qpQfUWXRGG9F4opai/0OiBRUTIZed6e6bFwhg6A6kzAB1pQ3H0U2S7b8efa8jotKZzNC54jHegMERKSoQQWcKkJLxeEQaTsxgR7u3OXnXGLOVdscO16gxqUwVIrZXSK8Z0QFjvV0YbhDjr4DVCbZ0t7USrOpDSKrXqc0wjjkKtTT8/71nm9M9Z4+hoZNQMxfQ77ylVn0zGGlWMGI/3jilEfHAEB04OEtkC53PAuTfAgZ9tlVr4f37tH+f/9tv/MNNiOWfHXjytbwTryLbgjVdPEpW871gfsN6yLCdstzgLzllGKcgY1NyYgmOOgVw0suTjorMfx2yioHO+U4zU3o7iQtVo31F09C7ijMUOITjdmJET5/MZa/U94M4LLRV6U9DHEKUMhhg4UFjM8wNbKqRS2NaVSwx4GxnGHiJadcc5G0lpo5RKGwMfdKN0226s6w7ofPIQIaeEtZ6UM947Wj9gYXRKRzexxvK03onW83j27KXwKEKwjs/+tF9ArUc00lRu1yfEVuWqOsFj8GHi7bc/xi/97F/GZ37sM/FioSpgQDeXBRcNrRv6EIUSec/9fqNV1QQ46zAyEOsOue9Aht67XQz0gTNG58RqwjnBTVHnTKVQS1MJb+dwQaJ7kVLoHNRXc+g0RiW3xjBCCIbcM6M1Lbr2ivhGbzqfXmlIq1ivlFvrvcp8qcjwGIwe0OeJYgu1Zobo+3xII07h6N6+6ab9l11b3vhn/9g/zfN947d94Rfx8jKpo64ZEEcqqppodaKXBuIJxkLvGB653Z9paEHBB/UC5rwTGLS6YYPX6F8RxoCUV0YXvHgldxe9R0Kc6EXfTQh0ow6a0bse3hjUtmElYDkOY/0AadVGzQ0fFGiTjaGmnVQrPmjCrHdwU2COEyKNslVSyljnGEfh0zqHjAbGYKw94DWNYQxxngC9zl1XmA29UXrBOk1VBesP8JDOUBqrz7p1u3FaLvTeKb0dna+OFcHEmdYHdWjsf0+NEBwSBTM0Kj4dxZfex5EQGcQpMvmZGC1TgGUGu8Af+fI/wtN6/cCup59tfUoe1EQEYx3B2gMnf1K8sADdHuj9qmQ2+vtzE8bKUVkbvH66EaInOI8YqGnjnhJtPGHcBXGdkSdAaKVoddNpKbm2dIyRdfKuc1ytFnovPD8/U9CXmrWG3hpp35ku4SAcOoyBVCvPr59wl0esdMzwyHlh3He2+/XIAVfurZH7oDRhL5ncE1YCRgapbFzvzxjTmVygtUGtjYfzgo+zPgxoBO/IrbHfVFcgIroZbIW4LBhjdFjdRx1kxjDEUEqj94SdZra8akfvcFfowPJ4/0U6+YlaK/u+c4oDbxdKKWx0cAEfJsJyxoYZrKPhuKdGq7q58EYfAKfZs0weu8Anbz/ND7zzQx/chfZmfWArt8Jf+J6/yNd/69fwmz//H+Ll7ljPFz18tMy7Q2NUtXW6WCY7KFiNkzSrUk4xrEfUynut6vcBxgWWMNN753q7saWVfctcLvP7s2qjaxHBW0Mujd67VqNFo0d9dGqpbHnDOjk2Tj+zUY4hsARDcJ6ctTpOa7TgaTSeryspZ5zXbor12g0zLiKmIC3h7UQuG947JAin80lnl1qn10YvkAVCFCYfcT/D1kehdarnaK3Sm0bJQONXYTjtKHoIJiDiME4PqDklfNCuv7OqEjDeINYgQPSG6/qKr/3Wr+En3/2xv+l7672/QfWj18edhJ8tp9mx5cjr553JOeZ5Zs07NHVxjSrUlCltEOyM9aCE64E4EAzb7UZrieu9czqdcd6Sqx6kpBWut2elILeKc4ZlPnNrK6UlSipYcXSvhzYvhlOYyQPqviPOMoWJc3RYF9jyoNahSP3WdNA+LgypxBg5T2f2dVPtA7DvCSOGtCUuD5FgT9zuN+3kGE8vmevtNbU2fPQYy9GdDQiVPWeGUeDU7fmZEXSmvLWKWMc5TOy9sa87l8tJ3++544PoLHXKtNqY55nZOdwv/KV4Hzn/2AM/8ckf5X57F8bAu8h8Wnjrxcf4rM/6bH7RZ3wuH3l4gQXK1sgls+87t3Tn7elE6h1TG9frjcv5RK4K1XLB40SQwxFXW6WVHVqj5g2xCuUwJnIbnTqEbVtZRDe6tXVK1q5ACI5lOTNG485dxedGSeNIww6DdzpTG0TYc4aqNNbeO85NGCOUUTHRkfYV1z2jCXtNMDziNOEiveJmj+2GXhx2oKRX2xBTeS+dYw467ZvD2n/59RPv/CTf+F3fwD/8m/7nXE6e0hYle7aOjMp+3IN+9rhuqVvCWUuxMM0zddd4cXACo2IwuOCI5xPGdnrNpM2QDp9vb1BFCYuDqmAYM9QhaoRcMl0aNRfEOJ3PChrTb7UyDhKUcwFkUGslzPbQTIjOZVrLOS7c7q8VbmSFUgoP06RqilJwcQag1h2cZYkX1vV6QIcMxhtu240QA857ttsNa7QAU7ascd7RcdMZUwf39hrnJpwIp+lM74bWB7kmpBii0WbJewXNECdSzTh/UpKudRjvSK0whxOtFXw0lNq5zF4BQ8Hjg6YcQrAsEc5nwZ3hD3/5v8b3/Pj36LjOh2h9Sh7UWmus+4qbA9ZFTDCwQ++VWgvrqi+Y3HYtdMvAed08iAhuCqSsg5SlJKw1UNTdMsxgeAXFP1+vTNFCG8TlrFXCAdP5whhXKoY4ObqbmZaZn3rnXU6LSrb32vRmc56Sdq7S8Q9vUbtFmmW0jEggpo1UV/qrzHJ6izEKr16/4p4rQxzX2w5BMNaSSqanjpD46Xc+cchM1beURYcyXz48klNRHPEhQCwl4ZxlOk3c7jeVWrrAw+MLSsmMIezbhkgh5YKjE+eIs4M6oOROiI5tU9xxrZ19q1Tpuim9eCqF3irBR5pRH4sRg0MH01vJnMJMDSo6bV0Qa7mudwRL8JZoDecQOZ0ttWc+/sMf/+AusjfrA18/8u6P8eX/8Z/lN3/hb+FyNZxXz2NZGPJpyOi8fvVEMYrhb9ViakesOoeis+R9pT5dlSLqFGeuvhajkl0jnC8PWKMSzzEEMdCaemzC5AkhKrr3vOCNUbxxr5wWB3Ng3zZu97vOeZmBHY4QBNBYURDD1nb2vNOl4RhEq8+N0jth0ujlMPpzyzC43lhzY4kqwrbdMscHzLCsJR/wID1MBjtR9jvSK9354wXj8F7j1NKFUbvG6zjGYHPH+wjoPEJt9XgRCK1UStdBa5b5CDYOSqsYZ96Xr777+h2+8Tu/ide313/Td/aG/vgzawiIF85x4iadxRlyDTjrCC5SZAcx9Jy1Kj5FTucTrTVSSRhv6WNgrfDwsPB4mVm3zrquxDCpYHZeKC0zTCdOkRiEsmd6yyyzY5oDwiCviSmc8M5igyGXRPAzRhxGOrP3DBolr/RaDonsIMZJRfGTeracDJCKNTrTJFRCFO3s9U4r6ejuJlrtlNZYsx4oWx88zBdK2bjvGykn3UR1wYxAaZlpmrDBghjSlnERZHGcumGfOrUWeut4o4qdd59e8/bjC5o1III3jssc+Hs+83N5++EFP/XqM3l6eofRVV1wPj/ymZ/+i3h8fOCjjx7pwvPrzO1+43p7xljL48NH8G5B3GDfN+ZoeLo+44Kj5IxtSo8zIqSyIqNrkTKtCnOoOzIFhgUTNLpqPUpfDB6G4Xw5E2edAbTe0Dssp5OS6ULEbTde356O7naEYTGzFko2dGyjI4QQ6U3njFLJRyFYi1KTjRjv2ffEyCoFiSbirRa7egfjNf7VuyWnQTgFBKuY8zfrv9L6D7/5z/Cr/1u/lt/+P/xf83hypG3SxgGJMRpCYI7q1i2bRuNLKhhnmeYFaiY4vcZq30AiZb9jjYOWmeLMnlaF+PgJbx2lZ86XC3XTNIj1XnUMXcj7a9Zbw/hKWE5KM88783zSWdYOpas2wPjAQEip0kdlSMOKY7+9BodSh7227J+envR+kg5d/Wl9dCZ34n5/RoJQe2XyC60obKT1xrYpvKu3wsN5UYR/g70V9m1jOV3Y08YyXbTD3IVaMlUEOea9jTdYLDFM+BCovTNMpZOxNmDEUWrF2kppO0M6lMo8eeqoRAk4a/A+sHjHZfY8LhA8dNf4a3/9r/H6+uGBiLy3PuUOagNIpfDu8zO9BOZgCGZSd4KbyOszOWcdojYGbzyj7DRjWPOGt4H1fqNWrf6GoB6FMHu8DIx0Sm64YHS+qzSmaWaUwbAN8R6SZt7naebtl45Xr16zd+Ejb3+U17cr5n5npJ0pRBAhtx2GUg/v28bsHCNEyutn0rZxmZUU99NPP0zr2m273Tfa0EPNuINYGOLpw7DeN/a0473nxeML5hgQ0XhmN51aO7UnjHlQ/5HREWRr9c9vJStuPwbOpweut2fW26Y3at1wMrDmBe7IRed0x1qd2du2wvPtSpXBqAZrAylldVf1ihfHOZxYoqPWTBGrcRqB0QrWRcQ4RqtYhBfLmcvlgbcfH3hxmTkvDmPhW777G/lXvu6PfNCX25v1Aa7B4Ou+7+v50q/69/mHvuCLWG6OKTnkJoxyOFqqxn6jc7S6safGPHvG0PmwF/OJPRWtfvsZay0pJZ2rqQ3rHZeHC/u2IzjK3tRvtejBzFuLOY4rgirvvQ3oNvWAciAKW6iqo2jNMU+O3nSjyhhsacWHoDQ945mCbqx6zTDpfErvSvOy3hEnIbWEE4UVibFUeQ+eAn5ZkGZhaESEPkh7YponjHH6gupGYQK5MUbDBq+AEOsQOiKD0qHL4YxplmCtVmXRxnkbjZQaznjCFLAm4P0gHoCRv3W96ab9zPpL3/6X+BNf9e/wj33B/wbnBvE0YQ9Cmbd6jY6qxMAYJkyHfd1Zlgn8BK3odWwMxnhEhMvZH2Q3BQIMaSxzoIxG2e500Wd9SYnJRb2+vGGZlYbauyflQhBL6TutFT7y4sIoupFPTWe7JxMJb890GqcYyVVnIrehhFJjLPN0wWbF4e+1HT9XJ6VC3jccg+m8MIYCEk5zoPaMDRMpZ/po7KnQ6sDPkbpnwmLpxeCcRex0zMsMjLGc4qIxLqPxrtMScc4SYiSlzCgG/zhjRuPtF55lfpsXp4Xxmb8YIxzFkJmH84Rzus/MpXLdrlzXK7f9TpzPlFEZkukFzvNMDI6cd7a8apTfuPfF4UhVSIs31Br1+3J6wG5NOyrGBkxviPOkw1mFMQQfseoFIffCfbvTcqbkwnq/Qm+MLlQqpQ5q1nEDay3TFIBGa0KIhtoVWBK9p7RMa5XL5SViHNYpJdIaxxwdIoGSEm3A5OYjUdRIWyLEmWAV7MWbGbX/Suu63fniP/77+CUf+6X893/Vb+LFZWZgFXDVLCuFPa8wUJqrGOy200rCDJjjmV43ctqJfuHV07tgK8t0otVCbZV5Wqgx8Hx7Zq+W03yh1cF0nihJCyz39U4tGTET4m/4+aKRXANNOq+uzzhnGOiecUjj6fnO/HChj0HthdYLUzCE04m1rdCElhpiBjllreNdzjix1JxR540Q5xO5rqzbld0ndfFao3RK46gxk1I93lnqGoxuYi0rrXROLmKlUSoYa9jbjnEBGZZWhO4Fc9x/pgzWunGKC9ZMDDHklIjnBRtnFWOj4wuT9wwsMml64GGemYLncYIYhCwr/9qX/CG+4lu+UlNiH7L1KXdQAx1KXtedCT20OQTjHfl+Z08bNW+UOpjnhfuW2Gsj10raEmvbMC5QSqL1htgLEwFn/REnSWz7rhWpYJmiSrJzTowOIQRKWmnD6JO+QZgWJu9459W7BKcUySGCs4FUMqN0vI24EPGGY6Aftlyo0nGTzp3c75mt7GAMa8qkXtn3hGBxMTB6oraBmzwPb71Fum2M3khpxQfHKXrKvpNapR0bxNMyc54eVJZ5SEaNMUq2TBsla1seI0zeE8wgxsCed2rJ9FappTCkY7yj1wIM8pa0bW77eyBzzstJZ4WcJbXOgw8wNOdPF4bt9K4vlcrgNEeiDbz14gXnyfNw8cSz8GOvfpQv+cYv+YCvsjfrw7B+6umTfMcPfRf/07//HyEEFce3VLBemHD05uimk3tHumXUyqiDOQZchCo7zgVEKiZYxHtM6eT7iojQxeimcz7hnSenTM2FVgQfHdJRX5hVKICzlp4qLVUYlWAjLjgllS6W0jupVfKt4p1VAt5oRHHkPVOk043oIdFYrLPqLmv6cvDBUGvHSyDVRKqJaToTxGKG5zx7jNFDY6MxWsOZhU5RnUgd6EiDwBDMGARvwXhFQfeG9WCG0WcYQwujaOTF+4DpSujzTmmYwTumGNX/GHQT+lOvfpyn++u/7ft6g+f/mfUqveIT6yucdwTnCaYRQ2POkcl7ai3Ubkml8/CgLsy0Z0LwnE8Tac1Qh85yMLTL0asqNEUYdNK+8vCwYJo++wV7zB1CHYUQAlhR3PoYGGkYM9Fbw1pPmCzP941zCMynmXYrDMCEQboW+hh01LNGd+S86gH+cHNhHG0YaklKXuzaXTLeK3Hx9gxGjq51J+8rIS6EENj2BhisG5iuqZcxAvWI3GlCJhO9x4fAaIOUEm+/fJvWC5fzwhJnLstJKXO90GrGWcGNwck5ugsYZzidAl3kcJBCyoVta6zbSqci1oBx5JpZpjO1F+V7WUMuhVLBOk/rWTd/wD1vlFI4nxbERaZlIu27Co5zZS87YtRt572i+vf9RmmioCE60zTRe2e/b3rPGoflIHSaqDDxYQhOPWujNkrrNKvwrhAPOXDSEQTFnRlqEda0Et2EM8eGOOpm2ltDFcGJ9th9nJgWLdKEGHTOyJg3HrWfx9pS5uPf9838xl/5a3nrxUwphpSgTwJiaC2wzAq4cLnQzxXKxPPTE1veccbi4qIzjvNMP5gAYpzSSEfD0nEh0lpnTSulGk5NixUMENMxMqgM/LyQSyHXjHMe708YP2i1wEgK/xkNFxz7/ZmOPVgOSpk11mhU1sBw4LyjNUEY7OudNHSUR5UaaHRyWI15HnPZzjqMMWzbFW+FZTpk2b3rfroPzo8v1HG2V8pxLYs1LKcLdhhG9/gYkKHEdGfDIYQf1NFwo4Nx+GVmDJ2Ns3bGG6eU5yHMS+A0nbksJ07R8bA4lgD+BP/Rd/9F/uhX/VFu2+0Du3b+i9an5EGtD83Pp+C5b5ngPaEr7nPPO8Y57Oik3ljzxpCOD5Gpa7a11KqzKuKOC0xYU8JmMKPR22DUQc4aiTJUBMHbwPPTjYHOgvQBt/tGbY1xRC+pFVo9BpMHKe30Q4o7eqeLsOUNxuCWV6qZkG1nYLimO6XUAxIC1/vKnvJBwOq0WtnSjiSrkZQ4MVCJtBscXTNLLRXaoOWKWTQPvO8b+7az7ndyqcTeGLXxvO/kXJjmiXlecMtM741t33H2sL0HlLDVOmMMlmnGhYm9VI2SOs88TcxhZgww4nE2UFulloxxD0qjEoscAvLLfOLlw0tiiJynmYezEM/CD33y+/mDX/YH+f/85X//g73I3qwPzQqzx0zgnMYVp8lz6Y+8fn6m911jERhC8DhjmWLAW8ENoYmlu0btGRMsGEsQYR1JK5ou0I48Pt3ijcP6oZvEVBWG4ALGOfWeZcXuW+dgWNwx+BxiBOuOmaCNXuH0cAaxuOiZ5Uy+vab2gbMBhzA5OYa+DXnXAo30BubYqLZOzh2hIJOj5YQbM9PDmTY09izGY5wg3REmS3CK1R4HRMQaq1RJ7+hHF+w90aoCEEBk0BqIUQqrxRCXiegcwQ68MzijL4sgjlavfOk3/Ad891//jg/qkvjUWAca2nnhNEWcqSwhkELBW483jtIKwXtaLbSmdL8tZXJaGTWzxInGIKedYB0pXXX2WSoxKFUwJ93Yz7PCr3obIFa7s3bg/aRRxj4UwS1CLZW97cxTpNdCNgOXhBA97z49QU3krvdVdMuhZAnQqnaFnW4ca6nkUtnumx5UctJec0eLgs7Tkh64xFpCnHRmEo0ZT1Oglo51hiW8VE/YtitFrgnSIXqH6VrMMMZgDDyeX7DEE9E5vKgEfA4BZypmCHlXAMg5WkobjKZghdoGqVbWbaf2RpfGuiWFWvmJgf7OctO59D4qqe3ct12pxOIwxuseAEPvg20vhGjZU8VZS+2VOUxIUlYIpuuYRS2UDtApQ2fCMAkZ2j2QJgfsDH2GhYhYz/W+seeEF2F4q5TZtDPPE95CTpVp8piMdkmcwURDyYUtJy4PJ0KYqbkwbOP5eQVjFZoyB0ZDZ4icYIbgjEXEvJlQ+3muf/VP/cuksvG7/2e/jyVG7j6SzIpIZYyCcxZnvcba5wstqFbDiDrQnA3se1LJu/NYq7yAPBp7KZp6cB5jG6VUUm2k7Rlk4G3AD6GbASKs604uGbFaLA/i2fabks3RudBcBrUnrHiF6lmPczoOQ4K4nGimqb9TIstJY9JjzKRtozMYo1NrOp41Sn0EYVtX5qiC+j4aKVeM1WKf4Ei5sMwnjTVaS3WCjZ59qxjcARyBrWSCmfBxppZEbhnrPN5NWGuwwWk3EOgl0cViTcFER/BGUwJxYYmRS3CcJscpCNNZeN1e8dXf/NVKjPyQXvSfkge1MWBYzxDLtmnFzZ507kzEKIazN1ra1BlkFIBhfQQKiIruvHf4YND0gdA75Nx0fmpk+t40gy6d6CYui6O0QSqFGC3RWpZl4nZbqbXC6CwnR22WupdjiF8pUut606y/96T9DmLIDdJtJdXC/b6y75vOCTStbpfaWfeN4Q0vTif2cqe0QquJXiv+8UzKDWcts5kpXavno3vcHKlFEa85Z0qt1K4HzlorvTd8cFiBedI5hu1+ZZo9eS+clongAjllnteVLlBL0biGc5jSwCqlKheNPkavsy23ddUvyU9E7zR+OZRg5V1kMoFpmpiCZwmBZbIsF+FHPvkD/Mtf9i/xH3z8y2njw9d+frP+7q8+On/1R76d/+x7v5vPPH0ewTjmuHBfMzIE4wIWwzAFI7DWXbtfMnTDQcfHyGDSAk8rdIHTNB2hRUce73W4HOfTiT4a27rxHummj45pxxO8q2g6eE/0ATu6SmmtCrBbbpQySDlhc3xf78HYwQe8gdYG3WhsMVeV75aacNYzWqDUhnWB2TqmOJBhyTlRS8FaIeSJ3gq9J7xRGFBt/aDDgRctsIwxsDL0pdkbl3nCGaAZcm+aKDh+TyEqot92iw+R6B2jDFwweKNCUC+WaFX58erpHdIh135v2feqqm8WoNCqv/RX/xN+6+d/F5/74ldwCZ60dx2UnydKLWzrjrHC9b6CoO+yZHj31SvGyHzs7bfxxjNNswICetdusbOEMNEF3n3nNS4ElulM2ne8HYQ4kWsm541aNOI3TZF9TZyWgPWGVio5NawdMCxP1yviDLl39i0xhhDDA2vala5m9bDX2sBgKFJ4/fTqoAs6dUkj1NExxqpSoA/EOfJ+gyoMY6jmKKK0Ru+VXBt+eOI84Y6oY+2VECJ+ccqnMwZnBTGOyXmWMONlMDtLFLDGsATPEnXuq6Qd8YY5Rsr9xvW5Yr0oWbJ2SinsZWcYx7pvMAzOOZZ54r7djoq8ZRglKDs7MGZA164hpuGsxywBQ6eW9v7m23nLtmuH0XlDbZXRCpozg21NimiPntwK1EbLQyPck2cctFlrLd5bkoVKwyA4O7P2FTH6Hg/eY4bQRgcK4dgoFwqhBMbRUQg+ck1PlC1p9/AoIogI3htOJ6WE5n1XZyLTm3nTn+fKpfJv/pl/nf/tb/3dvFxm0uxpOdJqJbpK6UrjZgimuyO+bvAx4odqYsQbTEN9oFZnxFpXSJ3x5mgwNOiGRuWaE7OfVEfjdVY510Zqg2k5q+C6Fe6rzl/VVthzI04zNkRIGTCY3onLxKAzinasct5xflZ6aK/UVrmcZmo9igLHWI+xgg+DlIYWVLB0ms7Q9o6zlhhnSsvIMVDgRDBDgX89F/y0aAHBWqxVNlY/Om+jdS3JGpUQzmFiOZ2otahaxihbwgWPO0YJxgET9M4yWc/sHKdoeTxbTotQ5szv+9f/Gb78m76UVPJ/wbf6wa5PzYMaKm7sfdCwvL4+UbNj3ROlCSNtlCHUlvHesGfd9PejqlXHwIslOK+0pX3lspzVgzIEhmEriZIybTj1sZWV1kEOgW2+J+zlgrOGKVrW1rAMxrB6ACwNIzpc3dtQyaeFcTqxbjttoGj9Bnst5LSzp0ztiToE551KB31kMHj9/C6tQogTVbJKLIdWzlPKnBcwdqKNxnKeyPeNV68+Sb1UltNMa5VlmXVD1hrGGraUCCFgjo1Ya5l9TerYySrY7L1ibadsjVISp8cXDGNZ8xPGCLlmGIbiK6VU5nki5Y11XZkfI9M0Icbijkz2+XTGWs8yLYgxzMFxmaCEjT/9rX+KP/3xLyfV9MFeYG/Wh2b10fm27/s43/RXv5Ev+sLPI/hICBPzciKknYlOyhq1yHtnQbDWINJw3eEQZBiM9TSjUAzRtDpinFbyJMAYCvVo6jaLF/f+XKlF3WbAMWQ/GE6FuY6B95atJraU6Ig+J6ywp52UE8s8YbzHBP07a806AFYNYsCMTgwLpSS2bSX6E8ZAsIEQIq12UnbULQGGVosWpOykbrQhVIbSIEcHJ1AH2E7tA8vA+6gY5nJ8Dgz0fgxlOyRaWjc4cQTngIERq5HtoT1LZxyTcxin1N2/db2JPf7Nq47Kt//wt/OD7/4wn/fp/x1Op8Bt31RB4j3OOXwMtNSOirKo2Lw1QvSApdWqIufgicYQ5hPeGfaiMAiMxYVASZ19ZEbt4EGc0LMhlXJU8Sd8UOKi6Q4xHfzQCOMBBjHO0Eaj9oLzix78a0WMHjZ6rxr3H4aHqG7QKSzEZWb0ypZXJdSlymj6rixt0MoGVkW0uReoeom6PrTSXhMN4X67U6hKr8wd5x3WQM1HQSF4grUYZxERgo3vcYE4Oc8lBqwXShr0Pii1ImKxx6FGnG7gxCpgYd8aKW16bQfPaNppa70RQsQaR7CeERvdW8aAVjqtajfbOM95ubCvz4jRTkEDltOZ6+16UGCFKQRsF2wU3u3PYFFK5p4ZVGggXeXx3hlKg+WykLY7ZdX7dw4acSwGbDf4YjBDOzMtViTtSG2IgykuWNeIZ8+2rZghhwf2BCgxcl1Xxf93i5+iposcDG8Zo+rv+c2M2s97bTnxT/0b/zh//Pf+Sd7+yESXCEOoFfacqQ5yH4eMuXK5PNB7ZT1mB8VoLL0WDodZw1incfcR6F1F7sYLpR+aleD1fy6W1iulaKTReU9vjV4VMoT1bLcNOwdSy3gcMZyptZJbJrdyaGDUP4oRWk603uml4qLFmkiXnSlMpJLwQbvMeSvMYcJYi7WOMWYQpen3mhWMggqv/aGrQFTu3aUzOQMEylYR47HGEGxgGMswlpw3EAjOHv5EsH5ShsMY5D1Dt8RF4+YxRJZ5xoeAN5YlGh7PjvMFzAK//Q/+Dr7mO76alD5c3rS/dX1KHtQUkb/R+oShUwr8xNM7Sj2yEedUVhnCTGt3nOmU0qGrVBZp9N5IueCdDiBmHzT3L4Z936g9secd3ANtGFJK2PvOMi8EI4gxPD+/1rmWXHjn6ZPUXhk4tpSptWPCdGzMCsbDfbtSmw69pC3TzcBYwyBQxWInzyiD1joxnDifZi4iXK9PrDkTTICKiqTnwCiFlit2gBNDNEeMqwu1Fj0UicMPg/ETPljSXpldpJnOZXmg9EJw+vNMcaaR2csGXYss1niiF9J+ZT49MvmZ523Vym74/7H379G65WldH/p5fvc55/uutau6uRjvjqBJ1GGOqBkjlxFUPJqYHBPNSMw50WgOahSNIYwRD0cCYiQaFWJUwCsXQS4iMSpoOCCIyk1oaLl1NzR009DQt6rae631zsvvev543ioaRFGapqua/YxRNXatWlV77fed852/53m+3893Jnt9sEYfuL29JYhFimYzxRSJKek0xVimWdHKTizOBqK1LIvBnOGtj9/Ka974mqdN2tP6p6q0ys6GnSqnZHlYg0q94sReC6aqhh/baKHgQQcuTrBGvV6CcJMWgnHcbY91+yyBGD0NwY4rLMQ6lQZ7zUeydM1CQhjXENFhXsSKCIaO7hcGwQviDHstSNXtA16oV8DDGINe61XG3PAxYsRQzOWK/NdpugbNdgyCHw7vOhyVECe69CuxzRJcwCXDaF0/1roweuGonSGVNE+6dTQeYyy9VgoDuf7M3kfiMiNG2Mqh+TLOITglE/qAFYW6eGOZggUPnWumxtP6Mav2wrpfNJ6BgnOG4B0xqFR3WU74a+xBzju1Ne6PjSiW5JWce//4CfQzLooGufeBM46Sd5CCN4aQIkc+SPEqfzwqUwowIndPVs1n84FtW8lhw1tLz4W7x89zWmamDzxp4C4gJmCsI2870zwjrSNW6AOOvbAsZ7z33O8Xat2wO5xuzhx1p+Wm+OyhBMdaNePNBYszidwz+3aQj8z5dEM9CiVnnIvQKsNAH0JMkfN8wgxLOQ6FdtRCQ6nP+7FzMwWsNEQcYgbGiA5gJsHHRamTpQEay2Os4VIL+3FQa8WiWYneO/Wit4K73vedTi2wb1WHKajHr/WD1itjwBw8MjLzPPPc4+fYLvcMa5SaKIbh9HMh70W3XLtBxHKaT5RWWe/usKJbBe8DxgxK1U23dZab+cTlsqJxikLwnloPTAcfolJsh2HkhusG6yM+qD/nmfNCzoOb0y3RO6x39NF44ckTUpi5vbnVrCsxzMmr/603vDFMbmGJ81Mw0HtYX/6ar+B3/++/gz/3+z+DRydHr44jK6AtRB2KtNwJfmYfD5SiQeelbjjnEQaY46rqyFixeCJi1dvqrb4/ve7E08I0L6zbAy1vSg+NDovDOUNjYEIEGqUPxqj0PBh+wpiG9Z5gArntDJQemeYT1kOvjicPjxHRTXevnfV4Qi8N5zQjVIYgVYjBXdVrhrwfGOe5f3yP9cJ5OTOGPgt9TNqg1cppnsm9UaqwbRvRTzQxeOvwIeKsY6+ZaCOlH0obHzDPEyXvtGCR4bAmEFNkdCEke40AsXgP5+i4nSzP3CSWBCYJqzzwHW/9lpd9kwavxEZtaEaQHYZtX3mODr0zaif6REfI+SDXRhyROjrBOlo98N5gTaQNJaRp0KRhSjMlV4yzrPtKbVkxxM7oITHfkXPH0Nn2zO35xKBpYKi31JLZsq5zY3Ssxx33lwutq1Z4XAMsvU3cbxdiWqh0aq445zlYNQdFhBgiDkjR47zj4bIxuiFYw2iVZjqlCOmqZTdi1KyJrndvvBrPk7slbzsxaor944d7enOI9UynmfuHO06nRHDPcJTtSqyDNM+Enugt01DPxGRmLsdBKTv3a6e2RvQJ5xzPPnrE/cPDVVJZFIPuBtHNTHHG+Yne1JgtRWN3vRXOQYizxS/wzsvb+fjP+li++Nv/7vv44npaL8d6OC78ra/9W/yKn/1v8XM+4JdrnAbQSiNaT3dF8cHBMiVP3wumCRYliBoxWKsGaGsCS7wh14o1wHXjZJy/NlGN4OwV1w8MQ3WW5D37rnJh74MG1Y+drHoLIBCCoawZVy1lFBjQSuVSCxhtONvo7PumHjPTsDbh7cRwA0/FOIHRMXJlFfVKyZnSKstpZlirvoR8YLxgO9ctTFH6lgy8H6So00ojRuMxxiAET76/qFdpThinm41C08N91zBfiR7jAj7OxDBxXmZul5nzMjH7zuf8w7/Fl3/TD79Xn8oef/Q6SuOPfd4f50N/5i/jg+PPYvKDNXb8EXnm7Oj9CaU4jLe0QwCDkcYYGesS4vxLktfW9FCvJ3fwQcOQ43DYEAlJN7bTnMh7paNNk0oSG3suiLU0I7qdHZ1mILfBO557QYd/Q2Xq2/qAOEOpO60MRi0IGs8wRufuckcumVwzZVRSnci5Y32kr4oUH10bkNYKuVWMGTgTcdFgzJWKOFAZsB0UCuBwBlV11AYWXLT0NlRdMuDJwwNtqTzTZwzqN5EXhydisGgQnbWAhxfuL+Cg1MqxFY6csVagW8bQDUKkg1Ec/zM3z7LtG9txT2+d6CPOWo6q+P2BUlxdUMJCN509K71T+qAb/b2C18+UelReuH9eUeLWE+LCcTR66xg36DiGVViMFQPW4W3Chc5JHNueadsDl3VlKxsikSklBKsWAwytZWBQD81BzduOc5ZpPrGvO611xcCnGesdrTS8GJyHfFkJMTLo2GHxxuDo2ig8rR93td55y9u/n7c9fgs/64N+LmkT5nNUgNVw9HrBzI7t2BnDYdogENVOsm7MaWbtmbo3rJ8oVX2VpXbqsRKCUg2P0hEDU9XhYa2dEBwpLtzdPdHYW2voxtGKoY/C6fYRg04fQq6FaZ5xxtN6fwkk5124ZowM5hh5WO9xFlKMRGcZVpH51mpD2OxAnHC537FlEJzVkPieWaZXYUS5BWIs3iZgQAxgPN4GpiVQa6XWhkuqwDpypjvLPKkCK6SZ7TiQrmu6NE+01hhDCEE3aH0M5nkihhf/cpyXyDwF5kkwCX7g7vv5yP/9d/Hmd77lfX2Z/AvVK69RQ9fCYi2lVfq2MoeZYR1HG/SWVX+7azjlclroY7DtSm101mKAautVqmOJwbPnC2NAjHrQqwO8SzyshW1fVe6xzHg/UZqllYObmxPGDZzxzHnCh0i5mpB9ipiqE4hpieylaD6RsRxlp9XGtm+0XqmtYVNkCpGK5sHclQsP60ZrXT1016lgrwKuYp3F4fBDE+GDdar3tQMvguAxoxN8YD92linifGJcQ7DN6cz5/Ejlo10lkOVFOhCWjoJLYkrse1ZkqbNKjhRwITKA+/sLpRbN0miNebllGI9zHhc8SCemGVrjvMyEkJhTZFk88RlhzJ2v+6av5v/89i95X15ST+tlXK033vyOt/C2u7fxC38GnJJwjpG8JNqlEkNCcsYOT8m7ygZdJHrLKAUZg3n26m1tGbGR4BK5bj8UbFn1kFR71SYJlMAlFitD5VHWYHBMfiHXjMEzeiPXzFELzUCtDbmSsjCQW1UvmLPgDbYKKU1c9oM9H4gcxOAZzSIYUgjkXGFYrFUpyxiD3gbbuhFShCpIM9SjEFK4QiMccQJrhNGFXnSLPUanSqcfhZyzGtivGzP3It3NOqIBGUJwEbERI6hUZAosKTLFQEqWaep87zu+i7vj8fvsenglVaPwzu3tlFCYoifPwnY0coKxHxo0bhW3b5ySgs0wWGkErwoKEQ1MnmZVSPTedOhgNWKi9saoet3mWugPOhwUA6U33OQpvdENTGmh104PQC+cH52xBIVgDb1eSq/k3rHVMKWJraoHuw8ww+rPatTnPXZt7i/rirWC9YFH3rGXjVIU4HF5uCfXzjijmWBicdawHzsyhDRFjFWgTW+VyUeOQ5+RYgzOdJblhhC8fo3Ovq+8/fnn+ICbhdMU6WI1H9EInUarVSmNo2sAuE+UNgAdXlqjKpk+FPV/5INBf4kGvcy6mVz39aWoCiNdt83GMk8LIp46Bvu2U3pRaWTrWKnUnmnbDnXQRifndqVANmqFbV0RBrkNgu+00rFWOErldEqUq83CBU+ynkxnH4NyrFjTaTXDNfpmShPFe8quW/ExBvvDBZ+CDnlyxYUIVWFK/ag4o0H23hmkD2gNO8A6QXrTJvlpn/Ye1z/57m/mY/7iH+AP/9efyM941YfQWoQumC6A43JZKa1w9mfuxhP6GMSUtPkQuXoOG0c+cEHf4zku3JcKxtPREPnWOk8ud0wpMq6n+j2vdGkcpTH2qw+sjWszlFVeOQwGKFumSlGYjHh6bRgpKpu8guxi1KB37yytNmpTT+RojU4lxpla6tVbqZu1EBMxnpiietyCcRqqboTWOsEFpcwaHXgaYyjHoRJc0xBjKW0ndM1OG0OVJrWrH9bZwFEveKue8eSVKDmHmSk5TtHzaF5YguVVN4E5Cd/z5I38T5/9B/mHb/g6Be+9AurH3G2LyKeLyDtE5Nve7Wt/SETeKiKvvf71H77bv/sYEXmjiLxBRH7te+OHfpF0+KLXdS0X9l3N9pq5Eq5T76FvYIikEDFWrjKGTorhpSlwaWrqv6wXNQFbTwgLuQtrzmyl08WQu3C3rzy5XAhpYYi/5kc4pmXBBUtDjcqtNvXS9UrDgnGq23WeOrpKPHpj33Sz58SwPqw8ubvTrBSj+RvGWKa4ENNCjAlxYF7EZofAcppJKeKd0MuOG4PZG1IwRK/es/Np4gNun+WDXv0qbpaJm9PCzfkG7w29Z1pVkl0MUU2g3lDHYMuFXPVhYm2gZGiosbX0xr5nrAkk57Ei1L0wujZm83yiDj3E9tGYpxnnPcscOZ0D7kZghm9+/dfzqV/xae+Ny+QVVy/He+3lUmu58O3f/23s7TGvvvG86mbm2WXh1Te3PHu65dHyiHOaSSGQbGCZZpZpYUkT5ylyChO308IpJSbvmUPEG48RhwwhWh2UROOwCMkFpusHf8BfpX+RJSaidSxJSXilXw9ComHYwVmMVUmRjKEPldbZj4Njr7TrNmtZFvXgWEupg7xmzHBYLKNmjvVCqbvKhr1jWlTqlPeDnDd6bYyGhnQjhGCIwenDKnp8crQxGKJ47zYMo4M3+j1OtDFEHMlH0jQxxYR36p+avGZURe9J3jJ5SF747re/gW//3h9Oe3yledN+su+zUjt//e9/Ic1V5uRw0WCdNshpnqmt6OHKWsRYjAvEaUKcyuH9pNmTzlmFOtVGbZV9U99IqZ27x094eLjn7v6Od77rHdzf3zFksJzPnG7P+CmAEY2O6IcOF3KhNMAIbkqa/yWGIaJSJgOtNqYwY11ArFDyrrJBG0jTzPnmhmU+kdLEMp8wo2PQA9nkHMl6kl8QgVIybRz0Ucm5crs84rwsTFE31KUdio6v1+EGHTPQXNDSNAi8ZXLd2faDu8s9Tx4e2Grhkg8u6wOl7qyHAroYjS3vNJo2VKXRZNC6vn4A3Qxa7zxsF57c32GMYd1Xcta8Mms0J27Qcc5jrjLCENN1i6d+TXGOjqG2xsPlQj428n68NKQ5P7rBOk/JldbLdfNt8NfMtYd15bIrzh8RRs+s28H9/crDujHE4kzAS3xpU3/UDbFCmAIxJqb5hhBeJH/q58O2K0ystwz9wDKwA0o7aEdGGsxpJljPnG44TSeW+cR8Ukn0K+k+ezlW653/3zd+GV/3uq8nuMEcHXNwOKfAOqEyTx6Rhvce6w3TPDHPM106xhtwBhuDbpRiIEyB8+0tzgX6MMSk77l17uopu55pW73GRaidpJTMaIL38epZHtAb9hq3MXqBXnFGGG1webjn8nDHvl2otSjkxns6kI+MiDZso3clOaKZnMY7xFmGGcynE+ez/qytNqx1TGnGYPHOY6x6P0cHhqpOrLNMYULh6gYfkpLczYu4f0X1W+8ZYpgX/fyxVxbCeT6zpMQcAyk45ui4mTzJDCTBV7/hq/nKb/kqcn75wkN+ZP2LbNQ+E/izwF/5EV//38YYf/LdvyAi/wbwm4FfCPwrwJeLyM8f4yce4TcY9KEyPACHorutWMQYjiNjrWXfLojo1MAZp/+d1YyIXA6cSZTWsMbTbefIByKDh3Xjbn+gVZ0Ktq43QOsaMGtlMJeAEbBmMEYjxcCTh3setp1aNZhzLweUQh2CcY7RCqVXzJVOk8RgnSVF1eLePbkn1UoVwTv14rRRX/oz1zGQVik148VgreXmNOMYlLLRmm7YGhUvA+hXUpC7yqkK1gjOW57cPaaUF8O7I1veqfmgx8B2ZPXm5cZRMq0B0jXNvmTaGKR5IblELTv5OPS16hpEHGy4vk7QS8EtFhE4zZH0SJAFvuobvpyP/aKP47Vv/daf6MvjlVqfycvwXns51OPtCX/vm7+c3/Bv/yd8yKtu+aAe6VfK6V6hls7DEYgXRy07TixzDNhgGdGrnMcE5jDxsF+47ActBiRrFpkVzZ+aYiSGoFESgBlDkdt5I6QTMXgEq7lnBUr1DHSaLn1gGPrANZajHFgRLIbcKvSG4BBrCMHSe+DhYcMGh4uRIZUjV/WclUZxGWsdxqjMWUT0170pTtt7zSnswBiIWPWjoblJ0Gi1Y7CIWEJwGOvwzmONSsvyVvDeEaMHOzQU1ylIQSl6lhQgBWFJ8DVf9zV8w3d/7Q97b4wxr7Rm7TP5SbzPtrLxuV/1V/mo/+SjmbxjCp57V3V7IV1lgViCt5TtoFAVQOEmDVCWgnMRZwPbesfD/cqQxuhKTTyqvm9H7dQxaAy2I7OMgQ9e6b65YNpgLxfsQD+bnfoX11yAgpiMdZZy6MBzfXig+Y6Pgb1WnDdQIXivg9DrwNEHlStaH1Se3yvROo6yc3t+hLVPwBtaV3KiUKE52nEgFowXTDdYAvtWyHtWD/Mp4ZynHoVaD/Ynm0oWx8BZQxc4+uB+20hON9GX5onWEkPkflspQyhV2GvmshVyLdRSGX2wXaN8NHqmaLh0G/RtI1hVmNTWGKMrLKFbctHIDo3RaYQp0vZKa5XaNT6glp1t2zklVfO4prAHeXFTbwWblFI9xlDFjBn6/2hCaYKzCaRzt2166M6ZtERCTKx51a2qKM5/ThMPdaUB3gcN5W6dEBZMrRxjw9qAdeqFrANa7dQh9GQQ8VgvOBcJ3jI5zzlGzHvYqPH0eQZos/YXvuRT+KU/75fz83/6v8ZFhsKuXlwCd1Hv4jTjbKBchwT77rl/eKLB6liMVfhc75AmpX9GG3DOU3K7QqAKYgalZIwIPgblINRGHRUzHG6AdY7eoRp9ea2IWoqsUSKjF9rQEHSQq0e1K6XWCOIdwxiMBKxV2JAxHWs8tTQ6ouqpOFMPjR45ykathfPpliUt1LaS0syRK8jAOccwHglQmyBmMM837Hnj7u6CfRRBDGGaNSpEVA3nU8SJJQRP8oEUvGYgO8vt5LlJlsk5bIDXv+31fNaX/hW2/PL3pb17/ZiN2hjjH4jIz/kX/P/9BuDzxxgH8CYReSPwK4Cv/ef/Zz+OkqskiI4Zqpedlxv8tTmLXtG2vTdaK6zbysAgYogxYkRIMbBuDyAKH2mtUbuSIXPp1FKvDySLdYYhYJ1hv195Mga9Toqe741pitw9bDy528hFNbO5F4VIDtguF4yP1DooNbOcF6YUmCZHLhtg8MFwOk9Kwuqd1hsey9p2WqnM6USQQMuFIx8sLjJGwxrDMieOh040HnIjOo91kOuAJsSUoA1kDLbtHmMCvebr+nli2zfuLxdqzTysmg1Xm/oH8hVJbocaYMcYtHqQV4NN+nZ45643uXAcBRmO82nCiYbrBut59pkb0kmQGe4e3sWf/NJP5p+89dv+uW/zT6V62d5rL4PqY/C6t72ev/3Vf4Pf/Zv+O87LguTEc1a4XwvbANsrcbk+rK6bZWtAWsUC4xi065Q8TAt+e2D3XQFDDI6jMKVEihPBO3LWwOC2Fyo7xjqm6er9KoNSNDzWTIlcDs1ZGo2S9b7vbdDGwIbAjKdLp+RGK4o/P/aVUgrznLAuqVe0ZIwLmmHY5XoYM+RLxlmDFUNz0OmIDHxQQmM5GsFHnA8YYMsb0sY1U04llClGTDfEa0ZTqf0lvX8ygeCNenxEt4fneSJ5i7caeu0nWI8HSv+hSeQrETjwk32fDZTI2KJ6AefkmLNjLUXlZta9lEfZXOT+yT1lHZweeUovCgEwhhAc++Goo2pMRCvUyvXaE9ykURWCAQv3dw9wndA7YzlapY3Ku97xLh7Nj1hOC0OEY8tXn8dAPEzpjAD7WtnHHWmaOI6NZVnwfiLEibxWjDT6yEhICoE6Gm10DEOfsRbu1ifEKZFav+LuG9uxse2VmivJB05xQbzB9sHD/oS6rxAbrU5Y27F+0Opg2zTCoJfMo2du2Y+Mt4nn7u/ouRC945lyw+3NDRXRTZgYSu08d3fP3f09uRVybtTWGQxSmBSNbvVgmHMleEc7MoPMkXf1e4qQq+ZglVw4jkpuhUojl8K2Zay3tFZxIcFaeOHyhBQC53RidCXIzlNSiErLGFEwykslg9IKR/WkADUrZfPIK10sD5cN6901J65TSmWpwrZWtUmUSuieEALee43N8RMSPLltmFJJbmIYPe1HrzlUzkV6rbR8gInExZEm/x4HXj99nv1QfdubvoMX1udx5kUPv6FGpwCpS6ZdN1CTBOUwXBv4EKI26mUHLyr/Y3BsB/NpptWOjMqjR2e2bcVbr95MOjkXfPBIVQl0MhO1N1JKDNHIqOgCxnq8WI560NFznKmV05Q4gmUUQ+6ZZhqqT1Y5r48O65SWGrxj1Mq6b9zcPqNDGwNb3XHO0bbKaTrTmsqynRdCPOFt0GWLCVifKPuFYRLDd6a0XIcyEUbhaIXzfCalWQcoxoMMrDF4J6QYSc4xRcccA5NzzDGyRM90C+/Mb+e3f9Jv5fU/8F0//L57BdR74lH7vSLyW4FvBD56jPEC8NOBr3u37/n+69f+qRKR3wn8zuuv/6V/czFWH05G2O9XpFp6Pri0SnCW29PCen/Bzw4n4E8n1v1gPTZA5YNb2Wmls5wTbVhahlIbD+uh+F+fsM6zHxu5CvtWmWPAJ814qLXgrsGRPUzUfnDsB0fZiGlm8icqRhsxZ9mPjLN6YBtNONaDIbuGYdNVQuU8pVa2bUPaBW7PeGuYl4Q1Ak1weILxGCOEEAjRIQin5UxKQaexwJTUn7LvhZxXnDf0fmierjR8nGjj4GG/8ORyD6OyFg3J7HTGMDjjuX30DI+ff0wZlVY086O0AmxIGSQ/Y51XAIrRD5nnXngn8CyvfvZZTlPiVY/O3JwscoZsMq/5rm/kLe/6vis972n9GPU+vddeLvXCesef/r8+BQ7hd/+m38f5mQUXEt477tbMsU2cZ2GMTmtKR0veIa1R6gpAraIo+rWSYsSayhiOUqtKTUxgCOTSEAkcR2HUjAsTyzQRXKLVgusZK5VGw1j13vRuyH3QB+pTS+HqfQGMorqRwXrZOEqh1cJ8ThgX9SBlPBIVEBBO+v+01jDG0LDv6+vgrKVhqKUSbFQSJEITgzpwB6Y7uqgPV0OwDXU7CHFCeckG5yzPhEiMiZMNOikVQwiBOXiSATeu+TOz42u//av5jC//jH/qfXklX1M/ot5r99n9/cZv/4Tfwhd9wt9k2iyTD1gOnLM8e/Nq1mOj1UoZBR8NNe/s9aCVQlk3bk8n9qOCNJxzxBjY1o3clQrXbCMlQxBHL52SM5e8I02VJ/M8I91gusPgWS8r4wq6csHTB8zxxJMXnkfaTh+oekNEZX9eCYbRezCWQebx4zueeXRijolSB90aFu+57C/QhsE7Qx+eXlSu1Oqhgb4DIgOcVeqoVT+mGUIolY4hXsmYYwy2rWKMcHOzQLfc3T3h7n7l9nahtIO7h86omd2A80qnTHOEbnjy5AlYx8NlZS+V0hulVhrAsJR95UVCmTCY0owblkvegEHvBZGoNoX1ThHgpQJOKcnjCmkxg+PYSGnGmQC3g8v94DwvmmcYHa+KH4ARh3Hw5G4ll1W32yFS9qKfD0PwNmisgXWUvoIXtu0gxKiRISYiduDEc+TCw76yrytYy3opPPvsMzgGwRia6dTcKXkQU6AaoCv31SZPiAER4WY50UsH1KsbfXhv3tc/5Z5nA/h//tHfyN//o/+Yn/uBPwvBopynThOhbQe5VkwQZpdod400R466sW/71Y/luVwemOeJw1byVkg+sW87U/BM08y2HcpIsOpLNc4weiNMk2ZQ98YQi+ISNPdvjkGpw0dkrUUD5K+ZbKEPssn4oefNVhul74iF7SgYY4n+Oq13A2M9x1Fw3eG91Q39WoiTSmnD9cW4e9jUujML8/lE7Y2aC2vJeAYhJMQY3RDvhZRuuDk9q8/mBkYi0Rt8sHinpHdvLac5kbzjZkos0XM7W5Zbw9sf3sav+9hfw5uf/z567e+ry+DHXT/eRu3TgP8Zvf7+Z+CTgP+GHx3a/KOexMcYfwH4CwDW2n+p0/pedu4uj3lmOeONIYYIDCVUVRRNPAes7fTacV6Dpo11CiEpjeNYVfMaLUc+OIpu3mqvOKeI7lx22pWIaABL00NYM+R8kG4Vv2/FU1rh/n5Vra2o+b+PSqXT5d34SWaQbGLbVko/6L3jvUdEp+fHerlSdNQjU6/ypOyEZRpIg5AiN+cZi2W7PGEKEJYTYMhHJjhNlleqVqWPwuPLg4YIOk8IkdwKxnZOy3wN386su8q2Ts6xH5nWBiUXHvo9Q5Q2NJ8meu14CVfKlcFYldDkUjlqwYfAcj6RJs1Qm9JMvcq3mml83Wv/If+fv/oH+Z7n3vwv87b/VK336b32cqsX1js++cv/NCYOftt/8Dt5NL+aR83hRaghaC7hflAYeDcIBoYIXha6KVxqwYln9g5Mp7rKuhfNiRqW3rrq5MVymiOTc4zmsKPr58zoMHTyPhpM11iPPecrAMDo5v6KXG/XhswMobSiNL4OyxIxNmGsx1mLmETOVfOuXszQufpUlL0/mH3CGtiPA/AIsK4XxAnGGcx1ez8EQnSM7Bkdeuuk4LFxIveG5IGJQnSB6AxTSC/BKbzxpOCYgmMOkclYkrfUfuFr3/CPeevdD1GyjDGvyI3aP6Peq/fZMVa+5+7NoIodxaB7z2Qge8dxaAittaJAAGO4f3Kn1M7e2fed3hqQrwemTm5DIyhEN1p9XUnpRKuF2jshBg07t6JyKuOVhCoqvx194IJjdAUYYAd1VC7bA84nzucJIx5jBqN70hTwYqn7ig+WV3/gI7w3GN+xdJaUqKUiVjhqIR+VGAIhWJ57fMeeMyl6UlQJX++Do+z0YXAuXAnMjigLxincprWGsYJ7EbhiwAXLnleOEjAYgofRK2GauXvYAIfzgVp2ntzdqW/dqYR4tEpH5WghempumK6H5n1fkQ7EwYhDBz4Ixgn36xNa77TeuewbvUOvneXRmXW70IZKCnPrjNI4p5nbD9BsKhFhOEPZD4xXIBel4oZgWqceO3vJRJ/wLrCtO/etsh2ZLo1pWfBtZ78GzJuG5mIJHGbHisfFwHHsGBvUmmAF5wLeOMo4sNZeM/EER+DR7cQcNCPRW4c3EZMG59kTvVObw3tniPpT9nl2d1mVvmmFZQl0GeTa2Hfd7HaKQnuoxMljs9BON/Rh2LYd4wWfjMZQoV7S3jtiDI/vH3j29qyh5XcHMBTukQsl78RoGEOU9pk8oxdO8wnbO2YIQzrSB04M1jgFBclgmIF0x3G5xxmPSMeIY9sfMMEjAwzCGHDZN4YMHIPeM8IMgE8BQYhxBgY5Z0ap5JIZl8zcB10MiOXmfMNRMn0IS5oYXbCu4b1DwuDYsoKwgmC90iO9s8zBc14movecZ885WJ45OdLJ8rp3fjsf8cn/DW965/e+xLV4pdWPq1EbY7z9xV+LyF8Evvj6j98P/Mx3+9afAfzAj/un+9F+bzpvefJGvvn7/jH/7s/994gmAgrdSHHGxuv93jsuJbZjp1dLE/PSdNB7z1EOHi5P8CmR26ANsNbrB/AYdKM0q151RTpEE9lzNjqhxrCuK3NMjDF4cveEI2eaNHyIKj8Zcg0YvIZgWw25xnQuDxvjOvGWodSeF5HgYzQN614S0Qf2vMIY6gEbFdkGm79wmhf9wO5V8bxDcDay5Qe2fVDr1WzeO5cjczpNIEI3cKyF+4cV5wN7KTQGe62clgXnhfHkgX1r5NZUfmI8IhoC7lzQ994OPVT28VK2krGREILm3hirBushuCsLvJL5pu9+Dd/xzu/8ibws3m/rfXmvvVzr/njgU77sL1BH57f/B7+DV3/gBxFXR69QjsF2GMqm1FM7BrVkJAi9ebzz7B2G6P1ylJ3aoQ/o5aBLp9WBd+YK1rAgA0NHekMGjDpeGt4woLZK7Z2SC3stdAytNCpKssulK0q9dNoomGgxIVwzy6CUpkHcAjXvHFfiWunHVdYR9OBkhDwKdWgOTusNFzy2uqv5peNMv5qyrzK0qx/BGKP9nnSsCFG0ERP00Ged5rLNfiL6yClZTnFiSo7l7HjtW1/LF37NXyPX8j59799b9ZNxn13Wna94zZfzYR/y4TgjzN6xTIm7LSPXrEkjlmEtEhTLP8bAGM9WKjYmejFsuWrg7RCdLidz/UwWHh4eoBlEBsGq0qLmyrZfmNLC+XTmfDsj1wPZtq/s2858Y1n8BM5o+GzLIJ4BTDHBMMTgqfsGrZNCwhnRCf0AHwzb9lhlhb1ibHxJYtu7buSkGcR5uhHaqCqjl0FpUFrmWHeWdMIb/RlK6azrTrpJ5HK9RqeA8ZZxEUrv+FFpuWEt7PnAisVdoRxTSIToueyZaAPRWDr96lfTDdsUIz4EjOGlBm6vO2KusQYCL9w9qB+wVX2uG8egIcFyv66I00iAWoV8ZEWEG/38ONYLxhi8eIyzlCNTa8EHR2mJWg+cj3AUuoYhspXKdhzYEHA+IN4S5oitBhkGg+Wyr+Ra1N+eAuyAgTH0IC9NmKzGjFgrpHTiyAe9N/xkeeaZV7H4mTH086DWymmKTGkiRUOa/EsxKD+R9VP9eWZEw8cdYMURXGJaHFIOjBOOAttacCmwtnENbB7Ea7B0GQejD8TqcCHXjE+BxWvyuxhhCHgTMOLo/SB4tbnINTTaisNKp+ZCHR3vLIiltE2XGaIdsub/Wrb1onAsIy9FfTjn6CKABm731mE4xmhgg4az50Krgxg09Hp0fR4F42jJqpUoGFyMV9iep/XGVhsxOYzzWOMZ1uCDV7mjgPP6WeStJ1jL5D2nNHFOgRiFc/I8cw6kk+Ebv/cb+JhP/wN8x/e9/hXbpMGPs1ETkZ82xvjB6z/+p8CLRqO/BXyuiHwyagj9EOAfv8c/5bvVYPBcfjtvvXwPOf8KNiNM1hOcRRDSNfDuWB/wIVJtZT82HGCcEmEe1gvr/sDDujIbw/26XUkzJ+hW88AMSrgZlmi8bufKoTQsaZTScVbYDqjtINfCXrJ+2KtlF2SQi8onnHW6sSsHKU28+tkbnUCMwXFkxGiSup90Db0fB4jQasUHPSzWXqAPxFbysWNPE3OamHzS5PdeyRi6EWg6rSm16VQkOO73TOsbrXbu7x64bBuNTu6dNtRbZswO2+DJ3T25FDCK8W61aM6UuxLkhqGWgZuVdGkwJD8zjFAHTHGiX98vcY4QBCIc+eCdd+/4ibwk3q/rfXmvvZzrHffP8Ze/8jP53ue+jw969NP45T/3l/Fr/p1fR6iOtFvGYaAAbUALjA716KxHw5WKtY617EpgHZmOJc76QDEIMpQ+FUO4ejoMbqC4/i70lGhDBy9SC3td6cBWChIcdcBeDupoGOdwYaL3gaGBUWqqemNVhlRbo/WuOUi94K3DOAUjGecwrlOlceyZY69Y75imhDP+mvOkH+UvGtF70cgM7zULZwwBBl4Cp9NCioHRNHdqmpX4GENgSRNzikzecpoSp5Nw157nS//Jl/CW59/Ei0NuBZu832zTflLus+fun+Mvf+lf4lf94g8neAjBkNKMtw8YA7SBNZba5Rp67Ck5k0sDo2RijVuAYSAfhe3Yr6AKwVtP7QMrKFigC610ypGBTssHNVvkKnHd80Eu6tfa9gvBWWKM1JxfirSp+wUZNzoUrJoN6L0jBU/pGemim+M6yMdOrQ3rI/M0URr4GKm5cHs+g7noYdE6He4JyIuqj6748CPv9GskXx+D0jK+671gXAAM3luEB3odSDKUeiDWMsYPbRnu7x7Y3c6RD3Lr2FaRPjhK0dzBMQhGlKTadijX5z2NY3tAn1yD2ptGeIyB95ZSOoIll4Jxuux2KWHEYHqlAqVmzFBgWRtCL+16uBZqPnAxYOzMuitiPaZJ349tZ9s3Ljnj/KRUaumqECiFWrN+Loijtn4lfjbcdbhsrAOE3hWAVnPDOc2yCy4gWHxy6n9tBhMs3huieKxNGGk4a0nXAYJ9L9zfP9WfZ1ZUmqt4eYOzgTn5a87ngXOCMaLQmqie44ZhPy44HDZ4SjnAgPGO3IpKdsNC7howzTXWgtGIPlDrjpioNNCRaSNTywFicMZR362D6b0i3cMY1AbBgZs9/agM6VfiuoDxGBzGBFrnpQFe8Eol1UhDQcRRaqeZgXENbx2NgfWeeTpR6o44jxiPFQfW0btuqI11uBAxXoEoGEv0neA9wXkm74nOcJoCNylwiobTHHjVEgg3hn/yA9/MH/yMj+E1b/wmhQG+guvHbNRE5POADwNeLSLfD3w88GEi8m+ib8mbgd8FMMb4dhH5a8B3ABX4yPcatUfgKAdTiPjkdSI2Gn0oFr9LZ4ii8qFjUUJcrp3gdcIcfEBw2GseiYzB6JqlMmQQgmKsGZ0gAaJFGBz5nhgS1gm1qLb4fn3Qh4W1mG6poiHPPkDphlx2etUtk8NjjWGOwt1lpQ+DNyqV8l41v14sJSuuOMZIqQdGriCAaz5S3nZub8/02rnkHe8trQ6SRKwIrQ9FPotmZ9w9vmfdN3JtdAb79c/ZB7R+jQvYG0MquR3sudL6znBgjcGE60ocKH2n9caRVSu/LCrF2raN2irO3RCDJsUbwLvBCINveO1r+Oyv+4L3yiXxSq+X7b32Mq0ffPwOPv+r/zpGDD/n1T+TL/zqz+c0P+K//jW/jV/6Cz4UGkg10AzjAH8M7Opwh0N2odN5ODRQHitYYwlzoNWKtExISaVo8QztQLqBBtY0rDes64Wjd1Ka6VjKMLhSKV3AC5ahmYS900YHIwwxV5Jso7YDd93IjwGIxUchb1V9O97RGZReGblhRA+3Jlk9lDlPw5KbZtcIRg/41uKCeky88cgQeh0MgRgnjFPoQaudxS1Y4wguMofEEgOnFEnecpqFzdzzV77is/msr/xsHvb7l177V3KT9r66z+oo3NcLTOCTQR4GzsB5nmh0Hj/c6wAQy7YpbTfGGWMPas2sh2ZWOmsZo5HLRmuZvGpbEaeBHVaDy6/jwnE9hOmQQCg5I96Rt0Mzv6zgQ+DIheeePCGFiTSfOfaVXjKtFaQ3Rs8Ycz1cNY2NiMFeX089gHo/66DPGEo+GDi2/QLDYH0kJUXX78dGcAkTAvl4YF0vGkvRO7fP3JA3lYiJMTjvyDWTwqSZX1ZprPWoTPFECPGq7hz0cigc5XruzEUpjzijgdlWlSrUxhw8MQScES4PhVIK0zKR886ad0rTr2metDbQuRmG0ZDhMqDtmbicqd3Sh9Ikex+MCl0OenXY6Ci7NrDJBlWbXON1Upu4PNxTa1P/GbC3neQC52efZb88cORBrju5ZFop2GVSj+CV1ld74+HyQL/mSxljEHSrnnMhTBMwKL3QRmP2C+naWA40A9aLnhGS9xgZOGe5OSWMfY/x/E+fZz+iPvLPfwSf8fu+iNvzDcYKKTkmC3cXwXrhyBpcLmKvDRWk6DH2hFhlB0SXcM6x5QOxwmXdGEEQ1xl0jrZjjA7PxWr2rrMWM8AMT8uVo+wYazEuXUdvnRCSKkxq1fPdqIzhmfzMxspANB6qG6Uci27oWuvE5ZZaCilFTB84cVdon54rWwdjAsaK+ldTYoglxbN60WJArvmHcY6EFOAK+HGiZOM5WIw4nAsEH5iCZY6eV50SNymwzJabyeEX4XvXN/H7P/X38i1v/DbqK7xJg38x6uN/+aN8+S//c77/E4FPfE9+qB+zhjC5hZvTLc4brAxiCDA0PDo4z3I+q48s6QeV9x6MoeUVYxw38wnvI85HpjlwWTNH27G+ERQRvnMAAQAASURBVLsh54zp4/qwg+Yao2noX7QTU0pMznNfHwCw3rPVjLPqldu3yunRLT446nUiZs2ADut2xzLd4JwjRU1rr61yevbE+uTC4Q9uT2f6WqljY7ae1g1LnDQUuzSC10mcj+pDsSPincEYzXZacyWXomS30ri7u9NMGWsZ14Nb75ZuKnsuV/KYIdcVGybm0y3ityu+X0hODaN96J/BXdfUD5cL5/kRHYOLKol0Lmlwotd8kGCVJoYftLLywvb4vXp5vFLrZXmvvYxrMMhNfRuvf9t38Z1v/268dXz1G/4Rz8Rn+NW/8N/l//1f/l6evX0WVzzsQvDgVgde6Jtw6pUtQ847cvWxVCrOBZzVSAvGQIY+9Pz1XiwPh9JZR8dJwXmDjx7ZVNoS7ISYSO4XmuxUGVQ64r1OO4FqNFag5UrPFWcNQwaEwHC6Hakts+073grep2tItXrhaq2Y3uneQD4I1uGvmzVjFARkUK+sCHgTOV0hC5d8EJynX0FEFoOPiXmeOCXLEuGIK5/7lZ/DJ/3tT+a59Z0/7LV/pZj4f7R6X91ng8G3f+fr+TOf97/xe37tR+GdI8ROSpFUK8kXGAelNmxwlCfC4GCUSvCe7rXhryXre+o1Y3PLB/1F32RvBBy9KQQnTbe4EAgucXt71o0V4OfA/sIKouhtqR0jiVyq0pSH0MVw+6pnNQtMYDShUhX3TUfEvPQnQ4QYJ/YMNReGhdoyfYPp5kRrQ+NtBljj6NI5Nt2wiQvcP1zovWIeDHNw+jOGyDKfXrrWRqtgVGqV0qybvAN8CBrCmw9cVPlh8AFjLc4YWu84Z9lrhS4Eb6hVsFK53O9sWya3zJY3jnYgo7GtHRFI121XaQWaELxQRtewbgFz7Bijnr9Kp9SDaBwDT5PO5f7C9rDyzLOPdNuWN+o2EAzbsemmv3buHzameWaabvGT59h2yhg8bDocablhvWMMQzxNdGsoDxeFghlLqWCMwzuLt4ZSi+axts7p0SNEhP2yk2LCicGgpMvgHIuf8MHgvFFK5ZyYJiVav0fX+9Pn2T9Vr/2eb6XaHR/PJCtghFoHp8WxZa/PFIQmhSAVsZ2Mwx0D1xwhzDin0mSPY2LCecf65AlRPI1GjAlrLa1XljQzn28pq3pcj9rAQpoXRm/kXBGriwtMx3mlARsr0FSSuB8XKhVrPE4SYTbc3b/AcIZpmnDD0GtlSSdCNIzaCT7hnG6VzXCE4DFdAUJuOJybWE4Lx36w98Jx7AQnNAPPPvNqfIh456/3HcTkCD7hjSMFlemfkiMGz5ICt7PlfBswi/Cu9i5+48f+Br77B97E+0GPBrxn1Mf3WQm6VjUCFk8eIKWAdBr1pSmicxY3L8hQHO2Rs5p+s4ZArvuFJBBDpLaLBse6iMFgxVFqxoaI63AcB2NkzUtLiWPf6KEynSZmFsoL7+KSd+4fb+wlU4F+LyynE0fVPCXnPCKGdTt44eEFeqmMIYTkaW3w+PnHjN64XW4ZYjTY9IBgKssS8EFvKMv1z1A92wYlV07LickFnHM8efw8Ry7k2sh1sF1WtiNzaQemO5yfKFLoA2gWK1DrQa1NPTQNokvEEIkhYq+XyZBBzZXWOzIcgmNZFkJSbbuPEY9KUPX9EaLzpCld4w0qj9f7f9bb+rSe1ntUfXSOmvnOt383AK975+v5G9/wt/ndv/638av+/d/AB/oPZLpZsAFudgt+ogBbHxz3Q6XLTamLHXToYzWWA6sgBecFKYLzAY4VOtQyGHRy3lVpKUqdPGis5aL0f1C0+LAa22EEg4CpKhdxnpwf6H3graf3TpdOpSnkwQjRWcQ69dBaYcjAWIMYg1wzIpsZ5FKIzhFCUJXAAO88cZkZeWC9wkXSdNIHbfScbpIGgyfDciMc/sLnfeXn8Alf9L/weH/uh73O1tqfzLf1/aqeP97Ft3z/t/FwPOa03FBa595oc2/FobMuYXRYTpkXnnvMkE63gZYHe82M0oje0aVR2sDaSCv7lSw6aDUzKIze8dcmJc4TbQyW+UTOmVIqPigEoBQoQ6i7orRHq4TgsajkL0bN1Tu2DZsm5pRo9aCvDlUxXsObjcebQVx0O1TLoDmB0rhs96xHxoqn9oNSMpdtw3ph9E6YA+Qr6Es0NH6aZnzwOAls+Y7SOs453OgaS2MFI428dySA8zO9dVwYOnTsXYl0NZOvQJ8lTZSesWYoYn/fKf0a/l0zPjp80J9/DBAb9fUc+jw+8qZN2tDmcTtWbm9fjUWJqw3Dk8sDzz77avWtlkxcAjjo0rhfNwYqHxUHlEGuFesc5SpZM6LAtHpsMLhCZFAoF0U9f9YQrUXEE7zKXH0IjF5ZTjeUvLOx02vnWO+4efQM87OPXhreCBZvVTY9pUgIlil0znPkdgm4pKCXp/UTW5f9wm/+Y/8P/tJHfQ4/+4N+HgGD80Jrg4YF8dQhxNaAhOmVEeChD+YQ8ZdDG/zhyDwQfUJW8De3HGUjBU93gV4LbcDDuhJcJU2JlgtjH4SgbIPcNlz05FJofahE2mqAux0G4zq5Hwqjio8YcpUBH8Jy8yz3dzqE8CESvcPYRuuN4BJyVbgBmkt8rxTVm5tbYtQ4rfU4rvlsDWc1RD7XQowK1QneEK/chSkl6IZgDDFaorPcBktMkUeT53QTePv+gzxeX+C/+iO/mTe+9c2vaE/aj6xXZKOGDFqv9CFsOdO6YTiHkU6tO/0aFO2cxXnLse60nBHrkFGBipihOtx8UHKmlY0pKCr4GAVJFnarWWNDEacdoXaUrjQG1EZvG20MHi4rtVbiksiXgmkN5x1NwBhhhEDwkbyt5MvOGOPaoEEtFWMtMjrLzZkpnRijYawhuMB6uSPEG0YXmlFDpr9OLB+2gdC5W+84jpVyVGrf1aeXVeJ4tIJNHrMWGjBqZdt3zLBXE/ZG6+UqZxJG6+SxceRMihNYaL1Cs2z7AV2IkyFYpyQx4yglIwJxXnDGKcmyWxgOJ4L4wdvf9nb+yld91vv44nlaP1Xqbnvgbnvg47/wT/I5f+8L+R3/4UfwH/+q38RyvkFEmDqkI7LEie3Qw5IMwIO3ghP0/ukQcQzvaF0hHSkkWG4JPrPXSjk2QDjPC5d6cL9ubLVS8vXeRijXQ9dAVO5YBnTFZDMMpgda3jSz0AltdMQqdhgM3RgN+u0KP0riEfEYqxAEEUdvBuMsXQZiBB8TPXdCStdsRSU7uuiIIRFi4DzP3EwLN4vjdGO4H4/5gq/4PP7wX/+jP2qT9krepr2vq/fOV3zTV/Il//oX81/8W7+FsFq8GCbnKNFxNEPvhtYq07yQj0btBQmGfV11aBAsO52Sd8q6U0UPQ85Ylmlimhy1WLZ8f/VBG5zLEB0tF1qv7EfhaIqZ987TxtVKMM0K3bIgxrOvK96eGQGct0BHGHDNXZJm1JIyPN3tzMsNgtKCfYK9NF54rFh7ZyzWe1rO3K8HYlQGXErB20CIAW80OiIlVXA83N9zPt1iJdBMprYDGYrhNuKoPeumjgE1U3omWEsVsBiGNFKY2EvGmM7ohlo6YtTasG6Z0nZsMEynMy9S6Yx58TofKmccQ8PmBZbzjcIVxmC0Qc/tpe+1xmCNpdVMzfUqSTRs66Yb1BTxwWvmmQ3saH7c3irSQUbnsmacOLp1nKfEtu1U23jYLlhjyObAJ48L6jfb1pUYAr03Ss48PL7jtMyYsBCnqIfmBm10xtBGL4ij9wmDZcggJs8chSkI6RQwrLz5HW/5Z13GT+s9qG9703fwUX/uI/kjv/WP84t+3i+mdUM1wm3w5OoJoXFv3TUn0GCKhrvXIVf6QaZ3cMVCv4KqEJIZjNbYjx0nukmu/d3onXXgQ8I4IZcDl+I1qBpK74gPyIB69cpiLbYZhV8lTz70eq4yGMUqBEdQOuro2KEDvK1mbFebkKAxV6VvYAPVDJygVPLeWOKCsQNnHTEmbpYbvI+EqLRZGUJyERc0kzdax5IskzOcPJyWQJoDb3783fx/P/tj+Eev+wfcr5f3qyYNXqmN2hC8i6RpIu8btReSCdAFnW3r349aqXXn2C8IEJ2ht8oUPC11BD0IXbaDKBah04qajkfvmmGDGoF1ytk5jsw0BWreSTFoplgt7E1DbjGq3Z1SInhtYFprxDirFLE1KpUUAil5ji3Tu4ZWT6cT0zIjVH3QececJra1wRAEPbzlUsgd2g6YhqEzWsMNDfhmaNbZsJY2BmIj0xIUD9ubolABRDBWccG9N0IyiKAPFe8A1SLXXhkDehnYIQyjjZuxOn21rfJw7LoxHMK8TPiRKKVisAp6sfC2d7yNr3rz17zPLpun9VOzXlif8I3bt7F+yafgouXX//u/iTQvuCoss+VoiULlyJ3tqJQ6aLVzSEeMkq3E60RcBggGYwfTPCHWU48d0yohetqhnx/lKNdJoX/pc6HvSm4cXehUxY23RrOCeA8YjPE478AalPc/NHvJKmm2oVRYjGCdPihrUXy/OEUty7BYGxmiTZ3zjugDFq8eFm+uG3BPWjzn08xyCiy3hrv2PJ/+ZZ/Bn/3ST+H5y/uP3PHlUoPBfb3nIis26TNpCYkcDV0cI+8glkEBgdPNifv7B7ZjB2NpVWNkWmtse6HmDNKxTrASqfUg98a+bQxnkd7Z8kaMun2qVTdZIp51P9QzfXIYI8xzRMzAeGG0oUCrDtxfCMayxIjQKHlX1H0H6yxWdBBhrVEJsTEa6GyEPe9slzuVIU6BeJX6M+6hgY8OxsA5xzTN5ONgSifsFclfelNPWwi4YShlR3B4OyFW9OdjUGuhXil0eyv0ejDZCb846ih4p0H3uRWcFfowDOlYD+2iMQJdPQQgiuY3xjJoGCP0prCTNJ1ovdPp2v0MoY+KLcJ2uaf3ireBY19puWNk0KhgDWtW2mMHTPR4a7HO8eThDjMMyUeOY2e7266RHQaxnWVJrMehAAgAhFKVXjl59bsdJV9z2Ma1SYyEEPFeVTHGWuqLq/0xOE+J8xKJUVUCKVnOi2VOHmMLX/T1X8zxfkp4fV9XH4Ovfd3X8vGf8zH8Lx/xyfwbP+cXYLsgBpyFGCwpJO4fBnu1yLpjbGLPGlVhJNG6QUwn79rUD9+hRu4enugApA9qh+ADNIXP9N5IMdJ6I8439FbUZzZ2RstKXSwNUHLkixAqFx29K3QIEawRahcliHeF5pkGzRjq6DhxTGnCGE8teu07P9MFECWvIobTMuGcJwVPCBYjgndBswidQUYlOh36x2ixwDlGboJliZbkBzZ63rK+iY/73I/ly1/75e+3VOJXZqMGisauXTvnoRh459TYjNUw2Lv7O+3CI8wx0O3AB48NnltvCN6Qq5qsW/Sslx3pivpvMrAh0Epmb+s15FIIRj0miqC3ivMWo3k0Q+UUxjqW5UwKgReePOGoB7UCDA2inmdM19ycPtRvJsNcSW0WbwBTrpNK/fdK05ErYrcTLZQmyAhX87DKLOgGI4oXt0b9aAOVbooIpSjIwIjBDn0oGR3YI9ZB1yYx+oBYp9jwbgguUtquFMqokzzvA9ItwTmyDBDHMJYrfJYQIsYIxqH5Qeb9bMzxtF4x1UfnO37gu/gTX/SnsMbyH334f44bnpOFPgJdZi5boTbDLBqabXq7XrODKgZaQ3MTu6KQ+8AFi+sOezjohnY0zS5j0GXQr/FAow+ss5hgMYdQm1LlMPp5U0vBOoMMx+gamC3WMQYYa+kFsIbWCy54nBrVFJbUB96qXyCERCuDU0oEE3EIKQSseKxVmpe3Ae8McwqcTwuPzpHzrWHlCZ/+5Z/Fp37pp/L2u7f9sNfvRcrj02btPa/WOn/nq/8uv/Jf/5X83PlD2LZErkIV2EpleDiyoXeNhxFrMHjK5Z792Omi2P7eVDovBoSIGEutg1o1PFusEI0H0+jSNIolD45cGF03RM55Wi3IgOW8MHrXLMHjoF8leet2YXrpmisM03AhMlAv5ItSWMHwsK2ICHOaEAbb5Y5SC7fnBe8Dzpmrr2QhHwdjdCbn8dHjrKObrvhwo2HXuRb2rE3rMk9osplVfP5o12daJh+F+bRgrCXvBUanURiiQAI79PuhKxbcOrZt53J/Ry07rVd8DAojk85kPcYqZMwZwU8T9SWwSqfngsGwbhvBeewwRBdpVbDBaBSHKDnWB09IiePI7CWT953WGnOaMA7adWPXe72G8epzMjpPaR0bPPYoBLHQzDXUGCyW43Ko1IyCM47SjutgB/UNTonZRYx1HPWAMUjzmfP5hhQTyzxzng2PloWbW4edHF0ufO7XfCHtJc320/qJrt4H/+jb/xH/w6d9JD/t1R/A7fIMn/gRn8R5mUFgSoboE3eHZgCGLWNYGabRh4VjME8zk58oR+Vhu6MPzaxtrXPsGylMxClB06gm6x259Ssd1CF00hTpK9imUDlxFofBOksfjaN0nOgCRLzBiGb+1qPQm2hGafQYa6iimzjTVW5fagVjGMbg5pnWG2k6Eb2lj84QwQXHFCwpeLxTToI3jugs1gVS8ETr8d6QjOE8B87R4icBB88fz/PRf/Gj+Pvf8lVkPWS/X9YrtlHLNXOUA+h0a9jypplD3nGsBWlKfHQp0hGef7ioDjYEZmvIpZFzYS9VPSTXbKIXJQzGCN4ZNUEj5KNp9otvSHakKITguVw2hnSMWIo0pfaYQadRWqcZdTNa6XQz6K1hpOOi52idYQ2KHFaa4pN3vYBByd0x/ZBZWzQDVzGtztElcb8V5kk4LWfEwPb4CX0Mkg9470lTxBiPOMPzT57HWcFZRYE75wgmspcDaz3ORrCW1gbn04INUXOhtoM0T5TWVTIRJ7zzSumxhnQ6EULA1qLBm84Tw4QPegiYpoCLgAX7HlKkntbTek+qj87rfvCNfPznfiKntPCrPvw/xt4ZHlmDcxPvsg5jZ2qtbNvGcaz00ZTyVtS3FiwE738o11AUJCTO06oBL3gcsXg6npY1TLsiOBnQlKpmiGAVvmNEtxHYBs4D0IbTzwGjgcfjijP3PmFEw7d714dujApSMi4gGCYfdEiCxxpd5zlnrhN20by0OXF7mriZIjcnT48rn/9ln8ef+Tt/mnc8vJ13z5p92qT9xFbphde8+Rv5weNt/Ks3H8I8W/YaWaviq49cSGliuzxc4SHtpebCWiHYhdoyTQqdhpWEs4Z933HW4K2hicX1welWlRzHXqALl8uFgWaBehcw7iozbAWulMMxOjEk4kk3bJd7zQLrXXHv4iyX+3sNPBf98zgfdWjoNTQ+l6zU0SnwTNThA9K1iWxVN0aTIx9KDw545hiuyG8hRn/1x91SyoUQIs5brIuK8d8yvXf2dSdNidPpzFpWZrsQfKL3TJgCjcr9CxeWZabsqhyxwZLOE5etsmV9noY0adNXdbun5L1BcJ587Oz7zvl0RgTk2BjGMXZw1ug2+0WJ11ApZK4Hxlqm04m8H5Sj6ka0N5zTTfdlX3Xzse8kH2k560bOO1J0mrHqhDEM1gZMVs9qywcSPfNyYjRHzgelNJpUlby1imCJy6RZeteGMxAI1nK+uSFZx2mOTLPDe40ccvMCJ432OdpTf9p7u3offMMbvgF5Azjr+IbXfz3O6dDjT/3eP8eH/sJfil+vMnwDZgx88UzWcz92dlPpplNLx3XHEItLgT5U3quwrUYUDQmMwXMpD0o+7Qrha7tC5cASUkCc4GwABq1VugHvI8YaHJHjOKh1KDFWNIZmdEuzBo8QbASnZMctV4wbTDFw1EzyXiF408QYCuByxpC8Z/aRaQowNFLGGUvwnnPyep41EJywTIJZBj11fusn/L/4zre/njd+/5t02/d+XK/YRs0aA6MAHgu88OQJxgxuTiemmEjzTL10KgZap5RBrpn9yMiNGn8v24V1O/Au4JzXkL5eqdcDWIiRy7arKdLoh5+JmkcysNw/XFjXC85bfAiUbaf0QsmDkl/Ae0MTgMExOlSVLyLCtq2UnJUqFyc8jtoK95d7qkAwlmfMmeEG4izrtqqXoHcuT+6wdxvNwF41OHBJC+ICplf8HDnFBXPFm27bhVYK0gbRJ6wtihrnKudyghjHnjPb+kCaFp2yiiXGM2IHg4oxgrSGdZFWC6UI6/GYZU4Y52mt4Wwgl8xpSZxPC955XXO6QZxesZfb03o/qTEGb3rn9/F7/vxH8q/9jU/j9/yG38+H/7Jfw7l7EM9s4MlWkOZwOPajUjp40xDnsCLQDWIq3s/UVhhSsc6z3CzI7tgp+KNx5B1xgulCGJo/U5tmoKVpph6HGqiPC0NAelDZFYN5WvBXGcdgsNvK6IbghVq6krvszIi68TufHmEw9DxAYF0ztykxRUe0jpQSzllCmjifJ25S4DwFnrmd4LzzOV/xOXzi//GHef7hhR/2ej1t0t479bBtfNyf+YP8tT/017mNH4h3ENCnmXeeXAc+TZysxwRLaY3Sdk7hhj4a5WEj94w/eeYwsd6viDea0CwQJ8VYd2OZF0PLlXV9IB8H/hqbAkKwBumFeJppWSfS2pA5rB2E4PHmxBQmnWwboR4rl8s9zmko7agW4xy5reSrF/wa26cSrss9Yjp1VMrRePs73sVwljhNHPVgdGHc78Swsj5c8M5jOTHGIMbANN3Se1c/jQXoHH3n8rAxagU7yCNrHikGY7XZzJeCEUs/CsEqPGOrmV6F+4c7jTRYJlpu3JxmXnh8x77vdATnOjF47l94DANe9epXYVGp5RK0qTMR3KUhJmrgL4BzPOwrwQV6q7Rjx3rL+nDBRI+1jmM/VLJ8FJzznE6PGF0bsOAsAae06d4pOas/7ro5tUOwSf3uFs1ZG/76/aNrhI+PiBjCECxCcAY7GjE4nOkk0zlFq2HB0TP7xs0pQhD2+pg/8YV/nH/83a/9yb8pfgrWGOogy7Xwuu/9rpe+/hs/9tfzdz/p7/PBH/wqnj2/imADwTtOe+VhBYdj2zOX7aA6ze7stWHNIA5H2D3uGtEg1jC6ZgB6N2kUxujkmhmiPs4waX7mEM0I3POOM4YYArlmgo/03CgHDOsJSWW2owrGNEY37G2n4bldFo7jwNmh/scYmWNC6HgnyGikqL/fcoqkbknRsQRLCAvGGJJ3TNGzREdwEGdoUnluf55P+/w/x+f+vc/inU+ee79v0F6sV+7JeWjukYhlILrVEcFKAhIFDYQcZNxVxqfyh0FtnTIqOI8PsCwz93f35N6ptZJb1tDovbEfK9tlUymSCN44um3sRyXnTGewbTt7PpS81oRaCpXGVjW0r18lBEYghHD1uh2M3nEh4k2gieBMIHrPaA1jDMeeCfGg184yzWz7wbEXWusUcw2gHh4nD7RDG6lgHPu+E64r7F46ziZOc2M7XqDtKoFpprGWg7117FXqVXMhzDMhJGot9NrAdGqBVgaNjLGQs/r2rE24NFMRFh8wRoO65zQjL05Gg8FeF4PBz++76+VpPa13q7c9vuMdT76O+7++ImbwYb/oV3OeI6YOejVMxrO5iWgG+5bxLlxlkIXWO6YL4/rrOgbWqrRQfMUPSwgHplZ8s3iFyLGXDUtX0lVvijseA+cn+ig4o+y4o1UMMM8nRoNSD5yxjC444zB2YJzCkowRjGgOmhXzkqlbMwwdy3xmDpEYHMa76ybtxHl2PDpZSnjgC77yr/IJX/AJPH//+Ie9RiLylPD4Xqo6Mm984U186w9+Kx/2r/xqlmQ5zhOX3rB7ZnRIpxPbkzvEBSUOA3s+aKXQGISUqCVz9I1hK0Ei0EFUdt5a5bLdY5aEAEYMISY90Dud1NPU070/XIBB8AFrhXzsjD5Yx1BgwSPLfE4woErn9tXPIuI4aodW6A8V5416Kcegt07rGpcjIrTrVvComTglaq8c64oMUTpi2+FxI4hu+Ywx7PtGKZllObEV3Wr5rNewt54xLuAsl2PFFss0T2olsImH9V7lhLVB003leTHMp4XcGs+98A6KNI0HMBq0LddMUWvVC+evksyyNZyZMGjz5I0QY6L1TsoJHxLbNZewHAfn5cz95Q6xsB+FfmTWPePo1+BeSD5RhmCGet9771ebwsAZDfXe8koeO3TLkasaJ4aBWjFOiN7y5O6ePgy3N480YLiLQkmkI20wXaVlDosVpzE5NEXxT4Z5cpyniL0JXPpj/vzf/DN8ypf8ZbanxMf3aT25XPi///5fxc/44A/mU/+Hv8Qv+tn/Jk4sl96xnEkO7tyBMzsGDbCvrbJeNryL3N7c0nNF2Om94qJm7BpjEGeRYbB0rLVYo1Ljbb8jxYkQAvtRrkMftcmY4TTb0A7aqEwuYo2lRyitIUYoonFWa85Yq3Ty8/lMjI7Jz8TgCN4xBd30TnNk9oEULckOppCYgieGhHOGFIRpAjMNXvOd38gb3v4GPu4vfxx32xP2nN9d9PF+X6/IRm2gG7V5XjTMFTVWRh/oHQaNmqvmH4llO/brVNgwyuDubtUDyHCE5HFhwoSDng+OfrAeG0NgiGHbM7lVkk/U2smtkJzq861zWKd40SPvpOmEGME6w3RKbHumt0aIgWNXdPdxZEbT3JkQNKup9ka5FKVDyuA0zUrdYVDb4HRa6H2AFfCWXHacCaQpEa+p7XvNJB8ZTsOr91xYpoj3SU3ePRDTgnEdFwNP7u/ZjnvasAxvsWKI88K2rXRv6EOu/gW9+V0wSvepBu9UkxymWZGyzdAzCI0YPQ7BO6sPC9A8hVduPu7Tej+tPjr/5Hu/lU/6ok9CBH7lL/lwFgJOHCUPknTWnpT4eM2KoovmOTFoVT8j9HA8MGbgvaOVio8JnyvGdL1vX8yCGk3lYjVjrMMZHaiI8UCDLlgTMNazTDNG4LIKbaiHVDQ3Wwc8KWCNKCREDNAYZhCD5zYtxOA4z4k5zaQYmVNimT3z2bHcCFt9zOf8vc/mj/2N//VHbdJeyaHWr4S6bCv/05//g/yDT/4wTji6sazFU3qkG+HxtlJ6oxvLsANM4zh2pQmXzsAwTzfUvmOKcjXmmFT2HgL7sXM5Kv5oLD7hLSCNXDSAOTjLUXekD3pXEqIxA9sdBmEYIVgHvasvsxWMC7pRdoIMw355otLF5HAEpBQsHmK8hkB3QojsYyfXjHWWc/BspVGOwnEcGOtouSMI881McAHrLKUUcjlovTGAbd05rveSdYZpmag9YySQfHppqNBHY5lnHcrWyuXujrv1Cc5bohN6H4gxbHd3hLhgnWXbNtaHDURf0y13jBGmMGFHVWCQnRlXzym9U46deUqIMdxvB7Vn4qQDnTiCZlnVzr4VQPOyotcmNM2JKUbWdUN6Y5pmelRQS6udvOl5YVRBjMU4S+2DXitDhGk+IU5lYm00Sq9MYeF8XqilsjjP4icmF5hcIIVE8J7hUKnZKfLotPDoZiZMhhJWPvWL/iyf/MV/lkvZ3kd3xNN693o47nnDWx74Hz/tv+d//V1/gg/9+b+c6DznKjxsSuB11hG8buG3vNHKwWgd7yIbMNsT9dg5asZaudIQBwyh1gMflBosfWDEU8vAoXEunQZW4xxqqThjwQ1shzYq0Sd671ijWYZ7NTixmucXPcknTstE8g7vA8s0MXvN+kzBk5aJJTrm5Ji8JdqAd5CCwSfBBTAR/vY3fjEf/SkfzePL8+w5X+F+P7XqFdmoCQMng2QttaObtHgiBs+RD3LL5ONATGcM1YOLKJEG6Ry10XZ9WOEsW20ctVAZ1Fbp2oaRc8NGz+yMTgy2e2ywDBOpJSNDNPfEOEoXXNcQULFGNeNVJw11NFq7ZlAAXgL2moc0hlB6u+LthejcS+HT4nQ6IVa1vPuha+xHjx4xTAADozXaADCUphPMJUVK79w/XIixcVoWrLFYZyi9UnqnjMbeKr1Uggl0oJRGGZW23mOcYRiHd475NCEG1m3XA2a2LMsZhkHEathq3QnOM7p68DSTzhETSECbNZ6ak5/Wy6tqb3zj93wzf+IL/zjOGH7lh/5aorWEy8CLJ4rlwRTaGAzptCoUOr12jA+EPqim04xhmRZcqfS+kezgZpm57Duld5xxiHP0qqCQ4B29dpIPRGd1sn5Fn4+moaXLdAJgMoHj2BFRP5oxAs7jfCRY9YUaa0EGXoRoDUuMRB+YY2JKiTlFbk6OeCMcduXLvvWr+Hvf9GX8za//W7zryQ9H8D+VO/7kVKXwlud+gE//v/4iv+M/+t0s3fDsMdH6QLJlPfI1tkW9zViLDw7vE7VWai+aw+knCB3TBzHN9FrZjkIvHWsHpRYuZSAdDZA1nT1nrLX6TLlOyqON9KFeGEHoNTOfFgTBR4MxgzoK4nWIKNJIU2AvxzXMWjRqpleOvOGTw1sDWIwVnEQwwsPDHdYHhniaARs8e1sRBvuh0TX5OLAWZhep/cWAacMYwr5rDqoPBuOFWgt5GIy7ekd7hjow1uKdwVvLUZvKHo+hjZ8Ioxse7la8tzjvsNZTeyf3gkUwWLwPzPFE2wu1Fly4bqaut0ZpB254YhBFll8VNP7qAcw0kKKSZhlsx0aMib0URqls+8bko24rrsNkfQ10+OOdI9dKH0YJft6zHRcGQqsd5zzeBMTI1dc2GK3SndfPkHkmeauh6iERksO6zjRPnG9m/I0FWfkjn/OH+Atf9tlc6tMm7eVUYwy+6Q2v5WP+3MfwS37BL+Gj/tOP5qd/0E9XSM5w6vGKFsvA7Z0xbpQECzgb2I9MCB727epbs7grKTh1IdhALhdaLTgbGQNyyZr5qZctYwg+BaSBHQExSgKf0nJVi3Wc9RhRmp+3Bus8p/nEHCOTs4TgeTTPzDERrCVEwxQiKQinKbFMlpgs1gvGCm94++v5zC/9TKoc/J2v/VLe9sLbfko2aC/WK7JRAzA0LBr4mktlns5Ya+i1cOwH9VgheupREOtoGAxgxPLC5TltmoZgR6AdOzkfGKn4kKjAZS3sx06YJ4y1HEXpUxI2zKbbJSuWnjuXfWPbMr0LfXT6EFpXhLJYx9gP9b0B1nh6q/RaEAcSjE4XzjPGenobVJT8lLcd5ywPa8dHR+vQa8dPk4bits6x7/Thaa1wtIGPhhgsdgSG9ZT9oAzwPrDnSm6D0jNlqAQLEdoQ8lHI+aDlhg2d4BJHPigohQc8wQ2scbgQ6cZhrWV2AWvVW/Piw+uoDUFJkdaqtn441LD+tJ7Wy6xqr3zjm17Lx332H+L/9o/+T/6LX/Gf8e/94g8ndpUmWiy5NIYRmm2sCMN0hmmspRO6Rfxg+Ig3uhkPzhMPh8OwlwYi7Kbip4hzHms7oze8D3hj8cZir+5XRtdNuFPaVZ86+7ZjjfpPhgFxHuMcfcgVXxxxzpG8ZXIaCDqHxDxH5skQZ0EW+LrXfQ1//ks+lW/53m/nze94M7keP+y1eNqk/eTW3XHHn/o//iytVv7bX/f7OG2GrU0UMZzSwZ339F4IIRL8THh2oayZNJ3Z20qrO9Z6RtEGquZD4RWtIEa3v8NaxCn+uo+rx3FU1m3FGLA+UvOG9U5VIsYq8dEatm0l+IBzgSwVusFbT2Ojo/EuQQLGKLQrGI/i8qvGsyTPGBqo28cg74XjqCSv8KowO0rRAPgjF3JptKTB1nGyHNvB6XTiKIVRGwPDngvHWjgOxYUbY1kpGG9Ik+PyeMWIME2JLHBsG5iBtZbL5YFSO601lSweF0YZWOeYlglTKtEZagFvDdt2Ad+w3l2f+Qrqqi1T+8FRN4JLGKvPyTaUKvlwWRHZGAyOUrDe4uZIPg4acLls1CMjvVGcw1BpVTemg8YYGsWjQcVZSY8oLOg8n4nTRM4HtR+cponWhh5yjZBiwDtPioF5mQkGYghMyROSxTvLPEfS2WJ843/8S3+Az/wHn8/2Iz4LntbLo/oYfMN3vobXvPGbeO0bXsMXfcIXc769UaJ5EB5fHKafsKNDd+xWw+57BWss5XrfZKegmu1+xwXLGI1uOiZ4xDlGVVXaZb9gUNsKxlHLgfWeETu1qlrNOcX8q3JKN8eIkKaIvXqsp+iZYmJJnnOIpBg5R88pBtJs8c4xzZ5l8vgJZIJqKv/Vx/8Wvu/xW3j9m99AvS44xvtbMNq/ZL1iGzXnLFO0WDdTStVVrF0geI4yMazlbe96F0c+cDEyTQsxBNaSEecp60arjZF1bJCPA+xgIBxHZT82BoFyDNISlKB1M8Mw5L1Qu+acHTmz75XaoK6KwLdekbym64NJRsd7hW1YJ/SjUwfQGiNnjPE0Ksk4sJ3LqinuMWquhYmGXBvrw4E1jpgz3VYYYJyn0xFriSnQ6sqWO2IrUgYxOh72nb6uXLad4QwP+06uBWtn9v2BTNPm8qhYZ16iAPnoyNtOKZXgB1P0WDNTcscabTCtU/+DM4YUElNMCJaahx72BnqVBV4iYD6tp/Vyq9Y73/p9r+N1P/CdvPEHvotPSBO//Of/29goLJsjbfZ66AKGYy8q2fIOsrfk2tiOjPeeIDCLY3aeJc5stfJwdwGT8dYyTxrs653HJRhZ8GIJzhOsIRjDvjeMs4TJ4wXsaUGAPuA4Ks45/JRwJqk/d1bEcfSOGD1T1JgPmxotZd7w/d/NJ/ypj+N1b/0u3vSO79Zt/o8Q+b+EWX/apP2k1aDzA/dv5avf9HV8xM1/y9I8tVs6kdbP5F554d4j64UcC2UMiIb9sjNaxw7oR2FIZ9sOfDoTrOe4rEgwNDtIPpJSUhKjsbRqwam8vdSKc4FpOmkC6TXTzHiHs8LlIXO+eUSvhdIyDo+1ULNjzxuX+wsVmGeDD1Ebq/OJAQQ/0Xqm9U4bui27PDwwxHC5WzEuYp1FRsPKQANphDjPiMC6bvRaefzkBdZLxXlPmpUghxm0omoV68AwmOdIH52jHDgcLT8o5t9W2tF5uDxRf/WAKd5QeyO5ShuF0Ru1ZLwx5MuFR48WBMuxF7Zt5YM/+INJ4q8k1s66PvDwcM+gU00hLQtH6dzfX2i18eTyBCOiw1AzMD1S+kFtFuubxvH0QQqBziCXjBXDtu/qO/UwmkJk7LWxcjbRa+Hm2WeoTQfJ+ShcGnzAT3s1kzsjdOZlIoiqcILzJNeZk2VZ1APkI0yvilS78fGf/of4rH/w19jK0ybt5VxjdFqDb3zDN/Pv/Hcfyi/5V38pn/p7/yIpnpmKQTp0AsYKpSXWfcWbE0du3D3cMWJQwIxLxEeBI2dGLdSukDzvHdVUnPVM8y1HySqnF0NruzYKXSOffAzkVnWb6z09H4ixWGM5zzcE75mjfuak6JiD5+Y0s0TP6QoImZeJGOQKCWkcpvDff9Lv52vf8NV8/zt/kJKfDvXfvV6RjZqIcJ5nPvDRM3SBdbdqWG6d7j3zMmOz5ZlHNzz/wj17LpTygLEWQ6cOYS2VUgomaJCeSTo1vFzutPHxTkOne2S77AzbCWEml8qxH2rWLo1j7xgMU4rseQU0C8lbh7MWWw62bafVBsPQcmeIxQiI1aauj8Z6uZBzZlkWgguMDs443HQFDOwZYwxTnJVQWTu9ZtI0aXabf/GtFI5ywXuPE8u2H3SglpW97myXg1I7JgSwQm2GyoFBCZWjVUKwHFvGzDPOqtegl0LBIlGYlpk2GvShOODRscaSooZrButYThOGzouS/vJQ+Ctf+tfeNxfM03pa/wI1GJRW+frv+Sb+2Bd9Ih/1mz6aX/gzfwnPzK/CChpADTCCynsN9GEJbnCUijGGUTsjOHJuLMOw1cJeC08w3AWN/HDG4J2QvGZHhahAJO8cHouVwewHRixGjIagOrnCQwwDlW2FOBNnpTn6yeAnQ5igys7b79/Kw/7AF3zxF/Cl3/R3udv//+y9d7hsWVnn/3lX2qGqzrm3Iw2IqIjK6DgmzI6KgXHMOoo6DjqGccYw+gNFUQExMwoII0gbENQxghIUMMEQHCQJTU4i0E03HW46VbX3XvH3x6rbjQg00jec270/z1PPOWefCqt27bf2ftd63+93wzuPvaOa+r4PtNZzgnaeSCXzd6/4ex79fx7Jf//q7+XI/oJcNCE5ptgSYqZQRTem5NnkgDQKlTU6t/g0EMaEEYOfPJLBdC0pJo4s9rDW4ZytohnjSNsaikg1uB3q5GRSCuc6Uk6MIdE3loPNtpo9x4gPAaUhxEDarf5sDwZs09BqRSFx4thxlqsVIWRIgidQSqp9M1AN3rUj77zItps1TdfjTO2FbBvL5COnTh1gVCbmgORMSoZCNZ1OMdQLRtfg8Sy6BcrUMQ7bkeWqZ9F3+DGRS0HpXNepS2Y7BITapzOGLYJBdGbVdjSNIxUhh4hpHKIsKVUz327REvxYDcqdRdh51xlD31qGYeDkes1mO4EIPmSMqZ9LoxwxJTCRzWaEolmaPUQJxgipFCiJEHd+pa4jpcB28ohklDEg1VqDXKCpLRNKGdqmI/pYlaRz2UmaNzjtWCw6VM60VrG/XLFoDcvO4RYWWhjShsf82a/whOc9cRYOuYAowDuvv4533fhsHmh/iJ/9jl/gkv1LmJqG1mpOqSpcY3XP1nrUZkTpJRRD8JEQIykYNJpgpyoyYxS5FPI24YuqK90YihRQQit7JAJIRkpVMT7S7zEMW/q+R/cLrDEYU20g2qah2/VPd86xv1iw7A1Hli3LhaOxqtoNdJm3nngbz3rJs3j0Hz6SE9uT+GlO0N4XF2aiBjTW0rcdISXaowuSD4wJpoMDUggopVh2+1i35KZTJxj9SIyBbYiUXPBkfMnoCNFHtIWmqb5mVncwDGRVZ8Rinpi2kaZtdvL6hZITrmur43uppYkll/rFK2XX9G1R2qC0vbnWtxBwtloBQCFOHtUIbdsRxsCJExu0FtqmqcIoxWKcrY8tGaUzzjSMcUMusF1v0FpTQmLrJ8illrzkg6rmoy1ht3S8Pa0W1neIMUS/E/soCnYedJSCbTrGaSL6kb7pak9CrsbVRoOUgkqFknI9meyu/UQJIPSrVb0wQGo5pIXr3/YufvUFTzhPR8zMzAdPzInnv/nvecNj/wdf+LGfzf/8mgfy0ZffC/EGO4J1mSZoYo5oNKkUglV0URFiqjLGBpKyLGMiJM9e2+LTHqdVI7XWVQI9g5bqc6bEYERquWNMKElIEbQxOG3ou5qUoQxFVO03cYLphVAm3nLjW3j3jdfzpn96PY9/2pX4PHHD5gbWw+Z9vs+5zPGwULhxuIErn/EbOOv4r1/+nRw1S8ZkGGNHCIWUCrmPyKDAFUpfqlpviqQxo3uLpMAUPGQIYaRpeqy2xGGsFSQEurYhO8NmfUAIEREIusFaU3uXx0DXCesh1dYAUZwaBtYHJ6pcd9PAUMgiYAQ/TBTJhBgpyjD5kRBCrbIoinEamKaxVoI0DbZ3eF9FQho0yY+EpPA3n4M1fgpEpWibvnp37kS2UoZpClityHkEJYTk6U1LY5ud4Emp6qjG1Pg0tZ9s8omQIkZcnWwNBWcKUjSqaLQ2pCmSY8E4wzR4fKylYijHqc2ag80BR45cjBFIWeOnhLIaTEMcIzlXBcnl0T3GYct4ciQmaLsFOWW0yiAKlBBjpOTMOGzRqq5irpZHEBQHm5oIi2nZTgljC13bsFlvSChKqkJf5MKqX+GspmQNCFobnK02Cnt9S9calq1luWhxexoWhWHa8IRnPo7HPPOxc5J2gZJy5qkvfApHl3t8/qd+AV/wb+/Dvu1Z9YZhcJzYBtrB0RnLZqj6B+MYONhskSwUlej6lpyrquOUEssjjnFTvYVLKdVPsXE0i55EYdhsKaXQNhbrHM45FIq+q9YdXetq32ipXqNt17Df9Sxbw3JhWC4ti4VGa3jB61/IuzZX8+DHPZhT46kqsncHL2/8QFyQiRoAWlU/GK1AaSKW4kc6Z9B6nzFEbAzEaaRta8OzD5nNOO5m1RQxVkncdtExjZva2Ns0VSDDOSRtAYg5s522pBxp2kVNzkJCaYttHSF4QvBkEoVCzvUxYlU9aeha356qJCXGKkLIRJ+A2tcmRdH0HcEHUo5sp4QrLWI0FBg2G3KOhCmiUFXVKo/kHLDWMo07NRwRYgrEIdG1HdZ1GJPwPtUyyaxxXUdKiWkcdspeHdpYpqGWg6ZhQ/YJ2wriqqmnMQ1SqOIHriWRsa6lbXqmFKtVArIL4IauaVgsLWYBOFgsF8zXgzMXCj4Grj55LX/8imewCQOf92+/kD2zx2fd87O580Ufho0KWzQkoWRokqb1keQDpRdKLoSsiLkQShVESCWBZHyuq/C5ZJwonDJQqpiAkio8ogogHkq96DTOYEyDbjXiqhEuDt55w9t49gv+ivV2zd+88q95/TVvZBs3nNicfL/v7bSa46zqeHgoZK7fXM+vPvXXiCnzfV/3fVw0OWLsyAhZNJOfcCaTc2K5XGFs3WablmkcCCNISogWjLRobdhs1zWZS4UikbLzBy1oQopYowDFFFP1RUqZsh7RSmhbR0yFMRyglEZpXScKckEaRwqBbQzEUPvC235RTaiDBwor3dH3Dj/sBCpSquWaWtCiUUbhtCLFhFJCjBnbKIwBbRTaVpXm1rZIUcQSGYaaWBhr62pSLjTOYY2mwbE5tWGYPEo0xtmquFoiMScMDeIUumgSwv7FR4njRPAD2mtCDIQUkaiJRIxtqmlwSGyGSPITGEdnG2IuqLZBaUcqEesMyrZkKWjXYcmwMQwx0NolosGUjNGObrkg+i1hDNWOJwNoUs4YZ8kCxjZkDJNPVaFyCKzHAaM1pbU07ZJcIsu2p2kcgqC1YrlYcmTRo0quPlRtS9da7FLBApJkHvWUX+axz3486/C+J3BmLgxiSvzWc57Ik//md/iu+34Hd/+wj+T+n/9t7DuLc8K2FU5qRac1k/eobCA7Jol4XcWrfPAkCp2tHr1NVwviUyy4tseIwjUOkUxJiZwyfWMx1qBQVXHVtPSNo2s1zmgaazBasVx27C1a9paOZa9QnfDSN7+Yv3vDC/nt5/wO1x275g6r4viv5cJM1KQqp+negtIQC8ZqXFR0tvZ5SIEigo21sTL6QLW51sQYUVrRNh2JiNaaRb8gpFhLmKSaY2+HAaUjSmvariWETNgO5JKwKLbjFqUFJVWtyTjDOA7kXNDGEVKqSqiU2g+380iZpnGnRGlIueBjQKXEclnVm+KuPjelhAh0zQKjFWgDu5U1qxVTLnX21AfCOCFKYawhlIwSUEYhmnpRKIpQSlWkJJGkqltlqHLLKaEUiFEUMm3fseiWNG2LzoWuaQFYtC3ONNi2w7UtOReU94ioagwuhc42NM5i3E7x0cBr//G11WJgZuYCYggTz7zqr/ib172ApVvx6R95b+560Z2oAv2wpxd81b3/Ix9/j0/BTRqipUgtRco1/CmqJnPETMqnVVqr+I5RdbWd2ouN6ILkalosqqeoXH1vrIBRSCucGo7zp8//U173rjfytmvfxgve+HxSzgxhIOb4ft/LnKAdbjKZ6zbX8fin/RqbzZqfvP9DuDRqjOqw4igp8O7jx8jJUkoiWEenNCUncizoXhGAGDzdco8wTbjGEUJmjAMxBtCKmMD7qkIYszANnqwKKUSctnTaVuNqpVC6KhH3TTXQTjkx+hGnIISANhYfMpimeoYCpu2IfmQYPQvV0jQNIQS2w0TJCmUt3bJhs5lIOaJE78qqYIoBoxVt79huJ6LPHL38IlRSbMdTRFI1BceQsrBYtNVHCig7D5iYYjXpzY5F36GVwzYJpQV0tTpQApthoLfV6D7mxHacSDlXgSDryKraDmynDZtxwFnFlAKpBjAFYRs84zDRdUsMhpIy4zDg/UjXOlJ2pJoDo5qGtqleokoUzmj61RFCnMhFVZsg0RjRNI1jmMJOVGVRhUpyxFlH4xYorVh0eyyaHrvzwHG2pWmqdY4VQe3K0ezCIkuBFeQp85hnP45N2J6PQ3zmDBNiIsTE457xBJb9kvWpk/zPr3sAC2Nou4JRHVurWG8UlAGV63fGeoooUfi0UzqNmRwK1mm63lB8qQbrypFTte5Y9dWKqrOuWjE5h1EWZ12V2O8crdF0TUvbavZ7y2JpcL1CtcKr3vlKfvyJP85Vb3sVU5gTtH8NF2aiBnWmrDXVn2sSKIINjhYYfSZLQCvojMMpd3Pb/HJvj+FgBFPw44TSmlR2xp8ZwhhBdopVqiGVCacXxOTJOeHDgFGGqNmpMtp6cutbRIQQPeM4oGKhtQ7RQkrV6yj4CWUtkjMihZjLzbOhyjliOC06Yndy/qkacMuENdA1PWE3+zhstoSpyrBmX5OuGBKd6lCqA2pLjRXIqF1PgsIag8oFQWGbhmHYErOn1Q1tv2IY16ioaLt+Jy5Q2N87wt7yCGE8oG9bSgbndj5pojl65Ejtv4u+Ln8bsE4hdbKWd7/t3Tz4jx+CT/7cHyczM7eRKXqm6DkxHnDdVc9Ai7r5+8Qpx1+//rnc9eglUOArPvm+fP1XfHu1riggmVu+ZSeNmfTOCJKb+zd577axXdxgQLQGBW9+/ct5+FMeiaTEwbThqmtex7HtcWJKpPL+kzP4555oc5nj4aaurL2bJ/7Vk8kh8pDvfHg1pbUK2MOnmkyd2hZi9IxTqsqANhGyQXeaTTyBnzzdsq8qgFajrWXcjqikSClXUausyTEzEZAsqKLISoglE/OEjyBB0+45soKYPevtgGBxShPSRGMblAuIRDY+oEymMZAV6MZWk3iRmmS4tp4Ldz3QMUy16oSM7TUpKuJYyxXDEEmhYLUmJI+KMHmPc7Vkv/hM5xwSM1MaGQT6rsM6h9G2+sNJIkVPgupRqhTDUOX/KQqlPM5pYsmUVPtTN9NA33YksUzjASYblEDKCV8KTbuEXBiHDaLh5E0nanJlW9brA4zRLPeWmG4PN40ghoIh5Wr6Y7SurQ/WMKwP0FozTYnlagFKMY7VyDf4DJmdenTGGc3e8mJW+x0lK6Ro2mZByQXRDq0U+8slrXUYCk5r+sbSOoPuBRZQpPCdv/Btc5J2OySmxImDkzzyKb/CU//uqTz4Pz2UL/mUL+HISiFUzQOloGsCWx/RrcWNEzE5vPdsfMCoCFQ1RuWEFApaaRIZVKE1VUxH64KYQms1jbY0zuGMo20Mi65h1RlWvaXrBdlXeD3xtT/yNVx76hr+6V3vvFkBfeaD58JN1KA6v+4uaFBgXIs+HgnDrk5eVWWlXKBtFiSbCbmgW8c4bshaYaxGKWGMBe9HfJioJhJ1djsMEbETk9+ZcxpN07VoJ7DOGL07sEURKbWvDUXJhRgzzhpKSdUXpVTfMxFhCrUHICfANqQC3apDF4U2Gj9NjOMApeDHAde1hJ3HzN7Ri5iGqTZKi9D3S5ZqyTBNLPqehLpZ0jSEQMi1P64zHZlcZVlR7B85inMd2+0G1zZoI7jQYpfVrT6nhNFd9YYJA0eW+4gqtK4hJfAJGmuqkpBzTH5ib7lk/8iSvQ6aFmjqDOfx7fHzeqjMzNx2CjFH3vM045PnZVe/nJdfXROgv3v7y/jNv/1tTmdhuc4hVaPsXAiJmr29hwn2PyOCNRnJu9WvnXDqtadu4m0n3r6r439vvcb3zWkVR5gTtAuJQuHG7fU86Xm/hzGWB97vR7jItATfMU0LNsaiJFMKOFXL87q9JWraMpLpFkcJfougq3BHzHTdCqOq8EWjLLF4xu0AAiU5jNEY1yClEJJn0e5DjNWCYhgZfYQijMGz6vYJUggFJEcGPzBtJ0RrVDRQoO0cxiki0C12yqTWIoAoy7Hjx7CNIeSEcz3jNJFioG0cIgUfMqVk+uWCUgonNgeklGnblq6zxDGQcyKkxDQlUIWQMqLBdj29UVV8RytEYNhGYtqSyUx+gqK4tDnKlIUUA9pommWHaR2JxHo8hQ+evixZ7O2hxogzjjGMlAxTybQIthX8NjNMWxKJ5BN9qWIM4gzb9ZrRb6qepQh6sSTHgoim6xZs1yNHj16McY5hM6BV7VXt93uGcSBOBRHL6BOtsyQx5CnRdBZnG5QSetNglbBoe1orNE6z33UcXe2xPCrIEdikDd//89/H01/+F+f34J45q5xYn+KVb34t3/kr38ZTf+JPucfdP4Yji4tYti3T1HBqPdGOgc040baa4DNTcPQR/BApOtfyZGVQOxXWUvTNwjoZjzVVFEtloXGO1moWjWG/b3GdpWsV/VHNJm/4rp/5Ll761hdz48njpDD76H6oXLiJWvXRrFcxaXchUgrKGlzbshDNsZOnOLFdM4aRnBPaNmw2WwqRGCPDNIJSLFcdKQvjZiSnghhFCCNooShDioVqE6FZLPYxovDjBkVtmkSE0Q+kkFFKVUngAjlkBl/r/a11uFYTUiDERIypmt86MKLQxnBwasBIwdiaaDVNR5g8vevQjWGaJlrTQQbXasgti/0lojQ+J2wRktRCkBADw3qi6VtiCvggNK0mhYC2BqNBpcKi6WmcI+VILoW9VQvK4kSjXKG3dTn7yGKPZddVvzQUY/bVqZ5qnuj9QNtYju7vs79SdB3ICpKKPPfVf8vJD9AzMzNzoXM6dbr+4CauP7jpVu79oSGqKt99IGb1xtsPN21v5El/+2T6Zc93fel3c+n+Hpqj3HTiACO1z+umckBKkVQK2VhKC1o8rrGUPLHZjpSUaEvDYlEN1E8cO4EYqd5IJWOsI08B3SaMcYRtQOmCMpbtJqFtVTcNk2eMHvSGpVUorYgpEn1isVgxDFuMrt6ZMUa2Y2bYrDmyOIJzlnGq58IQtigKoqpZO0qx2l+ScyBOtX8TlbEYgp8weifgVTJaG46ujpL7wE033cQYBlLKGOnwoydQ/VERCCTGMGGNYj0NoGpym3KGmNgMA1OIOAslZKxtSCWxnTypgDENpWTWx0/SLXrcTrwsxYw1mpQ9e/1R1jKiXU0Kc8yk5HGmI/tEmkqdtM1VjMyf2hKUol0uELVTryz1+mWx7MkBFBZlLUppimjaZberxAEfIs4ZbKtxytHZuoqhlcYah7OW1dKwv+hZXSLInnDjiRv56d/9KZ7+sqd/wNLomdsPpzZbvurhX8mR5VF+9wF/wCff65NwvaJpO4Z1y8I7tlMgxsToA9ELqXPE4OsxUgpaFEpbprgr8hAhJIXRBVUE3VSj99XSsWodq65FW8GbLa+4+o1c+cxf469e8RymMCs53lYu2EStJIFAnbiuHpugBZMdbVF4CkUgxMg0VYeW7TRQJJEpuK5FNY4QIj5GShZEHEXVg0q52jtinGLceLRyqNaiRJOjr6tkCsbgqzhJrsvErTGYrloFhJhqs2QxpFw9loqUKpG9K2cpKVOiZ/KeIJrWGVKqFfdiMm3rcNbQNQ1OLCrDZr3GOYNru50Rb6qGl0aRJeO3gUIiEshjpm07HJmcMl3bY4wmxAgh0XYNiCGXOl5FLecqacIoTecs+4sVy66r6pIlk1LGmmpm6EtBYWianiP7SxadpXMgLeDgXde8i9974e9xfJhX1GZmbgsiVVjkNKdXzWflxtsnhcL1mxt4wjOuRCvFd37pf+Myt6BvVnTHLQqFBrZhpJksW6MJLuFNYLM5xWK5X/upJKGsIVMwupohI9A6yxBq1QZaYZsFfvSkLBQxUBRd1xNToFt0eB8JqTBt1qScUWhyiOScwSh04xinLbHUc8OJ9UlEqdqDrTVF1T5p11imYYMxDmOq/UD0VP/R1tbEKymEmljdXK4ohRA82+2GkiJ9b5mCYQiBlAO+VDGQDChjaJxDUxMopYRCfU4lmmwLQxjoAJImpYC1iVQyy76tZaGloHa9eMNmixiLcxZtDCl5lKpG4qvFkgyIref9Rb+oJsA+4JzD6gYk0zSa7cGIVQZCJCvBWIMzppp5myqwAqDEIBLpFy3GWRaL6m2ltcaJZdm2tI1j0TZ0rsEoTeM0RxYNR5cti30FK+GmUzfxi7/78/z+8/6AaW49uEOxGSY2w3V8z//+Tr7vq78PbQ2f/3Gfz12O3o0uNri1EHyhM5pJFbRVpNJRciDFjC6mqj9qi0gmpVgnCgUMGtEJ2xj2+pZlZ2haxcjIrz79f/O4Zz6O9XhAiPMq2pnggk3UMEBHXVVT1ERNgbGaNivWPlKUIMbQ9X2Vrg+RUhTW9uiU0DkTwkn8EDC2zu6VAEoLWWq5ok+JIhkUNdEio7TQuwUhB7yPxFRwzkHKaFNVnEQSiCKmRAhhJxdcFZyMc5AipFwNMXfiAo3WOGeJIdSkiELXNfRtC1nvrAESkx/JxaGLkEUY/EDXdrjGoTG0va41+NqRdiamqijatqNzPYrMwEAOAbcz6E4l4YqqRrpYitVoEZZdR+MsUJWAlNI7Q06LMoalblBiOHL0KKulpmmrxwwObjxxA0/8iyfy2mted54OkpmZ2y+zKMjtn1wy163fza8+7fEMw8gP/5cHsd9orG5ptNBa2ATPFDInNlumGHZVHIWSA6vVHkpltpsNw3ZLTpmm7eokoYZsQYmrvmhhQqma5Iw5oXKCFGh256SQai9XMYXtOGGyggLK1jbLyU+EHKsSqoJ2sSBOBWOqEFXTtITJ1zIqoCQouuDaBqVrodUYJ4ZhoO96jHL4YWIMVegqxoKIZysbtCgWvaPvemJZs5kGxhhBa5q2xWiLaWyt9ogZ41omv0VrVTsmVKEkRVGlVs5ERUoFHyeUhsVyBRTC5GvbAkKOCawjxkiYPIuuJYWE1hZnW7TSkBOdMUxxwllDSlWMrGs6Qg64/Sp+Mo4blFW4ZkHwHmMcSmukKFZ7BrShDIm2MaA0Rius7hE0i6Zjf7Gkc3UVw2qDBvrOctERx2KhUPuFYVjzsN96CH/4d3/EkGYZ/jsqb7rmrTzwyh8GEb7k392Hj7jLR/ITX/+THL2kJw2F4C0+lJ0dFFjdUBAk1woOEUUomckHNEAuaKMpkrBKseiqj2dpCz/7pJ/hN5/9G6zHuQ/yTHJBJmq5FDbjKbze4FaLuqKWgQQU0KPQaIu1jqZZoI1D/IhfH5BEagP+znDT+wlyJmeNaRpQCh9HChBSJgaPWItR1f8kTSPKalIWJNU5TTHVOV4KhKmqTIJgtEXr2iunjCLFSE6ClETT96gc8FMEEtbaXX2+qr0lRWGNxjpbDTonT4oRawwFzRQCjVVkNDkLMUGvOwKpdseE2p/W9wuU0ZAzWoScJ7Q4GmWZiEgOGITGatCCFMEqhcqOxXLBcrmkb1sEhdaGGAp7+3uIUQw+oHVL6xyLVrPsBdMAK1j7NU/4w1/jyhdcycnx1Hk7VmZmZmYuZHLJXHdwPVc+6zcZw8TD/sdPsUBwuqFvDKd8ZAgRZxo205b1aCFFDg7WdNagjCKMkaCr2Md2M2CsozGOPdcxxoA1mmEaKKlglGG9Gcl+YLHqcNoyxQFlFbpY8BHlFF2/qIY0KTBMHutaUtgyhQk7OUopTEOgMQ5NQbuBGDxODDkbVss9tBay0vgwIspWI94YGaYB3VdLlxIzG7+tVS2o2ts2Rdbbgc04MsWpyuVLnYyMpV5IGmsQMZw8cRKla8VLTomsClYMsSRCrJOiTWdIIWONwxpH4xxh9AzjRMyJRbMkp8i43VJKnfzUtsFPIwundtUnDTlHfBhw2mAaTSkJ7wMxRRrb4pwl59pTl0uBnLHa0LctuVQFP+sMUygc3d9DdLVmsKZDKwMIy67n6N6KzjqWjaPThraBrhGaPUGt6gX39zzye3jmq/4Cn+fSszsypRSmnZL4X7z0OaiXK6566yuxruErPuUr+c9fdH9aMZQIKKoKsWJ3PV3Fr3JWlKCruurO6kPpBrFV0fFRT/llXvSmF/LCq17EdponBc40F2SiNqWJJ7/4d/mkj74XX/ll34DqTS2B9LX8RyawG6F1Dcs+MiTHJAXZrln2C06sT9TZrbbK4Q/bNeOwZbm3T9N3yFqIJVGKoNum9o0ZIAshJ3weKSEhYiCDbSwpRUY/oJRgnEMps1MRAFSpyZsCYiQXaLQGDTnm2k+22WK0uXmWPOdE2/T4CXRT+1+0MYxxImbPoumrGXcIIEIJcPLkqVrH3xjyFLHOYbVFW0eKnpITJUWKFDrt6Jc9i75jtVjslKSExgnjdqJvVlhrcc5hlGKx6AgTWFvNNrPR2GJYLVcsFopVD3YBsgSP5wm/+3ge9be/wpSmc3+AzMzMzNyOKGRu2F7Pk/7md9CSedB//0l0q7moM7gDzckDS14mRBKCYNRFkAshVhnuo0cuoTENJzcn6JcGYyxjDGAVWoSYBC0dQziFJtTVKw3RZ07lNUoUIChT+wxKElLOxBLxYaRrlyQ0CUOSRMwZZwxd75hCpISI8qAVOGdrSb9SbEZPlpGYC13nsNZx6SV3ZrNZM44TOoNrDVFaVKn9l9NYS/iiZJTTmNKj84gW0Eox+ZHWrUAMUxxRpq4SiElM3pNLPQfnnXqjQlMsCELXO5SGVBJiDEo0WhfavQVaCtMY6fqeVEAph+kcSlXftyIFFDS6o2katBNySrsr39qKkWKt0GldSyqaUgQloJVAjtVQXGqCJxgu2ruoernFjFGOvl3QOcNe27DX9bQanIHVUmAPpINA4L/+3P155qv+gljm0rOZW0i5+vn+36teBAgvff1L+ZVnPuoDl84X+NSP+hQe9V2Pwq568IAqvOXaN/Mdj7w/2zDw7mM3sN5uZ9Pqs8QFmagB3Lg+xv/87QfhFgs++sPvCVqzv3+Ey45cCr2gnaLrWoo2yHZDTC1XXHIFx9cHaGPotQMKYzjOVIRMYowTjdEkCokCymBVxGgHKeFaS9MUhi1MfosygrKanAspJBrTkXd7VJWacLm+IaVEioUcx3oCUJoxDIQxMMVpp4QFYwj0bYPSGmcdSjn29lqGzZZh2qKk9sJ1XY9tTF1Ji4G46xHIOVcRktiwXC3p2yUoRfAehaCNQatqgLi/6DFasb9Y4toWyQVN9c2QZVWuVFrVshWlca4lx4Ayuno9lYTTcPmlCrcQ6ED2YD0c8Jhfeww//7e/cL4OjZmZmZnbJTdubuQ3/vLJ/M3Lnst3f9338PVf8J9YOceiVzQ3LbFacUoPbJ1Fi+JgGMilEPxUjbA7W0sjtUFPIzlGRBzTeIow1km/JEKzcjjpGacNkgQtkVKqkrExCj9NJH3aJ1SzHg6Q4ggloUpVPw6qSoLHydNYRxg3NKsFWYMuieMnjqO1q/6aRtG5pvq85QTS4r0mxDWtWWC1Ixdhux0QJYiGRbfE50RIW1oMKU+kElh2Lcl7jCkQPNYYQpzqRaRSONMjImy3p2pfedtWeVYNPiacMpSsaLuGYZrYDhN+hKYzuBZcawGDTpne9nVyNRdEG1q7MxLXBtHQdC3iCyiNZMMYPZthzaLbo7GORhuUrv6K1u7RdC05C1ZNKK1onMZpR85C162wqsqiH+kbVp3Qd6AWVbiLHk5sTvAjj34gf37Vs+Ykbeb9UnbtNifWB5xYH9zq/f/p2rfzl//wbJS+JWVIKXHiYM2cm519LthEDeDYcJJv/KVvBUCL5j7/9nP5ri/9dj7lnp/JJZfciUulZwxg1g16GNlOI1Egm1qPu91sakOwCEUJblHNKDNVsTHlUJd6y4QUaLIlB1h2PbpkUgZrDTEVCokwhNpo2bjap4WwavfYbDek7ClSlbacdeQcKUZobY/WBqs1StXyDRIoq0Bgu6kG2lIN0ehtCwqKKLIkfIpEX2dJ2q6naxY4a7DaEqKnpIxRmr7pcFbTGs2icex3C5a9pXcdKUWcdhit8H4gi9C4Hte0IIZYFCEnIgWnoHEtISW6rsEtQBbAHtw03shv/v6VPOr5jzpPR8TMzMzM7ZnCseEYJ991kl/8nV+k2Mw97nQP7v3Rn8klTtOdWLAwhoPJ01rDomsZxpE1ESW1hF+JoogipchmDMQQ6VxPjmvilLFt9UZSopEYqqWMskzDAAipaFQjlJzr+VMZciyYpsUPQ5309AFJkb7tUNagncK4Bd1yiU6FMEWUEvZWK0YfSTuxAnIV6Jp2PXGqWJRVNLZnnDxNtlU2vAgHB2uygpwyzjmUtni/3fmVWSinlVITOSWi94jSKNHEGKriZdvXFTWpaqra1PP5MA7ElKhG0g0heVpZEEPG+4AxihAjRin2231SLiyWC6woUjlJkEzveo66Bh8XbDYTVjWobBFtsMpRKEQBS93WL2tpZEqFvUWPFl0Nr5sWqxusNhidWVrD/srQLEEvgCOwDVte+uqX8IznPoM//fun1V7BmZkzREyFY6c253sYd1gu6ETtPUkl8Zeveh7Pf93f8Z8/95t42Lc8lP27XIJbC2I7tDPojaaoTMgTWQwiMPqRED0n40CcIqiCtgatFdMQ0EpjlCAZcoxYZ1gt9tCq9g7kXIjrCZXr6pko2ZlPe1TeyfvvjCu11ohWxJQxWmFE6NoF5FxVp7RjGicW7ZKma7C7GvjJB5TS2MbQdD3TNBFyRpTBuRYlEbWryT9y5Ag5RFKpPjRGaZRInb2zhlXnWDQ1WTu67NBi0Di6vscooaQl22miiKZfLAkJ/HYkF4VpLEoblLF01rK/b2AhcBGcDMd54h//Bo999uMY41zuODMzM3O2SCXx9hNX85NP+AkuWVzKw777oXzZ53wly0bhbMNysPTbhpNDZGOrnP7JzcgQAkoMqWRy9HjZonTBmYbsOkQURUFMgao8bNCisNpCEQoFZQzTuKnCWNZiXUvODUUrJKSa+CihlMJ2u8UYDSHhlKrS9U3DdvK0WoMRbNE01iJaONgcMIVIyBltDFkKw+SJKjOMW5QStLZIUQzbEds4nNWIUKtGdr5yaVdd4mNAoxhjIIYEImRGThtqOOMoUvApYkSzWiwYpwE/jkyTx+xW+UJMhOBRWpNyVWs2RoE2iFiWC8ei65n8iLYNbd/hbEdKoZ5jm0KcCqvFEVZ9JpPZDhPaOrrGESdfe38yLNsFTgkioLWh76uyYyPCohOalcKugBXg4Pee87tcfe01XPmMJ3AwrRln4ZCZmdsVt5tE7TRj8Dz5+f+H4wcn+Y0H/Sb6EsdSA9qgVI9rFOM0sRknmqZhb7XHFCOZjNaazeaAtmno2pa9ZU9JgZwjMUSS9+Qi1RjaWoJPlJJoWkfeZiKZWBJTCMQYyQGK1oQY6qpdqbYCpVTp1L5rMcpgjLAdMsMwUQp07aI2HVOIMaGNJQaPdYosiqQEQRNCPZkZW+VT+6ahtT1JTQzDls5aWtvSdo5eWxprWTSOhdOsOoMTh7Ua6zRd16CtQ5JCN1sOtiM5U5u0laa1LWUasMay6DXdXj1ZyBFYywG/95Qn87g/fwInhtkvbWZmZuZsk0rkhvVxjm8PeNiVP81LXvNS7vOJX8Tn/pt/jzmlaG0toW8VrMlIKehJ0MoRc0aVjEowjgMigjvSotenmLInkyDVSUU/RTAZ4xySpdrZoIkkdBGGccJojY9T7ZemYKxBa4s5XRclhRAzx06c5JKjF9EtO1TOpBLxOUKE4D0xCrEUxmlAe4NrWkpOnNpuUEqx2FshIgQfcW1Tn1orhIISsMYSUmZ9cJJcUi05tLX/RikoIqRURUQa02BMS6ySKDRtQ4kRg6D6JdN6QovF75JP2zYoqcIhhYI1LU3T1xLFrqXtetquQ20s1hqKEiYfQWB/ucdgPMbu2gmk0LcLck64xqK6Hq0UTiv2Fj2tNmBq+0HrNH2jaBrB7PrQ2AMs/O8n/28e+cePZDtu2cR5xWNm5vbI7S5RA/Ax8Gcvewbbn/5m/vAnfwd9SctKBKM1dutYLx1WCespMNkJrQ2L5QqVM1pqOYdGkYrfJUgNjTYElYlj9Y3JKSFkrAZjHaKFYzedZCweHz0ZMNbgo6+zkSL4MOGcY/AB0xhyTkx+g7IdpihSLCz3Vyx3ZpibYUPMAaM1bV97xU5tB2KcWPYLynt4VOSYwWWm4RRWOVpjsVrROMXFy5ZWNTTW4rTiyLJlf9HT2h4oKC2IFEqMSNOjksU1Cm1a0jSSckFl6JsVmYlupbAX1yRtaiZ+5wm/zc/92SM4OczqjjMzMzPnkpgjb3z3m3jHM9/JC//hRTziAY/gkz7iU2hFOBJBtS2mlF3p3IaFU5waJkT2EMC5jiIZnwe6vCBvC1k0KFisLubkiZOEMGKNYhpGNustTedQukG1PSV4xmlCW0MIGxTgUVgDyjUkH2k6hzUFoqLW7tdVt8FnNtsttmtBWYoFQkayIeaMtYoQJ5RSrFYrlqslJ9en8KlgjaOURIr1ZrVC0BQiuWSK0iQyYRzRxhFCQVQhpkyRqnKsXX0OURnbtGhrkeCJ0WNbS993mFR9T1GCtQ0aSFnRNNVbVLWOojI+Bdq2Y2//SF25S4kShSwFVSx915JzRitN4ywK2ak4Q9e2OCUYBcvG0RiFbevLGgPSS20xWBVKA3/9gr/kN/7oN3jJP76MGzc3nr+Db2Zm5qxzu0zUYFcKedVf880/e39+88eeQHf5EfqlYK63xLBk2ydObUakjGTfk1ImpcRmV3IQwsS0Hsk5M6QBaxQhFvpFh4+emNkZiBqQQkahraX4sOvtEqxpyTECZedHUb1gVt0CHyIpbYk5E3LBh4Szjl63TN6jjKIIdN2KQCYrqYqLAkV1+JhJSSMKrFX0bUtje/YXPV3XVQ+0psWZhv1Vz9IaoNA4WLQte6ujqFzIkogxEWLBNYYUCyFrkIIooVt27LkFMYK1VYFLL25J0n7tMb/GQ//soaQ8Ny7PzMzMnA8ymU3Y8Iq3X8UDH/FDPO6nr+Qu7V1ZXrTEGk3nehprMdqymTw+JkqOSL8kNpFYhM1WCLbKzvddSymBUmC5aplGQRtF8Il+Wc9vTb9gmkb8VKW/RQlGOXJJOwlvWB8ckEoVvTqyWtEtW0zboCWzPtgyjiPjuKXTirZtSTnRNC3GWMI40bQaSz0HllLwfiLGukoXpsRYBpwolEitWqFOtLZNT5KIGM3oPdM0gskMU0Hrhq53NG2Dx9O3HWmAafBo7YhZEUKdNAXFsmt3asvQiUFE0TqHVgbXrtjbW2ItGFV7ACXXUtFQAqq1hBR39gR1BdCisEYhChbLBimaztXEtm/ACmiRajvUUNUcl3BQTnHsxuP85x/+Fq4/uIFrD67dFXDOzMzcnrndJmpQk7VnX/XXPOAJP87PfP9DufjIxTSN5q79Ppt1YHHK0ljFsmk4ceoEB6c2ZK2IaeLkwXGUa8mx4P2WyWdKzsSdSbRSqtbQa0XIhfV0ik0YEKVqY7Nx5JgIecKoupuNWJQWUgnkFOibJVopSs70yx6rBNc1lJKIKdWeNgXBB0SDj4WUSvVb04XtemRvb8Fet4dRBac1R4/ss79Y0DWORdfSN5a9bkHbWnLKlOBRAiIKjBDGTCyKaYps/YBzIKoQApBjNdt0QtODtvWEwUWQVeIJj/1VHvqnP0Uq+bx+zjMzMzMzEMrEK69+Pff7/76Ru+7fmcf9xK9xt7vcnf1jtdfaOIWcAIrihLbYMHFifYIcJ4x1XNz27C8jG79lirVHKhFQSrHZDJhGc3T/KGOsvp51ujKjjMKHkSSFMCUwBmUL4xhoeseUIptxQrQBmdAUjh+cJOSMsY7TZ5BqT2MQybiuqX1mOZOlGnGHKRLGCasbYsmkkIlGYQR8gRgj2miaRUvKER8jzrYMg2fyUMQRcsZlhbUNXdfjx4mu60jZc7AeMTrRLVeIGKwxGGMQpTh5Yo1eQO86wCIimJ2SskQwjcYZhy6K5V5LGLu6ghcjWQquaYBSbXBEUKrQNHUCtkr0U1fRHPXKrIWT/iTvvOGdlBsKD/jlH+Tqd13LO9fvPC/H1szMzPnhdp2oQW2K/uP/+0coIp/3cZ/JV3/519EcbVkedXQnLV2jaHVGl4kcI6V4Ymrpu54pBIwqjDHUmvamZQqekAtt26J1xxQj23HD5FM1pyyZXDLEyORHSoGYMo1pUFrdnHxZMbRdixGpXi1SfVysE8YxkUJGG/C5MI4j+OpfpgTatsE5w6JZsrds6ZuWvcWSZdNwyf6SZdNilKLvLN2yo206ZKUpMZNPDkhR+CHhY2ScagJa3Xcgh0TbVuPOIoW2q6IrugHpgf16u+61V/P45/76nKTNzMzMHCJCmXjrsbdxzYl388OPfgAP/b6f4l6Xfzy9UegDi8o9jYs01jIEi8JzagtZN4DgZawTjjSkFEi+JevEqCLZCNMYadsFnhFQxFiw1jANoAWiThSjyAmWq1X1JcuJQGYzDThbtynd4hrBGcNqtariIwdrSglApm8drXNMIUCC4WBEaYWzjqZtOX7sBMSMMlJVkHMBU21udBGUqv1yqWSKFrpuj5wSIQcSicF7UtY4kVox0nRQqg2BaxyCoPVudS4J7aUty+Uei26JIAiZveWKZd8jUnBKsejrqpoWhV1AZwVEIxqkSJ3sLLWkURBsVz8zZQANtEBTy1n/4sV/zj+89h/4P3/9++SSuWFzA2mW3J+ZucNxu0/UAKY48eS/+X3+5PlP4/lv+Dv+zV0+jv/x9f8NfXHL0b6naxWLRjBauFEXRh8pImzHgevefS0iCtt0iDHEKVBSAT8hVrMZJsawJZRQTa2pppamczhxjMOIMhqlNdoYVPUNRYugVFW7AtA7Q1Hvw+4EowFqOcdOBllrTc61lLIxGtc2rBYdF+8d4bKLLuLIoufooq3l9K1Gtwqz30Aj0ICIRi+WcDJThg0n1yM+ZrRuUMpSoBpwhoJrOqxR1czTUs26l8BRuOHG6/jfT3scNx3cdO4/zJmZmZmZW2XMW573+heRH/9QvuCTPp+v/tyv5YrL7sLRxtKdNHTWsB5BcYRlu2QIkVAKoXX44Fl7j08DxUZUqzG25eBgw7DdoEvBuhbRmiwFP1XBLEHRuJ626VAlo7WgxWBVIZeMMpqkhZQLpuvQRmGVBjTONTiT2I5r2rZlsdjHmIwaFZvtRM6Cc46uc+ScaFuDdroqNE+ZKQa0hhA8VhpSSKCEiJCV0DUNpWTYVgNqKVBSIO4SqzgVlouOvCuzFCX1vFgUxiicbTmy2qexFiW6TpZ2PdZYGissO0XvBGWFEkE0WAVKCUoDapeQOWpJI0AHCOxO9zzr+c/idW97LeMw8uvP+HXGOLIJ23N+7MzMzBwe7hCJ2mm2YcuT//oP2OtWPPvlf8n9v/y/8HX/4Rvpug5rhSlEckocP3WKKYAfC21jQbeINgybDU3TEH1gColpfYoUI1rANQuSgxgmKIJCV0PsXogxMkwbmtyAMjinsdqQs0fphhILyoBWwuTV7gRRyytD2M2giYJSasKnNK1rWbSO/a7nyKLnsiNHOHpRi11YpAGOCqykztBZqjlc3P3cKMQ5rGuYSqyN30qjiyYDqajae1fVh1GumlnTQwmZP/nTp/DEv34SQxjOzwc5MzMzM3OrbOOGv73qebz0DS/nVa9/Jb/0Y49i1e6hNbhTls5pFm3LZvJsfWRIiSl5hsmgRZgEjMrkLKQpoUtVLVSisNbWhKYIjWvxMjFNHms01qhdWb+QSmLRVI9SnwM33HQj++0CvRPUSDHhCQQf0KJxzmGMI5GJ40SeIq1ryXFEO4t2DWFcszpyEWOIaCW41pNOJYbtBucaKIKPCbSuRtTdEudaJMediIelXy2Y1gOi2HmZCq6xdM7VpFIb2nZB03YoNORMax2LvqVxDQroli1OC4sOFq3gLDURE8DWZE3gltWyWtlZf9/Cjz3yRzm+PVaT3AwvecPLufrGd5JLZoizzP7MzMwdLFE7zanhgOe+5kW84Zo3sy+Fz/vYz8BednfuHI+Q40BJnmEa8BaOrpZksSitccrhw8CkBZ8j4xjpFysWTUPbGtbrgWHUDOPAOB3QNB1SAilGlKmm2FY5VBFyCZigWW/WOGOwTYtxlslHhmnLqt8Ho7AIi36Fbep0nLHCarWgdw2rZc+lR/a5/KKjXHT5AnOJJsXADW97Hc1NjqZvsIsOWe1jPqpHtlI/cQc+BbYhkdAgBusanDGMmwlja3lmyVDMLknbg7JfePc7r+Olr30p63GWAp6ZmZk57PjsuWm8iae99Flc/cPX8LF3/hge8QOPxCmN22pWWbGdHOsxsomR0bcMemShGwKJcdznxPaAkjM+RlZuibYNIXuK1jiVaVXLwfokYQo0zrBoazngNAUKCh8Kipq4dU2HGI0PnlW7wLUN22mAFDBiWC2OUlT1FBt8xGjh6GJB1+2xDRuKhqIEYy2tNoQ0olX1Pm3bjtY2bPxENatuca5nKJ4UJqzonZm3IgyB5ZEVtlT1RaMNraurZfv7l2CdZdEvMUqTEDprcdaw7DqgIFpoW6HvhEUDrgU5vVrWQG4ykXRz0jac3PKN/+0bagKnIE6RV77j1fjkazIHpJxngZCZmZl/xq0maiLyYcCTgTtR12OuLKX8iohcBPwhcHfgn4BvKKUc3z3mx4DvABLwA6WU55yV0d9Grj1+PV/z89/D3Y/emZf+4ctp7rzginhxneGbRogZimIbA5RIY4WSBWkMEgS3ql/uRsMwDhit2D/So9cZPxb2lz3GrChJGDcDRQpZatlFoxxFF6YciLGQkyMEj3N16s3YKpvsdMYsa12EUrX0Y9l1XLp/EUdWCy6/eMHlVxxB31Wz5YBfeczP8Qt//rh/9j7vtLoTz33sX3CXT7gHbAp5XdhuBibvEdUhSlGKJmdBNQrbQWt2dfQOaGuSdu3V1/LT/+tn+eOXPOWcf1a3d27PcTYzc5i4o8baJh3w/De9iFe97XVYa/iBb/n/EKu4pL2EZTD0W8MmGAafGK0irFaEkDllDzCmCl4Y22KU5dSwxtievtVsp5aUJuxkufjyOxGjxycwxtEuHa1pGbYDOQca19B0LSVUEZJFtyDHiWXbUfXnQRtNLhmtDR1LIBFFo43QqoaQAtramys6ki8kX2ikxzapqjK2hhI8tunol3vYNFFyR9c0WG2YgmdzYo0Vy95iiTUOpRRGhCNH99CmwRphsagm4Na0tM7htMLY2ovXNtB30PagO2oli4XrxmtJU+YVz385P3XlwxABpIqCvfWmfzpfH/85544aZzMzZxop5QPP3ojIFcAVpZRXiMgKeDnw1cC3AcdKKb8gIj8KHC2lPEhE7gX8PnBv4M7AXwP3LOX9d8FqrUvf92fi/XxIXLzY57d/+FF8/qf/R+KNiZPXHOP6Y6e47qYDTm03hJgIpc5z+RA5fuIYMZbqL6aEnKoqozaWFAslJpzVtKZFTMbqhpQSuQg+BIZxwE8BpQpKG8LksdZiFwsWjQNRlCIYq6uilBR01iwWC/q2oW8bjqwW3OWyyzh6xQp7ueWmg+u48ncexSOe+QTi+5DK/+yP/VSe/QfPhbcWxqsn1pvIdkikYklR6utbg1KZphFWnWA66uzgZfCOE+/klx7zSzzxhb91rj+eC4b1ev3yUsqnfiiPPRdxBuc/1mZmbivb7ZaUktz6Pd83d4Rz2gdG2Hf7XLo8QicdD/wvP8Kd9q7gSLvPvT7s4wkbiFMhehh94mAzcXKz4dh6w+ADYwq1ny0FfD4tSjVSSiGlyMH6JEoM/WKJ0grJGUkZazVIJk8J13YoMuTCtB1QrhpK5xjp2xafEkZpZCfOVUqCAoim5MLkt5y+dim59pJppRi2A0UsUxppmh5jNCFHlBU61+G0AwopR8bNAcY49vcuYm9vD3LBGcveskdrhbEaZy2lCO1ywcIpGiW0DtoFuAWIAXqghX+87h+55upreNBjfoRT65Oshw03DcfO4+d825jjbGbm3HBr1463uqJWSrkWuHb3+4GIvB64C/BVwOfv7vYk4HnAg3bb/6CUMgFvE5G3UAPv/33ob+PsctPmJN/1qB/hl75jw1d+xtexXDq2k+FIsFizYAyRTO3ZiinRNw3jNOzKOoBSpXm1VjUBK9Bau5tJq6tyQoNSCj9mNtqi9xTeTxQgWAdQZ/acqXURCLkUtBJKieytVqwWDa21NMZy+dEVF1+xQl9muf7ENfza7z+aX/vLJ7/PJO2fYQRlLaI0qUyMk8fZFpRiComSE6IsvgHTAEdgOAg87Jcexh+/5I/O5sdwh+aOEGczM4eBOdYKJ/0JTh47gcbww0/4YbRSfNTlH803fdE3oaPhPp96Hy4/eif6wdC3ikVnWHQNB8PIdvBs4sQQAlNObCdPaywxBRDou44wZZrGQcnkOOFcVyccFUhrSTHWREzAKo1ylpIzunUICqdV7RNTGiOaXDST9xgUOWekGCilrp4tekRDzsLgPUoLK7NH3/XkIsQQEVNwpsEoqQJZpmG/XaGspWtalk2H0rUvfLVc0ToNFJzVuNbQtIrOCRpwHagFyAowcOPxG3nGc57Bc170bF78mr/n2PbYXL7IHGczM2eKf1WPmojcHfgk4O+By3eBSCnlWhG5bHe3uwAvfo+HXb3b9t7P9d3Ad+9+/1cP/Exz/alj/MkLn8VXfd43gsooCs4Zckq4xlKwKFNPLIvGsh01ISTKrlvY+0jXteQUySnTGOF0FqdUnVVMCTY5Yl2PURZkQUrVZwWg7ztCySCGkgEFfeuQnFktOha9Y9k1HO0XHL18gbqT4djm3Vz5h4/l1//q/3Awvm91KItjv+lhhDQWhilzYrtmExIKR9aKrGptgohGOzC7kkdaeNVLX8NfvOovzs0HMXNG42z3fIcq1mZmDgu353PaB0Micv32RgBu3J7g1b/9apxqef4b/i/3uOwjeMD9H0S/p2jXjsVGsz5oOLkeGEKDL4XN6NlMnhAjISVSrD1paVlVlP00kJPCGotkUFphbYsPnhiqUuSqXdB0DetTB4jkqnishJgTRmuMFAqGxkRKzBSTaduGIrUnrXEdIUU22w1Hj15ELnrnS6Zpm4ZMJpdI49qqulwyzjR07QKldRU0btrqf6o0i77BKtC60PWKfiGYBlRT282kA5ZQVOHhj38Y73jn1TzrJc9mDAMhh/P4aR5e7uhxNjNzW/igEzURWQJPAX6wlHLqAwTI+/rHv5heKqVcCVwJdfn6gx3H2aJQ2Ayn2J66nmaxpB8nRBS+axjGiRAT2hpEaabJs2gtatEQYyHmQGM0rTM447DaYbVGdEaTiQG89/gh0GhDrA4taFNnB2MIxFxY9B0JIcRIRnDW0lqLaeDIomNvseCioyuaIwvkcs324IAnPPmXedyzn8zBBxD3uHz/En7pp3+V8u5COlHYDJ716EEpfPaoaGgag3MKZ6FrBOsACwc3Tfz8Ux7O1s/iIeeCMx1ncPhibWbmMHB7P6f9awnZc3LywAF/8uKnsDJ7vO5dV/Fp9/wM/vv9foDFgaZbaPa2lu2Y8CFzagwM08R67RmiJ8ZAKdS+LquJrUHLfjWujh6tDcY4craM00AcIq2zNNbgjuxRoqdoS0yJQkFEiFOu58acmMYBUaqacJuO1loiBWMcWmko4KdEEdBasFbRWoPs+ruh1JaCImjRdM2CUhKrVYu1FkFhjbBcCsZC09YEjQ7oCih46rP/jD/5v3+Ez4Hnv+r5hBiIOZ7fD+8QM8fZzMxt44NK1ETEUgPt90opT91tfreIXLGbEbkCuH63/Wrgw97j4XcF3nWmBny2KKXwwje8jEc+7bf48W96EP00IalgSkKbRC4NMVFXxy5qobSoLHjvyaWWLioRGmNp2hZnHEpBSZHtwRq9WuGnQAiRbYgIBm7+wmoBsKahkBl9bbTWRuh6x7JvueSiJV3XIY0jtplr/uEVPPWFT+cRT7/yA5Y7GqP5mDvdnbtcdDfKO2DceiYf6BcLEIX3pYqJKMFaYW8JbgViIenEK173Et5y7Ztu7geYOXvcEeJsZuYwMMfaB6Lgk+emdCN/+pJn8YJXv4w/feFTaWj5+e//X9z9ko+gj5qjoaNfO9ZDQ2tHpmkil0zMASW1dNAPZbcy1oA0aKOrWMgU8K4l9QUl9byqGwF6QqmCW4iGIrCoq1cxZZyxaK1rzzcFZQ1OWVCKJgbImdjWlgEkoxV01tE2LVoZUoloUw26tbIY3dCa076kCsnQLcAugQ6kr7Y+ySXe9Y538V9/4ju47tS13LC5oe6p+bz4AZnjbGbmtvPBqD4K8JvA60spj3yPfz0duD/wC7ufT3uP7f9HRB5JbQj9aOAlZ3LQZ4ucM2MYyESMsXTLiEzQuJ6i6uqX1Y4QO6Y4YRVQesbR0zlDv+ooVDERkzWIRhlY9gaVwMfE6D3LmMhBQKhm2AjGGGIWhIxPGdEKZTRt33D06AK76hniwGte/395/qtewCOedSVbf+s+K3deXMqVj38yslakqTAlxRAzk9/QtHs416BKxuhC0wh2VcW3gg288MX/jx//zQfzjpvecfZ3/h2cO1KczcycT+ZY++BJJfHu7XW8+23XYbB888O/AWMa7nXFvXjkDz6Ky+90J/q1ZX+jyLnD+0CJiZgzqSTiqiHGiFa6aoGIUEpB9Q7JkIsiZ01MHmMUBciimGJG6Wo0jQgpZHKG6DMFiKkQJLJTGKlznrZBEHJJ9M4hqvqTWm2IvqCkoI2jcapa4hhN4wymrQIhqqm5IR1sZcs7jr2DcrLwkMf8BG/8x7cwhC3Xra87j5/GhcUcZzMzZ4YPZkXts4FvBV4tIq/cbXswNcj+SES+A3gH8J8ASimvFZE/Al5HtVj+3ltTojssxBJ5zT++kje947V83F0/FrJgYj2xWAe6bVBUZaqCQZQCKaTocJ1BuiovzOghFugsKMFOjjKMtKGwp3qwjjAJpAkxCpHdzJy0lBh2s4UJ5TTt/hFoFDdurue5L/kbfu4Pf4m3XH/riZMg7LVL7vvZ96Ube9KJxOYgcWI9sPWeFMGmRNJVoXKxVKyOgDoK0UX+7kX/j4c/6ad49btedVb3+czN3GHibGbmPDPH2odAJPBPJ64B4Lrj1/MTv/FgvvYLvhbjLZ/ziZ9LZ3uYDMVDipkUEklJFf1AQamToSkGNAVRhiIWkUJKLVZrQomkWAhZIVqj0KQMMdRVulQKIcFmGCmlQQRES+0fB5zWFAIKUEZhrEUoEDNGgTY1+bONoJxgG5CWalKt4HmveC7btOEtb38bj3vKr5IlcePBTYQ09559CMxxNjNzBrhVef5zwWGSWF24nod98wP4+s/6Ci5aHKUMHpG6woVrEKMg7YxRJNdbmLjh1E1kIxjjKKlQYgEtKKUpKZCnkVV/MV2/V7V9WwcpQE5gds/XOIoPcBChJDAKup5/fOM/8DN/+Ahe9bbX8ebr3/5BvY/9dsV//pJv4gHf8SNcEi/j2DsPOHYisBkioSjI1aS7a1tWveLiy8DsQ7GF5//9C3jIbz2EV7z95Wd1X9/euC3y/OeKwxRrMzMfCrdVNvxccEeIs850LNuOVjq+9b7fymrZk71gsuIL/90X87Ef/nGgqIteudQbQCl1m1W1Kynt/m8EslBiNbsuSiihkD2QqdtynQMdpwQIykBGEEAZwel6H1F1dSwrwQDGVCl9UaAstdvAwbFTx3jys56EWIhT5snPeRInNyeZgmft1+dhrx4e5jibmTk33GZ5/jsaQxh53J8/kee87G952Dc+gEYZyLEmaqIQEYx2GK2JORJj4I3/9Aae8Lw/YjNtUKp6oFVqMzQFnNF8w2d9Of/+Xp9O2ywR40ASQi3PQKDrFyw/5p7I0oHPoKEYxXXH3sWf/P2zPuj3sGh7vuE+X8//9z0/wqVcznTTxDBmDrYjIWmMbrCNRURwjbA6CnofaOGFL3gRP3TlD/Hm6950NnbvzMzMzMztgCEODOsBQfiVpz2W3eIZRgx/9cq/5W53vmtNxOIuGyu7yw2JdZVNGUQlUkw11VL1XJl2EsS9bXnAf/lhLr/0TvXhuT6/E+iKqQne6VNtAnbJGGnncKPZCZvs/u6ACL/7nN/l79/0/0AKJ04e46/+4bkgUHJhCOMsrT8zM3OomBO19yKXzNtuuJq333gNr/jF1+7m6sru5w6ppYWnv9B9CByMm1v9gn/l299E65qdpOzp572Fu15yZ/7qEb+L+8iPgknAAg72VkvutHc5G3+cg9H/i+fVGPbsHk3bopTi8z7x03j4j/wsy7JifLtnu4lshxEfPKIWxN3r7neOvhO6XV/aC1/493zv47+Xt93wj7dxL87MzMzM3BEoFDbvpQr83Dc8D/UmOX2HW308N59pb8HRcNU1V9Gpnij/vAJOgI+8/B48+scfXX1lErV80XLL39QkLW8yX/vgryFTk8I3vest3LC+cffamZTzh/CuZ2ZmZs4Nh6L0UURuADbAjed7LB8ElzCP80xyoYwTbn2sH15KufRcDeZDQUQOgDee73F8ENyejovDwu1lnHOcnVluL8fFYeH2Ms4LIc7ma8czzzzOM89tirVDkagBiMjLDnt/D8zjPNNcKOOEC2us748L5T1cKOOEC2es8zjPHRfSe7hQxjqP88xyoYzz1rhQ3sc8zjPLhTJOuO1jVWdyMDMzMzMzMzMzMzMzMzO3nTlRm5mZmZmZmZmZmZmZOWQcpkTtyvM9gA+SeZxnlgtlnHBhjfX9caG8hwtlnHDhjHUe57njQnoPF8pY53GeWS6Ucd4aF8r7mMd5ZrlQxgm3cayHpkdtZmZmZmZmZmZmZmZmpnKYVtRmZmZmZmZmZmZmZmZmmBO1mZmZmZmZmZmZmZmZQ8d5T9RE5L4i8kYReYuI/Oj5Hs97IiL/JCKvFpFXisjLdtsuEpG/EpE3734ePU9j+y0RuV5EXvMe297v2ETkx3b7+I0i8qXneZwPE5Frdvv1lSLyZYdgnB8mIs8VkdeLyGtF5H/uth+6ffqhMsfahzSuOc7O7DjnODuPzHF21sZ6qGJtjrPzy2GNs904LohYuxDibPe6Zz/WSinn7QZo4K3ARwIOeBVwr/M5pvca3z8Bl7zXtkcAP7r7/UeBXzxPY/s84JOB19za2IB77fZtA3zEbp/r8zjOhwEPfB/3PZ/jvAL45N3vK+BNu/Ecun36Ib6/OdY+tHHNcXZmxznH2fkd3xxnZ2eshyrW5jg77+M7lHG2e+0LItYuhDjbvfZZj7XzvaJ2b+AtpZR/LKV44A+ArzrPY7o1vgp40u73JwFffT4GUUp5PnDsvTa/v7F9FfAHpZSplPI24C3UfX++xvn+OJ/jvLaU8ord7wfA64G7cAj36YfIHGsfAnOcnVnmODuUzHH2r+BCiLU5zg4l5z3O4MKJtQshzuDcxNr5TtTuArzzPf6+erftsFCAvxSRl4vId++2XV5KuRbqBwRcdt5G9y95f2M7jPv5+0Tkqt3y9ukl4UMxThG5O/BJwN9zYe3TD8RhH++FFGsX0jExx9m55bCPd46zs8ehjLU5zs4LF1KcwYV1XBzKOIOzF2vnO1GT97HtMPkFfHYp5ZOB/wB8r4h83vke0IfIYdvPjwc+Cvh3wLXAL++2n/dxisgSeArwg6WUUx/oru9j22E6dt+bwz7e20OsHbZ9PMfZueewj3eOs7PDoYy1Oc7OG7eHOIPDt58PZZzB2Y21852oXQ182Hv8fVfgXedpLP+CUsq7dj+vB/6Uujz5bhG5AmD38/rzN8J/wfsb26Haz6WUd5dSUiklA7/OLcu+53WcImKpgfZ7pZSn7jZfEPv0g+BQj/cCi7UL4piY4+y8cKjHO8fZ2eEwxtocZ+ePCyzO4AI5Lg5jnMHZj7Xznai9FPhoEfkIEXHA/YCnn+cxASAiCxFZnf4d+BLgNdTx3X93t/sDTzs/I3yfvL+xPR24n4g0IvIRwEcDLzkP4wNuPmhP8zXU/QrncZwiIsBvAq8vpTzyPf51QezTD4I51s4cF8QxMcfZeWGOszPHBXNMHLZYm+Ps/HEBxhlcIMfFYYuz3ZjOfqx9IKWRc3EDvoyqkvJW4MfP93jeY1wfSVVmeRXw2tNjAy4G/gZ48+7nRedpfL9PXfoN1Az9Oz7Q2IAf3+3jNwL/4TyP83eAVwNX7Q7aKw7BOD+Huvx8FfDK3e3LDuM+vQ3vcY61f/3Y5jg7s+Oc4+z8jWuOs7M31kMVa3OcnddxHdo4243jgoi1CyHOdq971mNNdg+amZmZmZmZmZmZmZmZOSSc79LHmZmZmZmZmZmZmZmZmfdiTtRmZmZmZmZmZmZmZmYOGXOiNjMzMzMzMzMzMzMzc8iYE7WZmZmZmZmZmZmZmZlDxpyozczMzMzMzMzMzMzMHDLmRG1mZmZmZmZmZmZmZuaQMSdqMzMzMzMzMzMzMzMzh4w5UZuZmZmZmZmZmZmZmTlkzInazMzMzMzMzMzMzMzMIWNO1GZmZmZmZmZmZmZmZg4Zc6I2MzMzMzMzMzMzMzNzyJgTtZmZmZmZmZmZmZmZmUPGnKjNzMzMzMzMzMzMzMwcMuZEbWZmZmZmZmZmZmZm5pAxJ2ozMzMzMzMzMzMzMzOHjDlRm5mZmZmZmZmZmZmZOWSctURNRO4rIm8UkbeIyI+erdeZmbkjM8fZzMzZZ46zmZlzwxxrMzP/HCmlnPknFdHAm4AvBq4GXgp8UynldWf8xWZm7qDMcTYzc/aZ42xm5twwx9rMzL/kbK2o3Rt4SynlH0spHvgD4KvO0mvNzNxRmeNsZubsM8fZzMy5YY61mZn3wpyl570L8M73+Ptq4NPf8w4i8t3Ad+/+/BSlDke7nBKFVpr95T53ufNdUCjIu3+W93EDkN3vuf4su1vOEHN9cM6FXDIppvpUuzuVnMm7VU2lFCKQUybtHqdEEFE3D0BEEIRSdr8rqY/bPV5rjTq9TYFSgH6Pm4F3XvNObjp+E4Uzv5p6RybnfGMp5dJz+JK3GmdweGNtZuZDIedMKUXO4UvOcXaOaazDueaWc+sHyXqzns9rZ4jzEGdwAV87zsx8qNzatePZStTeV3D/s2/PUsqVwJUAWuvS9/1ZGsoHT9d0fOlnfRn/4XPvyxd9wRdy2fIyWFMTsAkIgKe+k2n3+y75KRHCKYgZYij4lPGxcMPJU8SYGLeRYRoIMTINI+M4kmJES2YYBqDQdC0CrIeJHDMxRqx1GITGOXIqFApOaxprUVowjcVZh1PQWEPTtWhRrPb2WOwvOXqxxrSCXAbsAfvwwhc/n4f9r4fykje/fD6pnUHW6/Xbz/FL3mqcweGMtZmZD5XtdnuuX3KOszPMsu/5r/f7TkjcPMFJAQRUET7/0/499/msL657PlLPs3H34NP3D9x8/kUBCR7+hIczMUGBF738Rbz89S8/12/tdsN5iDO4QK8dZ2ZuC7d27Xi2ErWrgQ97j7/vCrzrLL3WGcFayxd92n35yQf+OPf8sI+GATgARupXx7i7Repei9REDSgZcqy3mArDGBm8JwNxCvjgySkRJ4+IoICcIAWPah22dfhpYrsZiSVRkPrNpBUxZ7R1ZKNJJECIGowUrLXkEki5oFRDCZlt2mCUI6UTaC2kfoUxUhPLbX0vn/OZn8cjfup/8YM/+kP8wzteeU7388wZ5YKLs5mZC5A5zs4AWgn//Vv/B594r39HLy1f+QVffcvEZ9rdSVHPvQm4iXqeFaDb/T9Sz2V5d5PdY3R9nod880NgUe/6qje/itdf+3qKLnzPj38POZ8ujZk5xMyxNjPzXpytRO2lwEeLyEcA1wD3A775LL3WbUYZxRfd60v55V94BFes7gTHqCeD08nYATcnZRhqwnYAKEgJxm1mmgpBMhgh+MR6vUbEELYjULCiUKUwbLeEWMhToOS6apZLRClN9hEfPMY1lFJPKj4HrG0IMaGkIGiMafDZo3Mk5YBSwhQiKSfapsdYwU+ezamBddthtEMnkCO78Q/wyZ/yqfz6Y3+D//o9385V17763O7wmTPFBRVnMzMXKHOc3QYEuM9nfQEPf8DP8OFHP5w9vV/Prcepq2KGW1oHdhOiebdd2d2TDNycjPk1mFwfotVuMa7U+4sBCfUhn3j3T+QTP+YTKYvCx3/0x/OKq17B9z38+87hO5/5EJhjbWbmvTgriVopJYrI9wHPoX69/lYp5bVn47VuK9ZavuBjv4jfeOIT2DN7cIqaqJ2eyRsh3VATMreEMhRKhvWpjHOKAowexjAxpcgUJgxCDokUInGYyDlhjEFipLMOKZ5kYHswweQRyZhWE1Omc5ZcCjFntuOIa3tUgeATKdUVuaaxiBLWJw8QJ5SYiBKxWtEtDClFtAgxBLZrT+MUvWh0lPr+dhOL9/zIe/KYX34sX/gtX0gu82zjhcaFFGczMxcqc5z962lcw6pvef4f/R1HuqOYbOhUB1soa2p1x+lSRgUIpDXEAG6XuMUEosF0heTBe6Hra5I2bmqCNr5H/3ijwbqCmgTjgAmkAYnCJ1zxCXzc5R/H137h14KCr/v+r+OqN19FzplhHM79Dpp5n8yxNjPzLzkr8vz/Ws5XnXHrWr74k+/Lox/9y1zWXlZn7U4BJ6graGlX1niskAo4JxysE1MUSs6UIqToyTEBhgO/xgdPDKkKiogQxolpCIgqjMOIz4kicNOxU8Q0obQipEguQBGQjPd1hU1ph24MWhWUUkw+UFKhdYZWG3IIKK0wjUNF6JuOI0caQNG7hrZdsFgu6RYNF19k0Z3Ur74VcCfgKFx7/F38wA/+AH971d/iUzjnn8HtifV6/fJSyqee73F8IOaa/pkLne12S0rpXIsc/Ku4I8fZ5RdfwqN/+lf4j1/4Fcgp+edVKQXScci+9nWjdk1JEYapYDQYLYiCcSqkUupC25TQxiAI2tbtwwiNAx/BmprkkTNH9zRZoGnBLQXpqC9iAQe0UGyBHt7+5rdzvx+9Hwi84+p3cLA5OD877RAyx9nMzLnh1q4dz1bp46HGGMPle5fzaR9/bx76ow/hssVlNTkbqSWPIzDslBunQvAZUYUSDWRF9BGjTZ2N2waMCD5siSGQJBNywk8TohTJe3JW5BgRhJwLkVx7y0omJcEYTcmZlAsahekaQMipkEIiq0TTNFhtiSRyTAw+0DhHoVBKIVMwVjOOAVLGFI3VCSmKHDLTAE6B3jVfywbYhys+/M78zCN+hoc+5Cf565f8LVPy73/HzczczlEi3HXvCrRSFEpVWL1Z9lWBVIVVStoJ8QgbP3Dj5vj7Fea5YnkpnWvrH4Wb75dL3VBKAQHZCayJnP5ZbwDXnLyRKY1n4y3PzJwRFl3Hf/yiL+eLP+OL+PLP/Eq4nrpyNkLxkDe1pNF7kLI7vne/F2Ac0u55DCFlNmPC+0TRCuM04zhRENJaCD5iHGzHQsqKFMBq6NqGY6cSMSd6Z9gLGret5z1ZcHOvtrQCA9z90rvz4j9+MbTwmN94DD/3qz/HZrs5fztxZmZm5r24wyVqSmvufa/P4Hv/23/nnnf7GO5xxT1qrfxxagOzp66sDRB9LXkMPqGUQC6kDCFGGmvrRVzKDH5iGyZiSLjeEYNne7ChFKFtWrrGsd0GUqrlkEkybePIQXYrdZZp9KQ4YaxDIfWEJBllQIsiBI8Sg971uomqgiMpJ8xOtj/lhBRQu7LJrl0yjh4/FqwRYrEsFwo5vXK4Agx8zEd9LD/5Ew8l/1Thr172N8Qc3+/+m5m5PXK31V3Yb4/QNx0P/PYfQitFhhqLead0oDSYantBipRcAMWr3/hq/uyvn0lRBa1OS9JRV9xz5ru/+ru4y13uUr8vcuZ0EUOOhZKgpAyqJokAsltmEFPjHAW/9ge/zrXHr0UEjg8nufrkdeSbFRhmZs4vzmh++ocfznfd73tuaR/YnWdKBBLETU2sAJyFgqAybCfoWlBSCDGzHYWQCjHujv+cWZ/cklRhGCeM6qDAGDKusZSSmaaIbh0hJIYxknNCF83ByULyniNHHI0XigLVgDotCrakrvYV+IFv+wFWyxUnDk7crD349L98Oi971cvO/Q6dmZmZ2XGHStSUVnzKR30aj3rkI7nXPT+uSu+fAE5SV9E8N5c85gjTtrCdJpRSWAWTT6AUrXN4X1ertNJMZFIMdWY8F3LIOGMQEbQoSk4orUg+gs4Y0aSkEQJt21BiRkkhhYLPkaa1QEapgtYKp4WD7UDRoLXBGIfkRAkZYzWiBGcMKUTaxiJKE2JiDBM6GPw40HSGhTUEn3FG1ZnFY9ysYPlvPv7j+flH/ALxBx7INde/i9dd9/oPuC8/8uKP4mi3T9KZg+2Gt97w5rP50c3MnFE+486fzKLpSAgpFf7zV3wrn3CPT8Bg+Lh73usWCXCoggeFWjbsuEX8INWf9/6Iz+ZLP+k/QiuILchOTrwkKL7wUXe7J13f1Z6c05Y//pbHv+eC3c3I7nV2AgofvroHYxkRI7z09S/hKX/1pxQipWT+/p9eiS/zatvMuccoxY99/4P51I/5VD7/c76gJj1r6s/T0vux3koq9ZA2tfTR2Frtj9QJUa00Gz8Ri0ZpDQLDdsBYwzQGfEkUElu/qdUuJdGlDqUUBwcHBN9gRNE3jpgSY1Yka8m50DTQWPAT2ABq97pkqkqkAC18+9d8e91m6u2+X3hfrn731TUOAQr88VP/mN//s98/tzt6ZmbmDssdpkdNacWnfMS9+c3f+XXuftmH19r506WO10MJwMlampF8oQQIE9x04iRd0yBFyKJ23/Cnx20gJY4fnGAKE4gwDp7NsEYUWCWMIRJ9RhmNjxPWGqZx4uTo2YwDzjbkGAhhQqKiqExK0C87lIZpClx08RHWfmDYbkEsjRikFDrliARiSvRNh1WaZdchJTHFjHUNjbOUUrjisjtz9KKethcWF1ukBfaBI1R/tUW93XT8Jm46dhM/8G3fz3Unr+OtN/0jAJ/zUZ+1K/cECvzPB/0gn/Spn0hJ8Oa3vIWffcjPkylc9c5/4GA8dVY/y8PK3KN2uLnbkbvyCXf6t5SoecRP/hzLo8ub+1BXdkUTGspQE6ycYPBVVc7YwnYDZLAObCPIrt2TXL87lKPGkKklXeX0ReBpv8VcRYhOX5QOQ31dragJWgFRdZUBCpqMaxQiQim7UrFdj81URtZ+DRZSifzgT/8QRQKihNe86w284+Q7yNx+xYHm3pnzi4iglPDl9/kyfv5Bv8gl3aV0djcRcVoR+fRERAYGyCNkKUweTJGbj+eQACn4CcYBhnFimDw+BrbDhhQTfd9zcLBmmDyuNWjriF7YDKfQ2mKMI/iAiEKlyMWXHiXFEacbbNOxt1qSk+eSi9sab1loWjA99TzYAj239LCxG/vpvzvqhMouVk+eOMlJf7ImcwKvee1r+Kbv+iaA25Uo1xxnMzPnhlu7drzDJGqdXvKMpz+Ne3/CpyEHUlfRtvVWTkA+CdMI5IIfQRcYpsR2u6FtO1Kq5RSnaZpq7FJS5PiJ4xQtSC4M45YxTvhpwhnDqVOnaBYrcsn45HHaEWJiGzzrzYigUFnQUtBKyCoRQkZri88R7z1d12GsYpwCMUVSCDitcUZRciFrkFRYmI6m7bDOklIgZ8G4BimZO112OUf3e1Z7CxZLg94DWQEXAUepJ6OOuhLQFtI28by//Bv+6Im/D0rzS7/1KPpFf7PZty4aGaT23LSFVBI08As/8wu86U1v5C9e/CxSTneoMso5UTtcWG3RSnO/T78fRho+45M+na//8q+FDCoopEhNnkJNzhhhvYGQIafCMEHaJVd+8qiSMUbTdQYlgi0g7JI2XdXqbAMYKKUQfBU4iFGYpkwKhVQiWQooh971pCVV+9QEwTph2KwREZZtjzq9yib1ArldQqJQimBkV0LWJLD1wvd3n/YkXvW6l5Mk8tSXP5upbIm3szicLyDPPYu+Z9mv6Kzl+U95EcvVCjUpdNK3tAxM1LLHRI2pcaePFbi53Jdcz7PeQ6YQCjc3qYUxcjCMaLFM08CJkzchruX4sVMoC9oKIdW2gxSEIYzklDG6w7qWMHmsNVx8dIWWzHq9ZtkvaduWrmsRAqu2pWkMi5WgVtSVNM3NK2rSc4u3mwDNbtzmPX4/vcK+AmxdKYwSIcD9f+T+/Pnz/vx2kbDNcTYzc26YEzWgazru82lfwi/+/M9ztzt9WDXSPKCeVNbgj0EMBZVh8pmUM9OYGLZbxmGiX/Zo0Whj8VMEAsaYOskm1bMMgRgjkhOb8YDtOFBKYZw8sQhaKXwIVaQgFzbDgCiNcZaSCs5YGqcZppEwRXyKDCmQUqZtO0qMFAo+RAwKhcKojHWaQiHnTOcWhBBou46YEk3r6PoFthS6vmev7bjo4j3azmGPCGohdcbwUuqsoqGusjluKcdqqCcmzy0mo3DLSkGgzjR2u8etIOrIzzz4p3n7NW/nmS/4c8Z4xyjLmhO1w0Nve77us76aD7/0I3ng9z4Qjf5n3og5gMRaghUSTB6mUPBjYUyQcyHERC6pCgClkWGYMEpjUFjrcK5hb+GQVBOmzkpVn8uFcUpsp0QpVXt8TJH1qaHqkWhBlEKUQWlDzpFhu0UpYblYMmwOUGiaRlFKQGuFKEXGYoxQSKSiMaJROtI4hbaKptH0ncY6wTPy2N95NGIyL3nrP/C8Nz6fIW7P86dyZpgvIM8NWik+41M+EyOar7vv1/LtX/cddXIzU5Ox6T1+P6AmNtvak1aA6QBCrJMYarcCXQoEX/Apk5Vimgoxe8bBMw0eJBOTJ4sil0QcMwfbNba1jH4kFghj7eXWlLq6FiFnQSuNcYq9vocSGaaBRdvjbIPWcHTvCM4Kxhr6RR2TWwjJg8qgjlBX0WS3qr6p/WxyukGk2a1q10Xv+t6X1PNeqf9Hw7f8yLdw7OQxjh8/zmvfcuEqy89xNjNzbrjDqz72zYIv+awv5ccf/GDudsmH3aLueADp+jrrl4da6uSDZwieySeGKRB8JOeMCpHkB7TWGFXrH0QSpRSca1BNh48Tfduy3W4QpIqFAKkIOhdiCFAyRhTGtagihFIQLTcnfEZphIJrLCZryphouo6chaAKShS2aERRL/RSIuZM2xiSjzf3wmmtsLomlpqCMYb9tiPGQM6FFDMm61t6cE5QE63aGldLuDz1hLQrywLqidlSL3a3u+2nqEfRhnrCGsGsDA/7xZ/i7W95O+pnLM943tMYwuxVM3P2cdpyt6N343P+zefwoO/5Ue568V0pp2rPqWTIuSrQjRuwAtP/z96fx9u2XXW96LeXY4w551pr71OkLgikABII5IQUEkMRilCEmoAFKgihFFRAikuwCsW7AZ5SiQIiXJEH+LhwH9VV9IIFoBQK4kVUBBSR5JxdrDnnGKPX7f3R5z47cAHv50o4OSernc/8rLX2WnufuebsY/TeWvu17y/CWnuF//YhEVJCVD+JVWk0adRWiceZ2sAaaLkwuJHBJ5Sco5UwNYs7tb+Oa+N4XKgi5Cqk3DWOc4iIgioNkUZYE8Nug1YQlkiTwmEJ2CZ4p5mXhNYaUaCdQ+lCrgnvHFlAWsPqcppbNUzjwPluw9nGYN3IZ37052O28Av/8WdR3675x7/4fxDa1XV4Fb93GK34wPf+YJ751Gfwl/7sX0Vn3efOHqInZafu851kpZ1mu6VBWYV8SuBKUSyh9k6xUwxe0SqEWIi1UUsjl0ptBSU9oXvwxg2U0Rjr0EBtjSYQQySlhNIGow2qNloTjsdbbLZblDJY28hBsa9CKSvb3YQ2GqUFqw2pJBoOVQrHI5ztLPVUpBlH8Mfe3NMG1lNNw6TeFRw8SOzfU9CzTkdPUO/MriZgB9/+ld8OwC/9+1/im773m6DBd/3gd3Hz8uYf3Jt4FVdxFY+ZeMwnas95u+fw2i/+Ip79jGf1jebOoPMBZIGyQswZRBNTYEmJXISYGihF00JIiVYKNSfuvX4NVTUpRgBG27DGoqxDNcEoQWtFrZp1XvDOgHHMJeP8gDWOzXTG4FbWWik1UWvDmH7IG4ylVkEZi9/tECDnkyyy3EUVC/15aavR2uA3jhADo9/QGjinGazFoHrSph2iFQaH0xqZKyIGNajeFRvoG/Ce/vVCT9LuSD4ydyUuQk/M5E1+bkvfuOLpNc7w9Kc+nS/6oi9EauX7fuz7SFfo/6t4M8YLn/YAT7znCXzqx34ab3P/M3jK9BTqLaipE1xF9Qo/tSdqlk6cS60fHh+8cZPSSq9PaE9DEeIRrSHHjFYGNTpqU9R1pZSKM7Z3y9eMlBFnNeuaCSH3OZsQKbWirSdzmsFZZ6RBTIlhmbG2WwGUIhyPC9txwOlOmzQaUqloP2K8QykIqZJzJcSV7TShdMGOliU3QtbMyTF4x2AUY4LnPuUFvPbjXkv7tsYb97/Jz//6/0nh6lq8it8aCs0feuG783Ef/kd5xQtewROuP7HvlQFkT7+3a7o8fu6yXmlQc9+jDmElJaEEYbQTpTVKpRcLsyKETK1CiAURRQwBZXvnzmmDtobcKq3BaCHlSI6JlCrGgDOGkhvWOmqphDCTS+PYFrQx6N2IVpoUT7+NWLwbiGnFmg0pZWpVKNEgwmURliBMm4EQhJQ5SZD7fWLwfU8uFXQ9JWi2w1Bo9OJmOr0mw+mh6LTLBs+5/zm8/tNeDxpe/sDLuRVu8ev/6df5sr/9ZX+g7+tVXMVVPLrjMZ2obcYNL3rWi3j22z2rbzgrvXt0StSMgmrguA+cbTfE1qBqcqyUkrHOICJoqxA0BsUSMhILk/NYA9IK4zRQihDX3DtjxqGVQ/mGUqDdgDeeY1qouVJzIKfUJfDaozeQUqKlikIzDRapgigh5cTZZkOmSzFjTF0y1YRx2iCqciejGvwW7wcQoYlCK4uVitUWEcVus8Uo0wlcqcFkesI10JOrzenzmb7hdJVnfxzpq+WOBPLYvy+qD4HbBNbTzUXvoI8tPOMZz+BLvvxLqH82870/8b89JrT7V/GWFy9+2gv4mtd9Pef2gifvnkxdYL4JYeldtFwABTn3qyUtvSN14/JITpVQIiEeERGKNGo6oKwj134aFQGtK7n0e0NJESMaqY2L7VlXB+eEEo1II9fEMh+otYDWrMeZ5jSHeSWFhB8mam3c3t8GgXEcCDEymAFywyqhtUqpGWMMftMga2Lsc7KVRmmVEDrEaNx4ps2GNWRuHQzXzs7ZbC0b8eQGb/f45/FVn/FV3EgP8fl/7Qv4F7/6LylcGdxfRY/7Lh7P//fbvot7p/t4+vWn9T3yNhD69RP2kEKXBNZygm2VyhoDpRakCHMKqGZxemJZZkJYsM6z3WwoIozKUGtB0bDGYXdnzOttcmroQTiGQFV9U6mtEmJlf1jYDA5jXB8t0NL3WDegtJD2B1qrTJNHSkVbQdM4hoA1Cm80OQXyGjp0VY1Aw1jD2bTBFBDT1SrrGqFptG4gBucs261Habi9wrWzEwy2dmIlgd5NuyP/vFPgvEO6vAMm8fCq578KNrC8dOH93/v9wcPnvO5z+Omfv0L/X8VVXMXvHY/pGbWnP/EZ/NRP/AumOvWN50E6ROQA9XaXQ81rJMVGQjEvB2osXN5cGLYDa0hoLezOz9DOs5kmwjGgc+P8bEJKxhnNNA0YoznOB8KaSCVhjSWEcDKkNihjuHXcU0shxoVBDdSWON9dsNltSTmRcwYUWrsuh4qBOQeM05QqxHVBWqNUxTROJ6Pr0pNJrZmsJ+SKN/3nJ+vZ+oFx8kzTxP3XrmOtwY4n3b0HdV3dxYA77lYFNQ/PHLAAWfr3mkJWISxgbZeMxVxpuhsDn28M/lzBdYXa0YmS57DIwse/+uP5oX/9w8hjNFm7mlH7gw+jDO/29Hfha1779Tznie8AR0VLMC8wHztdsYpQEWJsGNULLiWBlsqNGzdZS2EOM7kFECGtPYFpCpQSKgrTazgAhLAiTXE2jJwPE5txYpwcWSohRqZB0RqkNeCsIeREbkJpjctlQWuD1oaUIjFFrFYYZym5YrRmclus0mQplBr6/cVaUmxEKRjpT0T7gVwDgx9w3rHd7bDGoo3iYneGHxx+0Hhr2E2Oey8Ubtv4uV/9Ob75u/4W//JXf4ZfeuO/f9T5sV3Nzvz+xvXdffyL//0neMLmCXCAfClIAHMC7RxmiEtPUPbzjMpC0xDXTMoVRHG5fxCRxsXZfaSckZY7cEopcu4z3WdnWyY/4gdLScK8HFnmI+M4EWvixs2bKAW1NBqC0o41zozGsZ1Gbu8PiAjO+e5eYUbWHGktY41i8CNhmdlOZ4Qc0Wge/7jH01pmXWeiNJydsM6xLAub3cDkPN45Bu8xxmOMZbs13Lq5UEvCKGEzbRA8CuFsZznbKbQFdQdCIqf99DQmIA2OR9jupCdwRnVIye70c1vgDI75SLwded6HP4+UEym/ZXW5r66zq7iKP5h4q51Ru7a9xoe97EOY7HRKNLh7I1UnanBspNSoCPvjgRgiYYkoZ8hFON9s+w0+BjbeoU3/B5RuaK0ZxrFvEhqkZK7tzjmawBpWlGiirrRaSa2Rl0gpldQ6RltpsNqy2Ux4pbGDx2y21Fo5LDPGWkblsF7YHxcaCu87htgZhXMdZlIyLOuMtZ5mLMNgsdpAOh02KUjVSEmYliEVxDu0Mz05M/QE7ERzBO4ORyf6cHgGjgJVQRXCPpNCIUiXipjBc7g1o61BFc+FOOyZwKIelstsNhv+9nd+C6/5uNfwwz/9Q1cyyKv4HwqF4jlPfhYf/IJX8qHv95E85/HvQL2pWNbePVtmYV5BmpArHOeZZQ0M1uOMQ2tFiQFrbZcZLp08J3CyyKgYsQiCURBDo0ojt/jwc+iXiJCXPfMKVQnSGmHRWNX/bogrzmi0aJQ0LBYthnU5kkrrECIRcgropihrxm4a4ragYDAbKI3DulJF+r3rRDco8xFrHc0oWm20VGgGnPfMh5laBlKyDNZileHSaM6K5l2e8i58zRd9Pf+/H/1evvTb/1/84hv+3aMuWbuK//G49/q9PPnxT+DbvuLv8gQeT3sQ0gEON4QchDhHSlb4ky1LbXC4nZiXA0Y7bs8zISVGZ4jzQoqZ5WjwxmFVYzsqpt2W4+GIGjROj5TWmG8emJzheDhgrOXBmzdJOdJqJeeMn0aWJTKNhsF4Go2bxz3Hwx7vRkouJ4liYDNNGDdhlWY+XDJaD02wpne7JVeWZcFYYZ33ZFuZdhs2W8cyz5gzjbMeYw21ZWqqlOQZ/URSCqOhofFes66JLJY5QV6EnYdh20cH+n2jg1SWRTjMsCyAEqYJ3KrwywlOEoA97IYdO7/jN/7Jb/BTP/tTfOqXfiq/+dBvsj++ddrbXMVVXMXvHI/JRM07z5/+8E/gtV/1xb2TdodQeIdUFSHmxu15ZjnMKOeYY0JX+lyaVFopLK0xjgMxR2oqLCzUktkMDkVlsxspWWOsQhmNaHDeoMxEDL2K2JSihYVcY/9ec72qV8Frw+T8iQAnTNNEKR1Ft9luuJwPpFUwpwlmZz1Gd/oVKGrNlFYwtpMjnbdIa2zchqwyg9XsdgPeerxt1JYZxw161D1xPfnA/Bbj3UqXPp780iRAPhRaaAzFUXIhzYGSG7UVRGlu3LhFrIVh3FHLgpZrXL90d+fW9kCB7fmG13/163Gf7/mBf/b9hCvAyFX8P4znPOFZvPZPvZYPeeWHwb6TW2/tYZ6FWDp1McRCTgWrPWvIhCVQTcI7jzaauMx45Uk5oFqFJqAao5soOlFqodSGUhpMxQBauYefg9BN5ZfDbby3tFYRpdmNG8RAq5lGQyvfizMKnGnkVoglobVFpHfXclx6UqcNMWRy2mOtx0wbUhFUU6ArUiHTUfulVlprtFbRbWBJR8ZpwtLhIjk2tDGUoliXimoaU0Gj8AU+5OUfjtXwyV/7WdwOtx6ZN/IqHpF4yuOfzOs+70v5yPf7CORBCG+AvPbO2f5GIITErctLPBatPVJ7MSEuGe0UIRYOt26QpVK9RzcY3EitkULFOs8cVtYQUKrrAy/nm4x+7GAtt8Wa7vE5OUdNidbAGENaVow0agrEIqS84pxmGjfsthfU0qg199EwrVA0wrywm0ZCCMQUMMadkPwVTaAVwStLLhHTBnLMtAI5Zw7tSKl9bKGUwuT7DIBzA4OzOK8ouTEMBmMVKUMtUF2fcTcW8gIxCbmcmmy1ErOi0ZO9dBoR2AyCnkFvFHqgU2Cj4kXPfBE/8//5Gf7m9/xN/ulP/VN+4J/8AKU+diw1ruIqruL/eTzmEjWtNU/ePZlP/LxPwqymz1KdkjOWTm5KQdgfIpeHmWU+orQjlog9STU6KMQyesEohUUhIeEHj9l4RufYbgbs0JHANVdiiGwuJkZtub2P7OcZWp+Dc6NDeYVUYdQD0hrSGrvzM/zgu/Gt7bSt84szvBaU1VTZ0JpGuhMuzhj2peCsR2uNEUusgWEYUOguKYlCbRVFY5wGvHcM1uC0RbQCr+imTPRh6DvGvKc/Jpwep2HpGoTD7UCpmWv2nGUN1FI47GdijmSBUjshz/sJoyw5BOqlgUWjR4UudL82B0+654l88Wtfi/lSzf/2o9/3VoPuv4rfv3jHxz+b133Kl/C+L30l7QbkI1we4XIWbt6OXSacE0tYabF1KwuBwQwIiZg6zIMiLOXQu2ZaUQWg01c1ltYaXkNrGQw0EWjS5zyhg0dqpaJY1kSMEecc1g3EkFAqY61jlco4bkih+yCWUqD2BMtaRY0RmlBLxltNaxmlLNIqOa7kUpATXCSsEaU9DY1+2Cy7EdaI0xprLUFW/GDxCiR5mlfkDIeSqNnRquZ8C07gA97jw3jn7/ub/Ph/uJpZe2uJx91zL1/6eV/Ch7/7R8AbIF1CvITlUNnfXrjcHznMCzUXDrnhtKGUSlgXVNPElE/7hjC6vhchglKKEBaqcdAgpJWL3RZnNMPgyDEh2jP6kbRmtsPE5eVtzjY7pmFkWVdiShzSHq01WnfZrpZe9FRo5vVIrXB9e9b3QN33Mj1UBMEOlo21GO3QxkDLXJydcXu/xxmDbpqaC6kkShWO+8Q9F9coKVFyJsQVdo3t6NkMtg/oVbBK45w+2W+A84qqQDlhiR1YtKyCtIy0htKGWsB5RwpdQm1GCBFMBZdAW7Aj/Ro+mYR/8od+Mp/86k/m9d/yev7K1/2VR3ahXMVVXMVbRDzmEjWjLJ/yWZ/Cfdfvg1t02WOkz6bNEGfh8lYh5UpshaUW0jyz8R5lNXEOLGvAGMtoO4FxdJ7WMoMUhmHEKhidRlVQHhgUZW3E0DBOUyuAorWKcw6vFaMdCSGjFdQm0E5Ybe84LCujduhhoKKw1hNLoWTF4EZCLjRVOwXOKJTpiEatYBxGrDFo2zeVwXe9fasGaZUYI1o0u/Ndrz4q1aWOd7Tyd2SPQt8wIne7bY2T3KtQWuX2HJgvj0gpLMtCLoWMIE1QZsAojWpdcnK8tXTK5WBxSfdkbQQUvO0znsEXf8FrqaHwfT/+fY8pM96rePPH6z7tS3mfF70f9TYc9zAHWBIclsJD+1u0AqkUjseekHkBg2brBpyFwZ8WtxVyA1A4bUA8fZqt0nKkpIXWGkrAWUcVIbUMVlAYnPbMaUEZ3WdPcyLWhnMrYT6y2QzoXPCjI+z3xGVFa0Vrgq5CVYVKo9ZGrXLqmBvWNaBUxPmCMYbB9AGY/fE2uVSUdlQ0g3eMww7TuieUsxaDpuZA01syCWscKQXKMHRT4eQRJhqaTYWtKF73iV/GF37dF/KT//lfXtEgH+OxHQf+9v/8LbzHO74XcrtLHfc3heX2wv4YuLw8Mh8Wbt3eo41mXRIaxegcKUescTRphBCxTuPE4bAsYaacpP6iDXM4Mo0jbnRcnJ2xrt22JsZAlsCoO5Hx+m6DNoachQCcbbbUnFhzRGqiJjkVTjStNazReNdR+4NzFIFBDzjnQRqq9W4bCmruIwoxC0oPSA60klnKirYORfdAnY9Hcq1Mw4BUhTGGhqGUQi0ZaqOKokjhQp+Bboi2iPQ/1wpSE6yH5ZARGiUlUANpnrHWMgyemmDYaFKuhCiMk0ErRbvRkzZT6YXla/DnPvbP8dxnP5ef+Nmf4K996197JJfMVVzFfzfOph0vf6f3wWiPNgpjNL/xxv/Kv/rln7pSTv0+xGMqUdNa84z7n8G7vdu7Mcp4V8pX6YTCFVKEYwwY4/FupNUj87LH6DMGP2CNZjt4ciu0VhkHB60hNWJawymYNiPaQ4mgjaBRuMFz+3DATRPGWTbTyDKv5BowdqSWSpNCKYK1HrfxKKdYSqEpRW7C8bhiGoiqhLySasE5j7MDx+OeJUXEaIzreH5F/7fGwVNqpeSM3XiG0YM4rBYmZxmGDW5w6J1C2RM85E43rdITqDuy0Ar4PjguTfrrZhQpNpQ0jnOm1IDWmixQtWVe9ygpeGPZbnc0STzunguwQgoJ4wfUAbitUKdE8OlPfjpf+RVfyfIpgR/61z/wiKyXq3j0xQue9K686zNfgNxW7C+FWwfhECCmwryuHC8PCIpUCjknakm0PNBaAj8yDobRn8GpM+2cZY4rRhQDsJaeqEzWItUT6oJIQ+GwSmFOBzyUgGSsEWJKtFaprbKuCzVnvBVMtahSSSVzPCy02tiMfR6mKYUfDVo0SWA57rFWk1RDSiaLJuWFcfAMG4sFSk400VAzVRQY2w+UKaGNZvAWKbkDW3NF6UbJAdDU2thsNqRSOCyR2hwxG0pVPP+pz+fLP/nL+eyv/wv8zH/9qavO2mM0Jrfl+//u9/PAUx9AHoR0SzgehMMcuXVrJaZASaVL7mojhMq6rrjRoEs3gT+GhYvdveRcepdNBdYY0CiW4wEQXInsNjtEN3Jp3HjwIVJKSBP8YBjNgBjL2W5kM2y4nI/4YeRee06MAWmRwULD9E5dbcTYscOiNGIyVmviEjg/v2Apa7e3yImWAtvtBqsMxo4cjzM3bj7E2dk5N2/doNTMuJ1QaLI0FAZrDN53WuvZbovWlje+8TbXzjYMTmFU5eatm11CnNPJq9ThR0Me+j0k5QoVjLdQCvOyoCg4P6KlkdYZy8SN24WYVqbtBl06PVIaxBmGtX9tA5h7LR/4bh/Iy5/7co6Xx+7HdhVX8QiEUYZ3fNrzefE7/WFKiizzQkydzlpaRUrjpS94KR/9sR/MOAwdsqNhvZH5qr/xtdzc38B6yzzv+Zf/7id4w+G/PtK/0qMuHlOJmlWWP/6aP84DL3igd9MKXcZ3MuBcDsJvPnRJTpnBa+Z5xmrF6Dc4MxBDwAkM40Asls3g0arPnw2bHQ3Nce6eLTDQBGTu5rUxZdYlUdBoYwilklVlco41r1gMrVRqA+81Z7trhLggujBsJ1rOLClg6Qa7tVa22w4XmQbNvCjsaJi8R/TAfj4irTGNI7lmxmHEDRrdILfCzg0Mo+X6PRN21zH8yqi7c2nq9LrckV4oHvZTk0Kn31021lgxbqDpBM4wbQdiEOZ1pWpLDN1QLdeFy32jlYJ3mpJGUgxMuw0xCk4UbpUuvTyZad977738L3/nW3nNJ30iD80P8hO/9C+prXSJ2VVcxZuEVpoXPOkBvvoz/jr36Ps4XMKto3DjVqI0YU2Rw8m+olYBBSKaUgpSCw5DpRFj4XC7YNE0k/BO46V7KVpjOHfj6f8oaDqJsbZCKxFjR2iVegLhpBMPzVlLioGcFnIq5Bw5351BXHHGkdZAWBObaeiJnmpYFAYNGmJOpBzZHwO7aYtXCq+FZgy5Zhq5m2bTPanayax+nlfQQi6N7TjS3ARWIUqYvGLwA7VW0A0lAzl33wwh0ZpQ2oDXmnDUvMPj35kv/6Qv5Qu/5bX83G/8LGteEK6uw8dSXLvY8PR7ngaLosxwuNHIqTLfnslLISWDtTu0LjStSDWhvKEWRWyZHCLWGt740G/QFKA0pMJgHVaBt5ZCBaWZ15V7xg1pnWm1clj2XD+/hxwFPzYe/6THMaiGQnG+OUdQKNUppXPYsqTA4ThDs0SJ3Lp96ACqE4X1fDrn7HzLGvZo4yk1sz/ukQKxwdk0gMpgLX7ccHM+4LZbdC0sITCOUx9baBVjNUZbjFKUnDokKBRm3djXxLWzHeiBte5JlxU3jRhtmBi6l+F2x/H2AacsSglaKmFdMcaxmTY4ozjMa99ypaG1sC4B7zasQdNOHfFawDhFWfo2LQF2Fzte/7mv5/bxNt/zj7+H1h6bxOSreGRCofoojVII4LTngbd9Me/4tHeiiZBSRBvPH/+oP8K7vPA5UEGK9DNc4TRCANpoNAqi6udJ4NoGvvxz/yIMgtIdfPcDP/yP+O7//bv48X//jzise0q9Kgr+34nHTKLmrONdnvWuPPDsB9AH3T3TDvTkY+2Gncsxk08HuWYSk/ddY18a3gy0uKJMx+IbozHGMI0jKQVq7jd0rSzznFnWinYObxRKGiklrFdo3Wfcco4YrVlCwFuLdZZBNPU0MD3uBpTX7A83SHNiGkfGzcBgR0qMzOsBbQxVhJDBDAOqaaz31CZd6uQsioI3vco/+g20eqoQdsS/UqqbWhvuvtuOuwj+O+THO501A9yCsDbWlBkGjxXNEvuMXkoDtTV0LiAwTDtMDIR4JNRMiZfcc+911iVjnWJdM6rBuBkxD2mMp1MlT+j/wQ586zf+L/zSL/97vuXbvoV//vP/lF/9zV/rXYFWOMTjH+g6uoq3vDDK8IKnPsDr/ujreMcnvxPzXrg8CMdjYwmhS4lyppZKDJmUM8oqUooYrfpwv9KIFKp0r0LnHEq6zHEzjkxDRVpjsJ4mjdi63LjkhMhJRkXFWIPCdduNkNFek3IkhJWUUvdPpFJjooqjUlAaLrbnfe4G6QUhbznsj6DBycD5dosWwTmNlMLF2QVrLjQEawwhZlqxDKOjOkMJiRAC87qy221RW0WV0uftUJ1aaQytFGgGjJBiI5cZnQ3nG4NSldkpjIJhULzrMx7gi//oF/Kzv/wz/L1/8l384m/+2ysa5GMgFPDst3kmf+d138p96nG0m7BeCsc1syyJlBopLKyhr/X5sFBD6YqKKhyWI8517875MOMHz+QHYivkXGgAWiNKYYwinzDzN24/RK69aOiNR7eKsYrJaZRkWoNpdLSYSKX7Bd6+8RAhrt0kXixzmnHWgxYmN1JRxJTQznE8HjHaEuKDjJsth2VhMB6JM8fjbRoFowb8MGGtYVmOWGtQWp0M5itaa/aXe6ZpIKBw3rM8lLk4uyCmiKYyr0cKwppWvFKUZaHUwhoH/DRStOLBWw/hleX+i3tYUsJYi3OGZT1wtt3hjSWExDSN1FYoOVDWAVU1TQqpCHow5KQQFCUIQ1Mop7DO8i1/+VuotfK9P/q9vCVYKl3FoztGO7Gbzri+uZdXvviDuP/sfnKreGV5//d4Jc9+22c8rEZrfTSb/Ou9iF9KT7pK6xZXClAK5ERNrg20AWtAG4Nx3crJOPiw93p/Pug93p/v/dHv45//3I/ynT/yHax5foRfjbf8eMwkak963JP5wv/pf+Ll7/OH4Q30jH/uDwlQF0B6FVvp7qekUSxhwVmH5NJJaSWRYmQcJ7Q4rHaIbhQVaU1wg+kkOefIpRJDoeaI95bjvOByYV1Xcg4Mw8gcIpthZNAKtCbFxHa3JaU+cwaalFbOt2c4e8KGKwFtSK2i3EhTATt4pGhKbZRSGKzFaYcdB0puNKl4a1DKoo1hd21i8BptOXm50BOxO0lS5W6ydudxx8JAgXWG89FggBzBalhDBN0blcZapPQZvJK7EWlMCbvZkWviEBrn+pxWTihlpbFuZLvQV92dObkAHOE5T342X/5Xv4x/9A9/hF/+T7+Mdpo3PPSb/K3/9Ru5OV8R6d5aQ6F44OkP8MUf85d48Tu8lOMM8wr7Q2WJkRAiYY2UJqQYqLUfHFWptFzQxlJaRasKzjD6gclv2W63UBaUNHbDwGbqw5rSGsuyIqVxrAVqoZTGMI0o1Ymygqe1ilGa2hSXh0uk9c5arQ3vNkA9VRYFqy1uMkgTYg4ohHVZiTHip4lx57vXYiuM44Rqgp8mRHf7AGM0znus6cmo1uZk39SBJCiFcR5RjVoL1nan3RQiqWQqGZOgkomlMamJsCakVI54FCMxCaUoXvSsl/HuL34Zz3qb5/C6b/sy/u1v/jyVqxnSR2so4LnPfEe+4nO+kuc96Z1pt2C9ITx0Y2F/mYhrZt7PlFo4XB4fNgRr6E4uDAvzekRHg5RKyYWzOvRZZ0CLQqQRcgZRKCPknDCnvW7abMk1M7gtIQZG73DWEucFf7ajnUT8l8cDKUVqzRjroDZEdw8zpTSPu+d+Qgqk1i0twnqk1kyKoStbrAOluVwOjN70fR4oUrCjIoRAqZWY+/xaoUFTzPORcXBcqxdoGqIam+GMKgFRilSFHHtnYXIjUvs1VqUSoyKVTJgDNHCDpUhlHLdoJdRYCGFhORzR1jFOE8dlQalOk661QRZCTFjtyLqxLAmlFC45RFk2jr5Xb+Fb/+K38hnjZ/BtP/Rtj9yCuopHbXgz8NR7n47C8MJnvYT3fNHLuL65l5e+67txtjtHMtTYje1v/WdopzNiyrAW6bPVKBDViztJEAGje+OgnWwDtVIoLaAEhcJ4w+DAOcXZGezO4WM++EP5kPd9Pwa95dt/5Fs4xitLit8rHjOJ2vXr9/CKV71X76LdQcyvdHlf6BUAEQOiyanfDEvOlJgw2rDZTn3DOdQO5lBCSEf2l4qLszOoHRMs0qhNM2133NpfdkPPlFlTJCQoUilN0bRBe4fOleMamfOKaopSYLOM+NHRSsGarpGXO/+JUErGOEttgjONWgrKGkpulBhQVuGcw2jHYCZaiVjbHTitswzOYYzBTKd9d6R30abT4+QnR4db3u2stdNr5sEWkJOppy7gnOPm8chmtHhvyEn3GTnv0SFirSOvfbMWqeSmaapimu6D1DmSFpj2Uz+/TvTEUNEHqCuQ4BUvfB9e8fL3AQf723u893zdd34dN66StbfKeLenv5Av/5Nfxrs+40UcDt18N2QouZBTIsfMuizdW0k1qAUtUGvFagVSex1CgFoYN1uMMZQUe0JkDd57dtsNRldSjKwhgxSsFrbbDQJY40ALTRq1Se8EGM3l7du0lvucqnUM3qC0JudGa4IyjawyNiu0NqCkE+dSwVnDaAzUglGaaRjZjBNaG4yzUB1NFFSLboXtNBJSpLSMtcI0Df3/oYQQI7p5VF1ovuAHRzn5UqVcsLb7tWnj+rxbStTcfRa1NiRnSElRm+aiwSsfeH9Q8Ce+8o9xRQl/dMb1s3P+8me/jrd/4rN56TPfHQ5QD8J6KORjoqWMqkJYZg7rkVwKKVb8MCDS0LYXC+fjEWvsyQpCMLVhvcc5T62FkBY2w0irjeV4YBi6NKOV0k3craHkxGC7vs86jfaWRmUJlXldybUSUiQsK9rpbnYKaOuopVFy5niciS2Sa6bUSkoZSdAQmj0wuolcExI7it/7bpJ9CBGpXQEj0jvUORxx1jKMA4N3hBxx2uC8p+lGrpE6F4wZmOcDwzSCNOb1QG2VcdqgnSKuCa0r3gxYM0AVrKnkVFnXgFGK2+uR3e6cJUTmZebifIe643MaC4Pz6GZYQiFnQanGuZkosyJp8AVIoDaKr/izX8EDz3+Af/rT/5S//yN//5FbXFfxqAiF4vHnT+Lp974NT3/C2/IRH/DhnJktT7/3bXjak59ECZBmuHkDUhJCKBQBrSzrGkkpo7SmYaH18ZnaKsdjPCm7NMZqWk5g+ojCMPruIZoiSlkG77FWMYyWnC0lw1mFcTfxuX/qszHa8m3/4BuvkrXfIx4TidrgB55z37N7cnbkYcIjtWtoc4CwVlRRtFxIOfWMv1W249RNb72mFEEbxeC2GNWBAUte0asjp0gukZAXttMOnzxQTweyRsgREfBu22mOwwatQS8FZywhHpFcEGMJKWOPC0oLfnA4t0NaI+ZIOUkKAZYYsblT59LSfZ1CSez8BqMcKTf80H9YK0NYM+OwYbvpssdmwEzABT0xstxNzAQ4oydnmd4m0/RO152ErUKt3cjTWtOlVFUwWjP6iTkv5JDIMTGaDW0Qao6UIpwPW7Q2jIPHWQtO9Urk3F/jh+El7vT/bvQuqL779fnmnNf8yU8h5cLXfffXcwhXF/JbU7zoqS/ga/7M1/L2978jhz3s9zDHSmmV0hItVGoqlFRorbGkBZFCDgWFoJxBA06DU4bRj2gl5BKJKTG4ga31OGuwVuHtSI4Bo0Bal0Juxg3o02VSCrX1yS3nPEUytRaMFnJMtFTYXrtOqhljFDEF/GhxShOWGT8MaDFY49HOst2MGNPnWoxpWLF4oxlc92pT3hNTJqcVLQ1rDIP31BSR3KCULoXOmRYTtQnVWkKrbKctukGtjdE5tNG01LBKsx5nijTGyaNXYbaZoSma0eilV0HPquIlb/9iXvI2784/+4///IoG+SiLyTu+66/9fV7yvJf2PXGGuIf1NuRVkZcCqZFjwfsJXwJrCBhrmMOKKIHWSLHg/chgPblEclxJtbK/1ZimiVT6umsls9udkZaI0x6joKSMO7eo1ghhwY6WzfZelFSUMRzXSCmZlCJKd6P2RmM+3mZNlZiF69fvwXjN7cNNjLXkZSbG7h96eWt/Igs7citMxmJEsx096xwQiWgFy/E242bLfLjEjQPzktFWsSwLZ7sdbpxQgHUjS57JLSLKM/gtVQLagR8HpILWDpGTh2EIDONITIFxe0YtFTG9SFMRzGDRwG67QWqfLUsxI0qTamS+eSDlwvXze5EGw2ZDE9AilBwJIVHKyDXj0QnyTRjvm/iEV3wCH/jiD2RZFn7wx3/wEVxlV/GWGmfDBS97zstweuSV7/6B/KGXvBsbNtx3fi86WOY93PqvvXsWIsyxsMZITgVjR7TOrGlhuVxoWrB+RCuN1gJiWNcF0aZLHw39oK27R2euGa01Iffxl9oSpWQGZ8lxR86WHGE7w7Wz6/zZj/1MUkp8+z/+Zta8PNIv3VtkPOoTNecc7/fcD+CvfdP/u29IBx42uZYFWhbyiQqXQ2G3GTgcbhGbopWKQ9EaiLPMh4DVHmUUWTVEQEslH29BE1pNLGuXiYgStIY1JIwZaCJ4N/ZKXK2E0M3J/OCZ5wVnNxTJNOkSwXK7MoyuY4RrxXpLLQqFPmF/G2tKTFaRcqXVRM6JjR87lasJsVbMqtDaYa3GnSqXIcJu59EOOOfufNodcIjnYUNrTsOgD8cGVDjZxwjYCdYADYf3A2ldCDHRipByYl1mpBauX5wzbhz7W73zVbKw0klfW2sYzECpmSUcOT/fdelMo79nO+5aAkBPEqf+/C52F3z2p3w2P/GLP8GP/fSPvVnX0lW85YRC8WWf+j/zDk99B/Jl30xyFnIuhJxY18CyBEKMp7+gsFpTRHC203K6Ca+n1IJWYIzuxQ1L7xio9rBEI6eCFY1It5uoJSMlY7Ql5saS1y7E15pWC+sseO85v7iGtobj8UgaK7vJU9rI/ngb7Qy6Cq2u0E6fSwXVLQLOdyPObSgls8xHnNEoGpIza0q4wTFqQ9OFfKrAW2vx1XaZme0CSO0d3jmM0VRpaGnEmDGjJqaIch7bLE4LrazExqk70hAMPhaMNrRaUKZ3461V7OwFX/qaL+Hzv+EL+fFf+ecUuRr8fkuPafB8zV/+Wt7n+e/LPdO9yG8ABdoqlAOEVdjvZ2gGkT6EIlKpBdZ5xW9GlJUOvJgzWglnm3NyjeSQGIaBtGQygTLHh4Ez3hhGZTg7u0bKK7vNxO7iHFUK+3XhvosLzs92VBo3Lvfk2iitMHgP2uKMIZfC7cNtYgosa0ZwvOHBN7DfH9CjYxq3oBzjNHDzwRsApJyYzncgwjHuqdI4zkekNlqDEAKIJq4ZZWC+vMnaKn7cMtmJZV2Yj3ucddixV/6fdO89iCjmJTC4TZ8/d5FSElUqlUqLDY+lsjAYx7zsiSGx8QPXz8+7fNEYUorEXBn8SDPC2fUzak3di66dij+Suh3P3EBVdqPjGCrODdw+RLQ1OK/xXhH+K0wZnnD2BL75L38zIQde/MdfzK39LXK5uj7fmuK3zyoqpRjNxIve9iW8+j0+ig/84A9k0iODDNjmkAXSDbi9h5KEUCCmyhoyuTVK1UhRKAqldRP5VDOmaqpOlDt7hhhiSLjRIWIpqVBPFkvee9ZDwg2dWtdqBjIlBcw0MitFLZ7Dpeaec8fFqrnn+j180Se8lsedPZ4f+zf/iB//pR+lSfstv9dbezzqEzUrnq/73q9hZ3bwEH3mKZ8eFdbbfcNJJfWuV4Pt9px5jbTcwBqUgeVypdbGNAzUlk8bkOYQZsI+MljLOI0oPxIpZEonSaaA15VC15pr1Wglsaautb8m13HWk3NGgM20IYRIbguxaHLZYq1hpzwpJagN4y3rupLCivaCqEQuoSdxynQggmSsGsipst1NbDdnjOOIUkJKK0p7lKN3yN4UGuJOHz13pY93TK8TJ5Fx1xuHDIO+Q9ATrBiOsZBjopQ+x2acpmlNKAltPW6c8H6g5YoeRnKtpJjACPu4cs3vSEfBK1BN9UTyDq8gn54D3J2rExjNyPu/4H35hX/3b7hxvPnmXlJX8RYQ7/sO78VTrz0VVkWOUPPJ068W1jUwLwuHcCTEfLouukdgTfRiixas0kx+oBZNKYllObAZPMpNmMGjlCKWQlgTg7EsNRLWckrsTtKr08cmBRGIIZFDZDUDu8lj/YR3ms12Q9lfokXhEXbTQKtCq2DUyDBY5mUhpowS8JsNzm0YjGLjJ6wWdFM4a7g8rr1+snYftMmN5JJo0jrkyGpMa0zjlpwFkUYOCeU0m3HEuqFbfJRIKYWkDUUWFLoTMenwJXMCHy3Wk1oBKzQmtBppTaNF8dwnPo+/8qf/In/hmz6fn/6Vn6JxRZ17S42L3Rlf/BlfzKvf82Nhr5AbIEdIi3C4FNISe4JUK2uMGBTH/YE5HFjmQKuVZX9ApJOD1xhQBqzVbPyAoqtFpjNQuaKqgPQ5r7BekuM5u+2WsHYTd7911Fw522xorTIvK9JKB/lozcX5BUuYaSK01rjc30aaQuNI60zIK00a0zRw6/I2MSX8MKKt5/4nPJ5f/y8LaE2YF4w2HA8HkMbu7IzBOGJZcdZyeXng4p5zUgq0jqtkXY+IzdSY2G03LPXA0Da0QbM/BsYNKDTLcovt9jq3L4/kHEhx7d2/aUQphccyL5HNMCFZuD0fiDFxfZqobuj+bNsdyzqjTT9VxNLHG7bThnG7JcZILg1MY5pGlpAYvOFQWpdsIlxcbMlRMWwU9QiqKrbbHbvtjv/4Pf+RX3vw1/jQP/eh3Nrf4tb+akzgsRi/PTGT03VjlGE37Hjnp7+Aj3rJh/PKV3wAT33yk0/jP70g3hKEFQ5HWLNQovT7QMlddrxkjqHbLo3JUFum1NI9Ok1P4EprrCmgWqOhicdIlX54M1qDUtQc0NbSnDmhEAo1JbRS1FxJErBV0WzjiCBlgKq4uHfi8z/jM/mc/Gn8kc/5k/zYv/0RQlp/x/3mrTFxe1QnakopLqYLtOh+wE90g+tMT0iOYJtQU2Q+zuRa0M3g7IDRQtMNpTU0jfWO3Cq5FkQqMWWaUiwxE1tk9ANVCfOaaKZh9JE1BHJuONfpkem0IJ3WKKV7Zy2vtCZd8tCkUxgt3L6cOXdbcsmINFYTaAWO88wwuI7oL3DMR2iJhkIrQ5HcBzidR7XeDQhLYHQTkx+xgzBMI25Hf3c9PVnbnl6T7pX9W5M0w11j8NLpPRhQDW4dMkZpcu2HZLRBKQNSmA8zu/Mdh+OeNUYGFGfbLdIq1g84ZzFGUaSxHg6IM2hjSKmiZ4MdFWrmLlyknJ4P3E3eTr/Dn/n0z0JZzVd+21fy0PHGm3llXcUjGTu/5eM/+BN5wvUnkW5APpGldAMpjRoLFotVGsmJQpdNId1oczC6V7RPJkXWNKzpBrWpJMY24LShSSVnyMUzLytaFArpIAUUTVr3ZkKRY1+QJZXuCeWENYAXRW0deTWNI0YLyxwAQUljtJ5r5zuMcYQY8E7jlEFLQ3IgVYN3Dqd7RyFX/fDW1J8NPXHU/b5VWwNpiFRKyihl8EMn5zljMFp3k9/U51aVhtYqJbcO9LEjtWaUCAZYlz1VMtaPXYatHYpIjAbtPPqgeNdnvpCXv8sf4hf+y8+zlCvz0rfEuNid8bl/6nN4zQd8CnIT0k1hPVbqYmitsaZCU43cNDFUpGlSTYhq3e8zlb5vadtrZFljpn4NpRSRVtj4AaMNaMUyHznbnnWpcZ5pxXE47tk0xTiOzMsenQIX5xcoRd9DiiLVzCBwdmGZ44LSvaq/zDPDtGHOewbnu6RxtIjO3Lh5izUXsAk3bSm5EiSyvXadsMw45wnzjDWKs2v30QRiCFjjCGvs9hbrwn5eyLWw2V1gh5FWC1o0pVXssOn3EbGkIiy3jhhj8cPIJIWcZpTq4BRnBqw23VYjJkR1mXRtAg3CAvb8GrkUrPG0UtlMEzEGShVSTbRaOc5HlNIYpfsNbvAQBGs0D904gNJMuy37EMg0tNJsZcREi3fCsAUzaMy9iqdffxt+7rt/ju/64e/mC776C3jjrTc8wivyKv5HQ0R+S3L2260ZjLY87ux+3ulpz+dVL/kg3uNd35O3f86z+1nuQbqqrHQYSMwQI6QsxJjICSr985AiMUXm5Yh1DpoH1Ug50VrDMVBKIIaVOQVK4+QlSldsaMU4jSCdaO4Q6iGhjEUrfXquHcKnMOhR47Qhrql7D6oB1RS7orDXHd/wBd/Ad/yDb+cf/tQP86M//6Pkeld2r04F2d/t68dqPKoTNWccr/mET2LSI+zp3bSVh/0d6kFIsbCGSKoFQSOtoIoGKZSSaGYCpRAjaG8pJZFLprRKaIUQAyGueG8Y9ZYlRwbreOPlJSUmtDIMrdFqO41+dfR3zV2ne1xmSuw4xVZ7dSKlAEAtQjt14+Z5IcUuqSxrRqh9HqYVWhKqFrytqNYTQH3yviilUSVTy4q0gdEO+K3qMscdPVE7g1OD8G4iZLnbwVKn7xuQGWhQBHJrpJy7/FgNYBTOWaTavunkjGqKYRgI60qrBeMnlrBwth0x0A+ESlMUOOspqWKcQgpIVf2C1/QkUdOTyfH0fNzpuZ46fp/+iZ+BtZbP/eq/8OZcVlfxCMbOb3n1iz+a5z/tXWjHO+AQ6VLbEAnzQs0JFGzsRLCBmhOSKy0JRnta6x0xTaOUiLuD5D5V0+fjQrbd2L4kMErR2oA3ipQTyxpJNaO0YX95oNIQOZnDiEarXojJtUJIGKsZrWf0nlIqu81Zhw4gOG1RYmnSZ78G55ncyMZbrIZSG6FGSmvk1O8nTUqfc7WWhmJ/3NNa5WK8h5Yjo/OUXGi1MAwOh0asw1uHQnCmP9dUCq1WYgtoY7DGoVshl3zyj3IopTge92w2CmstORakNYrXTKtnseBn+Ih3ezX/4Zd/hR/6Nz9EkvjILZCr+L/Edhz54k/6Yl7zqk9BLqEeYLkF61KRoogxsSwLtTRQlmVdkVzJJSFVs9ueodQRpXxHwwtUG9makXl/ZLKONa0IhlIrzjrOzraoVpmPe6QJZ9vroBVKVZQybKYN2hq6pXSjlcY0TOjcsN6w3x8wXndzaus4221BGotSlKZwbmSJidi6vHLQDqUNKSVSSt1YGmi1EpaZUjLTdtP3y1pZ1hmrNYMdsEaRUmX0E7pmSsqUqthsR47rjG7gqHjviFUoB8GicePAOG1IJfZZ0DvFyqKw4lCiCTngvee4BsZhwBpNWFcuD3usNjRfsdpxaj5SpXXJY8q4caRWoUqvRAmC0YZYMmtIWDfgUu8prIc92+05clhw40AMcFwU2zPPmdKoASTBR7z0o6krfN7f+BxuHa7UJ4/GuJOQ/fZE7U4oFPefPZ53fZsX8AEv/QBe/vyX8exnPQuTDNwGWftakAq1CvMCa2ikKsRSmZdAE0WSSogruRUqjWHwvQvWcm9ktMwaIvvlCNLX7BxnioBShqYqCmEapq6gMp21mksfeWltRWmNNxZtPcbrh8+sqkHJgRxPZ+3kmVfL5qjY3XPOp/+RT+Wl7/yHuPZdf52f/Q8/w3/6b//hYdjem74mWuuHv9Za/0G8PY9IPGoTNa01T7vn6bzqI1+Fj74naJmerBWgCssxcVgDqVS896SYOM4zo0uoCk5rcs5oKWhtqarSVGMpkZgLRVWWtOBd39wwmtIyJSSW/QrSMNKHpg96YTftQCnKWjkuR2j9YhvtQD0hDnMzxNz/reNyZA0aZwYUijUFdtuJkAKlZJQCqxw1dUdMZS0KOdH0NSlVWq3stgNSGjkG9MWA9vxWmaN6k0eFh0v2mbv0x9Rfu5agrkLK3RsurisGhbEaZzRm9KzHmdENTNcHjLI473BYSsmMg2c9Nhy648pb6nYCfsBYjzsdJvtwHn0FttNHw915Oc1vBYw0UFnxkR/wUXzt3/t6fu2hX30zrq6reKTiHZ/2jvyFj/08Hr97CuttIUUoRQipkVLs0I5WENHkkrthp7YoMTjbqC1351glSBW8s5zKAVirkSInibHBO41koZQDjYpMA4ewsMZ+/a3rcqI8apaQ8NZjraVWi1YWo+3DSY9SGj+4PvM1Gi733YRea0XJlflw6J3/U1g3kGolp4hW/mTyblAaTOtG2EUSIoqQA7U2XAxYYOsm9KgptZ6q/g5pFqThrWGwhlJKr2/USmsNbQytVVKaSTmjncdLtyQpzaCaoERIKVOrxrstMVRmbRic4h2e9Dz+0if8RX78tf+EBw9XidpbSkyD52u+6Gv5qJe8GjkAR2gBVIUSBaiUWJCqiKFR821qToQ1UEovMEpt7KYdlUpujcvbt6glYejdWWdHai3dWkIptGi8nYh56UXNnNGbvifvzqaTea4BpVBKeh1QGkhlu91QW+WhWw9y/eI6yVScEUrOeG0otTAv8dRB1oQg1NaIUhmaIy0zOWXKMaNOHa8cE84prNO0lKkpcXF2zq1bN0khUVVjsMJ2t0VlTW6KXBvH44zSvTNQaqUsGWM0u+11QlxZ5+XUmdNcv7gH0ZqqunlBE0VrmSqVJaxoYBqG7pWohRQT+tSBFBFyjig/nnwJBWctqRR0oxdlTH8OtXVSazt5IfakWqEUuKGRU+aa6Uao4joyfY3CqBRtD3oDH/PKj+b+x1/n1Z/36qu5tUdJ3JEx3vn8d4rz8RrPf9Lz2Q473v/Fr+S9X/qePPX+JzPpCW7TO2gVWoQYINeuRpmXyrKmvt+0Qs6VWCpVVXLJrCX2YgH0IkIOGPp1G8JCSLlfy/Q130pDWUelYYAUA1IKzo/k2BVkuWSUUYzjxGANIomSFUUZsghFKqnGTo49jTTEOLBkS4yG86B4p6c/n7/66X+F//wbv86f/6rP4hf+y8//X16TN+0yvmnC9ljrsj16EzUMn/SZn8TbPuUZnfJ4BPa9kkAFFii5drpV66auqjYkFdbUh+eddShrWVJA68YhrGjrSEpx+3ik1sYwjhiriDH0Cl+JlGMhxtipjdpSYqGI9KTOjlgUrQlNCc55mtOkJRNbogoYZQl5RUw3fGaNSG0Mo+awFGpNoA1S6Ys69S5eDB2LPPmJUgspRwbrqQ1y7ZuM5JPboHA3KYv8Vmlh3yvufgw8LHsEIaZCLY35MEMRhslTUiTFimp9o3LO4UT3uZ1WeNy99xKXgHOO3e6CKhVtoCpNq4I3Fue68bduFev6oRTFXf826CvylMcRuJtUDv3DPffdw1f+T1/Fn/+rn81/vvkrb74FdhV/4DHakfd61nvypN1TONwW5kOl1EZrdywwEqV16lSpkWVdyTmDFrQRnIJyjJS4shk8GsfkbJdHnDZCrbv5+poKy5JBQKmGiVBaIqZIFQipkrPqVUKtqLlRVe3SQmVQIp1ep4QQAssScdZyz33XiKEwjV0KItKIZUVphfceYxSbacTqXpHXgyHHXsiwxrLkgNKKKo1lOSCqI5GV8szr2qENfsO184ve9avCdL5BaiaFFZoQ1iNSuo+UNQacf9j+o+Q+wNtaI+cjzm8Z/YC0yjwvDJPH4kkpM+uG0SOHpZPunnHfM/mg534o3/6Tf4/MVbL2SMc0eP7WF30jr3rRh8Cloi1QTnKnGgsiiZq6ziPnQo4zzihGZ7k8JGiGGBODtzSplFrYH29hdcNPnmXeM7lzpFWccTjvkJbIucN5cmp4NwIKYy004TDvaa1hrSOlxOA957sNNEVIDWO3FCq77ZYHH3ojF9szzi4uSGllKQLNI7IiWiG2oYxmM21I6ZLLywPOOzQKaQ2rLSH1ZHEYLJeXeyTXkyxLGEdPSgVvJq5fv5faCtoJKiXUqllk5mJ3zvGwME4OkcLkN1hrSccFpTUlF5wdOM57mtbdekDRD6ytYs2pwy5CSgdi69LmXozs+z+qodTAGhLzOkPVhDWx3ToQuGd7Rs4JrRW5NJqypHJgGLfU2sFddnBwMuiOa2A7blBKsRxXUnGgPUr6TO3o4RXPf8VjusPwWIg7iUUHdPzOyZnVlnd80jvx7HufxfPe5p356A/+CLbjljNzxmQnWLpPcOsQc3KEXIR5acxrROlORE05E0tkyaFL+qsilkhVjZgih+ORcRxJOXQ2AoIzlgaY1m2nckknQjGEEHGj7w2GdSGe5mdEdUqd0prNdmKwHqOhtsrl5Q1GNzMNI+e7kVJqt5BpDVGaXAu5aXKeWINj2mquXzyFp7zjk/nGz/+7/PXv/Ap+8hf/Ob/64C//nq9nrbUXlE7r/7GQtD1qEzWjDffec0/H5N9JQISHvdPKDDSLGwakdPpTDBHjDVrMqeoHa1pQttOZlKqdJBciqMqaAuKFZW1oFGE9cvv2bbbDlnXNNKlMIxjb271eWS6XW1jlGcaJ0qBK7Fr2lCg10VT3nmh0dHZpmhwD46BBtsT1wDhNlFJADJIjIOjWKCGy0ZqoE20YGDZbSlrxpmGcoZBx1/RdSePMXdx+o5MUC3dBHXcSoTsSYNP9pkqptNZx3pILFcd8PBCWDE1jNFArxmpE607sChEpjaYiikrVDuMsgx4INTNsd6yp459HKyhRd6mTd+wC7szL1dPzfNPuGoAHszO87/u/gi9vr+Pvfce38+P/7ifZL3tKuzJ7ejSHN55PfPeP5/M++gvIC6wJllCRKpTWWEKiFAGBdQ0PJx65dkDQ6KYTETLjtMYaw2g0VimU9KRFKQGjkSbkGHHjgHUWY4RcCocwk0KkFUWRwjCO5CKYJpydDSwhUJtl4ye0FcJhptRMjJlWW/dfir27Zqyl1oo0wRgFxtBaL9K0CmYwpDXjrcefDd3wNmfmeaZIZByuUZuiKXXqTKjTZtzlmYruBzVd22G16oRa3yi1UHKfpen0SjBegxJqKSdz7IlG96YyBLSbSLl3Ipw1VCmdllc92Q7E0HVbmwm+5NNex/f86+8kh0d6xbx1x9l2y+v//Ov5kJd8GOqoYYE6n5Tt0of7N25kDpEUCyUGrO4H+QdvXLIZBuYlUlsnvDWENc40OR0aJXHt7Iz9fmYaN2gRcs4YbZisQZdGzStnuwta25GkMTpDyoG8rtjNOWfTRKoBZyyVRi6Zw/FAyxFtNFY6gOChN/w3hmHk5q03cH5xT9/LVCOkRJVCzAmhYYxiv7/EO4vVnqQCxnvQ/V7gBo8ZFc5p4jH3a3wYaVkIa8ANHquFcXQYhKFdYK3lbDPSWiWHAnoBBePoKE0oMZGsoSmFlEJJ3YYgl8LgRhQaJQVFpWRFk4qzhvkwM92/RYSThUZCaqSmSmuFYTSEGPHOc2u+ZOu73l9EiCWyHc/IVJBuG+CUJYSVmhc241mfs1cgJuMthFuWYaMYjIIMh0s431zwYHrjI7xSr+K3x38vQVMorHG87f3P4sNe+GF80Lt/IM9/3vPQWWPEdA3tEeoecu4WSjkJhf51io0QIrFkSll7ch8Dx3UmtERqjSKA7rLa4zwTwkoIHY2vpAPkSst3njA19mRKaUGLMHqgdjp5CL2LJqViRot1I173A3kpAWmG5bAQYuCoLjmfdhi51v3ZnKDFUaSis+JQEvMakao4v37OGkd2Kzz3bZ7J13/B1/Kzv/Bv+Ds/+E388M/8AA/tf/e1LSJ9ROhNihWP5oTtUZmoaaV53rPeibd73DP7YX6lH/T7OQQUrKFijMarkZgD8zKzzgGFQnuNRfe/WhJlzayx0FSkiiLnRkm9lXO8PKJP8oVSa59z04ZpuyHHCEYRcp8ti/sZrS3FVFSrKAw3Trh6bTXT6FljRyMr69BKU3NgzQHjNtQYqA1UlC5Zknaq1kFstZNzjitnZwbrPMUUhumMYRoZjWEzTndnu+4g+e98FHri9iY+ZWR6J+2kaa6pMd/OpKhIJaKbQpqhzivxcuk6Y62R1sh1RdFwbsQYw2F/QEplaIonPekJxJqxxvfKpu0mvufbiaoqsQpEwQ2grULdAYfcsQq4M6Pm3+TP7vweEfSgedUHfAiveq8P4au/6a/zH3/tV/muH/kO5ji/OZfdVbwZ49Pe65P4yx//paS9Yl6EdWmsuZCSUEsi5kAKgZoKLWci5WRqbYglkug0RUmVQqP6ymgcukHOqSdqWpFLpNaG0jBthlMSpBEyJQiiQIxQi+7m0LXr91urOK0YjGPynv2yB92NpmvLeO8ZJ086wTasdQzDxLqGTrU7zbbFlqlZYZPBOds7ad48TLHMOaJtv260djjniK32bvapoFFrpVmDMZ5WMsqNOGcZR0uMkVVFBEWtYMX1rnypp+dl0Uaj0RhtqBVoCasURlvSWlC2YAyMzlBzIWWFdZZ5VWz0xMe/9FP5uz/xrdwIDz1i6+WtOazR/KlX/Qn+2Ht+XK+oF6gBJJ+gO3TJa++qampN1FKopSBWU2qGpNBKsduM1BJYl0OXJZa+73nXUTZPuPc+ammMbiKm9eE558N+z+AHMLbPkbVGqop1mZmmDVkKpmqc9jz04BsZh7FvOyJc256TcwJrOMbIZrvj1uEmcxZ07B5nYV1Zw8q8HrDeMW5G6txNdZV3LGvEKU+OgVITtIy0xtlwhirdOsMZQwoFYzXH45EtW4bNQJwDy3wkV8GnkYrCe4uxnmWOlCFgjKG2gsKyHjvYAxqb3RnzcmTRmmu7hrcjRglKd8JdWCN241BW9xGGy8Jm49kf98RQaWj8OIBplNDwVmP9wDGuGOsoy9KlpOeWWgp+7HtnzCshVKxuzLLHe4NrjmGszMeM8pHSJvywwW7g7H7Fz3zTv+J9P/u9+aVf+6VHbrFexW+JOzNWvx0MArAZNuyGHY+7uJ8PfJdX8YoH3p8//IIXQ1DIHsgd9NYK5AQ5CDnDmhuldJIraMppbCXX7hksqpFCZB/23FouQTnQCuM8pRRCWB7uQkmr1NzlzLRuVi8NpJnT+IAl1USmUEqhoXshUisYTjLfNcKoYCksywGawTtLbt3fNMQ9ew3aeia77TYdqvYZ1Ji6kX2DphSlKkLU5MVytnO86O1fwAPP/Xq+5ju+nm/8oa/l1v4hjunwu77ed17nR3t37VGZqCkUL3vvd+eFL36gI/mhd2HuHPg1TDtLjkJcC6W2PkBZGta4bpipuymlFsW8X1EWcskkJZTSOp7f9QHKHFZq7vS0wTqqb9QYaVRqbif5VUO1BsYgrdN0RHV4SA4rSllyVpRUCTGxOz/DWsvxeERaxVtNkYqqGrOzlNrQ6D7bphqmWaxRKK05zgu1CdfOL04zNJXxbGKahp58eR62J3gYuW9Or8329PWBPkM30ylBwO0HF/bHhXVtOCw1ZyRlyI2cEwaFGxzHZe0zBxqyRKwYnHMM04ZxMozDgCSLMY5YKqO3aNsBJRp1kpJVqIZBQAZQd7qi7fT8Bu522BJ9pQbudk5Pxt2f+Wc+i1wy93zZNb75e7+Z28sVmvjRFk84fwKf+TF/njwrbs+NZYWYEiFncsy0nHvnKp/McW2fLbPOUWrCGo3VmhQD42RpJXesvgKtDa0ktAaUIsVCpZJU1+ujum9aKamv55jResJbTS1CRRCt8GZA+wGrIJfENFhqM8xhxhqHH1w3ctd9BrOJMMe1z6TU/jy8mzDWohQkyVBVv+eUyGG/J5TEsHFo5Yk5IkYjRrP1EzVfdsml6pui857Ndjx1SSqTH/thHMW2s8WpDUIRcogsMeNMT0itWLTWtFrJtbKddoDC2U66pBlUa122WQMSGtopNtmisuMv/NE/R/ORv/EPvoEiV53sP+h44n1P4IFnv1u/L2Y4NYpB92Qt5kqOibAUYi7kFIk54pVlmWe8VWhtGIyhtoB4j9JbBMPZZotSoLQwes/gPK10CwilhHk50DQY55CYQAqjN6RY2YwD0/h4lEB++KDY0NoTm3Rpfq3M857cOskU62BtlNw9mpZwRDXbcfZaY8zIMs8YpVmXhZYKsRxxk+e4HJDSOa2iG7vNjlwTLVtME6bRo41nXWa0Nn0e1Mjp+gRru9XNOGw67VmDUZ6wrpydX7AZdydYV+Nyf8m0GSinhNc6xzLPRLNyvtmRaiWmeup0OabNlhwyeqPZ7w+sYSGGwvbsnHWe8aNjM3nQjfl4pBZh3Jh+nxgMm2HDQ/NDrCmijOu/CxWrNigRalWQMrUW7n/c9b4lao039HnuBa4/8Zzvfv1385q/9Bp+8v/8yUd20V7Fw96Vv1Pcu7uPj33PV/PiZ72EezeP593e/oVs3YZyA8ra7+UIJzUIXSJbIZbMPC/EUkitQel7TUyRy/2eUPqMZUyRORw4rsc+PqBtJ6vazhaYQ0TpRouRGDI19TPpdjdSM0BPslKshBBpqquujHeYzYDRuiuxpPsNOxlA7nQNGyn3br5RiqY0WSm23tFKJakFo2EcBmiVGFcEC/NKE1iDYpkmlmXD8aC4uKb45A/+VJ71lLfjZ3/xX/F9/+K7+G+3fp1D+L+XsD0aJcGPykRtN51x39n9/Ys7sr7IXRhFAo2QipBS4DgHcmkMvg/7zrdu4nwn3IjqeF7vR6QVcljQRlHpi9UYQwgRrRRKNbSCGhfWZaVowXtHbYKqFac1KS0Mmx2pBta4Yo2hkXtluiRompgCQ5kYhgF90vfn3LHfaU0opUipS7hqzUzbLZGCbRqnGlZphmFCxKA1p0evFCjP3WSm0Lto0BOf4fT1HVnhKbltAWrpw9ThENkfA95YvFaEGCkpU1NG5wJak1tm8J5GO+niLVorxsFgjWU+LNhpQBuN033Iu9aCUap3EUtF2snRvr3Jgzf5mE+fb7gr01y5O7u24eFkzRnHZ3/anydL5qu/46//Pq+2q3hzx6d/0Kdx7s6ZD8K8ZmIUahGUdaBSlxXmdqroGZT15CYsaSWVXpEYTDeLd84hGgbve1fLGpB+m1tjokjtPoS6MS8HnDeENaGURmNIueFcxVqo0ilsRSolJTbDBmcAMt55msASNp2MKo2cG+M0diBAScTYJV6D7xAdfTK3R1QHJLSFaALqRKD11mP9QBOY00qprTfFlWW7OeuUVQClaK37EBqt8dbgjEHVyjT4UzUSllwfhghpJSxhZRoHzMm4u+TSaZgiKC2nJO3km1gbOcaT5MxScyNlIUXF2bULPvClH8QP/NQP8is3f+Vh0+OrePPH/dev8/rP/Qo+6IWv6gW2OwXi1tUksQjLnEmpH3gOaz6ZPguhRpawUHJhGgy5ZqAj5Jd5pZWKcx7lLRrT7R1Oh62cI3Ocub0e2W4mYs2YwVJaZOvPuXZ+nWU+4J1jDTNZKsNpnuz2/pJx6l5qyzIzjCNaG3RtlBpYW0PVU8FTVN+HS6YJ7I9HpBXQDqTPvYRUCLF7nSrTD4A5CrEUtsN46ggkco54O1LRDF6TSqWFSKvtJIXuxFfRglEWqmCcJtZIXCNWO/y0oSFsVGF0E84b0rKiGrQiaAXLGoip45P9aHGDwmjBTH2+1dmRJgql0sn3ShHXhEiXnA7jgHOeHDO1FLa7DSEG2om0p0yBmhlGDxJw2lJbYes3GDOQYsNPE97bh/lc5QjGwzPufQZ/7L3/2FWi9gjGHYnj7zaHdjFc5xPf79P4tA/7RO47u598hBphOXRJYwiNUgSjNUYpSm4c1wWtIKXMcV5IuVAVxBwx2iGtssSZy2VBq4bQWONCyKkDqGyXWbVaOsmUSsq1y/Vr6zOgZoAIVgmiW7esqalr0UShrIBUaooY65Ai/Z4iQksWUX0kqOaGcxPD4MCYkzxbiDmhi0FiI66R7XYDqkOyGtDCSsgBZ7ulU82VsIyU5LnYKd73nd+Plz/vPXmPB17Gj/7cj/GPfvqH+Le//guk8rvPT995Lx5twJFHXaKmUDz3uc/lY/74q+92X4S7807SoW/rLJ3GdtLKOmepVDCW0hqmNazruF8RiHPoOlmB5biccNp02YcdqDmhnWN0jmVJXZveTmbOSnBdzUdtlTDfwmgHWjiEI5p+c/Zu7FUVKaTcW8fa9gOm1pYYjtRaSTGcZlwK67qANpRW2Ww2ZCJGWS6s5piPKDOyaY7luOKNxrsNkhT6HnoyJtyVEkbuQkQqyGWv0KzHwnxcCWthNAPBdTKesqb7P+UVpTSpFEzuBKAmitIKXnucUZ1Ap3XvHhjNMFiqCMo2MJpaGuY0p1ObxhuDdb3rod40yT4Zc8vJ603dMepu/NaOG5x2pP7p2dkZr3jpK/jOH/xO3nD5m2/mVXgVv1/xzHvfllc8/xXUOrBkIdZKKBWpGrTqXV0FRbq/hEITcybmxGE+oKRhrSGsM61JlzFZizEGoc+5aCUMg2eNK41CyBHresc4l0xOicFvaLbPkuUc0Wag5A7NaS2zrjPboUslJz+gTJ8Ds1bj7IbSSr/2T100Eek+bbG3PIwBVS3WDcTcC0deNOZsQonFScN6C7rPiXrrkFp6gkTpssaUGMyI0Qo5GY16d0rSWsEYwWlDbVCl/0zNBanC5D1KWn9tbL/ta2NAQU4L2jlUlQ5YUsJxPtLqho01vfMWK9FZiocSFO/ytHfhlS95P/7mD/+t7h91FX8gcb4944Ne8qquiIjcpRy3vu+V0qECpZ0+ltJR79oj0jDWAbaThwGrFV5rttOEsQYlEFLoe16rpBBZworRulftS2GLQivQ1oAYRmdBEuMwsj/eZI2JcdrgrKPk1EmpueDGHRBZlsTubIPGcvtW98RM60Jrwm4D1jtEGqVVpFZKEwZvKFU6uj6l/rupxGackJOhfd7PqJ2wGUek9P07xUguwjAYdK8qEktjzRGrPKpVRt3JsDSFcg5rdC+sxpUQV6azC6Zpx9aNGK+RVBEUfuPZTVtU6xvt4bgSraFJI8VElYi3nnEcqbXiBktugnMGWzXLckThaKnBpHoRCsXxsFLGTI4LqG42bKwnHAPDOKBdv35TLox2YDOOlAZO9XuHnDqtHIALeOX7vJIP/oUP5vt/9Pv/YBfrVfyuMkeA3XDGC57+Ql72vPfi0z74E7lw1wm3IAXIsSu7ShbimmmiqCJ4Y5BaSKXvMSmelCengsoSV6TOaGNYSmQNS/cUdZYiBUXD3NkfRViPB5YUQHe5fsoN1aRj9HPoMCvAO9/XnaLPYANVNLUVYgo462naoqWiFEjLpFJZ5yO1VFYVmDYT2+2uw3iWI6I6a8IbQzWWmiMN052ixqH7BStHWBIix35Da8JgNC0a/FGx3Q287Dkv412f9c585Ht8BF/yd/4iP/izP9CLjr/He1Jrb8I8WpK1R12iBrDbnfHEJz4BbnC3A6Pufq6BsEaidDqjcRbtLHOcsVmDN2zOdqRcCXXFWMNhXRi3jnXp3aNChROEoEohxG4gq9HU3EuZ1rrezDsR6UKLKKWYJo8ShbIKpKGVI5eC5EhVCjGKFBO3JRPDjLWeM86ZpqkfUrU6Yb8LylvmlFFK8FKRCn4YEODy5k3G++8npL6BGtc3m3Hr2AR/Vz7YC6f93b6T5BRoSVhXiLkRY0XTvdPWdWU+zIyDxzuHsh4h47QjxZWcK9VEdtupH+xaJ3Mppai1MDnL6C1rbl13XHt3pKZKUX1DEt09PmLoiZwBpFbcpNCrhhFqAl1P4wGOroO+o7Q6wUeU5uHf82UvfHc+9+M/ly/9pi/h5vHKQ+bREH/i/f8kz3zCO3DrRmZJEGLlsKxo0ajSKCLEFGmpdu8wqeQSWdeZkjKUjN12GIbUhp0ctTiqh1xWWkkMbqSWPmdlo0HROM5Hrl+/l5Qi67qi7YDF4oaRHAPHw5FSE0o03us+hznfZhwcu+0WLbpbE9ZG0Y1hGHBm5KHbN0gVlnlBSTevhe7nqAZQdBnTUBTOmj5H6xzR2F6gcaC0ZhwnWl2JpVBzYWkRRDGMBu893hu0bWh94svpDmeopXSCnDcM3jCHjDWGHAqjn3CDw2h1ui30G+Y0Tqfiy6nLgHA8gX98GchFEDJmNexGx1BhO+x4j7d7D374/B/yn27/J7jqqr3Z457zM37wb/yDu4Tek1pCFigZUhRUFYyAqpWYF5YwgxKmredyXok1MmhHTpWSE+N227uoIqjTWzj6EW8MzlpmU/FG4fyAtrZ3zOJCWhecGXCjQ2l9KjY2lNZM2w0W072SasE6T2uNebmN85bBeA6XR5YlkFsl5bWTIlEkbziGgHagqN3f1Ggu7ruHhx58I+txoSnQbsRhyKmiG6ciTSYlkBoZvKPlXsHd7CZyzgzjObklxnGDcw4QTBVKyWAdKa2E9YhScP3iGtMwEUOgxsC1++6j1EwOiRAD1o2opqilcZwvGZzHGMGY09iC7XTM+bBSbj/I9fPrSBH8uMVbRbMKVx2Hw8xGn3Gc9yDdE0o1YT5GjDKUVtjutsxLZLsZQMPGTbTaCDFgvCK1DeNgwHZFjTQwjj7m4OEJT34CT7r3SY/Ekn2rjTclEP5OsfE7Pu69Pp7P/MhP5/7hfjwj+SCsC4TYKCmTS6WVQm80605GzAUpdw69Qm5CBtYUSSURYqKVitKaJOXUtVUYJVjjqKViTtd5a5U1RWLMbHYTrWTICaM02grLcU+SwjQMKL1lGjTDOJBMJZYI0pDalRgxRxrxYesoaRXRlVoLIiDUU9d5xnuPlEoJhXE7MVy/jrMOaYqYAsp66poZJ4tRCneSHMeU2AwDISbEWFKCkj05K3Zn5zzvKWe8/tO/huNXrvzov/2R/+579GhK1h51idrF2TX+8Lu8vMs+EndhInc6LYneVVOVw/5ArInD/sg8B7KqGN+wgyFLJksmltSlB80Ql7WzSO/Q4lQ3yU1rRYshrKWXq7Rj2c8MO9OpcVZxeVholZPUSCimkOfKNAwcjiuSKmjBbTuG+9bxNgDOGM6t5jgfGK3jcPsSOd+xhgBKOL+4xjQMzPuFEBOqagZVSKGwnXYY1VH8Thm0KEpc0aO7m5Ddwe+bjnF9GNlfQCfI+5WUM6VktDGk1ucbcuotck7ObcuSMF2sjHMO7/qw8/k9O6QJ0zR2r7qcsYNFGRicpgmELN1PyoO0XiEtrZPJSoxYP1FSYRgVUmFOmXpsDLuBuvRDhPMKo0+N06zQAYylJ3Cqv+/eel7zcZ/Ej/2r/4Pv/7EfuJJkvYXHMx//LN75qQ+wBsuaEyX1KnGJFVqhScMBLZ1gCNQ+SyINdaouandqv4oQcmX0niUvvYtmdzg7Aa1X7AW2203v6taF4+VMEgFrCTFATBjvaVWxpIDU3o2qOIxoRHcJGKI4O9t2j6lxYt7fAiz4giBYZdlst6dun+qyppJoYlHAYEa0Nd3zrWgSDWsserOl1MrheElTBqUd1nZpogVEG1ortNqBR8lYit+hSyNKwWqoOWG9I8VevJEaoPaKakwz8XLP2bWLLm12rnumaY3SljUHWi00rbDGnqiRjVobWnfPpphhCILTig946Qfxv/7c9/Cf/9mvUtrvfCC5iv/xUMDTn/QUfuAbfpgn7p70MNkYAVkhRogL5CxohCiFW4eZUg2l9Kr1GiMpl+5/FuPD//AaA7kVLjZnHMPCtJl6wa0Ucko4pcjeMOcVrTwpNZy2ND8xzwtWEhiFMw4UWG0orft+hpzYHxeccxjrWGOj5BVtNJDJrfsn2c2WUhqD011tMRZizBwPC84YGsKv/cqvknNFW4sSjeiewI3DxLI/ItKYdrsO9FkiOfd58lJ6Zc8aT44LohTeDyjVaFKpLXN2dkGrla0f+5rPhcFPTNPEODrmeSEfIkucUaZ7M262G0KMGNMTI2sGpslgje/Km3EDbQVnGbwnpoj2Ey0lUu7E1cv9AeMGkhRyDPiTJBTpM3QO4WwcGe2IGQbmsDK6LVka07Ah1cIcIno5MG6vUXXvquoBGEFtTgvoTtf1Kv5A43dL0rbDGR/10o/hsz78M3nS9kmse8VchLjCGjIxdAlwSpGUY5flG4/G0FqmxERVitI6cXgOR5YUaa0Rc4fOaWm0FEAXEEfJtY/WlMCcAmPKGGMoqVBDINSCOkkrx81ArZUoFUcfV9FeMYye43ykpowfuu2NqQ2kew/nGFEopu2G1DJUOfmvgaKQgyC1YIxGiyKGiJ88Kcf+Z+o0310i1miapN6JdrteWLkjwy4ZI93LsDahyUDK4I5w78Xj+IY//2181lf/af7xL/zISd79e79Hj4Zk7X8oUVNK/Sq9wV6BIiIvVErdA3wn8DbArwKvFpHfN8LDPRf38me/6M/AnrtJSOHuTNMANQlWwzB63vjfbpBSZjMN3Lzcs/7/2fv3aNuy/K4P+/zma6219z7n3Hurqh/qltTogSRANEigFpJAAj1BKOIlKXIAGWQDwsGKkIMECPRwhiDIoDxgGOTYDmMwsI0dMGCMgwGTIEESbAZgDVAIDsYPvbqr6p6z915rvmf++K17S2a0WoJ+VLXSs8YdVbfGvVXnnr3mmvP3+32/n69cybVx3TacHWA6qWwYJ5TYKLsZs7dGWhP+sOiIueiULWYNyS6tYXojr4WSE8E5+iQaTt0GgmaF5dYYXQjLBAxq1pDAWp9RdgZrzMgo+OVIyglZB8HPjC6sa2XuGTd5ci7MxisGv2bCfKKXilkcgtEgwkNg9KEEsGdy0Kom874NqAOD0U6kE9UVl0EXQ86Z6+WKE83voA0aDWOFURttl045YzFWPTfX9cLjR49ZlpnWOz7oWD01NGjcORio38ZaHrYLgoE+WLxjMpayX8xzhF7gkhMpV25FN2bb82OsFYzzuFnN4tMsWCvItj8cC0gTvuxdX8r3//3/mn/87n/ygXrsXvf1euy1D+ZyxvEF7/xC3vXJn8P5MthSoeTBGAbrDS0WHLqXvPX0NjADMOrT8k5UUjIEhsH4wcF4StesQQ3mHfRd/5tzJpbMMJbWBy5YSjOMFkm9Y2vBGkdcL4xq1SMnwjCNTseKxc8LdOEaXwtxv17uabsE8hlyz3tDGF4n7l07iaUKQmEJ2h10RrA2MKQxRD1rpWr3MaWG+H0abyy1Z4brHBZtnMQcObgj3TjWlPRdYB3NGARLXJX+NURDrHvN9GGIMdFaZN4WwlHlZVNwWHGkmui104ZOGIyfKbWqhK5XxpA9a63gxeMNzF74NT/nK/mH/+i/4e/84N/dw3w/vNcbbZ+JCD/z4z+ZP/It/yYf8/hjn5914wo9DnqBVIRa1ac8WiduSTH7KOTpfn2gnBuxNA5zwDvHFi/AoLZK64nDNHNajkpyEwjWqHwqJkKYOMdCzhs4PQtKr6jQ2JNSpVAxVrhsGopd2xXvPNM8qfesC8YNnYjR6U3DM2uFfFk53d3sxGY9D68PFw7HE3T1M/juaE2tD8N0tu2K9Y6SE8vxhF8OtFrxPfBwvadZQRYNlr5uCZ7bIBTodTwuiIM8DKfDrHlQ68YwnSdPnjDqwAqcLyojWw6BR0/uiNuVeTmCGGR0xmgcH6tf1bpAr5XWCg+Xp9web5hnx9h9Med11Qw6YGDwQTPo4nVjDhOmC+KgMXh0c+RmXrBGSEUp0C8+eqJApJK4Pw8OhxlEmPyBkhuHG0duyhKzM1rQe2CCT/qET+LRzSOenp9+KB7bn3C90fbZB3I9k9a9t3WcDvzqd/1qvunXfCNvO76Ny8sQ4yDVQUqdnAu1NHrvO9BJ6KWBa9SWKPu9cYtntrRxuWykVhFvFbbVClYMYocSH3dKcMobpazKWUCoW2QtlfV6RX0wFRc8RjSepdTOMh+YgnA4HlRZZTRbrbqK74L1nmuOGITJeRY7a0bbUDkkvYGxiDFMfkFk0Gohb5FlPrAcF70r5kztDSN2z9r1ej6OgUHopWOc0AXGEMARW6FX4WiCxo9Ug3XQu+GFFx7x+37r/45v/Xd+J//53/6LxLK918/i2fpwKNY+EBO1XzzG+LGc5m8G/soY4/eLyDfvP/+mD8D/57X1jGi48do0bdfpjwKlNIYYjPd0Y/BTQMQg3tIGlKT5LMYE2mj0UogpgxHq6DiBnDKdQakd5z2SE6VkaouavN5VDjlUa4F4T8tFc5pkUFoDGfQqiFVtfO9DDdoiiG0457F4+mgYDLk37BzwLmAQSqu03dhpgyU4PTCCU4hIjBGYaa3QxSEy0XNlBBhpIHV/8CIgg/RQEaMF02XbyRxGyClxjhslJeKWdHQ9OiUX/KR41skFrATNpsAz2VnN4qYrGnxxlNZVDuaFSNc/r1WJY4kZ8X5/iWm6PbUynKe3Bga2mOk0Ss+sVzVnWwMxZaZpYmCZAvgmIJW0CcfscUEwY8f8B/jqr/y1zI8WfsO3fC3tp1an/0O/1z5I6+0vvJ1f9a5fRU6D87WScmPbEq0MeulKVrMWEKxVf0kbXS9qNPrQPCKGXijpjcMyId0/p0td1xVD53CYKWi8Rs5qfFwOt/gxKJeMdJ30xlS0UMmd+ThBK6RcIVv84hDrKS2xxciGME2Z8/XKGEL0CT8LViYu1wsWuLlxlNopZeiB2zX7rOROJXF3uiXXTq9DM25SRnAYb8m541xXnb7TzMVt25Ch17w+62Vga5tmElLx4mB0zusZQRsk3u2Tjm6obWKIxxunVMwOtTSGjfReEFGo0EAopeC9kOKKs0OdA97RDWybKGhhgi9+15cwHSf+hT/41ZzzT5l4jDfMPnPW8NW/7Kv5tE/8dH2Pn2GcoW6D9aEBhtph9E4qmbhtlJIpJbNuhZQj18sKGIzxnC8bs+vEbd0LqsppmUm1Yoy+K3PKbGOwHBa2vIHxtNaJOWrjjoExDjcHnZ71QW6VtpXdg62FhQDWW0zQnL+SK844trzRRgczyL3ivWU7X7CTg6ZgHT97Wi+IGDCWYRvL4UTrOumbg6LF64j0acbJhLOGmFfs7rM0NhCCx/ROig3nHL0OlmnGesGZiXkJIHug9+0RI4bj4UgtlRozXgzWWa7XlUFjnhesNfQ+6L1hxsAMneobA3by5Lxyc3fDen3QoHvvwRiW40x+uiLBY7HUpqHZYlVa7azFWKsNV+92W7ZQcuH06JYweUrtzwuBXCO1ZuxTYfIvEld00mhgvCq4ALIDt37TV/0mrFh+1x/+Xax7XtYbYL1h9tkHar0vsuMxnPiqz/pK/rVf9b/m7Y/fwfUe1hXW2EmxqLcx697V5vg+DWoFGZ3aO2lbcT5gBntszUZOjZ5Ugj8Y5G4g/5iMtqEXZG8dvVVkDErdFHZlGi54nNVSoLXGes4qZxZDbZ3tvOHvDHjHMlukO3qBlhOtbRgjuCEYozagwQ6lGmjIW+tUk3HWUVulrw0Zg7u7W6Z51vdF73QZ1AKTn6B1ylBZZaZjgiWYwJkrJRfmOeCeRWhUS6uVmgejOwTP2558NL/r134bznr+4t/6s8SfIPjzjV6sfTCkj18OfN7+z38c+Gt8gDabc45PeuHjVd4YUflj4n8CmihxkMrgmgrNCGH2iLF7SK7q3o0IHdm19Z3WMut1JUxaBPWql8JcM4cp4I36SNasqe4MdfznkgjeQQNrBwZHHCodtBZGrRjRCZcNFucMzhlab8/NnH4ylFTpwHldWeYjxuuhm2qhxMbpTghy0Be5aA6ciJBrxGShpsTBW/16zIQY9W6N8wADMgmjahfPWtkzljpxrVinfrmeC9f7s2KSxdA7OKvf1FoqvVWmZcY5y+EwYZ3DOc/Ncf//OcHvfjTjd4WoGNpAx9puz9goepibofjzrUSWeSG2rhk2I9N65XyN5AqHw8R13eilM8xETQ2XEtYbhoWSKqdlYm4Wu4iCU47w5V/2K/mkP/wH+fs/+F9/IB69N+r6oO21D+ayYvmFn/DZ/LxP/AxeeVq5XFdiqqwpYqqhrOoF8ccJbxxiBqM3FeFaRyuZuGrotew0quAVCNAYmDYwzpKLFnul6MHZxtDg3VIY0dJaRZS4QCqJVgfGBHrPmkFmLC6o6WNgyGWQSlcjd61YPxGmCYCtJMrQSI0Uk8pujWDdhIhlChMtXcm5YoyhFKW+jT3jrPeB84acK9LVwV1HIYgWob01xHqGWJwxGn5bVWttMBwPB3LNGIYGBbcN52YOYYahOHbjDAyDM04vwAwtdo1lIKRSiKnQh0WCYTRoueGcsIRAjhlvhNYMtXhKAZvgc9/5eXzWx382f/kf/FXaT02N1euyz0SEz/zZ7+KLP/OXqh/tCuMC+QJxbVwuEYNnGMuolfN65v7hKSlWWh+Umrk/v8LTpw+cTnf4EKBV8kjEqtmCPgSm44lhO6U2TscjyKCUzv35qlTjAa1WHi4PxLwRZsPsDuoFj4ll9goiEeF6fsDtROCYNyY5EPsGzZBipveGM4bLlp6TF+NVG3HpsnH76JYtRabJIqLU1Y4wT0p7dEE7+7Xt8IOcNLLDWo5+IccVmkFmQx9Cx3KYFg6HRUOoate4GwzeBoRGL43j8TEG4TAfVMWBBzdrcWmBELheLphuMFJxk1cglnhaVTiYcwPj1AtbslKeexv0piTV3ArG6iQ718q2XvHeEfxEN9B6R7phnidKLNhHqpjxc2BQ6bVwXa/0AYebA7UatVscOg8PZypHpkMgd7ARnIXbO7SxLfC1v+ZrefLCE77md37NG9UW8GF5nv3Y9eORHU/TLb/2F/86fvuv/F/xUTdvJ55hi501N3IdlFzpvTEYGDHUkonXDWvZnzPotZFaJrasBG0jOGMoUnWK5gzOWVKqpFwxXTR30ENP4zlgYzSlGPeqZNaB4dmXnVqk56pqEtTvig+smxLMpWqO6VDjGaZp2Lx1exFWVMFiOrq5h+aXWnQP9FaVXonBCDhUxeG9pbfOkKHE1p4oDMQaSlOs/ulwYN0sy3TgdLrh9nCg9AJekKH5byUrLbZL4BNe/ER+x1f/Hkrv/Gd/6z/W/Mif4LP7qVqoDeAvicgA/tgY43uAN48xfghgjPFDIvKm9/YbReQ3Ab9p/+ef+At1js/66HfxB//3f0inaFe0SHsWiXCGnjVDppmBOMvleqW1wegQc8V4RykZF6BFlYiUVNm2SumNdLmyTBOlVNKalThIIyaV/gQ7qUa2N/XJWM0+s9ZhdSKLbYPcBy54WsrMx6D5a5PmigVneHp5lYMPbFummLpj7oXlcKSOznUPvfRhUYhCG+RcOR0PdBH1xnjLZbtghuWyXnFmMC8OJ525eGyyjNFpQwhNZSPG6OZQHxBUOpdLYksbOSZq0+/Tzd2R0fXXDjrWGXIbhGA4nW7pQ2Wdx9sDp9NRkeV98GMoyoRZaB3W1GgDnHdI7bhuSaXSB1QRzICXX3kFe7hla5W4bsQc1SSbGykmUs1kCoaN0+OTUvoOC106PVpqbpzawnGo+VTOWpz+W//GH+Nf/oav5e//yD94vx7yN8j6kO21D/Y6zgd+77/weygJ1k3DOmNciangmkp4kUFOBT+rF1JhAYrErqVp82PSPLDWGufLdT88hNlPzMFTasT3iZYLhUitjdo1pDOWK9r4U3Sxsw5nhDYUgpCTToC9FXKuXNo983TUDrizjD28ag4n+qhqyi4RhsXSya2BCGMI0zSxTIHzdianxBImggkqfx7q5bHO4e1MKRvrthKWSVHjvVJbQUxXr4DVaVjrRSVlqJfWZUewhlQzW9mIW+F0ciwiKr8W9ZbmlEmlIMbohTV4nfxjKK2xlQJ2EAhsdSO4/Z1XG8V2Sgfb7Y4OB7upuur3/+Y/wDf/0d/FX/6Bv/ThXqy9YfbZz/yET+J7vuPf5u3T2+EBxjpIVyFvg1Z373Bcsdbx9HzPdo2UmNliRKwqJdb1qsVQiowBOW8skyW3jjWW2Qawllfu75ExOJyOhMmzbvfcv3rPcjqB6cS80nvDugk/TWr8j0mzAfeMThmdvGU6wnVbuWwrs78iRljmict62fef3gqt9/RSwCh4y/X9OtIHNTacH1jvuK4RhhDmCSOD1AqjNtwUwOwAnXHFHY6c3IkaKttlRYIAljwai7XapPUTFoP1CkuZw4zD4cQhogqQ3nUKNk0z3jl6TbrvesNZMNZps8OotNoIjFawQaf7l20juI4PXmVgKXFz+5gSI34SHu7vKUXjalKJzH5CjGhET8rP/TijDbyfWXYfbkmJvK5gwB4nTvMtvTtsV9tCfDlzqEfm05HgYXK7VGyfxMoCX/rzvvS1+J7Xd71h9tkHaj1Dv7+39dLxRX7DF/563nb3Nq4PSiVft0opit6vrTOoGodRG3GNWriMgcPQbN+jHQxjNPpQpdftzQ3WqbRvmE7uhcl3RAy9NOpQKEjMet7JEJyxSNfYGDEqKex9UEqmm46xRpvpoufrMB1qZztfkZ00KQLeOwxa0NFVrSW+4zBM5kAtidyUAtlKY/SO94HgPGI7uSUkqxpglhlnDNYrdGCriZorxluqMdCE0DxzMNSeKTWzrsByAAzWGmobGArXq9DE0Jrl49/8cXznb/4DlL7xf/1/vW/qae9d1W5voGfq2Xp/C7XPHmP84L6h/nMR+YGf7G/cN+b3AFhrf8LXxmRm/g9/4o/w9rd+9GtoYiV2w0V/XvugG8s0W9aslztjPE/PF1JpbOlKMIrnrwwul6fUPhg0gne8um5Y22it4CZLmFU2FLeVKQSVW5RMz0nN/SIM6WA1PyL4E6Y2vHF46xmT5jWEYDBWM9bKJtSYqcXQHRqSLeCmQB2F0iK1dJxMjNLpIiCagdH6LZNx9AaXLWJ9wHg1lWYGbkDdfQevnB92X5elDo8PE8PAljvXhzOXqIfP5XzlkiKlFMLsMGHQLJS44d1Er4XgLM4IfpqZfdBgbmupQydyxsgeDAouGEzQHKdtG6w5U0snTEYxs6WxpYKqQR05Vlww3L/6qubsbImtJkrVEb27WsQ68iic5gPXp2cOt4H1Gqkp4qYZmxt+PtLOjQVLCIKdhE/9lJ/F9/zh7+Hrfvtv4fv/+7//Ru0i/mTXh2yvfbCXt56Tv+Ph2tm2Rqv6kqylkLaGqYIM0W5x3xhNQTyjwZZXlbOKKEBku+6dedmzDgetbawxYnAYUa1+bXsGmRXEDO7vN25v5j0jquBsUI/MHl+Ra8KLxYpndNi67recrngX8AfPFhtt7hgR4tboo4IUDRM1bu/GC9iAEeH06Ih0zacKPqiJtKM+SyOUkTgcZ/y8F1/WY80ghCPrdtHv3S6d/rG1kIJCVrpzpFwZBOyk+PTaItYZcJ7ZT7zn5afatd0vcUZkb2SpT0CsUGthq4WtVG6PkHNlk42ozLd4AAEAAElEQVTJGHLyeNtJUXdTrcJxCB//po/jG/7F38Zf/9a/wpo+rAu1N8Q+ExFeuHuBt9++HV6BkSCdIeVBTBobc9kirUFPK+eHBwRL7p3LGvHLzNPLinEHTC+s28a6RR7d3JBKxTmVsXcjOikSS2obTx/OBO/oo9Op5Ja5XM5ctkRsGR+ODOPwZqbbTkxJ/W67l2w6TOpV7J2bwy0lRY7HRZunRr3KrVsm75E+EGNwwbHWghPLe+4fmMTvU/RBK4V8ydw8uWU5nrie76FqPmDKCRkN6z2zn7HOYPqe2+mDYrxLJuVC3wYvvvAmbu8ekUvidLplCQYnjmWauV5WLAPTOi+99JjRoTVhmTy9Z5VF3z6itsY8H3RvWlEP7BDmxTP5QGuDh2smLLcIQ1nrUjifH1Q0WhreL4yWaK0wz/oOWu8fWA6LZtM1eHz3WKFbZWVsAzdPWNu4uTkxTZ7DMlHWK0MsV4nUUjkdTqTSMbnhvWMr4OrAPIApmhnXonBcjlzWy/vzeH4g1htin32g1vvC8D9anvAVv+B/zsfcfawWaefOw7mw5oIRoyj7slJbxBBIMRO3xHKcsQipJVrMOBdY7PK8GOyjkaWCNNJWeListJE1NqM2GJ3WIiFYSjTUoTEdU1iwUyelqKAoZ3FiKVWhd8Z7rHGYoXmkxoLB6XlbV8X1h0ATpaoO0ela3NQW1AdUMsYZjFGacKNSS8NZi5stSOf88JRLt1gzuLrAzemGSQTrHYPGoNLywAan0VZVSGvFzJa0RYatSkG/CzoRdKLT/9apl43eJ1zwfOxb38zv/Jrfw1/923+JUvP7/BzfqBLI96tQG2P84P73HxWRPwN8BvAjIvLWvSPyVuBH398v8rSc+LKf/yW8sDxBsrxWqDW0WzSABcwquDBYcyeNhnGBYTdiScQUFcXdVsIy88rT6/NR6DQt1JHU+4XFjEDsGyUVpmXCOk9HaCXBGMzLjKdQd/kQCEMCTx8eCM6xLDPOG9xkMUMpcDVmymiULZKyau8dnpYK4tUTdl2v2BCQZ2SrMQiLB2uQNii5UI2hAmIas58RbzDBU2vjemmQ1XOwVc2XupkDrXRGL4h1pFZYU8X7iRL1EKutIraTkpIe4zUy6mAQGX0wGcfpZqGVSK6O0+FI8J7j8aiSrOBARCEpXWEufUDeCpfLld4MpU5cHu6ppaqZ1C9YUf39GiuXdNWR/+isWyVlDWY9TTMDYZkOXLYrbrLUp/m5/yHFM2aeMH7i5kaJZWE28CDIQXjnz/w5/Bvf8Qf55n/9m/m7//jvvc98jTfy+lDttQ/F+o2f/WvpPZBTY0uJlCK5DUYb5KRQC4fFGYvX4AZybXinJuNrTlhrKTHRWsVZr4AbOkMadTSCU3jPls6UVHe/lsPu0uOcE+eLsBxuWObAFjdyzbhh8N4wLQecCQoOqpVOI15WbcqMhnRHC0KKF3rr5Kp0Lm8EIxaM/jpnpp2uV5j9RO9597cklUG5oflKRSUhRgzWHkn5yhYfuDkeCU5pdLrGnosTaK1qF9AqxKi3QhvataQobav1QRsN1zSepNVKCBNjn/pf15VhHA/XM310rAvMsyPmokHjOM7bA31UQgh4X1mjkgKXMZOaYTjh0SZ87OkdfMEnfwl/4e/+J5pZ+WG43gj7zBjhF37aL+DP/5G/CPfoOZegJljPV2rtrLFx2Tbajse+lsIYlW1dMZMD0ZzQ3rU4Oswza4zklkl1pebC4XDUEFk0gubR7Qk/BawYLudNL2tYWrfEMthiUuWgFTqF7XLBGAXcHJdFfXG5YoFlPoLA40cn6rC8/Mq7iTmp1NJaYi04MYyujRNvLJen90gLmEXhCEYCpQ3sbKEpudUZw+FwIMwT65ZopWNM10D39SkvPH6B86v3vOXFRzAM17jy5idP6KNyOt1wOBxx0XK5f8pye+L++pTDm97Kizd3eG85nWZKqYgd2MVRaiNGsAJOMjbMhDDDGNgQGDvEoK2JdbunG8Pb3/424rWQ06bB1+LJOTNPhodzYoj6uo/HG2KMGGtwxhKMZhwOGdpgEc+gE8JEyRtumrB2cJoPQMcYuJaMrQE/z6wpcpom4rYhsiC2K+yldW4xHG+F5UXP3/yTf5NP/RWf+sF8hH/C9UbYZx+o9b7CrF+8eYmv+byv5eu+7Ldw8Hdc7wfr1omlkOKmqqdaFSJSGyKRPgbT5KglUYdQa2T0hjeFZZlo7Vk2YaKmsjc0MpOHXP2eDdwpIzE7bai0JXNdM3WnJgcHI/idANuft7C99+o5zRsuzMwIx8MN1EHNG84eSGNDhobGN4HW9YymGehd5YhAEIcRlSDnqrRTGRE3e3KvxG3FIMx+YY1XzucLt7dPWA4z6zXS6BxuTlhRv2ZtjZ42YopM1nFzPOINXFeLtdr4l2AZLSPDco0G92DxwfCOx5/Al77rV/Aff9+f+kl9nvDGmtaan/iXvPclIkcRuXn2z8AXAd8P/Dnga/Zf9jXAn31/vkBrLF/wrl/C7/mOb+fR4bH60nZwyI/NBxsai8KaKk/PV65rpPXKNUZ88Djv8cvM6PBwOVNrxBjL8XBU/KlRcMFoIKIAD9n/CnbGdCE4yxyMSv2MEIyweD14AIx0/KSyxNortTbYk94X7wkiGGsww2G6peSksqM95DrGTEyJUiqxVLozNCPUBt6rWZrRNQS4Cwal8DjvEGfBQCqVh5gQazSxoA6ss3uA9yCvmV5Vo2+cp2FpBUaztKayy9w6dtGsHU2LUpmMFZ0UjL1z1Funj45MgBeMU0NpbbBuiosW1Y+yrldccLTakD3BupaNmFYulwspJmJMmhHSlIy5rYnLGlm3yP31wmXb2NbE0+vKmhMP141rrrz8ypkf/eH3sJ0T6zlRHwbjMpQMusFnfdZn863f/G287U1ve38exddtfaj22odqfcNXfKNOqWKmV8W+16Rk1TY6uRViTcQaiaUQa6b2Ti5Vg9fjSk0Rg+W03HJ7vOF4mBEzVCpYGrU14pYpqe30U9W/IwoLORwP0F/zvrWi0qI+qg7V+qDUSusd4z21dpUUpszlfOHpw1PO53vO1zPX9UIqhW3LrCnTpDGM0QD40ch1Y4tXLtd74raypSspJ/WYYpj9xOlw4GY5cnc8MU2ThvE2gW5BBtM0c3fziHmyOO+ZD0eMsxijUtE61N9ZamHdVp1Q1sz5fOGVV1/h4eEpcdvwzmpTZ43krPLJkjPQKSnSaqEOSK1jg1NqWJXnvofLmrm/XompspVO7oNU4brCW27ezq/6vF/Bo8Oj1/cB++dcb5R9dlpm/sQf+g+QIs/91+JgnuAwT8hoGDopFV69f8oWM8bA5bJyWRNbLqwxcUlnLmnjnDbut40YI2supFQZhh1kMbCTx1ihjU6M+s5No9KspYshzAcGAsbQe+N6eeB8fkpthWm23N0dSTFS2sDJIG9Xao6cHx6IWybnQk4VIwZvZQ/Q9ZReyb1RW9+lX6qEsNaCWHKrxNJg6O9x4hjd7CS8wew8xsLpeMPNzSNeeuktWAPOa1bnfPA8ujvQUuE03zxvDvZamb1HxHJYZpZ55tGjE9O8MPmF43HidJrpdBiD4AIhzJwOd7z45AmHw0Q4zKSUOM4TPWdqroxmmd1CSRs5XXEWnjx6keNywzwdyVknzZOfFIiHEJxnCgvTNLHGldYq1llSTFzSlcu60qVxOBzoozGwnNczW8pscaW2RMqRkvTsPN/fs64r22WjpsbDpSiQpBj6FShw9Ec+552/8IP5CL/P9UbZZx/I9d6mac54fvHP+nx+26/4Lbx0eIl0gZIg75mgrVVSzLSi1MXRKnsqJrVXrlsklUwbhdYbtRdGK3hjGaViWsNScaNxWDzHcMPpcGIOEzIGk5tUJdIHBqtuZhFKSZhd+osYcqqkrSDD4qzHGKv3tsEeer9SykZ7Vs4Ny/lyIebKwO4B140wB1ywuletxXp9f4CWgsNo+269bpy3B0of1KENzTYazVpqL5zPq8YS0Gk503tVomVZlVJbIrlslJy5XiNPz69yXjUjsvVK7Z3rtrFeV84PmVdebkyy8Ou+5F/i8fHJP9dn+Xqv92ei9mbgz+xVpwP+5BjjPxORvwX8KRH5WuC/A77i/fkC75Y7fukX/DI++u0fo760Z1lgdf+RUJNEhHRt5FQVkVsbrWsgX0yJPgoG0fyUXPFG5VXeOkrOlJRQGnjBWCE49zxY2lrLFBxGPG0nwZlcqK1gJpUO9aQkKukwamfUCkGLHxmGYS3BOeZ54moy9+d7DAPnhHXN1GuijYZ3M2IMXQolN3IruHADOx2x1E7uGfd4QrxliAZfdlNZ/ExpjYfrxmHoh2IxtKBa4+0aFZk/LdShBEpnNWhwyFDACcBAu51WDd3eeJydMALWOk6nI855wuJ2QIH60p4R6oKIhuR2wVmDs2qOtVhGV2nmpSYND902WuP55bgOldNYb7XbK4UhQCmcjifIAr2RnWCNZVpmwFBq5nJ+QFhYV4M/TchTlFU8wed/4efz6f/ez+d//NH/8cNxqvYh2WsfivXTX/p4RrZsqZNz1YluNfQKKeol0htDp1OorFWLdkF9LClnas2AYfIqx2B0YtqeU9R0kqBSFAFc2F9zZmi38hAYMevFdNsUfmo6y+wx4vaQzkEsCizxYVZAQMm03fhN2d8fk6OOvod6arzEYOA92sARhfW00pHJMTnPQIg5YVoh2ICx/vn3JwTNvAkhUKvGACzLzOl0JMaNWishzATviFEovSJNoSKlNVKrqucPjrRm1NknpJIIRnBeD9ZOY41XzUZrVcESfqEOIa2RWDKH+UQ3HcSRW+P+fCbGzHycEe+pGIo4xE0qKQ3CZ3zcL+CzPuUX8Bf+9l+g/zhd5jfweuPss8TzfEg2/bt0qD3TB2zbxrpetFEmQs2D3qpKAoueTY5AEvV315oxRig5Yr0FNFepdyG48RyjH8sGXWi94oPlmhPXkql9MM8L8zzx9OV3Y4YitwfC0/t7LucL0zRh6CzLQm6VOgqvPjzFiCOWqPRk62ixUk3HDH1+a1LPjZkCzltKKkhD/3ujq8VgDEqOSndrHXew0DseiyDcHY6a9VeEJ48fM+/yrT5mJrfHdfQOOXOaF3xwlJo4HE4cjjMinWUJWCfUXDnc3CFiWfuVtWR6zdzdPWaLG857ai4Ea4jrGTMqx2WiNZh9oLTCzeFEKpFcE1vKpKqNFG2UFIL3LNNMDw0fPH3L1Koe3FQSy81CiRvWKZGvtYbzhi1n7LCYWmm9MC8H8hg6TTCDUhtjrQQ38E1o0qm504qlRjARXnz8Ev/qV3893/t3//oH/TH+cdYbZ5+9n+t9SR7f8uglvuCdn88Lhzez3sN1G5p5WBqt7+p96dSid9U2GnnLtAq5J8ZQ/7azz6TCWtBZ8QrMaNpwt3ZQh7DlhHOeoz9AbUQKA41fMiaw+GWnsap/1fige6YpSKuLwbkF54x60zqASqBFFHDV9lgOY7yql4JK8Uu2GCvYEhBjNOaj7/ye1qhFI5b0v2jo3dBqphmrUk3AGcilIdKZZ4+fnFLae8U5j5LxoA71xK15JaaVQz1xOurX8uyTaHUweuHKBtKZl4Wf8bZP5V/+0q/n3/lP/wjvubzvYW3vXRtGb5D1z12ojTH+v8A738u/fxn4/Pfni3q2TssNX/0lX80X/uIveg0gktFJWuQ14uMKo0EpQB30OhgI2zVBU7R0yZWSVdO6WE/zellqpULPtJjorWCnGRsMI6tOtaWGNRZnwdpACAFjM1YsMWeNAmBwOh6x1mhxESPWBHrJYHZCZMtYA7Od6Uvj4Sp4M0Efqse3IEbDs2WAdaLkyOapJSFLINdMyYMQNCy3mUEzjp4rtSY4Wmbr2K4bdDiejpjgab2pp00M1i6KNh+wpkLrCguxjj1Y0ULKSNdsqGVeWI5HljAxBfMcNzxPAZmhidA7GIuGaot+DkYtRBovUBu9Fp6+EtUrNDq5JC7bynaJzNNMG4MtF2Kr1NYYNeN3/HNOBec9pTZsHWpOjYpUFuPxk8F0jV3oB4U0lPMgdEHugQlw8C3f/Lv50R/8Qf7G//v/8YF4PD9k60Ox1z5U69t//XcwTyfOF52epZLJWS/0zwAF3XuMNVgZVDSDKWWVFpZUOB6P1DJwRjCm0kpFhiL7jRi8n8hZIRyMQesWPzulLDb1heXYdj2BVlh2pwGNIRqo6bUJUWqh1IiIpfZBSok2Or00rHhME7p0he8YQ6NjBzv8ZCjwZj/IpzngnWf2jjEsAy0GT85hjGWagkqqkD30U2A0DSH1jnWt9C6ag5ML9EHJG7AHytei7w4/41zQzLihU7tnURy9V7wLiDjWfKG0RmnqiRM3UWonRpXfyKJTubVVBEtrg0yFapDtynlLHNqEmR2SHTbBi3dv421veutrfr8Po/VG2Gdz8PxvvvH3cbTH11QjBo066mC7wRkPY+CMBWupRaFQuXVSSZwfXmWI5Xg8MHmHE09vE7UbWtuwViNhxjAMGqk2lQXv3fdWMiVtbGskM3hYN2R4jPP01qkdStr0eb9ULtczrTdKKUxhwvqZSlFVSSyI8QQbkD2Q2Yqjtgi9Mxm/Uyobfl6otdOLypkH6qcaY1BqZAqBEBw5F+5uj1g7sa4rzlpqTThneHL7iBw3DIKVwXGZePHRC2xbIhctkACVS4swuUn3nPccjyesEWQ2SO/cnk4s80J/z6s4EXrTzMLeK37/74tzBBeIqTA7w/V6pcugj8wwEKM2Sqw1MGZu7m6oOeOt08naUK9n74XgHId5YtCZjOVwc8QaR86Z4JXOt8Urj+7uGAy2uFLGxvH2jiGdDjsRNrE6/bykFk43nuAhZ7Ar2JOC116v9UbYZx/I9d5kjy/dvIV/7Vd/E7/8M3452wNsK8QEpaqneQyopSpAplZGH2wpajxKA0xl0GlN82tFwLRKNgYvQq+N2iqHedbYqJoRGt5MGGto3VFzZosa8eScx5sT0FjXjd464obKm8UxdqtfyhuH+YhzQu0Ri5BLo+XKEJUX+snh9+a/FVV8+EnfQ6ms9D4UZjKELo1iGq11gtEhxACMWPJI9AKRgrOGskXmm0mhWQbEGM3h7UKvBfGTTt5aYQyHa0UtDbVSaiGljAnzPqBR4ngqCZvgfB948uId/9Iv/c04LH/0L3w3r1xf/mf6TF/P9cHA83/A1id8zE/nd3/r7+bG3mihlvYfO6qYDKMAY1CSTnOeEWwYg7xF0nrFWUEqTMYyRJHTow+CdXgj4D3RBIw0lmVGjNBKp+TM4agHZkt1787PzDcHnpZXMZMjD9VhLrcnaimMAGGeaHWQktuRn4M+VKooAiKD2QXMYULsYHJQY2YKhrRuLMdJDf/GsQTH9hAxJ4MZnW1EfLilSiNuCYCAI9fCyZ7oVjdBFxBnwAitG5yfYAh9tD1HxZBTxgpM84zeCIaajHtnDI8Y4TAvYAbWQaqZ43Kk1MG0iE7YPNQKTtSfdt0GW470KuSsnZrzKw/kHIkp4Ywgo5NiJKVEl0FKVWVWAtZZtlIodWP2CylHcit4BlOdKM5C7jv+OdFM49gWFj9Rc6alxNhmegDCgItooRbgkz7pp/Pv/vE/zid/5id/uINFPmzXJ77lp1GrISXIqdM7tJZIpejzflye07NKVZqitMb1eia4wGFZmKcbpttA2a70Hml9cFoOGO3LaC7fEHJ+RnHq1JhwHkY3tJa0oyBG85pqRayhlQ6jU2vdc7S1wGm9gxH9dx5GFWrpDFfIopQqYyxiVCqtACBD653UN5x4lsUTpplpCoxamZzTnLfJqN9SQPZLm/WVkxyhG1LbiHFFhmHxE3Y3X+eaVaJN3XOVNHZDM64Mc5jVa1CFtt/K2sjQPbGvzJN6+K7XK9Y63HQgxpXBsynlYI16GReEeToQa4TcOa9QaAiBLsKcMiE4YoUpw89682fwpuUv8kPX/+H1e9A+TJezjk/76Z+Ot17PvN3+gdXml9knQ8Z5xk7x3dKVYQzbNWnOoAsEF5icepqcBSszsXf84THn7YwTh5WBtSqBvD+/gnSwdFppPJyvNOvU/7XbAVrWjL0c437mZiUQ2wVG0Rw2PzABbJvw9kAxK0hn8jNbTgxp5N7oY+AxeD+DqZimICDbBTsvWOexewAvdmDkgB0DN3ucM4TJkrYLp9NEXAu9G26PL2Inz+PDgW1bCd7y1hfewunmSE6RMQbrunF/f0YCWDHc3JwovTMNAa9TPD3SFatvxfLSCy/xIz/6I9RemSeHsQaxgrEzU5jZzmd6hy1FlnkitYy3E1vLnC9nUm3M8xHrJ4x45lmJjmtauT5cMM7j/IK3dvfSemrLHA8n5nDih370R9UTak6EaVLFzQA7HbmmSL2s+NR5dHtDG7CEA+yo9EahFY3aCGp3B4Ff8gW/iG/4b76B7/7j3/26Pu8f7uu9TdNevH3Cd/y6b+erPvcrkevMedV8sFEbtRVSqcR15bJdaWNQUiG2TO+FWhSwY5uh9oLdo5ZySngEpr1oQyW503TAWm0uyiHgTQA7cM0jm4J6hrXQB4fDgVxWtlXtQGMYnLUc5onchFwy7BNqIwP7LDKiCluMGLFY18B0zdSVTjOo1acW1ryRrhnjnUqrZTyXbPbR2UrCj47zYfedokCt0enDMFonlchxmekdSirMzun5PYSe0w4m6YhtbEUIPhBLZOoTuQ/GuinBOFYw4INadi624AO88MItX/GLv4Lv+4H/gv/b3/sr7/OzfQYWeSOsN2yhdnu640t+/hdzM9+o1+gZNKTsPzJQoVwHuQyuawIc9+cH3vP0nj4EH6A+NNqaOQTHdr0yUtEg3d4ZxlJ64XpJ9JYYKH0NYDkuAEhpHE4nOAi5NkwXrtdVUfdGn7NYEg6DmSbyGpnmme2ycZqPiksNjtQywThyaqyXpFQ3GZQBNTf6VtkuQ7HKNWso594JP9weSLVT9pwkOwTTUGpPrRAWgnHcx42baeL2eIMYwyVGcEKYlDrnTSCeV9Zrwliz48wHho5Yp+RHp4+EoBrr4BxDOlupTLPKncwUyEa///MRtgvUCH6CnrVz8urDKzQU1wydEAIxJVrSSUCKHZpK2lIpLF7wRihJL55lOGpedfqR1OdgnWWMhVGKenN643K54sXSWyHMC9IsaWs8uoORQW7062QDVnjp7iW++Od+EX/57/4Vav+wptN92C1vPSV26mEQSya3Tusa7J5SRIbBY/SgEuGan+W1CNarz/R4PNBbo5ek2WBMdCKI4XS44ZISNa06EQpmp9GhhVMzCivp+jxO86yBscFQU9+lkqJxG8aSqdQOIOpZ9dpRrKPSKyo7KoVeK36a6WanT+VGK5ov5YzBB8M8+11O0oFGbpphdXdzx81yopVMR+/ldzePeGZj3uLEFgvT5DEYsmTWLSlZzximsLDFSMfoRXeXkQy0K5hK08vZ3phIbdPC0A62dFXPkA3EokHDrRUt+IKj904qheO0aC4jA7FeGzEMjgdLaZnrdSUEjw+epQhf/cVfyX/4t//P/PDf+x8+0g75Z1iT9/yh3/Hd/Oyf9k4FZnWe54WOgnqB10DpGWkNL4NhLBmgJaxAyplHhxu8e61JWFujtcGyHGmlcne65XJ5UKt3bbrfjKHURMkJg3A6HcAEmun4mnnllXtSLdzePOF0cyLHSK6VabcDnA5HaotcriumB4KfWaYT1hoe1gtbVgx9aongDdI907KQt4gbBiuzZrlR9jDfQjeG4R2jgAswm4BYYZmPzM5jZ49zDpkT3numICyuM1nLdHvk5nTLMnnq5aLUY2CeZk5vPWLFYOwMHg6HAyklaqs8XM7cTIE2usq7nKfmyDQFDu7Aum3EkpmmGWOM+tARem8cloBgOJiFQmPbEqUVvPG0nDFO95QNgdHUE3Q83SJjEOOKP91ynGelaErn5R/5Ye5unzDNgTVFSr2nVlXB5Nbxk4J/ao88PtwhaN6hc4JfDphgcAQYDTeMXvbUD8HiF25vbl+fB/2nyHpvEBERw8e9+PF82Wd+KX6buL8M4tapuVFqI8XMul64pk1D4nNj3dZdku5Biv663mm5YKgsxwOOBl6zylKzOnxASOWKkc7N6YbWNaamV+UeYDumG+xwpBJJJpFTQmZ1wsnoWOuopuO6ZhSOAX0UcqlMU8AYjwlVPazd0nuhlUaSKyKG2S7a2AS2VfH+PSZsMCpzFii5ISYokXmoooriwQ2kC713nBPcZFRlEjN4JR5vranPTTTrrQ0Y3qtlpnee3D2hOUc7PxBrx/sJbyeVhBsAy7p/TtYdCd7x+ObNfOHP/lL+wX/7/fzow4/8hJ/vGwEq8oYs1JzzfN2v/Dp+17d/s1KvInrZHvvfs8pAxgrnh8TDtuKcI9eNnDKj5p1OZWhNTZs1eWKsWBcoJT1PQx9tcHCGxZ04pw3BUHPFWjU1T/MEQ82f1lj6Lv2blpkuUHtFLkJHqzYXJgzC8XjEWKFf1fs1MVOrSrGmOWjXwpk9XHPQqIwOPhikwWidPhwy2CVYkSGdZZrZSgTjOC4BpDNouGmmtMr9NeK80BDmMLOuqmufpwOX+AotD0rL5KhknloL06REsNE783JQeRidyQVSTkxToI2GkVk9N60zmuCMwleWA1yz3iuctzC6RiRcEmlLtNxpTQtMGzzXy0rKCWtEvXyj8uq9/ryI0BnUVHBh4HZYwpDO+eHCOFRog9l7/BR2vbVSk64DKIKrnu1YmYZlLva1gPQI/uT5N/+tP8o3fuNv5z/9vr+oU4KPrA/J+vKf+6W8cHgLKVZya7TaKClS4kYrkVKqSjeMHiT2mVeSzsFNeO+ppXI5n2EMbpYDk/MYW4m5ql+sZsRYwmLJoyi8pgvIIKXMmlesWGYzU3ImxsgyZlqrbHlj9gfaaJSiF7BBB6eSlVb0UutDwFhDsBNiPSUnWmuMnqltpx0aw4Qg9qC6YBFKjfSmTYXJB26WCRlQW1Y/bGsYEezQomsMhQ3IbNSPMBny0wupZPWYTtpMMjbgxTJ6pmNoVeUtIkIuEfcMTgsg6rmtfSDDELwnj6bAh5xBBDEB2wScQexQkmbRAnf0wbRMGoA6zZhmybWxrhGH4+AEhuHJ4UWVuI2PNEN+MkuAt7/lbbz1pbcidYeI7KAsHM8pxzFGEKH1QXCOp+erxtIAGFF/WCmMbti2K9YKruskbkhnmQ/0UXl0fEztmcv1gWEG1gaMtYTDQrysWGNpVGLcsHZimWckC2l7INzcIGXs4dOwbjuy2y0cZvYpmWVdr8SyYcRwmCbtUBujXmsqNuuDaQzEWpBimO2EdXo5qmMQy8qWMjflhkdvutG8pJSIY7AcZlrr5Fgww+Kdx4YDp8PCaQ60UnHG4I43PJMfLnKk9kKKkcv1num4cBwnlmnCiiGXSp8MzjkmPysMZcscliPDdB6uD/p5CAyE0/HIWE7Yy5nZWRA4r2dkdJyxHOYTowveeYztpPRASpZSmmaxMXTPB/X2rDnR0Mn+4xfeAhR6yVhrSblxSQlZFvwc6Kjl48UX3koIlhgflIzrPfM80drgyeMbwgyHI4jVO9MzQM1Huijv3/qnp2lWLJ/8tp/B//KX/zZO44b1AbZzI26FUhq5V67bhVTibgkZxKTKojK8eh63i541vVNKQmyjm8rNvKipzRo6jY56/wFGE8QUcolsZaPVzjACxpPWDTFCbVHhRALShetlI0xOG5NGI5B6L3QEawREMN2ohB2jpNNuacOTS6QPhdR0GjFr5hvscRuz0I0WZWPnQGAF65zyJY3eia0o0KfWtNOLHaM3bdS3ThIYooMGuxdfqVVM71QavTf9HnVDLJGSG6ebG+xB96FzSlPfUqGzMm8T13NjngO/4Zf9Rtb0Mt/1p/8A5X0EYb9RvGpvzEKtBb7+G/5VJMprXrRnl+2sPx8F0m7cr7Ew33hiq7TWMNbgjforSk4aADrUN+aNIZKxxuD2DqTOdcBbR2+VKXiEjvewTEEfQi+K6a8Dvyy796UQZFLzs1NZZQ+D2embfKuJ0+1RARqXKwYYRpjsoi/WstFzwZnB4meqdKZJOwm9NspIOHFQiibFj0FxTTvY1tPNhDVepZlNzZq6wStdHMUOZIuIsxiZeHp/IVjDNV2RIfukwpDKxugDP034EChZM23CFEgp09rG6XTCGoP3ntYHXtAsJgE7qbqwdw3R1kvrs2DtoplyTcENtepETVCFFcaSS6QUQ5VKorLVwRgNhmErmSYqFXGmELfG5GbVcDwDinjHqDpat8Ow2cD9q3CsAX+8xYroqGLSHy8+fpFv/87vwH2H48//1T+vhe9H1gd1PTk84n/x+b+exzdv4kfes1JSodRCLlmbJgauWyI4wXmwQ7uCl/MFby3WCB4lpfbRCcZhjF7yRLp6NrdE3CLWe0QfLgbCMEOLJds0/2iH3Vpr8c4iDKVdkYll3Wl4QhsCVuh9MESfZ+dVm++coYuGUE/Tol62kkDAi8NZS5dBqTohmJwnWGD0nQYpOBtgQE4NawaIUFvj4FV+IjIUmELnUjakThyPJ/r1TE2RkiIuLNweJ867T8h5TzhM0EWz17pKNr1V83cbVTOzUoZh9X2REzVnnWpaSwgoNOQ0E6xjdLjmSG2Nm4Oax5131JKpbiZfM9lamA/kbCgJvvYLv47v/f7v492X97yej92Hzfq4t7+D3/8N/1s+752/RGX9zy7TBnAaVjxWWIIjb5ngHZe1q3E/RjCCM4a054f2okThEjPiHMOiz60RRAIv37/KNE84H2i90mrFWEtvnfkw04bhcrlQ2yCORC4Z5y0+BC7nB1odhIA2Co3CpADYfZ1TEETguBzYtkRvusdaScwh6GTZdoJzyBBVdaBSpZwrxnnmoBEUj8LCcTpwvDkyOc963cgl4V3Ams7pRj0/13Vlcp43PXkbhzngXSCuESsqkXrPqy9rY9Vo0L1KuITr9QGhs17htPtfxUHsmucZJkeunYctspxOtF45HU8YmZjCgU5h0LDGKWzsXr/n9MrpcAdoHIcLM7lY1jXhvGUOCglZZr1PpLhhrSGllWW+0SK0VC7xjNnPehlC3C4cjy/oIyKeUhLz8oQwa3PahQMDyzSpSmVZtEhDdoVJBuYP/TP+U33dLrf8xi/69fzyz/zlcPZsUZuD1y0R9/Nuyys5qzd7tEZrTcEe0kCMRir0oR5k0yglkw1EsZr5ma4sYcLjOMweg8KqhqgsWWQo4M1YKIVUMn4nBRurRVh8mjT6xnlabXoeOgW+dQFjPYJmAgKYoQ0ZHwyIxXtL2PPIxq79uKa4n1kaLzK62oss0K3sckXQY85i93O41ow1el7WVvBO8e11FIyoImW0Tm+NJh1jLX6yTHhizPQ2GF7/P0a6gubKBkMwMmFsYAwF7j29f8BZDblf/MSv+Kyv5j/63v8L//CHftIRfq/besMVamKEj3/Tx2OwKlervJaXdtbCYCQtCobsTQZrGF0NmSknWtVqO6ZM6xXpDesm3F7IjNSQxSNAaXV/aLSDb4bCOhA1SjrnqBQOYUGsgeCxzgGDWtXsfzgEJaPVRggzYiHVot1rr1TE5TQTrytipp26pfKOS3rAi2U+TeqJEUjrqn+wJmx14+7uEbWUffyrJKAtR+64JaWIDQsxZRY/4Z1SHGONOt52mkKf855/5EVzlcTSutJ76IbjISASiNuKsxOC+oRq6xjrtIjzE9ZanFeZow/skijwFlKDUiv5GmlbhWKYfcAYS++b4tP3iUPwjuu2UXtHsFQ1G+okY/ew5awdpMrQVHsGzrr9gFWyXx2N0hvTnebClZwYJyUT5VzJl8qyeP0in3URB7zj497Bt3zHt9Ar/Lm/9mfJ7XV0V///wfriT/8ifs473knczc0Gy9ihMkUGtULcfSRiAqVmemk60S7aZcspkXPEWs8yTUyTYbQCMmhNpYuldnJLOnzvnYGh94J1ohdT6xhNmwlWDCEEJY7WRq8djMIahgz67iktVeUYfQzSSBijvjXnBs55YiwqNzL6nFnR6XrvXaWRretk2E/cLgcsg8l5YkkcphumwxHvPdu2UmvmFALGoIUcOg2sLWjjo1Z8CNjaKF0Yu3R0GNGYjVo4LDeKYLZ2v3w3atNogpi0SQWiocZDSbnm2SEv+9fvgV61m7h7fp8LQER9Ark0OldazjgP9faGMSw1Cr/w5342y8HD656r+8ZfIsInveMT+ZJ3/TKV+a/ou6qiMv9nkXQCgqGLoXZF7TpR5Pb5ck9tg1IHZu9YH5YTiRXplZwTEhasV7T36XRSFDwGNx32iBrDtp7pCKlk1pQQ0aaBeqcmnIHTcuTdr766X9I683Emt8i0nChPG2FZMMZwOi44b/TsQs/2m9MRHzwlZW5u74hxI+dGq4XlMBNTQozVpqALTCHw5HinU+BasSK4EJiXmWU5EEvFu8YU9FL3+NENx+XAS3cnADYxPH14hWGFx7c33K8XlT2Hzq01WOu5Xh50Ei/C/X1hevNEzuoXnb1ekQaDZTqxHGbGKFhjyAVKyTysZ6R1nB3UlhDryS1jvIf2GsDHWk+pg2VRvM/kPdsaCTbQWyONobIwoJTOpV8prVDrwJhGmD13j448XM8MtJH19Ol7OJzuCMcbTsc7YjyzxYRvYI9O43JW9ZLbm/25Ar1P/fiDhI+sn2A981H/2BWM562PPoqpLrx6TmxRiLESUyblxJYSudYdCqcS1mfTnNEyKe6isdp2yZ2l18rWO612Ju+YgyfmxMFNDDzSNFpmiD43Mthl/pqLO4YWT9Pk9yiXhgtWA+INXJtm/ckAN036tQxVenX0/e+N32E1DTMGBpidRrfUDiYYUs4avj2MnpMxIcbsUDDHQLPdxCikzyC0VqglKxW8V3ptTCZgglHwnQkYMcQU8Qasc5pLPDRw24rDWosxos66Aa0mjAz9HvgJa5RbSYctbazrxjoJ5zDx1kcfzW/8kq/jm//dr/9xP+c3ivzxDVeouRH49m/7VpYw64HV+J+O6CuK8r5WUsrEdcUHx5oyMUWu25UtKp0pxkStKkuyTjdXqgmceX7JD2FSyY/1iBgw0MdgniaMMeTWOM0n5uApTU3c1tjdeKmSyNvjkVLA736wWgt2trji8M4TU2JY9QjUgU7mnnUE9063M45qhO1yxQVPL2Am91p+1ADnrBKBRHbJX4YBhzAjDPzkSb2wppWYMr103M0tUgr4SikbqWr2G8aQto00KsdlodEIprOEAF3hCEZ0WnU8HbVzS8VIYOAYIlSAstuABrQOk3XkZjhfzoovd451vXKNG8hQ/HFp++W60aohN82/ak27/bXpS01Mp2OxziJ1sLXM0R+UoGU0G6SnwvCVkopeOnOH0Zh8QKRj9kvG83VlN+DBT/uEj+M7v+s7ib858hf+1n/yEcDIB3F99Esfw4s3L/LKezqjO2AvHoaQtsKWN7xzio7vjZgiLXe8Vwz+7B29V0qq2FnR1qNHStNOZe9NIULWKop8qIRwzSt9dGajRVkX3bMlZ3ItzGHGWFi3jdYb0lV6jeV5pprKi2HsEISUFXwybKekTC0VEW1miBgsg456XPqoDLHU3rGl4W49DghuVhP07PBOJ2c1KiW15MQ8LVpUDpX/Hqcjrz79QcpojGEx1u8QiDNu9orx9oGcV67xQs0NbwJ1FGrL5BoZxSBmsG1Fscpul6FMQRtUTQEV1gm0QcsNUJKkEWE6LBqICvRWaaVgjaf0jDNOP7fciMlxTPB57/gS/r0f/ZMU0uv23H04rI9960fx+77pu55L+0dEFQDbHvdQdwjEgGlSgAh97L6rwTVddq9nByeIFc289AYrCyWu+DBjxfHq+eX92TIq57dalB1PN1wvZ2prGvBu9HJirGXd1v28U3BAqR2q5nTayWvBaB3Xy8rtk7vdcyb4MCHAi08CuSRubg5458hpw9+c8NbReuG6bhyPE2IcdzcL9w9PsWJYpkCOV5ZpZponrOnUUhlOOB1vEDGs6SmlZpx1PLm9xYjldHPAes37vL2bEXukV+GaK4flSO+dwzSx5pWwHLj0yuF4Unx4L+TtSh9CmA4MOiU1ehss0wRD5b/35xU3z9qQwXCYHcuykOJETJ2HV69Y62ldVCIqcL1E7h7dYg28/J4fIfaCMZanDxcOpwPzvNBaYZlvkRCgaDxP2GmstRiQzBQC63bd/baV3lRlMxhIywwbmCaHNYFrHCwThLFfNCMwwd/83r/J9/zp73kdnvafmssZzzs/9tP5xBc/iRphi51ty2wl02nkfV8xoDcBrEbAxKJS11ZfU6dbOIZJ5fir+qZ7GzTTSaViR4ehOrDRFXJnZJBjVVm0GNoOZnPBU+qGC4sC6rxhXhZqLRjruTmcmILHjkCpK7EoaKvvTRwNt+9KliyZ4KzCdEBR+a0wzMA5bVz0WhiYPVZA79MiQ6dtw6rJDKOQkaaZI31oZIBzAYNm8TpjsaLQHEbHOKU59941fstWrHdY6/Yzs2MtqG8IDoeTQrbGnv4m+j7rVFJpbFtnPnjefPdRP+Fn+5FC7b0sQXjbx7wNU81zmePzgGv052IHtRYeHq4K8nCOV9er5g85T7OVNXfV/vbOJUdcG0zPJmG9MYzQu3A4HvBhVhneaHQ61npq6UBnXgJiHWYOnKxTrpp0cANTO8LgdHvL9boxL3fkutEKlD52WaKhtI3gFyQMRmts28r5ujIvE4fpoEWLFdb3PEUWR65CbpnJBZbjHWm78OjRLSVlRh/cnA4cTydyTExh0gfcCJd1Y+uR43yg0Wmmc46byjh7wFkFGLQmnONGrhnHxOYy3hq8cfShWTyTnbHGEA4n9dv5wVYqxnecbcRsmSwEAw2hVn3NyL7Jc87qYatjf1Fpjo8PjtI0lLjkTBVLN4NO0ekjnZoyMW7qU3KOPiZMb9A7T89PecwjIhFvd9nM7Kl9D9+2XYvi04R3hrDrlbG8FufgURnkGd765rfwb//p/xO/4cu/hlceXub/+Y/+y48UbB/g9VG3b+ZT3/wpbJuwlb5nN6i/whpLy4UWy44tHvpslKpwg270BVsd9IZ1SmrdciTnB42aqCrB6EYLQOM8YT7gzARXw/V8pqRKnhLLrGGgRiYulwuC4IPXg8Lqhep0u1BapydIudByxQlk2adKYwcjik5DNNhzUEYnGEPHKCHLTzivnlW64Lwn5cxwlp51wlxzxYmljI3JOdx8IEyW4zSp0bsmKoPuGvO8cHn6Hnq34Bxd1D82hqM36A1q7Tx9+h6W5aTFVGuksil8ZJfa6+E7FPVuA81pgWj8tE8CNXKktoqVGesDfezvMzs0u2eeccbhZXBz8xjrdPonQwNPJcN3ftO/zp/99f8B99fX7dH7sFhTmPi4t3w8PKj3+pk/rWXFessY2AHBaTPMymCeDD543vPKqk291rDSGTi8dVwvD8QsvHj3ErO/5eH8lFRWBeCklW0MDseJtm3UXLhez6RtRZxnYFkvG0YCMUXmoAj73hsPZ/V3n25uNb+pVVpK5AbH5UQ6Xzg+fqTFoLF4H8jTRquTXtpaZbYWMZbWB8dpwTzai0LxIIPJvohxgjGGF+7ehJdB2NHgjx7f4d0ECO9++sNYBnidij+sDwgzP/jDP8zNwfDSkyd4F7i9veX+nJiGZ40by3TY/eczaXRMmLHGM7vAoycvcX56xU16NVpjJFhL8Cq19stESgo2eHhYudaIx/Cey8qyLhjj2NrKw/WBu9MjlmVhvSZKqSw3qjdssSB9sMUL83KiUhhdVQRzWBhdOJxOvPLKe4g5EqYDh5sjiNC757w95XZSn+yj5QmnRy+Qqk4lDyGwzJ6eI+IMZniMh2Z3sqwBjvDQH/ih9/zQ6/TEf3iv9wYRWfzM5/zMz+RTPuaTiU8HW25saVDroKMKLREhJvUC55bY1o0tnxkdalUFhJOAkY6ZoO34eapOs2JtGDcwaANfjCMwFLzT2OfbnVg2munQLN5CNUqQfL4seBNYlmX3NmsB6dyyF38dOx9Y05UcI0UaY+yhaAxMFw63i0pzc8Y0oHXsEHJsSNibnQIMQyMiojLc2tUyNDqI0bu2GU3pzEAzHZMFPwlWDIOEDwZr1OYyxqC3Qs2JYCxjFLpYciqE2REGjP6sMGyU8uxrGQyrDdRUK1sZLBE++aN+Fp/+0Z/Ff/Xf/42f8DN/PYu1N1yhBujD+WMOLCKvkR/roN53Sqq4YPF4nczExDLPTO6GYBxBHGktYCrWRZVF9UrNBTFWPRhzgLaL66UzHNihl7zRinYHjDCCpY5KEO3qx2tRs6UEjqeZyQeYlAKp+UkNY4WbZWEtHd8CLVdqKXv2k+F4d4MXz/W8asBu7c8fhOY6ZjgN1mxFKVF18Pj2kfoErLA9XCB35hcX1rIS5onLlvBjUG3VTp7XDnlNmZwjDiVe2m53uZKCVSQLbp6Vwlcqx/lA6oUbu3C6vcEHi3OCsYZ5mRCEVgcP95XjUTN98tbJWyVeHzBGCMDl4awZHMaTcmG0zjIteNuJ6YqbJuK6Kdp8WMZopJQYvWOcFpVdHDQNTXROL6a5ph2FbphdICweHyZSrhyPB5xTxPioDXGiT/kOoSHsf38V9X/cwuHFA//+X/tT/JN/9N/yr/yL/wp/4/v/5keIkB/A9c5P/jS+/Iu+gst74Boba6w8vV4pvdB6Y1l0ErWtV2iVbU00Kh6dXA8R6IPZO4TGVjPbfaUXBdA4r/l/OWVizrseH8RWxAjLSbvo54d7tovleHOAqijuvuP4l2VRaYZocvsYbS/+B5MPbHmfCklX+Vk3jLXiDx5nFdHvzLxLhqHt3bwwJoJ3OPvsgO/kPJjNxN3dLfM0Ib0hA46HIyKNnvZTl6EwEGswbmY+RMY9dNMw4vHGc60rfoIx0n5S6/usZp2AlFrpo+OcxeD1ghHQMODeyVX/XMM4ZFisNfSSGLXgpwUzVF5Ca/hgkd6xwXEIC8Za9p4VtRZiypzmgDTHaGhEwOsPzHpDL2sMH/f2j4Ntl/SvUDKcHwa2g3dAHbQ6uKZOK4NeIa+ZhiCiTYYQArVU/C7tPR5vqFm9ZaZ3jBGWsHB//xRjhNvTUdXgokTS6/2VYQJjWC6XldoMjMQLj2549ekrWAun0w12ywS3IEbf161VclPQ1vHuSK9KdzN2oFNz9Yjdnm55+dV3c1gmzvdn4vWKILz5xbdwe7rlGjdijMxmZnnhsMN/9uw051n8zOjQatVOvRjujreA+jpzafReyK0Sy8ZpnOgdrHWU3AkiHE8HvA9gLW3Aum5sqXJ38wIxXcl0Ltf4XJ4GgvGejmCGNpWu5yvn60qpjdYNxlhSKbRsoEcEy+XhwuPbFxTmkAvGdKbJUNdCkYYZldIalU6smcPxEbnptH5LiTlM3N+/soPGhDoauXaO88KlXFj8wrauHE4nSuts28qaNsL0mGsu5Jc3ntw95uF8z62/Y3YeKaiV5Ah4OD068dILL/Hul9/9+j38H6brny7UjBh+/se/iy9/15czsuWyZVIdiIWWOrEkatOz5LJdd59aYosrrSSMVd5vH408Ns3nTE3z1YBKw+4htQ/nB47TgVotfQyCcYxaKLEwzVocpZqIKeLMzLBCM/vXUhSe5yfP7XTEDCilMASoWQngEzgzMbmJbgqlJmxTwrCbAnYIx9PEJJZiDM5YHq7qWY1bxgWhlK4MBOn4k6VuHRMckwvQKzmpD3wicDweMMaQosp8A7PeB8XrhBiLF80XrWXDuqC2qDHoW0LmiRQTzgasQM4NeqbURLAawl2bUitNV0hZbZ2cG2l1vOOFj+bXfO5X8V/9iR+/UHsjAEXecIXa3eERrrvXLtbPICIJxga1Dh5WJV+JWHLdSGsCDCKGmssug1Nwh0dDZnOp5Kw0nckLyzTjg/ovxrMZSrO4aWFZDnjpjL53CueFg1e9d3ALd0ulWbdnszRaE06HE5e4Pu+KOLNnmZnOaT5QpLCNjqHhF0cgcL5eaQzNZBqDw/GG1Ctxu+Kdw1DxAVoRDQ20EJweGilGggRSKdjiQJoeCHbS+AE0nHee7T6Ctow6SJtCVWY/04Bm1PNSelEqowjGCNINHQ1VtVYQa3Xk3ioGiw8GJ452qQwL2yUSYyJtK946rA+awSQdMwa1Gmbr1K/QOt4Ypfr0waDjnKP0wRADxnG6O+r4XKA2vXDP9jVNsvOKOi+t8DSuTPPE4bAwh0CqnR/60Ze5ORyYbw9KLzLoRKHvz5SgRdveDJAuvOMTfxrf+d2/j9/zO76F7/073/c+aUAfWf8Ma8CInXJVX03Ou06/N0p/rZiYXKAZgzFFQ3lbZjITuVY020UwzlKfxTPsxLQ2hFoyJXeVdBhDXDdEUGqj6Cu/dqH1Sn71jB1GoQao36z1vh+a6kHdSqEPzSQrVaMhbLXErAnEXRp0wSbBBsH55XnHr0nFjYEhaPOlyX64C5mBHR13tCzTTPCe7Xyl5ag5jyNjjccYS+sVa9Q75KxCTHyYkK7Sl61UpuOCtTB2r6Y4YWIBhNbUM+BMUL+t8bRecc4jFuIWKbXs779Oq4bRdZo5jG4PQaB3DtNCcI7bo3qbnIAxCqjANIY0Dd3ufY804CMemJ/Euj0e+JPf/afgQYu06wrbFe7PG64Li3N4o13znLPGnLRI7ZWU4HpZ6bs0NccriUFvKq9fDke2bQMarWTonVYyy+1CLhXT2T3K2i2eZk9OhRef3LLFwuDA04eXSbniQkCw3J5uMAGEQI1ZJ904vF0o24aZHMYGDJ68XvHBcAgTTx9eYfaeR7d3HOYD58t5zzssBBOIorRSt3haSjrxMsIomeADp+Oigeup0EvRCJtlobZKb4lSlMz40otvZpotYg+sqWFNpsSMkaCZUKOyritr3DhfVh49eQuvPn2Z2vS/l1IixSvOeJzzLGLYetubOEIdXW0FfSdldkjbheBnYk702jguM7EoJKxXA85TWyXmghiFpmAso1mCn9i2K8s8Y3b8OeKYnDaFb25PGOdoZbAWDQmfp4mn58T5/gGxwiVGwnygZO2aeGupTbh9/FghK9eO8xbnQBwQ4LO/+LP5rf+f38q3f9e3P38Wn9y9wOd+1i+iV/i+//J7+e/Wf/L6bIoPs2VEeMeb3s4nfuwnkd4DKQ1a04KgdkXyp6JFj2ofO2Y0Ri/klPHO4meFRg00UmPIwAZH22Q/Hw1GlO6aRldv2qUxTxPBWQ53t3pOycCbAx2NLzLWU1PGLJZpVnjV7Ga8s9gd/CFAc+xTLUtwnmlytD4zunBZz1jYG4pCMEGpotdN72LGs9YrIp2ePfNRJYoDBWfNxwOpJHJvu1x+P89QwIFFfdEFKCniZ8sar1ix3J2Oe6ahUDuUsqnNZgjTDFI9y+T0/Oqdyel5mXKjjg0xGbEW1z3zLp2svapNKjiO2XAz33G33HG/3b+OT9H7Xm+oQs2K4yu/7Ct4681b1J+2oZfqjk4/ZBDjYC0F4wKxJrasVMAtZ2rpbHmj5AIIVjy1F+ZlprYLdkKnYm3vU1T1f7TaVM87B5ZpYpkdkzV4e2RLmcfHWyZnCGGn6QBiPKlMrOumwI1h8FboMiA1jocj1zViWmXxnlGqeguwxFp34MjGMAN/mFG6qRCMkIzZw/4CJgSGqeop6xnJFRsm7l54wthH4aOrefN0WLR4ygWxQsoRGeCd4+gDsSpFSCaVJ00uKNzEWFpt1Fox4gjeItVB75zPZ9q5cvfkDicAnfMlsiwLy+TowLZF4nol50QvmWA9uatUS2ylD4u/JnxwpBjV/2Y83jZo2u2BQR+NYSyNTrATeT2DqcgQxA6MtUwh7KPsZ50Sw7peuXiDyAkxAz/PNAy1dHKszDboc9TQ52pBL5F2/3fPfGu38M7PeCff9vu+jd/7Td/K9/6d76WNZ07+j6x/7jUGNO1Etlr1cDCG0SHG9Dy43QydSBtjnmvXnQnMTmlYXTpiLd4EWlW6a2kNeRYqbzSQfoBKJ3Ok94a10y5mtVixz7PVem/4sCjmtxaCD6SSNeAagzX6/ii54LxXwIF11DGYvEcweG+xzjMEDfakcQgBN7QD3lsHgV4GVVTm6J0Gz6ue3mrIbteLoHP++WTPCDgXGNbQuprMRQxDhhZhRt871grnS1L0nhWsCQDU0TDB7t8fHW3JTtfqRYljGIUqWafZTpbOsIKZA85NYArBeI7LRAieYAPipr2BY8AarAs4sUxhwlhHl32w95Fp2k9u6d2NVOBy6eQklKy+Fnon0XFYGOpjfHj6QE6NVDvvfvVHEGv34GmnnXQ70UunlIiwEyAHu4rCa3EQM71Wbo4n2lYQq1S5WrVBIcAWFe09h0Bn8PDwlLtHd1gJjLr7xXrn5njictnw3jKJwwyBWnfZe8cunjc/WXAugAwOt0duDyfEwLZlbJg4dgPNqNd632vWT1grhDCRUuLmeOQwe1LKiIXlsPDq01fIaWU0KDUrg6sLa1wxcsK7oWTLOihFG0TbdqYNwzBwPr9KzBvreqXWwvFwYojFTQrBKqNziVe2tCoJtlmCmzjMB+idLa5gBw/XV5nczKO7l9Q/vUWdkJW4w1TUhy2ikT9xy8/3xzwHYrxgjWOaF043t0zhwDi/zFYriMHPRv8MDWrJpKxkyZYHbvIcLfTW8IcTjMGaNk7jEc4Jp1kIC5gJeAHtwAT4nF/0Ofxe+3v1ftWEl5aP4iv/Z7+Gugl/9i//Gb75D/7212tHfFitx8cX+Zlv+1RGhJwHuXZKaWxpJWaVvdZaSGmPioobSOcYZkzvDFFv/5CusUVWnoPXjDe01NnGht0bj7VogHR3loPTqdmwBmlK+B2tUYr6qM1wiOnEa+J49ByXI3MIqjrqRZVkQxUawSq8w3ujkD3j8Q5ubhQyNXqn5YoP856dpg19I5bgA41GLSjwZ1JacGfQmqP3rNNkp/pta/xzUE/vOhAwItTcYWLPFRVyDmpxMdpMrzs0TH9jwHpVqRhn6R2cVQBgLolWokb1TBNmMtTe2GJ6PhCYS6XWmc995+fwRf/gl/Ifft+//zo+Re97vaEKNRmGn/fzPp27451KHQW9YGvdpfDHWrXQ6YMtF9ac1Z/RhSJKekxRdfXeatYWBcI0Y41+iCVrd6P1gZ8X5uCZpokqwmFeOPgZ0xuTsdy88ASHZXIaCtqkk+rgbjkxHWaM9zx9uCdtK4flSHrI+D2AOg6YRKg1kct17zB4LVysdj1PNw5rlKBzvqy0S8V2S6kNsU5lJMOwTDNORMEntTN5DaN+1vEWK1jAW8MWE5OdcaJh1rU0qrGUNmigZMzWeHz3Ass005pKREbviBOOhyMlV3qHLV7pozGtjtPxoFOzUpicY0hjvax0awg2kEdi9oHBIO+6Z0Q30PG0sOWNNjpdDG10Rul4pyRO551KaJxwdBPbtuGcp2WVIBp02je5gHeOVsBZpzlQOXKNG9M8PZeqzMeF2emlOrWGLxb7DHtt92eq8hpdLaC74QY+7Rd8Ot/1f/wufvvXfj3vefoyP/Aj//BDuxF+Cq0xNGpC+oBdvlGL6t37bji2LtBr1U5iU83zGEUPi9CgDEqrGmw+hMUJIsJasjY4aPgQ1P+5NwIA6p7R14bA0CDt1itODMtxhgreBprRYnwKuyesd82fslaNyfMNnULMGescwTqMs4yh3bs+oMtu6m7q9fRmYJ1GfrQ88CZgnUrQpik8L5z6HicyHzQTDtMYrVNG1UPHz6w58fT+nhQzWEdKKr0y3iOiF4POfkgDYxSMNeSWn9szRRxDhlJgRUO9jVh6VbP1NM8EO2FQf1o3ltZ0kumt1cPXeKgd5zyzD3hrqEPN2w6jhXbplCq0JlgMn/ZRn83//R/+FzQ+IiX+cdeekdYrCmmq2gj0EnTiWRp5W5knnX6VYSh0LimSSmHkjN191j7M1FzpvbM9Xek9QW9MfsI6bQr0PgjBE1Nj2yIpRmqr5JIVyT10UppKorXB47s7rBcGQk6F0XQPZVEYyeg62R59sMwTU1jwxhBc4HRYsHbw4pMXSDmRS2JeZo6TZqAdjo3SGsfjLS+9IGzrmVoL63rl0ePHeGs4TtoJN0YhBtY7hpPn2abzfCSmTK2VddsQOWJcY00RYy2Pb05YW3jl5VfxznFzOpEK3D+9h0X3oZ88pVXO1zOnwx3NWlyYuFzuefXhVfoQuhEO0w11QO6d0Ro4gxmaCWWtVUlX8ITbk57nvXJdL5Smapdpmiktk3JkCg4RxxYLtQ1MrYyeuZiVnBq1FnJMNLEY56ixYIJjtIENE7npdM/VK2erMk2/Wg6LTvfjunKYj9gAdkHPt5lno3I+8+d+Jp/5Mz6Tyw8NXr1/mVEy/+QH/jGjCp/zKZ/Di4/e/LptiTfqGnv+7o9dP/3Nn8hXfcFX0RLEWHWSVjO5VEppxLyRS6HkTImR1ovGCgVPbwqsMzJofZ+2CbRWWa8bg8EUAqVX2lB405DdB7xDOcQMco57/i3kUjRH03pOi9tV9IOSG8VpIPE8hMPiKSlSa2d0OB4dzhtKrcScqH1QSsGHgDMa5ZTZKC3Ta8aKY5o9TRo4C7VwuV4V+rU2bAhghdYGYxgs6vUcowCa9Vi7KkGssSzuqKTU3S+ucW4dNcENamtaoO6SS3aq+hYLlt2AOUQpx32HiAy16fTQyDVirBJXBw4wjAZvffEJn/TRn/w+P/fWGtba182n9oYq1IDXurDCa8TH3WOUCqy50Iwib59lNfTeia0grbHmDbNLOWRoBpIMLYaOyw3OOi71zDSrlPEwTZyWo8qlckdMh14JzrDM2jlewgKmclgOrFskD+2w1964vXnEsJZNXqVXJSj2YRAJTK4yGuRxxVrLYpQseYkrh/nEZN+sHgIxlFYwRii5gnFYPyuOvzcWO3EzHeitsUlh2MHD9cqLN3eIGLpAjpFeOi89fhFxhj4Kc5hofdBb5bIOnKg0C2Px1jKAvCUaA9MHzup4/P5+xVnFrDrrNFdjCJd1pbbOEEMJlafngtSOiBaUYZqwvdG7IW9Fx/UoKrbUzHVdsSJcclWDvDWEyTOasPamob+1YRF68BitsPHGqWl8nwxMfqKMQk0R8RrGevSenjt2VsCJMUIL8O7rPU+mx0g2Sk8roqb2Z9O0M1q0zfvPA+DhUz71U/jjf+5P8CM/+MP8xq/8Gn7g3f/oQ74Vfqqs0QYtd0pV+MB1TTw8XMgxI3icy+Q2GCIqwxOlgoYgjKqhmTkn4qUxHw5QVfpa0QuWGGGLeqn0S9Bcw4F6qBQzghGhi+ihgGCd7gVxgsVi3Yz0gXMzLWdoAyuK527ec7lmWi3MhwUXnGKId3JsrBU/TXTgeJhopWpHtHT85DATBO81MzE4lsOCHzBPM0527bs1pNGw3TEtQQ3nA1oplDrIrVObTtVa7eRa1TtXssoqjTBKo7VnmOahDaDcMM5ggyfnjWCOiBG83b2l64W+x58YBs5rQWucI9eBWtcFUyvzYnSK1oeCXcKE4LF7Q8mCfm3FUIswiePbvvFb+GVf/9e5xo8Uav/0Os4T/9Ef+zPY4egr1AROlKhZypUtVq7nM71VHJ6Hc2NZDrSGhozHDessDw9PmZtCnMR77GzJ18q6Ru4eHZRK0itlU3XJMi0IlpheZTkcuDkcuL885eHpBTcFSimU0nn0+DG1rqzbxtGd6KMyH2a8EdbrleADdMPhsGCNMC0Ham4cJs80O9wy8/jxY0reiGWl1bH7zBqHu4nztrH+/9j7t1jL1nU9D3q+/9gOvY9RVXOutbxtbydOcAS2ggkGEltJlCg2YYOEMOYqQoqCBCZyBBIXVpREIiJKJCOEMLAFKFwhuEAEiUi5iLggwZAro0REih1jHBwftu211pxVY/TeW2v/mYuvjZp29sk38aotzV8qzTlrVo3RR++ttf/7v+99n3d7wYWJ3hOtdBiVMQpf//AHXJaFdBws80zNiS1lfAhMMfDt7QZNmKYLy2zgfiO4yLYXvMvagAhQGdTasAZM8GxbwVmvZGZjGQilazYjOHyIFGm0o3C7v7JvN42ksYbbI2FXld7fj1cmH8j1wDlPj4Pj2GkNlnFlUKl09ZhbSy6FfTywdeJ2vzNE2PeDGGce9xvOOQaw5Z39eOF6verktDeW+Yl721iWi5KrS8UuAZMaphWd6Ddhv90xjVPa3InF8rjD03XVhu6F7yJqGow7bH8h8x/8f/5DHuUjrW7QCtZG0nQ5pXrfr19vBev5EL/i+DQ4sk7FGu0zbVqk0WqilI3cs4KrxIBuc+rPrvlzLZtSpvfG/f6KIKzXC6ufyMkp2VhE1QsY0p6xc6SbQdoyZWTAMeSEb82GsUMIGsGxl0zKgn8XMGMhmIF1hnKqWlrVfavsmdfHg2GEdfmh7hXlAGPw4qlNfXrOWWaZMG7Q7jfkeUUkcLvf9R4Tj2WcPMB21oqqZkntwJxxSQhYGzTztKnywxqhjc4ZEELJBWMdwXm898iwbEdCsBhxtN5oqWEmbRpW1CsnojkCzRaGzzhZAc1ebALlpJZ/yevLPKgpnFE7jQMtpBOaWyId5z05Z7a0c+RdT7mm431kLo1SN2AgUjAmEMPEcRyUnLV73hvLPCtCqzVohdGE0SqhTwpHM56n9QN9ZJZlwg1hmiaCj/iqneoxOjI6a5gxS+J2f+GyLLSm6GKmiVwyIgY/VA6YalLQQGqEEHAm0M4OgLVKqvp4e+F+z9S9MM0aVrY9Ni7rytN6ZbvfNRundpwzpFSoteDnmdvxqj/7sEiIlNy068mgiRCsFrYyIBqViRQaeXSmIdy2O0+rsKXCHCaCi8zRc6TMPW2U2rmuMw863nnWp5X9/qCe0wxvTyCBWFJVus9b/lXZEzWqSXTPG+u80HthWEM5Dqx1hKGFq/OOj49OCIEpOJwT7TiXAktjmQOvx470wjpfNYumF0YpOjbPlVvPSLDk3uFoGm6cB+MGy1eCrHxHgjzOa+/H6KHtPfzwRz/kBz/3A/7X//v/Lf/Uf/uP8O/9xT/1y2hP369fez1NV/7R3/kPM4yj9MwjV/WV9H5uOnDsiVoLU4y4YMhZCW/OCWlP1C46maVQ0s4xGsEpifDIO3BKLErHC2fuWNXJa4YhFWMGSKB30S5fqirBtQr3OfZEbpVcCt57HvsD2y02enppeB+JUYPntaumwISakkozZODEY7GU8cJsV+YYsaiZe5RKaZknuzLHC5aOCzPBCm9ZweWUJg8zPuPQR9d7Ic6eRy/05DBuVk9SzrQ+9ODlAo/0YLSGEaP7Tq2E4IlhYsiAZnnc7hhnmJaVKJ4gC91CCNrUOnbNspuWhRgnrHV4ZzBSSceDd9crDZBmKEfCWCFOTgPBU8b4wEmbRqrw7vmZnzHZ+ItdYoTf/KPfojS/hlIUC2z3G7fXB8sc6Qzurw/1Ww7h5f4JhmBtIM4TqR4472ij0C2MtrPdN1qFr7/+mlYPUsnEMLFeF+0Mh8C+J7yLjC5sZWOdVuoTGGv0PqlDVR6lcbnOHPvG477z/P7CnlQqH2LGe08IkWmetIkWVq7rgjWdKXhay5S8KwUy6t97ulz0ELodDPFs212LKUDEEuJCyRX75LgsFxDB+oAtlVIrVTzrelXJaBEe+wONGRV8COQyiJcLXQolPfjJ6wu/6Ue/mW17EMPEng6MBHwIfPPxJ5qxGmbEGPZtZxsPcBZnPUcejKb35LJeuN9fab2wLk+aATk0EzLEmSVeOY6Dx+NOtIHcDqxAM4YQLK/3B6N9ZHKBPuDlsZPng/fvrlgJlJ55edkZqWGNJzctcI/eMd7zV3/yE37ww68xBvb7xvDqvV6X9VTVOJwzSG/0DrfjDtbz+jqIX0PwfyNYq30z+Gu/9FOO9Arpxs+9X7msH9geifv9Ti/fN1d+vfVb3v02/qn/yj/JaHAcg6M0ShmMJtRa6TUTnKeHSk6CG8Jw7oyKyhy1qkWjVYKxtF7otn2X0yYwquaCBePBDY5jQ/wMo+j0bszYgcI/toTzwruv353TbqGbgfeat1hax4UADXLNeDF4r3mFIgbbRRVSYcIfhTJUVSEGzVRzASeOIkJOiVoGoze9b+eA647UGta7zzOXUirGdszo5KJ2BEEbg/ZUmjAM2+NBOXQiPV9npT4OIeWKaqoEi8fgtUEYA+RMmIKGzVf9My01bNQoq270uZlaZhyeZAtiNo0CImJRZ0b/1T/iL2J9UQe1KUwEUX+FJkKiD5UEWO0+lFKoHR77zm0/eOwH87xQSqLlhp8DgnYdjrSzWIMTy/N65b7ftBPtvAaFGoN3lmAjvTeus2dZJq7TgrORaZqxfsIwmG3AOpUgxKiaebGOIx+UnPDG8OH6ntoaqTSMWITOu+cLdrPQ70gVct0IYjVod6gvCyNsj6T5E72Sj/y54LI2ntkbmjVRs/oCnNP8tdI7nUGYF5Z5wopQU0IsZ06OQQSWeeLl2BhGEeTXZSVZQ5LGY08E73HRacZUqRqq3XcMFWOudCxiAmIOSu20mjE20UfjSA+OPCits0ZFkOMtnz5+wnudCtoQ2GtmmWa8H/QeySXrKLt2FOQ1EGmMrsbZ62Um58YY6ruJ0WBmPmeIODGA0jgv00ScPCEGzc4QwdmJEONJBNNg9NYGuRbcS8RXQTyI5zvSaAbeob61CDIJv+fv+z38S3/sX+Sf+2f/Of7Dv/IXeNlf/5bfG79R1w8+/JD/zj/23yN9HPTWsbZTW0aMIfdC7+nz4XeMgWAQ0a51zVVBGEaoo+DdQk4HHaGhYfW1FnLLDGB2My03Sq+MUelN5bdihFY7xqTT/wbH+YAHFDPvO7luxDBhvaf3QhudfBwMGRgTmeJMSgfeO8ooSpvdC9Ml4o1HxNHqTrAzYt3JWrfqBfUoOMEFaku0Wtn2ByMEpmlSwmxvtKb5bmMYBMPog/3YeGyZb779SK8qC7F1pyEc2070geYcpkMbTWVV08IbSayUA+s9cZ2Ro9F6Y3+904InhgWLZheOVpQOaQ30Tmmdp+AJk6Nm9dqabrDGEqIKSDoqC2nWqtRaBDFC9HxH7v1+/errzE6rwFHhSI2BBSM8Hhutd4wPSus1wuP+YD8O4gz748Fj31iWlZeXj0zWUYqqR8zkNTNwFBCdHPWu5v7X1xdWP5NKZcs7T/MMozF5x8BgreUYG4JlWT5QUsLagQ8V2uD5/RMl7UzhgjEWHxyfXn4KCPbdpKjxIAhRYTY+siwT3kW2+0Ol7mLwRjAx8DTPtKFtdeuFjx+/oeTOcV95fndlrzveGhqd7bGzXD7AKesv+0FJmWVZ+errr/jJNz9lsRM57+SSsRaCtby8vtJrZjsyRoR03Pjm0wvX9Uqj0/PBo+hkXIx6Q2tvYIUwzRhx3F/uBO9Y1kgtD0otrOsTfRhqydweH/EuEsNCa9rUscbgReip8G59puaijcwuTPOE7Za0J6bZnfRzYVjPbdPmlY+6/99fbwypHEfWXMRUyEfD+YmXl2+5TFfwOp0ZnFIzv5BzIpVMrZHgUcUIQIN0T9w+/RTHwW//7T/P07wSr1eO7eDHf/EvnZ7679evtX50+QH/yD/4X6R/hNqF0SylVI580MY4M8cc0oeGpI9OlUZFyb6tNbayn9AZBbm1WtW+MS20rnLk4UCpXJ1pmsk1M1rVMOrRKMPAGWVjrCHYiHOWUgvL6ghB69gjFYTOnjIinSYGMY331wuXaaHVRrs3orNcLhdyTrSemaI/c87AMvBhwkgnNShbxjiPRzhM0UaSKPSuWzCzwTSHEUPvVf3XcBKQD43isvUM5xZyKdRbpU6B6DzjJK56p9YE50+P3egYA76rzN+76ZQfdygdFz1dDKVujGEZDiZZECPnvXY2h95ggl/w+mIOaiKG3/d7fh+/67f/rs+etFNMSu/QDkiHFkdbzqRaKL1qGLIIA0M6MqMK3lgYne3YsFaIfsaLYbaRR97xNvC0XvFiFOUtGpJrvW4el3WhNTUuTusEveJXpzr9M05iOzr9JGlJH/r114laBy/3O3vagaF0HTS8E+nEqqG0b3lF6TgUQOLgcXuQmgY3e6+UtzEaxlliXDSbyRii90zLBW80mmAKE9M8cVkn6lHIfWcMh7GOVAsBR0qZ2iqjQ4wTTSy319tJ+jHaPXfq4RtWpWJiDcVAkEHOWQNUUXlka5xhpdsZmFvPPB4N8k7HjrNCzQXntLDGeTAqn5oYpGNHrCVXJSdJU/llImOtJQQFNughSrDBYh1QwONYovoyRq8axDsMRhxiDL13nqblLFA0VyOVodNNceQ0yLkzRYO7CO0Orp3XnNfvwQWVQwr8w7/wj/DPl86f+zN/ll/83/wiW9r48e2nP4tb5TfM0kZEP5ssopkpCM45phgodeKx7ar9ptNqIXjPNE2quZeOIdBGxxiVWnRgDEM3YJxntKr+jm4x3uG8Zd82RhuYIfr9JkerShq1or9KLUgSxqzPkZJ3JXFJwduAny8c5Th/Dqi9YgWcc/TRGXWQj0LwkeA89izKUm4syzNzCBgR5jB9hujM04w1OmEebWBeX2B9p4V0q9SaEOkIkdoS4Nj3nfuxUU7/AQa881S3MEZmmSbaUKiBFX2OxnnSAmGAbkOKZRbpWBmYONGrobdMbxmxHmOVDhlCBBEQ/ZyWy6x5iuJ0Gn961XoD4wQZhtIMfVRq1+Du02bwPUzkb2YlYDm3uyE4B6UWPn16gSG44KjW0GrXA5OBGCZ6KTz2m8Kwzumxwma0UMNA3g5q23DGnjLjQQweZzXPyweHF4+xltob3jqMt5qjVIXWOpN32OEpKbGGmevliafLM+HDD8klE5yjj8LrK3gXWKbpZNeplK+Peu5dSjKtYzByodpOqo3g3flaE70J3TSW5QKLwU+e1DKlF1JqeOtx3hO9xRkHAk4cud+Y40zek2YkGqipUutOmCZsh1wq+5HY9o11WbnMF2IspK73jPWefhw87pnrk2L/Wxssy5V93zG9EGPQPVg8Nb+5XHQf2urG8ApNGN0yxci3rw8e253gPMs68/Lxhj9lza01Jn9OMcSyPR7c941vX76htYHxkeenZ/ZaiCK01rjtD4Y4xnm/DxFiVG/6rb1wuU6kkjjSxvX9MxhhWq/MkyUsoo3viO5pO+wpkdrB4oQpCPGrd/DVSvypZflm4vtR+N+4fqX8tPHWZamDXnUKJkY1EqNXzDAcObEdmX3bqL1iLPgzM3Q4T2uD1NWTbIwhl0MfnXJK7E0mN1GKoyikLURHb0K0GirfcgaxLJcV7wMhBMTIXwfv0Ia9kYQRbQr0BuKFKS5c1/dEZzj6TjCeNqoegmaP6mRVKj96B2ewdmD72YjwToOpUemktUYPiUW932ZoS68Pja5xNpzDBp32tVow4sAKbtFDlFIjDalqru/qnfrzjGYX15IQY5jcevqwDc4OwqTe8YaoQr+/ea41okM914bgDYJ686Sj/sC/ic8f+Jn41L6cg9oQ/u7f9Z/m7/ztf4eCRN5kjx1GgW3TfJReGw2oZ1c9Tgt5PzTs2Cme34cAogj+PqAkxbuPqoCQ4CwyTqlAiEwhchxOCTKop8MYYZkskzMgDruobEAq0GCZA85ZVhFybdxeXvFuYp6EVPKpJc96kBiD3hpOhOu8MnrHB8fYdcQtxrLMq4YB7oOUsx6arCJ6QwjEOOmFGSJ+mjHeaRHbmnrtpkAQQzdKpHNmAoRRO83qQ0CGZYjBWMeeDrqRU6M0KD3hiDjjOM7T6OSCelVKIeUDOxzRW8WX552cM/McSLuatp21SONMj0+aHWUsuXUGBeM0eLG3gRuioAU85sSvK8q8Y5uwzDP7SHTTP3d5pxi14A9DgQ3XK9OkcrN5Xj4DFaxYKp2tZRY7UUqmDPDDqawrBPZHwhmgRuYOtQrjFbxFH7wTKod88Bky8gd+4Q/w+/9rv5//xO/8HfzFP/8X+MX/2f+SIfAXP/5l9rL/LG6bL371EyU/OvRuAIdzDucawXtYDc4I+1ZJ6cBwZpiVrPRW2z/noPTREWOoSQtTRA3V0UfssGBUghF9oEhhAN56xBvmMOlBrFa6mO9e34CcDu3U2VOqlQwhBhYXVYaYG72ojHCa5pMqmRXAM4b+fQHvJ4KfWKdJoUUp0Wyj740lzlgGJSWQinfTGS6siHWkc5QN6ZWlaYFbW+K2bajEvmsotZ0oRX0vk180IDzvtJIR7zHBIRilYOWifkzj1M87IIaFNAbiLQOVSOq0HqZlOSMGlEB5XRbWecEaQc6CVoxKWtrQMNdcCtSGmxf2VFmeBtadG9n35Mdff3n91cog74OSC7VqzIu3niMf1FLZbhvHcbAuDi9Wab7GU1vjdr8xTZ4prAqZMU33yVpoVfDR4r3CcZblql42owTUy3LBuoGxntfHQ68jBr0K1hnGGBz7Rq+NZZlZlgUdBRSiE5w0Xu83vnr3njBFhV8ZwTLIJRFcJISZ1ivl2E9zsLCnfCL/B/tDD5PiLPfaWOcn9cOMTq6d0XWPw8D1eiXGiW0/oBfmuHCZtfhtvbKEwL7ftWkxhF4H1VRyPSEIXYvH2iqX5Z0GVhvwXsjpUJBDKUpVNBZxBu9U5rvMT/Raaa1zvSwc+wY5se8H1hiu80ItCR89qWaMDII71QFd/YXHsWEslF45UkNsozf1naaspDtjFfzz6fbKFCe8HXin2YXHXnBeISS1FqokujekvZDyO8R59TH2doJjMkjDOq9UIXdecxu4YVhiwMqZ2zgFfaZaQ5OzKP9+/Q3rPwoSGW9KnHOPs2KJNnLYBEPYj41t2ykpacyQDLwz9CGkVBh94IxDoiLqteg11HEeXqTTO9Shh7fcKsuiMuPgI2tc9aBXEnNUKT+d0/sl5zNYNIZKhirPysE6rQR3koVPCM4YotTH4CjDs2JJuXIcd46669cYg2UKuBCIwTBZT3ade060LsxhocjAlU4T3fsnE8B6ak9qPWiD1hshLoRgdcqGVQox3x2GrFWpU3QGhtVDrmj0VK8VsQYTukqjO6d3WjuEMhq1dIy3RKu19OwDTsD2ThBz1hrQBvT66x/UfpZ5al/MQe3zOqUgFD7nXfUO5pREDQalKcxDjCP3wZEbDqcTHFsYtsIQnp7fc388VP4k6jEzTnOThhWwHWMHRznOUa56UZZTRhiC1eA+q+RCc2Jt5RDixeKzRYzgjsFj33i533l+vmKsxzktjEotaoouG844HPDuciUuV26ixv3eBvvpe1sWDeeN0eOsYd8zc5wZ0mF0+hCcD1gL/SSrOdQsmWrBTpan8J6eVfb1RmGc5pnu1B9mrGB9JD/uGIHcKyk31Q6LqLHTWKp0xKyawNo1VLQOj/gK5owg653b44EYizeOWjNO1OSJKNGv9sz9dgd0g2ytU3NhiQu56LTLoDIAOacQpgnSOpPxTGFGGNjWeXp6Ry2F4LSfeVkiU5hxcUa8wXpNsHcnvOHeK/00vt73OyXtrJdnYvCUWjWIPEei9+TSGRX1yan7VSMizikeTyBO+P3/6B/g2A9+7z/w+yDD//x//Mf59//Mn+bf+Pf+xN/qu+XLX+d72E6QSDkx9NodFKxRuYcxhpoSvRas0/D4WhtiO84aatcHci1dc8OsdsRCCJRcabXRR6VUDb6tteCCx4ZIXBwjD3LWqY+MTrQqxRhNaBUQhxHPcIYjZ8TANAcMHcdg8pEQAzbq4ep2G5QxCBGGNGprWCO8f3pmmidohkblOA4u86LSNRqPpE2ly+UZGQZxQjkUVLKlnVQyL/dD4yiMIWWVahmrnVdsp9N02mICwQe2TcmsuTaC8SqZFnsSHrVgdV4zDLtU8rZjvMf4oNtiP/kCfZzZOipNuUT1PgSvpLnRB210KhUjgVI7qXUQS0o7z8sMop3b/oab/H792ut8j4yFJoMjJ0YXfIwcD70eSson4ONBSyu4Rm9KQWu94r0lp8T1cqG+oa6XyP3HdwwdmiLxYTAFT9kymMTiLbRDD/LSuYSFRKP0rkXe+Vk67/Eh8Hx9UnT3/mB4S+1QRSfV63pFjOGH73/AT779K+z3O2IM1x8+U2vl20/f4s3g+vSenDLzMuMAGZ26PdiPzBxXpU/mg1QOPn78xLSuPF2fGGYwGgwx5FSoReNoWi8YJ7w+Xgg+sMRAfmSmeaKIyrWCm/Re6hvTPJ8ddKXlyUkyMGLUDpATo3bylnDR01SMrUCskvTwd1RsKwpNcZbbIzFaJcYVOyoyNGfwEgPRO9rQve1IOyFYtUY4pwRnKqMbUtXA+nW9INby7eu32B7Z2w6jcpmfWeLEj//yX8a7QFzU5jB6w4ujB8vtcccvM855laXlG9PTEyl18jaI9cTCRuAC7tmzfPwA9UUbaT/5FvM6sd93tQ9878f+ddfoXQ8ICNYarHRarUiptFTJKeGdNrGj84izONtpVWEXaag3GuDzGeDM3/MhQFY5ubOCMZZ87CcgSwEbtRekG6aowJsjHSqf7AUrjrQ1Sq1E5zAyqFkjAlp1WIkYY9h3Dd6++OlzrrCMjtCV9iiWWirLsuKtkhu9hft2p46GGEP0gcfjE90drNf3mHminZllxuoxw4qh9UxunbQdGGOYpvlzZmgbBWM8tWW8jbRWsNZBFyqVuu2EoMovI9p8zCXhvVflTh2krSPeUavW3g6HdI186j1qLI3r58RufAfXGV92U+LLOqhpw/27LmyHoaHo2CBcrivHqDzuOg5dlpnbp1dFeY6KtwY3DC0XnI8453m+PmmhI+bz1621sq4LwTmV5oXAFA1rnIl+Yp0WwsUw8uC+H1zeTfpXT5mKUgNFkbdA6HCJE49U2R8b+36wXiYed6UUhhAprfHp9Ru892e3veBMwE+R0gv3l53RBGPg/bt3WNHNMgb93qPBaI0QooY9D2XhXJYJZw1Pl5WObuCl1M/jWWst67pqh6JrIVtzJ9eGY3DfNqaoZMWcCs5ahlUsay2NsmUu84TpumE/csbPE1OMvD4O7OgUrfIQC4+ScWJ45A0fJtK2k47CIymhLJiIGdop2o87Y2gBLsjnboURJcuZrpluU3B477jfN+idyxTxTnHI0zIxxRkTLblWfDfEGBhdD2biHKUmxuhs26ZI8QLLtOBGIxtDCgqQMEYYPWImg60oEqifHrY36Mh5nU5h4j/5d/2noML/5H/1P6XmyvPPP//HfIP8xltWDKNAK51aG71kjDimaaafXvVhA/hBXrJOb5o+tEMwjBPNa4dFjCWNgy4FWyzGB6xXaWvtmlV05EI6HtgzK6aPwuSvvNw/UUs7o8YsboqUbT89Ix7jIsu8qib/+ESqjbpt9KzkKCdKnRoGpmUluJ3WDdKFOVwxwWIRvHM4PG6aCFZIacMZo/Efh/rJMIOaCvM8U45Ca4Mta8e15ETuQz0FdmBENzFjB36xyNBw8NIqUkCMQcTogbUmtVyLcLtvGn3RBuu0IEY3/pwSjEZvAt3h3ZkLKXJ27TWoPkbHunrEeKL1HBzUDmZ0ShtUMlpmGqwI3nmcj3qAKDDemm3fr191eeeRXYvnUaGkzKfXGy/HHSOBT/cbow16LezpIMYL3UKvSUm59w0bDNZZvJ/59LgzxmCOC2ILX3/9RCuZMM0aijvP/PAH73k8HDVlLFapxnHFWsv90GgZz4IxB4+00QZcLgvRB9Y4sT8evHt65tOnb6m9sKwXxHumOGOtpbZODAvRTzweNx73O9fnZ95fnzGjEc89d7IGxlCv1rowd+Hj7QVvrMYEvOW0CeSccNaxl50pGiAzTxdq3bkfO9t2ZwxLmCcGHR8msI7gNbC3iHp3XIiMPshpY/ELViypfGK0zpEMrTWc89z2OyHONMDaiAGenxzBR+qRFOtfHO+WhXfPH5jnRCuFXA72tGEMxPmJlDJBkwnZWmJdJj59+4l1XdhbxTnNYd3yjneB3jpNwHv1zLeRCD2wbTvGeRjCV199UNT6Ucj9oJmBD5HL01fM00w5Mo/xkR98/Y6UC86v4AM9owqRjKpFJljeR9ZvnvjJj1/5+Jp5PH6Ms5Z8VH7pJz/94n07P+v1Ib7nn/iH/ls4dPJjGORW3lJoEOl6iOiNEB2lGpw1OBtoJeGdxxSjREgGtXbWdcIMj9RyKqgWjHSm6Jli5BENo3fKVmkOsIUYAut0odSNaXXQDVYGTsCMBk0jZ3xwBDPhouOyaL2jVG+LQai9YLrGJbXP4I9BjDMuDC7rFWSg7YuhnrWhwJw5RpX37jdqTYwhTHOEPtFK4Rj7ebBUQnmVwu3Tg/o0ME7lyqANDYbaA8QMZrPSRJulYhxTcAQn1LcogqwUzeADYgajV3oe1C4YUaCIkUFJjRFVCdJ71eZonGlFG2TdfNlX+5d1UHvzNZz4WKoeUDCaRN57pzYN53ukQxPb+8AaIdigcrpgIEyMk85WTvIZIgzR4FAjwhRmpuDoYcKgo99pXXlaJ9Vzj3MIa4Q3vgkdxmPASTQjAhbMIrwbC+XHG7VkTG+0qp0G6ZY4B566nuKNF9oAt3dG3hHRrt7TtLJOV173k9rYYIwKxpOS5pPVzin4FYRO6QMbFrz3zPMTIp1vv/1GcaZWPTLTFBgCL6+vjNPcWs9DEg1CtAwKrWaelgveeY7OGbxoaQ227eD99YkjHewtY70l95VCI21VCw6Bx/bg9fWGNQa649gLW096cBavoaSt4tAHT5hmjnthtMzlOmOH5oK0o8AYrPNEnMIZtOsxxjBby9NyxchAxuAaZ56enygipJpVukrn9b6TaiePjVQKzg5onSMVHj3zTf+Wp+XC7A3LvPBoD+yiSPLeF9Z3BvMysFf1JcpAjdgVPawH9PMfsPjlS7uTvohljeUf//v/MYaDVoVaGhhHH0kpdpz3iXSuT88aNl0TzntKsIzh6UyUnqmtIQOss9AquSckn70doxP30vUgJmFCrKFXsA4+fvMtuR+Y4ZTM6AatJcQNzYjxHlBADSLE9cq237HW4ONEzYX3X7/n5faqvriTyLXMs+a7+Zl5CUjrzPOMjpszMU54a4neqczETeoXqge5Fm7bnWWZwLzFEgx8DEQ3n+TGQWkZY9X0ZbvFektpB2BoQ7uauZ3PwaAkwJqVRluLAnRwhmIG+fVBax0xcm7k4/QtqNRzCuGE/RgYFYvlckquWx9aUAzo0njNlWEc1li6NKxztFoYXelbY3yvefy11hwj/7tf/D/wm3/rb2H8ZXg8IGcYGh7Ex4+fyKVwf2ig6KiN3g8I6i2urTH7Be8s3hle7zeCC5TSGRwIhneXd7x+/IbJBUK0RK/P5fzI5JJwtjFfrvS2c5nfE5zh9a6gg8uHr0l/7S+prE+E6FS+v8wzt9dveXpa+PTtDW8sfr6SR2US6GPj/WVWGToN75XOGqeAb4PttvF0ueCcSp1aqbRulES6XrhvryATIoPLdSXaSLBePZ7zDKPqdGr/xBIjY3SmaSGESK0KwLHWYe2qb7SF++2VuAaM9Rx7xowTOCBKnjPek3PSUF8xhGkhp/oZ9jCsY4kzUTyHZL56956UHhjvNQ/LB9IYTHal1kI41RrrvLLvCXPeJ9fFaYMFz1Y6R9GG0rvlA/2Mr6nloJZEFMf13QetA+ifM9reUqDmJbKYmaNkQgg87g9a10O19TOfXu68/01fkUti2yzlmJhvAu/R2sqBvBfe/dZnkqm0+ytiFA3/uhXMvBKm+LO7QX4DrB8+f80v/MIvYJqhNGi9I12bk0bGeUTvtJH1GX3GHXW0Dso5YUZX1H5/myMI02XBRp3U1ZZYJo+xivj3zdF615zakugIpWaOrP7pxc2ABk73pvJXOeWNgsFMhikabYYD1hguy0wMKh/ctwK9YYZhnHaD0QXpWgT1UtlbJkwOg2daV9iLQvesZZoX9to5StFrVUQTNM/cVGucetKbo5rKfb8R5pngA/ashdV01jUWyqjUkWFwMTIQMKoka71hRQPAo43I6eUUo/LreZpQxorQStZgcEQPi7VQu34mufDFT4+/rPLyTfb49k9zGv3yoObGy8ud+7azF81U2e471EKMK1E0lHrUgoghlcwUouJNZWCDAyxRPM5aLuvEOs1KdRvawbZWFOM9NJsML1xCPEej+o/jPpiCaFfqjA7oSZPb379f2DeDteBDwEtiEwVdOOuIITCGMHtPRTtw3nu2XW8oBdFcaT2Rj4MtFVLZuVzfEUIkxPMCG12pN6ayl0QIlkYmPXYMlkYlOsPTeqEP1b6/Tdhaa6ePLSDOMKQxTr8NfeCcJ4oQ5omeK6UU7eAPVGecNj2MpR3nHQNLqurhOfaDchTS6Lz7cOGv/uQjpTWcWFzX759LxThDH149duxc5oX0OLBGb8L18hbY+ZZvM3AhMlvH5bLyvF6xXmUzl3kluIAznDfxoI9BmDpp2+lFPQ7OB8TA63FjT4leobdOiQHQrjTFkcdBSo7+yTFPjmnTS1MeqLbfor61t9gIf167y3/M98Zv0PU/+CP/NOPj+R9ntmFr6s2kD0bWfy9SlOQmqFnZW3p39NqVFlUz1nNmAVqs9Rwp6XXtLGJBuj1hGQLj7KgNxdjnnHC+4YP7rugxhmH1+SCI4rYPlSZ6sZihU147W0puxDjTOtScMSh4yAaVIRsZGK9SMUtT7V9tzN6wrvNZ0EGtnnZr9F6x3uFihJFV3lkFJ57eO/OswIeRG6UWeteQ+b1oE8OKgzHw08wiwu3+ACzdgEyGS1yxzZHroU0GQWmZbeBEMBjCNOG9YIcgoj415yzeO6L1TLbBKIweTkiFY/TMI+/sTUEOw6pfIPbK6G/krvPzPvfY79evsHS0i1jRa/D0kFhrsTYyeOG2J27bg2laWCZPTwePPVO6MM9XljjTaubTty+kmqnlzoev3rMuMykneuv4EGlpx8cL7ahs8i1ziDgL0U9McSKe8njdjwwjQ9s3Vuuxi5LaSsocjwfWxZPOK4Tg6B0QePf0gdv9EzF6xDtGaazrB8qo1NJwQKczrGUYwbmZ2g5K3z53041YrJ1IOeOtwbtICJGUMu+eP2CMpZSDPgbLNOO84Isj+ECrnSMfuDgRp4l++l1qrXhncA5qyezHQ2N5gKOUE0RV8dF+fhat00prO70WxFmmKdIGpFwIcaXXxBSVaCnOUdJOb5XWO9frO6Ypsh+FUgs5ZVI51Ls0z9jjwbcfP9KGqOeNwWO/0dsg94z1kXTsXJ/fU7LaBwBy6ozR2EpjPZsqlc7z8sx0eeLbbz+RjkNh2cHwdI3klHnYAxciqTT6w2AO9KDmQd5DXISf/+orysf3jJRJj8TVCDWrDPf79asveaPaGlVCiQhiCs40vFV6rlTdh0LwlKLZZCUlRlMytY8zYXXsx86+73QqFqWRC10psHkwumGcVMNSK4bBsl4R1LddWmddtc50Yumi4C2hEqxTEA5Cp2oT3iuEL57XUrSGYQ1xEaRUtjQ0ywyDsZbHTYcQzhhaaaRHRkxncgFmp7J5Z1jcRH7dtJ0gQi2FOgqCwzptkKzLBeM8n243zToT3XekG5xRPkSuB85o1rGy5DpSB9bNOOMxTtiPgbeWVgajF8CdCpOOM6htIkyUqhyG3ho2inoBxdOGYa+VUA2X+I4lrGz58bO8pH7V9WUd1AQtfE/i46h6CEp743G/8+2nb3lNB0fpYK2SZVriyBrE58xELU3xwFb9UGIsLqofpfVOGYUQAt5HfJyYoxYrKlW3hGAVAOL/Oh+8qIQ1PzqlnAe1s/ihQ90VQuGjTrLGUJ9Hc43pDJb2zuGtpeRC60LaNp7mleA9c5h4rQdbPojds+2FOC00BFc63mpWjXMOth1vDHOc6fmGMUrZ2Y6DknUMXkpnmiNx1Ry1lMtZAFhSKfQx6H3oRivmpOpZaumkvWCiTh33cqjG2noN7xwNFzxbSmy3G19/+IoYLfeU2G8bo56RAt6y7QelNA099CDWYrqO/kGorZL2gzlo0nRwjpQT7sx9MkaDsnM9mObIvOhDal1mLk9XYnRYDOtlworl9Z515H6GWVsf8LGRW2HfH5R9J4aJhkIQvFfy372p8X5eFlwtNBd0SnaZmYzhyEPlBBn1q71NVx/ACmcF8j004VdbVX91VKaHgRgj22NjtI53jrwXbo9PYAfGWRrtDHjuDOnI0D6yHUKqRYEWYlCKvP652qqaskW1/L12Qgz0qgeQGN+wvANrPL12/BToo6t8YkAvhVaLKlzHwPsZ7yYwjXH6WPKxA8IcZ7bHg+E0F8fPFh8jDrBj4Jwhege9nm4C7d4jnBIxDQ8e0tj3pIX1GNScMMYz+447ya/OOXKqtNppvVJTog00tiJM2GUiJW22OHM+QLt6Nb3YE0Ki0kZv9NklDForRKc0PnphjIThgunf5Rfmrt/TGIubLCUn6gkSOfIDyY5pWjE2gBGC10OzeaOnfn9f/IqrtMy/8n/5P/Kf/dv/Hi7hGTcp1fatoRbjzJF/Qh+WIzXMANM4iyUFMdWuUvcwXcj3jyzrTO+NIyVtpg3D0+VCB7wPzCHiLVjj2e6JUTPeqLTqyLtm89WqTUEfTr/LxJ42xhCCd8zTyuvjRYm580oelZx3jNE80lotbZpoInTTkQZPlwujNVprxFmn1K/7nd4bS1xoLTHEsD8OnLGEGEHOoHXr8E3Ya8dJYw4LR/4Iot7SNa5aqJKxzvHueiVOC6+vGqESvIGuyHNDwFuH9YZaO9YFDXunEVxkDGHfEyKFZZ54JAPGYWzg47ffcomeYCamJaqH3UX2dGjX31h662zHoQ1XMdRa1e8jFu89n15fOJJSIZFBzgfTEqmtkEql9UGpidobrlZKVuy5tY4QPH/ll36Mna/E9xNjvL0/ljEGl+uFVjsiho7F2JXRtcrttXJ/7YRfgusCZuW7pmOEf/lf/Zf5yV/9iTYeTzl6vcOf/6U//7f4rviNs6KL/O7f/rtZ3KKbWxtYGQRrSKMhoymE5nWji9KsYwia5VuVVq4URfWDja7p10P0v61zUGFdZmhFMzbrhjmD7a2xBGsRLF102lVLYzQBN2hFY1gGEKzWuUZgz5t+7zcbUKnkVDBB8zJrrpSmYJFa1SoTo8eMjhmDYC1unqn5oLakXIPeScdBypVh9M9ZMXTR63Oy02c5ZW1qfQhjEJeItEbviuRnCN16rmFijKg1aa1YwDiVSoczn61Xnb4NoJmunsrcsNHh/cQQBSHZMVRWI2p1ojedclIpNdN7ZIkTv/B7/wB/4k/96/zf/93/28/smvq11pd1UHvrUJwHttE05LobDbS11tJKxhiHCx4jjWNriNEMi8fO6WvrTN5jsBhvmaYJRlcZg85dAD5nwMxeMF6pW+KgFTBODd5vMoEmsNfGaOa7Q9o5aUMGpQkhgG2GEBz7odLB6xR4vWcQYZlWHv00YHrLss5IF5oxUBLRLzg7GGhBW1rnumg3O5WK8wEfPN4YrjFizoeDf8tut54QPM5bsEIZAxMtvs4sRjdrlzKpNRCh94wPFoKn1Y4lcN93Ao7JGsSo/8d4Tx+Dx/6gtqw485LY7nfyYUmt0lqh5F2DD93M7eUMzOyNYYTKwA7Be3cSABvNCgxDK5mn6zPOe2ouqjkOQZH7feHddUVsYFom3j098fXThd47YXZKmOvCVB1sb/hcvcFb7dwfD26vG2PAdYUtJ45U8WUQxNK8U8qZNfBoPK1aVFgz2ESBEH3M+CpaeJ/UT57Oi8idv76HPv7Kq53Ex6YP7ykGrFge7a5SDKsSwj1vBG8pFUo+9M8TKX1DzNsBX8mDtXaCF6Zl0o5dLlhEIx6GToiq0QJFBkyTYrX3dOgp/qQX1top6Y7D0WvDWI2J8E5pqm+GbcWkB6yDvO0KIxpDPZvHjvP69YNxuCFYgegDS5w59p1ROnYylFI4SsIGRzw9DGOIxgkMhYd4PyFiNeMqbbRRz3PX4LHvNDTAvtdO64O+J9wUuD5dsE6Jj31Utu2BlEGuBzFOOO8Z1qjMcgwQo5ueCF6cykCKkiWt9zhOfPSJ+C+1kYEtqYeunFlvxgYtKvSPnRhoQd7ocu1ncdF9+au2xv/5X/tX+Kf/iX+GS3+GobCdPgy5ZF7vd4wdOOd4PB5Ef6HLQEIAOkfdaa0w+8j16RkfHDFYSjpoMrQYqw1x53PXOqIPBGeYpgXbC42Bc5Z5DgiNVDtxDuRUNb7CG5yx2K7P/yUErsuC6vEsPgbSvlFb4/X1BWONKib2grUBGxy9NKwPNGk8Hh/xzmKcPT3jgzEKk3cKnnq+8DiyyqO7MM8TpXbCHLg/PvJ87hGXZSGXzHV9T++dPd3x3vHVuw8477EM/ZoY1nXh2B+kevB6u2mT8iwOl2kFZxn9QLow+qDWTC0DG1euJ6Cqn2bawSC3g4YQxsQUokZyHA+aCK+PO0c+uI4ntu2BHcKeCtiAd46WD0WXB0dtjdwTJauK57bd6c0Q3EQeg7zfiHFiPw6eLk/0PjRkWxqldUat+ODoVTAdphg4hnq4y5HpdbD3zHq54KyhpM726Fx+bBjvT9/1Cn/8f/HH+WN/7I9xu91+2TX6Rsj8fv3y9dXygT/0C/8N3l3ewye1RhhpGCrWKIjDoCAOka4+sA7Beuyy0qSSUmX0xuvH25l3KEizDNNwXhhGieXBqKy/lQbDYE4yL6ekOHed5tbW8N7zlgpmxGimmnFYpUoxujD7VWFdLVNKontHSjo1r6WRe9MmaUftIkdhil5J5dI1GsNaauo8tg3nNZfYWf2pLR0rXety0Ym6Zvsp0RIE6zxTXIjSQYxSas8YHpUvW1pv9JoxbsY7TwyeMQb7vuu0TSBX1Yy2M9PLicWK0IwocPCMY/JngL0RHRKopNvR1xXn4G/7uR/x23708z+7C+rXWV/MQe3D8wd+2w9+mx7UTjPmAGqD2nXjsS7Qh8V6j5XGkQ4FiLxRCksmyISPjpYb82VBrDk7hA4XlIL2envBBqdEtPMQNrpKUHpTKmIt4CP0AlK12BTn6Ba2ClNGNe0NrD2Pfg5616PgtC4KWjXC7Idqaa2htkKQTpwiYrTDtz8ezD6Se8cGR62VlCvXef0sC3HG0wW8dczO44zlaV3oJSOjUspgnVbiPGG90n9aK4h9yy7TiVpcAtI1ZLvlTh/Q0A5OzZVBw7mZVDLBR5IUHg/N/9j3nVIVme7Fst3v32WLWLDewjDsj0TJmeCMytf6UOIQ47zglEo0ROMUjNEbOcaIE0MtjefrQpdCLw0xlnmZuDw9KymyCfHisYsgBVrWDr4MaDXjTSCnTGudVlQ61xg8jkQuhY8fPxKC5911oVLYS2LpldkF9n2jFqeTi20nXmZKzqyXFTdpgLD1FrOITtUm9NnzvUrkV17nXm8AK4PZqjw1WsuwXv2DzuGswVqhjYH3ESuevB2MKpSe8MHScUTn4TgwollKftasP9DuIMPQhwJ1clNJkx0G8ShoQ/MywDRa01Dp0iq9dYJxjJPwZoyli+g1bbRZUk6MvxjNgbFGC9nRuooABJwMgo/YPmitMscJ6RU74HXfSXVnna9Ml5V9PzTKYgyGgDOGMCt6Wdpg37M+CAGa0TNmg3ma6UcGK7RcqEfCzZ5eMv1EOI7xpiFXbnTPWTuNozO6RmVYK7RWKcMQ/UQMgegDcdLQehsiNCitkLvSYQ0ea/TvWmfxIWCspWSV3oDKVz8DH7+fqP3a64wwqAkej8pjTwpbGmdjAui18dgKMQ5qTVhg9gpaAp3kXC4LPRVwjny/M08zIpBSZV1UHiLW4UOkD7DTivSmkTDDEOcrj5dvmeeVVB+8HgcmLGAH1zDx6dMn6hAe+4Y1EeMnUs16r+XMyxjM84x3kZQbg4yrReV+VveAaV5AFNttjT1l0JkyOqU0wjzr9clgfX7WXDnbOY6NeVp5pMT1+sxv/vCOv/rX/gqCEl69c1gxXE5o1mPbceIIU2BdZkbtpLTxfL1Qu6osvnr/m/j4+glLx4eV3god4d31PRAI88LjsWtT9Q3M5TWWZlln0qjYminHxsvHb4jzjJsu2DY49sS8rGzbjdfHnThdGWaj90Gule24c9/Vi/vy8qBwkI+Deb5y5AdzjOQKMgLBGo4ta2PIaq7c/fUV76Nm0lGIk+fx6SBOE9UO2mhs264ZsMPo3o6jiFAThL/MZyjav/0n/+1f8ZD2/fq1l7OW5+f3uKGZZAO9T1splKPQhxBD5N3TlT0n0pGpKVPLrtLw0cF0eq3UUhh2MMUZjKqxeis8Xm6M3gmzZ5kjbjHUrM0zYwfBCt56zYk9G+QMzQ8LPjBaoaEh8q23z0wHt3qkdqQbvNF7xzpDzhk3efpdKcQYtKmQCwNLyYrRN5Jp7aDTSWnnKBm/LBhraGMgZkArtNwopdH6wHnNiBttUJvWZFrzqiwR587ps5DLhreR3oseNo0l98YaI7XoVE5jPtSvGcO5yWhw6Hlf6AS/D6GPCiI4cXjrmYyhj0bvg9IqaQcf5HMW3Je4vpiD2u/5e/7z/ON/+L8JL9/93lEgdzhKVq+SafjJYxzcXu+apyRCSglxQhggMgjO4+LMHGZSTUgdTIsG6Y5WMdcrxhnyaPgOtfnPHrR9DJZFNGMrgQgc26B0lPbnYbtpwWLcwDuwAa3SMhBUctQR0l4xVVivnkv3bI+D1ho2Wo6j83g8wFieLxeSc9z3XQ2ngkrsTMSYE8VatfQZY3CZZ6L12FE5jOhNZS3WWOYQMd6R0kEvjdrBWaFUoQ3Rrkjt3G4bcVEyV22KK9f3PCP3O/PlieOegcGwlTEsnDLLPhSnvh8PxZyajh2T5n4AR9kIMaruuTc1zqbEernoIFL66YmozFFNoEc6dDxvlGCHGbTa8E4DHS8xco0LdlLJzzydXXsB48Fn4WlfSDWc8rCDkgfRBpb1yn4cpJTYk34Gvam+ttfK43jQquCeAt+8vmIZPK0L7uv31K2xXNZTliO4INTYmG4B3p1+nO+L0V91DU5jbzQ8NuF+z4w2WPyMRMO274xeWLxmkrUh2v0zluAcrZ0NfIQwW+iW7a6m+8s6EY1nWSNd4NM3Pz07jZZRBs2ot9UNy+XU5J+sBt4t73ndbjhv6OlECA9AFMQR/YR4p13Os1DrXehDIwVcCLRS+PDhA1NQqt4ULNdpwTBIueAxXOcre35BzMANA1bx4MdjZz/0fm8WvNGD5ygNCZajKBBiyNDN2Fkm06ilYI1hmbQRdDjHsT2ouSJiz2nBYJ4tactQUMS/VUkizYIdjFpoVSfPWSrvf/RbuSyedZ1BOj4EejcctSkBc6j8rBkhp4wPopIvgboXxMEUPGNwRgLop78fO1+4T/tnvzo4gSkYpiDst0xPnTlEmutY88Ttfuf+qePnQcoPZvsBZ2cetxfMpfP67cG0LEQX+NHXP0ezjZQ1AFp65yiZlcGn1xfevXtHqol1ubBG9UK+PF7wMWKCI64TBM8v/fivskxXjK08LSuYwcv9hdwOPsyTTp5N0/xAcczzyrEdnGUrtz0jbvA4C7SGUErjYiNDBEzD2ZXJDUKo3B878zwT3UquhY7G4sQwYSyMNrhOkX7KKUspPF2e6ai8uZYDa5TanPY70pX2duwPzUqtg3Rk1vmKE2E5CZTCILgZvzics3z69JGWBsMa1jBTWub5OpNLIvcGqdApbOlbrHS6nyjd4hxcny+MAUc6OI5Cp7HXG7RFw4xbZlpmjlr56cdvWC9XSrHM67OS7kT02RGjFptF7QbWCGU0Bfw8rbSisC0zIG8b3p2a/NLAJlI58N3z8nrjennGz8Ke4dGg3GD9KyAZLu6CNTq9+H79za8xBqMObUSedPJaDXVAHyq5ElGLSikHt7qT234qS4UjaQ6tF4uj05ruT9ZYRh3UeiCtnE0xVRdZDPMS2V4f4AYSDR2hD0M6MjEKtVf1rTWndaPppKJdZHEWP0Uu/gJROLYXxhhsx0GoCu4oqWGMPSmVlU6hSoPyoA2V4LZaMF0wNvD84QO5FSqGdOw88kYfRoO2+2CMBNKptWCs5v+VqjJ93YvH2UywlLKpPNrNRB9hRMQOeioY8Ry1Ek1gmS3GOXpWyWPNaCSJGErtSOhIt/R+NmVBX0MGtwZwDmcGYovGBZSBO7Pwfq31s8pQgy/ooEbQAwzwXY5aP6VIYtlqYjTDdV75yTffkjYtZKwbROcgFZoIxgu1O+Z5ZjsO5jVqV910Rsl45+nB44KDAnGy+KEp7Uc+4SUFjjYo/ZRJDjjSSXpbLN4rwv5Ig20T5ggx6kmvdXBesA4sDhfO/LUDDGceWAjkeUAXck2E6AlEfErkkVhDoBDoo506ZqFLJ8aAt0KwC8FYet2Zw8yjg7eGy3ohZfhwudBSprZKDAERQ3Odo6jvBbE4m9nvGzVraKg1ho5m4lSETx9fdKTc1YPgns5MJmuR2jj2XQPDjcqgXFR5TMuJ2XudcBlDyZlx/sylajK9hiw66pkfMgXNt8g58/z0zBQj234nBgWsxHlmWmamYAkz5GFxb9RFe4I+jJyexcKWMs5E0uNVt/CmnahSB60NZh81o1IMqVTGgNvLC9FrSLBzlttx4O8HP/iB5gDZ0/vXRiWKY78nZpl0AlxQv9r365ctsSdBdaCbjd2oh5LQjIE5OCWjYU6iYVFNusBBUZmH0cmoZJVC6CQBJRhOkWGgpkNpUqIHcOsXamv00TFG8F4BCtf1wlus6PP6pNTVOBAZ1NQ5thvGwjRbrPM6adefhBAn1vUJEaMeWa+Zf/6ccBusoornyLpOOOOZvSfaheEG7qt3/ORbBewgQoiRrapBO9jAqI3cEna4E4KgpJpSCzlv2Bi5PM+MWjHDYIxTZLOD+22n966yZwMyHHEypwRFDeGjCdFHenfk0jG2Ma/f+UEbhkd64I2wLAulD0rvdOnUIRzlYIiBIeqzGfBIG14m3FPHGsEbq+HYQT3C/8K/8M+Tju+LwP/oMiL8jt/+Owg2IA0cA9v0l+mNGC17EUoq9Dea3Gx5+fZb3r278M23H+nPg3V9p4AYZzRs2p7SgqHZlLl1hWdNF+a44Jwa7rGOXPUAP4BHysRpIu8bfeiBSozlyBvPl6veMNYg1hC9Zz92gp+wxiMBlunCkTNYw21/5d3TM7Z3jsfGNT6DGTivslgfAq1UwDIvkVEzIpbLUyQXRWhLF3LaeXd55vndE9+8fMIFSyqZUcsZ8yFc1oXHtmtodZgQF8i5wLSwp404zbx//wMe+wuLhSms6m8rCiT5uCv44PLVlVQS90fGxiesCLNVgMgQ4bFlyiiUWjlyIzWVtl3nlctl5jgS07ro1L0keq2kUjDW0ofwcnslxECuRbHs1qg6oCppUU6/UZw8t9cbt33j/YcfgLc6VBd43O589cMfEnwgXiyURq2dGGdApw7OKb7de8v98SCEwMf7K3OP/GC5krLDBBg3kAv84r/0i/zJf/dP8qf/7J/+Gd4NvwGX9iLO2KRBKWdw8qnoAA2XRiyl6GHEe0XV9zZopdNrJ/WKM1b9iZvKEI3h8wHDWp2GN1Hq8RhqAdpTovdCI2sDPTpS2lRi2Dt2NgTnKLnhgz6vR6rEqAA5K57Jau6tNUav63QgDlyIJxhFSEdlzwknhsV76oBUGs7p6xsGSrM89ge3fadJZ4xO8BOlNR7bjhiFV7mgctqRMs01rHfYYeijn+ovixOrJFZRP7fDYqKq36yomk6fbNDJSjg2YIJyFVovlOKIwWk8DyBtYF1UW9DZ+BcRBupja71x7J1af/0stbem7d/q9cUc1AT57kQ7gKSAjjKGUhxrpbeCYJEB0QVkDEbrjKJBnqAXssqQBrf0IETDjENqJ0xwWRzHy51hjGYvoDqdmtBUd9HR6ZE7r7t2IiYfCFboTdjuld4LNlocBhHHliAEna6IAXcBGkRVpnwmAwYPNixK2PeDfCy83puiRp1hvay8Cxdak3OzLOyPnULl2AuXeYGh3cMuYEIgpURnsAZFevde8F6YphnOvIs4LZTacL1y2x7k0pjjrMbOOvCTOUlXhXIc7KXTR2OMSu8d7wPHkZiniZK7hoVax5EPxYAz8BZqruzbAxc813Wh9sJRFYHaWsM7lZaGqBK24A1uaOdDQRCcUrBGnCxuDOKkFC8xjngRzFWYB8h0vrendIgzrNeidUopWvS+3jc4C3hjDVOcqFK4bxuP7YDeaWXgouX2eMGKsNhFczoUN4TF0kqh2TdUrEAbKom9n6/h+1r0V1yjadHVm3pHo/MkMqMXnDHMITJ647E/aKURbMBKpdZ8NlQCjVfE1M9YfMzAG49zBh8creshX4zDOL2epA+kjXOCO+gDzRUrGaxTz6sz+tBGcDaAy8TJMbqG3BoZZ69eO3/eO5JTr9nkLM5OxKAEyd4H1nmC91ynleiiHgJlEN3Knh/sXX1vCAyjkI91uqhJ2jke9Q6iXx8RTDjzH0ZjmhbEeYWvNC301XPbsTgul5lt28/nn6iPrQs2amCoc45xHlwHEKZIcIKME4QwGvf7jewVQLEdqmI4UqWKdmpLz1QxaoCXgPMRc25uLjpGH1gLUdNQaKbz//zz/w/q94Fqv2zF4Pkf/dF/kR8+/YjxEYIRorXU4yCnA0GYwwyt8e23d8R0Wh2MDo/bg9Ez++Y0B80GwuUJI1Bq4rYVLvMKHaLRfLB1XhRUcFJONSdzUFrTg5F1iHWUQ/PanAmktGNNwKK5etYrxOdx3Hl5eWFd6uk1UeXH83VltIpQ6aXgrcUbh4jCMnIu0CGLEGPEGhSiADy2jd46795/hTeOlBKzm3h+vhKs5zd9/RX0hlhhf9x4/9XPUdqAXokO1mXFiqV3w+Q8x5kx2HrjEgOwcrvfsVYYRljmBWssxlju9ztHrup3sRYz4Lqu6EPdsOUEJ+EuHTsDw7HtXK9XfIxsx05JhXxkai/cbh9xRkilcBS99p1zvHy6sawrzlqsM8QlkBJQNaO0Uam9Y5wjeksdA2Tgg6ePxo9+7ofsSfH/IXiqKPUuHQe5aYEdlxWRQX6bWmCgNVo5KHlijlb9px3YOEEYP5Nb4DfsssbxWz78PM/uGfIpWz4KpRXG4Dx4NBqDXFTae6SsPvnlQqMzzGB7fUHCoNTMoJNqxpnAZGbCbMmi3rPSOilprmitVeXJozNO+IgVqGnHBhic+5+xGCdMPtDK+BxHgYFeMzEIqXcslikGHvtBbaeypOl9IMEx8sAYR6dTpKvVRoR0xlcgQqqV27Gz1YPatFmU2SmjIVFjtXoZtOPkHYj6yNVrN6il0HvGhvBdzh/oQc15JuPPQ1hju98JMeKc+vRCcDQG5QQtTyEiVhtCvVW1JdlB71nlxM0TQlD4Ve/Urg38ftQzgP7LXF/MQW2cJ+g3pLN0sF0765wXFAg1J5zzeB+oNfP49MIUJ0AYQylyOonSrJroHenY1LvmJu06D8vqAsYatpuO7kKIOjYVoZVOa2eAYW3cS8OgxVQInpwzZSs8LxfW2Sm6N8G0CG+1FW+HNNBCXj3gmNM2osASwU+RRkPaYJo1M6y1Ts0dCxwkLV5nS3SO1vSG60MlhSJwvax45xR+QuN47Gdo7YR3hoHBusbYCwElPt6POw7RQrlqwWesw5yFqXee0prKSnrDhwlrPY/6yrYnUi1YEfa6M88LpSbVQffC/jjwwUPrbPtDOx7O4+eIP+lYvcPiJtqo2CwMqzrpI2141/nq+WtqblwuVy7rhcslYhYtALmiV+4bIl/AvBPmEZDXQRmdR21MKbLXQq6V2ispZw1UlA4GtuMg7zveWmY7se8PDI35B4HgV0pr7Eeh0Zi8otm90c/HNEctTWEwHbz7Xv/4Ky1xch6mhd5RKavNirTujfG2qbV8khU1hLcDc5jIoxPEaTNlVMRpGGYIitscvZ/0SM38ybWQU8IaPWiNAUEck9MLpqSEnS3BG4xYpuhpZeCdwTTLcn3G4hWyM6C8AV5F8E6ox0Y+NoIBP+v3NBic8SxhItrIu+VCMMAwDOmUktmHodeBd548VIoWfOTD0wfum+ZiGeswdmjuC4YxoPZKk8Ew4EWo9YQNwUmVa2eMyRka7yzupLvy9n66M3bEwmhZ9+EzKFuMkiWbdI0YME5l2029c6lVinRKKeRcGcZy5IJzBnNin631GGtVltCbTjbfGijfr197DbVbWCdE5zRDsFdq6+T0IJcdoatJ3gxaqqQKHz5cz4lrJy6emgqtD/KRmOdI7fXEsm/My0w3jdxFATtd8/V0AhtxZ9TD9nqnlIS3kxKTawZjmS4LcQq0UXE2UFM99xyrRELvsIJSH/PBdV5otdF6ZQ4ToymtLR0HXgzBdMyorNPK6I1aYV2W03MeWUJk9tqEjMFiaATv6V2oo/LDrz8wzxO9DLZ9Z5o90UdyrvgQ9H3aErOJlNrY684QYVpmQlg4Sub1fsPHCbpiyO8PzVxZppXgVF5v6OR8sG03cslEJryPGGdBOmEKvD5e2feHdvZBVT7WkHLmvm00OkYstXfSnpmXC7kOBEdvunfT2nnPQyrq68utMtD7bp0nrHXEEGnSzpB6hZ9Yb5BDtPEZZ/J+INbQUiYuge3xynVdsNWSbwdpjtSzTrEDmOCP/nf/KH/4n/3D5PLlFqpf0lrDwn/57/sv8Tt+6+/4rPxqVa0crau/ubWDPR/kWjnSTjm9lGGJGkdTClxWrB08dpBW0aNdo0unD08TaKOrnLV0jROyiqEfVEppIBCmiWVaMMZxpKT+K7o29oahcSAGoo9Mziuk7Zy+++Bw1jGFwFEPGp1Wm1rozsZnlFnjA46DXrP+wKiipYujtM7tyHQxOC/sR2K0qrL9ENXD54ChUzqOQm4bXRqNTslVfepY8IMpTgSnU/dyHIivGNE9tlXdD+lOm8D2zEA1ollx1uLfVAX6fxCEWhWCZb3HyAUjhiNnYq0cqSGjkL7gOIov5qAmb6b5wVsjC+ngrZDPYacxhmPPRKfa3NqEYexJRLSMlqjdYKLq0D68fzrlcAasYaBFidioyFwj7K1x2zaWZVCbmhkf+44Jiry+Px7q7cCyRg0TTE2wNnK/7YQQEGtJFaa31/7mW6rooQIUNuEVXjKAkWBavKJc2ynbK00pQcZSxqE38xhIh3VdoDVKG0yTmrOGs2dxNTiSdjCfLlda1w6qMUZN23awPQ5m55D1gpVEKQc175qBgGH0ShPt7JlcsWIoAgaVUu2p0Meu0sKs8hiso7VBqoVcGtAYXmk7+9ll/PhyZ5omPnx91QeIMeRUGKNzWWbyXhgewNCaSiSdm8ipaFCwVe2xdwLnxJOo1wegpmgBiaKH4LsShYwRhgym2VPuB6VVtrQTfKSmzBQDqRwc+aCcob3URnCWhpBHhVyYR8OZs2vTK74JvoNtg3IUhjP6vrW3QLXv19+w7GcuAsM4kIqPHpsTI2tjpNZGq50Q9aHeasdaz+iVsj9wRrAmfIbx9BOD7304c130evX+TGsqKq8atVOpeGuYo25ITBrTYYbh+Wk9Mfs3Pfx5PbgZ3OdDhumGgRZh3jgmF2hSESA4wduJuAaiiVymwCVEogs4aWBUDWBsINTC2DcagyGCNU6zoJywzBOfbjeFD9nIkbVIw6gcpdRGKTtP1xXTjd6TqJQ0V51CHikpLOKk+6m8U0+ZKtdQSYx2YJWClGoh+rextHZjrZ0YYqnn5G1vhe12pw6d3TXT6GJpFFovRB+5XN8ecgMRbaoJfEG7yxe4upJ5CboXlKqelnW5clk2TNt5ffmp0kRj5Ha/IziWy5XghWWKRCvE6Li9vpK2zLxEwjwx7ODb1498eP5AbZVSKo9dQ9KXGNm2g2meKb0yMBpN0Qevjxsfnt/jjMF2R3aBJoJ3qLpjf9D74Afvv+I4dpyH4D0hTqR0IDacygbh6emJ2gqjda6z0hWDj0ivSKvkkjGsOL/gTGNZVlJ+kHPhMj0jprN5YbTCu/dP+MmSW6Ulh7OB3gTn4OkHs96rRVT2N0Rlvc7zfIk04Kc//Zb9kXDe8M3HjxwlY32gbDtfPT0Rz9cPgjsLP0WCCal27kfGiBLk7LnfAhz7Ts6PM+/Tsm/bCfma+XR7xTmPFYOzjtf7nYYW3iVrMW1EY0daH1yeVnzNHOXg2HfmpwvSDctTwNrBuq64YLjdMhJnrPFUUzHOEybB4ikp8dgf+HnWQn3AS3nhsl7x9h3HvbCtg+cTkoYAM/yh/+of4o/8D//I9we1v8llxfDV89csYaVvOgRq0umieWalNJpAraqI6mdu6JEz3B8qt2tFAXgUjBWMeEwttNZJeae0xKggdlBzhTFwQeM3SuuAg9HJJbHMGvjuvMNY4dgH2+2BF6ukX7F4q5Ozy2WlpgbWEKeAswHB4A1cmNmyRuPklmmPhAsqEx5oSPe+a6yOiHC73SE6rAscrQCDarSZYsRhRSdmpRQNvheh13N8262SLk96fgiB4CeMH3hxzHamkrjnO7fXg2VZmebI5AOjaxacMY4pWHpuGGuwIZJypY5K7wfr+ow7CeC5d6yB1ur5mqqeCUTPEkt85u/+2/4z/Ft/6t/gZX/5ZZ+5eaP6/YzWF7OVjj403HYYfVWinUaRgVghLJGlV+7ekEtHnOYoiDGM1qllsJwY/sl6as9QGyZ4prBiBLqxIMLyFPHnTz5NE7l0HvuOtZ4t6wSG8mC73WkMMOBDJBeVJogoOtUxeH29YaxluV5IWZgWdHrm+I4E+CZ/fJMZePBPwiUZnF/4eHtghznDfHXTtFZjBTSct5Nb0+Krn+QvY/DBE5xSf6zxTFOktE4Th5s0QyrXhqkd7x2XeaJ8+6pAE2PxYWLyjiFWgzZzpremMoxW6bnhvIJRgsBxZPX9VD1J22gpr4379sIUIzF4xDk+ffOJH/3wa/b7HfEOsUKpRbtDGPCCaUJp6g8rteCnBeeEafJ4H7kfhT4clzGUYOUtT3OAJ/kuwuEtw2zVLysWRhiUTXNMWs30vOv0gKo4cqOdyFH153BnWGofg3V+Yr1EhjGU1rD2NKP7xKNuvH/3nsWsNDR3a3RhNKNBpbcv5lb6slaHUaA1GK2xp0I+KsaKBmK2ptemvEPs0OnR/iDnxFGaBtd2Rc7TOqYLi5+Zg0OcYuqtMdhgWZYLNnoNzxQ5A2w9vTVm5xGxMBxb2cEpOpnemL1jth5vVbNXuhYsVhxYr4rsU3r57v0zT++u5FQRBr1lXA9c1sB18iwuaOAVAysNsFij3rDL8kSuN6xAHwe5Fn76zU/0bRqQc6Fay8unVxBhWid9FqEbxbYfzFNQdDLQcqW1CtFgxOhExk5crxdqnXkzB+5HolbNZMqpKEksTNSe9f6ug5wLzRgMG3V0uunn6+qknNhHxY6AX68sp3fU0nB0nGgUgjVOs5vOOoKf7d72hS9RCfW5JwQDQQbeGJ6vC2UvxOnKT376Y/Z053Z7obfB8/sPjHqQD8B5ZhdwvhPffc3TZaa3wp52jAu83D9hjeUxDnyceFpmRktgB/fHK3s6MN7hw0ytFVpD+iBvCe8ck5/B6jTssd3pPXG9fkW6vxJtBCkYEbbXV2oHf4l45/HGkbeNMEf244Y3X2NFWJcLvSYe24PoVSacUuZIBy5Y7o+7hlf3zjJZxHi8m4mzRWaNYBkOxL81dUUn9h2GV+vC4yUzzZ5pXihFqPugi2U4wzCQ2kFtHT9NRCwvLy8MKazLzBRX0tlE7FJ5HJlH2jVLyjta2di2DesdYfJ8/PYblfQPj3j1sF6XK6PuWGPVtzav3LftpKpO9DbwbuInP/0Ga5S0ty4T0Rim9cKlr6RZC4fXlw0TNfN1CYEtPfjBD37ItOjGV4vSpI0DsZ379mBaAp3KOk/UOljXqyLUrVM4Ta0cd1hW+znj8i077fv16y9rHP+5v+O/wN/7d/69jB1yGuxn5FGphVwqfUCv6TMlOOUMCDkncsogg1aTNhKlaeTD6T9jnN5rxSQj1tFHxXRDHRljhL0dzD5inEATjpJ5chMiA2u0kTHoWDsTxOKiASreWvJeKDUR/JO+DoyC6bxlT5VcbzyO/bOM09VIagkrgzjNlNqouZFrYe+FthXEFx0+jMG2HQw6rg+mYD7XrB3orVNrI16iKj+ALkatP10QDCKNJV6prXDkRM0NY4RoHb0l5GxOSB/UoZCSVCtuAHZXlsTelWQpGyNEjfcRENMZAikf6l9rlnJUjgwfwsof/Af/6/xf/9//Gv/On/t//bLPXf46qNjPYn0x1eV/8O////gT/+q/xT/09/8D30kFA4gbiq+ujTEGIXpyvXNsGWM8a5yYlwBNiTCztzjreBwbezlYwkKvmgJvQ2cEh0cHSeKgjUobHeeCEhetpdRMSTqlS/uDy3XlODZu6SN+mnhe3zNyY7ROPioffvgeRIhPWnCZN0ne27tb0SnQ/fy9CGmDYIUpwrw7Wh3g7alX1sleCIFlWdj3ne3bb5mmiafnC7Vkes8YAqVkvPFY56m18Lq9sl6fOLY7wU36nk2Oy/SE0BRlbDrWGtbLVQ3lYjlK57FptwffTwiDIbhI73rgi17xr/NcYcD9sZNyxk+eUQY4Q90TMXhyz8TZg62krQA3Lk9XQHNsZDRSeiWaiXW5UkvGGIsMryOYoVlywzjEQO6d/kbYLJy8d/QwHPX3xKr5VqQS3Ex0lm+3G9Vo4Kgfjcftzl4PfLfkXNhO+pKRJxwboUAuO/sRqFPlaZlIWaW1923HmMC6GrwUvDGIswiekr5H2/2KS/co9cV0nex+ev2G6BXFLUav82Moqr61qoRCYzCjnOHxgzAcVRRwIALSh3aoe4OmmYi1JRgahjmoBB9pecOMxrHtXC4zxhsuNpKKusFr61iE56cLMQReXh4auzFUxrSEyFYyx6NhPSzhQjeDVl9Je2FZTlF2bfTcwU2MZhCrmPraBzkl9u2GNZHo1exfqoaFxhipOcPQWBAR9aeV1qmPB8G7M4AbjlzxZjktmZmUN5zxPF5u2rSZJmpLpMdAhiNMDus8zTdeXj6xzFdc9BrLgZxyE8MIAt3TOxy1st1ujD7wccL6SJguKs2pjRi04GQIPljiPONjPLu6M2LBeTSn6YvZXb68Ncbgx9/8NQ1q745hBm0Mat553DZeHndtBNRCSY0wrXinio55fYLWqGVotMgaMCZSjRaA1qlEsoyG9ws+eHLL5LrRS+XldmfykXs6uLgJaZntvvGDr74iTs/UlPnxt3+VNQa+ev8jRu8arjzUsD9fFh6PG2F4PEIC3r37ihACvVUW78lHotXKev2KVBJfXX6AwWnETav4aWFg2cqG2MCWCz/8+ke0Onh+mggz4D3lDkynksKrB1yUQ6K/Tv+/qJUTcQ27aNJ6rkpl/uHXH3i5PZQS+SS8Pm644Cml4a0gRnNPU8ps2yvbUXh++or7sTNwOB/Z00Y6bkqgZNBr47qo8qM1x7HvWAf7/unMKbQY76EbvvrqByDCN9/8hMuyUkplmSemqH6yefJ8ennV8GB3kmPFknImeMf1+oSLnosz/PSnP6akmfXypKqRMajdUPbMPF0otTDPF+Y4s35Yed1emeaZOC045xG+i36gAa/wS9/8EuNLZpN/QcuL5Xf/7b+L3/l3/S7GR0i5syWdWqecKSWTStHDGko1bkM+p6z00allV3tNzTTRw0quidHVW+yC5grmtCOSWeaZdVkoqXBs2kTsVb2PAqQ9s6cHwVra0L1jjhGv5zi8CIInp8q8OPyIpJSYoiXljWYtpWduj439UWjDqIJlFEqqpJphqDdymSOPcegk7u7ADuqAIUKrKt8/todOvG3QGkmEXgrOapTB7IPuS60whUiMkZIrezrIe+bw9zNzDaw3rMuECx5pg5IyXs7YgJQ5Wqa0QRmF+kgMBjEE6MLRMqMJpp+H0aH37aBjND+bIY39ONg3Rx5GabRf4PpittI/95f+HP/mv/Nv6kHtnJaIAxsFby0HwpYTzjquT0/wulFzxTjNjLA+UPYEzpBqZr1e8F6zH3pTmcHjFth3HV07NwhNOPbMIx8EH3h9PAhTJPXClg5A5VU5FV5e72zbwftnaGZHbOTNn/l47ITZ06qQ7jA/62t/21BGArr+HqjPKjpIj1P94jzH2WkcYqArpa2fI2ZrrfrNvCfGSDp1xOslcHvd4Uxwr70R5wlzUodEBiklLuvzZ4OrGMOyLEzLFemdnFWiRddQw+4Dlk4uL0yXWSWpTShHZV0NvXswM9v+IKc7y+rp4um1aFabj4ymmvyaNW/NRM2tOLaDKU446+h1qC+nZ26PGz4G3JuGeTTmeSLYQEoH03Rlch5zDuSA7wAegh7cCmrKdhZrDVUawzv8tFCTXgMWz1EzvXVy18wuOwxSO3aoVvr19a7SnXdKURNjNTtuKKkytczMTD4gBK9TudMc/v365Ws0lfrVqu/vkMrtkahxYI2Qj+OUPxZSSYjRrqUYT2kPeh3M80LwhpYN1qipuEqj98Zb2lSvlZIqpVWcVwywUtkuJHPDOTVUh6CSkSWqJtOeWNd9O0h70ngPqxtl9IEYA70PDnk7aLkzsLdze93w1jPPE3Gaz0kail2eAq2LNl2MoVvhyErA6qVpYWQgOn2dpWakKpq7dM1V27eNw1gYg9Y7NgTMsRG9wbrvNscYI51KPg4Nja+dyQvSB1u+sR8ZAfbtgfGK8bYjM6xlL0nDRF2gDEWVp1KQbghBowimEFj9RaXhISiamn6StAK9NcYA64WoogVE4P/7Z/4s/ftu/a+4jrrz3/9n/gi/7//0e/mt7ueVHJf0GWWq5jR9vL9SSwMxTNMEvSKjcXvdsAQu86K5Q8dg2Ae5WkYpzPOEuEHZE2HylFw1UqHrBmRFOMpOMJZgPMEF3j2piqDtr0zGcZlXYlRCWu0V4yxz8Jim0/D313fU0jBWmKKhVAVpuNEheFx0PC/P+GCZpwWDMGrFivD1uw+k0Xl9+YQZjVYSX334eZzxON/JvRBjgAHhDSzgQJp89rB/hki9+cAFZIb1MgPqARcZeh8A1Im/dnuhl0QwgrTC/f4J6Y01zoQQOdKhEB0Ge9/p0tnqnU+fPiqAx1py60xTpLVKTo3UBsem2Wejd3IbbHnDG4MVg/GGXgrt/OwmG5jDgncBGZZlWdnvd4yxWAPOO1otNMk8rytYhbgYK8zLRa0f0ZP3RO3nwRXO/NXMulxxzhEctLrTe1U5Xs1cFp2+GqPXFwAb/MF/8g+yp/1vyXX/G36JNuOlCK3qtIgu9KqKsDZOUnaDNlTmY6xBjGWIkPeNMTq5arfZW21qC4HWs/r8W8WIqkWcd/QxeL3dGU0YJyiq0LFiMWPQauX10yeu755xxuNDJM4ztTUFddXOHGcQw+2xE7zBG48Yw+r9Oelr1FoQM7jGGYzVqVl+sDDj48KWdo6k2WbQEWdpNdFE/d42OEzvuMnhXcCJRURzjEc766TZYIzek945jW8qleNQz3pvnX079HlBh9EVDmJEQVpFGD3TmmcI5NQYeJxYaFWnkCLENWpo9tD03i6DOixuqM2qD4t1+jzMKbHvE4TI++UrhfKNX58A+bdyfTEHNUAfum+v6IRu2C54ZxCBKczcTupLnAKMRu1CbRlvZ5UJnibCGIOS0+zAonrhnHa8zGCFYzuwBo7jYD8Ocu9sOVFk8O3rqx6SjODxmKHSIIbCR/y4Ma+VOQSVZbWCyGB/QC2D/nEwPxnc28Sn6GFteJDlO59jawrYGWNgjSWGSO2DvWonzVl/XuiBdbmcPhF9OHjnyUchhollnnXqiGjS/BDkDEIV07lvd5KN5wVocG7iSDuDgQ9v8IGMtx4JHlMKdyyjnQn1dIxVLf2QhhHBWs8yX3lsBy4qNe7x2EA6jTdZqmCMp0thT4kQFkrO+BCVsNmENgxSG85DHoXeoKasHXrnTtBEY4xGvRlkdNyz/U72+BY23YAMXU05zPOED4Hr+kTKn6hlp4uSB+kGsYI1HuM1t8vagJiBsY5pCnotIZq7Vir+/8/ev4Zam657ftDvuo/P84wx5nyrVq219+69k2gnUYiKRE0E7UhA1CiKigeirQgK+aIgBI/4QTw0tgiKQVTyIXSQJE2+RSIBYwfjgWg+NI12mmgSo23bu9eh6p1zjvEc7rMfrme+tfZmd+/Vu9fhXfS6i6KqZs1631ljjPu57+u6/v/f31uiOIZUjuPAi6OVSB2FIQfOT/xq/c71t3znDyNN6DvkMuh0rHV4a/V9rZVcK4KGWl6XG72d3a5aiS5y8ZbLNNNbRaJKgde86eGYBj5oiO+WinagrWihNjSDLDhL8IPJT5Tz93M+YJ3u29qVIDtEqVEyhHbSCxGlRc2XiaMoKGSZZu3yzREZwhwnpjDhrVcox9COXa4WoWOdYH1kWa7c0wuchag59d1H0YtXqdBp1FppVEUw5wMzLCGqD7af8pp5mkkpkXIl+kDtjdoajE7wAe8t1skJ0FEIiDP+JGK2s5M46KN+ArwMqVinlMyrmegd5tljrGMMQ5wmEMeRN4ZSi3BWiZuaXafwoxjR6AyB//7/7L/LdvzK9/JXXOd92QQhGkOwnjlOPJXGNl1ot06smhOaDr20mKJkwlEb+Uisx8Z3vvs99vVBJ/PY3wh+IoRITurwDt5TRiWVAzcg+Ik+OiUVaMLLdmdZbsxeqN4xTND3+aSnicDldqMUNeUHK5jg6QPaaOR9w3uHj0FlR9awLJPKBJ2n18qWVvVQzgtmOB6icRbGO4wYBapEVXx8Ivr6888fK8jeAQ50zrxRPt0X3rHp0pXyyoBhlIw3x4gYoax3St7JaafkzBwmjkP9XdoIGjy2B+tWaF0D5GttGHE4J2ypUFuiVfUtX5ZnWq8nun9nWzes80pe3TeWGAjese9v7CEQlwuTD9Q6ePn4zVmEXQjBEU8LQkobuVe89wgNZzx04bLMdAZjVIxzeO85ju3cgyoFEDNIaWdZLnpP2A+OsJOiZ0+JiuVaI1fzrc3kV+snXAPMEGgwqma9tpLJ+eBIVb2cx0HtmjkLcOwH83XBeUsrFqkesRrc1UxHukrox2gcZ+aZtwpfi2HS823bFWplhNaq2vVPErk/7TGDceL79Q2Nc6ClyuiC955Bo6ZOLgM7WUa3xGnCYDTTdl64Xj3BB83TLYNWHTZosSVi2PeNMiqtJ2rL1DYUs68vDFvaEdEC1FpBpCsA5CgM2wiz19F313uawvsSOe0YsSxPi0oo7xvtLBzZBLkMjJ81mmdAl5MaadD7YVMf+buXrJ3RT62BMQ3nBJ2zW1XgjI4TQ6+dOiqldr771a/zH/+7/tP86X/l/8rr+vHTW27OqeAvcn1ehZrw7YMX9CHbNTXcB8vCzFHq2Rn39FGxXce0IMxLxBj1nZVa+fDhA3T1wIgYwjRhY6DmRu2DlDNrKuxHxo7GnjMv251cM70NnESK7JAH0c9Yo7BuI9qtPnJSCVCc2R4bNoQTZ++xhyF1mE9Uf8n6v+UqpEPlWY9NoQQnuE1lSXvBGo8Th8jgkTOTs8Q5UB4bLXdimMntIKfE03VWcMKZNGvEse4bvRecC3jvyLkRLgJiTr20Qhka4L0j+MBcO8EPJd/Ujsdy394YYolBfTbHsXPURK8Ne1IlH3vCGIvzGibeeyJOkZoPfAzUVMg1q+TSwzTPWvABIUTtQqFYfoOG6bolko4d8UKcFSveemXfIVSrYJl3YIvV10+fYmejtQ+OXWmZdx4Yq5jmVCsWA85q1ogoJqKLwVpPLRkbLT4EnI3U3vn65Q0/G64mYAVKOqBWZLrQxok776p//tX6neuP/5f+uMpX86AxME4Y3bAsMzklSjXnRWScHWUt4KQ3TAxEZ5i8Bme2aqgtU/LBe8bMFCNTnCl9YMhMk8pm3TuBcwjQEKM+zlobzg+ebzeOYyMDpTfc6LTW8TZSuxZ83noYwmEGYrs2UuI7AMRSWuLD5cplvmmHUTq96WfMOIeRzBQciMqYfZyIPvK23nVPTZHaKrVU6J1UCm1o1tQ0RxjCNF84UsaFgDsplJMPiBVqydAbrRVSOQvg8zkHcORdMdCn5maATt5Go1bVo/bzAuidw4eJUg6EoBdS6zDecbxTdq3VArgHKmgwOQY7wIfA5CzeqlLAnbLHP/fDP0v7lQHmr7zem5NDKWxK7jRcFvX8OucoLbFuG8Y4RunkNOh1p4WqPo5a2bed/fGKdcKREt4WfvO3fh03HD54PVta5eJmRk5ghJobGMeeEtZ6jW5xmct0xdrAaI15GHBKlbRd4Ti1HozeuMxPp+94UGtl2x/4Dx/INTHNE4ioZ80KpQhTXBijk6qCLnzURpe1eg0ZXaXt0iy9gpnRIu2kE+o38WORLD/2Op7PfwrnRUy/b4yzn/eOss9KgduPTQFTR+K+Hxix5FP1clQlwB2546xmnzX09zv2TSfuveGCIVhLyon7+ko6C78+LNc446yn9I2UE61kah5s26oXVOMxxhG9Z75d9DxuGaRhTOPD0xfsdWdPuzaPWqXmxDxfzkLNEaao7+3u2Q+NNzjKznL5kt4qwVlKyczXC1MMOO/BCPPsFc/vUdvArwq1n2iJCL/15d/I3/Gv+7dosdA13Lp2bUJCO5vujkZmdC2cWy2kfSeGSDhlfoZCpTKqZoVebhfWx4rpQm9DqaNjcJR++n0dMt5TmYVWqz4r0LNkmS/aaEf9XCFYbDCM7ohWfdu1DZx1xEWb4NM8IyJclifECDEnjHU40caC2RNBTsZASQRnOUQnhloIObwx+DDh/KC2ovcyBGeF4L1GRbTGdF1IKVOzZvtCx3j/iT4bvWeaZ6yJHDUR5oVWK6PrBK+0jreV0jvWOKyzmGJgNOzQsXKuVVVhXShdOza5dJwXcm+MVvFO36t+grVabwxBv18sf/g3//Uatv2Zrd9XryUi/5CI/EBE/uyPfe1LEfmnReRfOv/6xY/9u/+miPzLIvL/EJF/30/6gwzp/Lk/82f5f/8//z8wowXbonIGH4XLdeb2dMEHNfiL9ZjgcC5q99sOCFowzMEziyVicKjGdVlm5skTvY6kjXU0EUovGKdvbMqJlJNKRXJB2qDuFRCMqAToOl2wJ2Je9eGFYy/88Ic/pKQDYxwpFV4fmdet83gbHLt2mbuBug9aHuwJQrTU98JBHNK1C36ZLpgh9G7xJtCHZue0d/+aUUmntY5aG/uRaU1gWKbLBNYQJk+tleA8y+Wi+TDWKFnPQrhdmG4XlC9nsMYz+sAZiw0WawzTdAGBPWfixbHljWNf6aNpETgFgnNavFpBXKR2uC0Xbtcr/cSue+OUtOeUCKmdEo/x+jO64BAMcZlVGtYqH99eab1Qa8cbhxe9LNTSVVKaUP/Tu19Bnxv4WfAeyrETjOCNww1Fu05hIS6TdkhTJe8Fg0GaUEplDJWSgcHHyBiDXJPi+OVEIjeFnxx11wBga4lzPMmgf23r57XXfl7rb/83/lt5vwVYRAGj0pjm6Wx+D4wxmvdlVOxgDVgZLCHwPE8sMeAcWHUlayFknIJDwgTDqta/VaILzDFqJh8DZ0C6hqynlLWg6p1926AJad81rxD9dR/7Q6dQx04dDbxVG8fLK1MMxGUmRougodxfPH9JdKcMRJS8akPE2qhSFwytqVEawFiLNZHeKtE7Zj/hfSCVRkoaHVFb5eiFrR8MI1hvSelgND6F19eqM2v1QQji9FCe5oCNCsyptZIOhQ4tl5n5MlNGplJodFKp9MYnwE5rRQEsQwtLd9KWvPWKK28VaZ1lmTEMvNGsOelasLkg/A4w1mdsefms9pk+VjBWiLPVzB9RtHaphX2/c397gzIwTSmkMU70IaRWSD3RpNNK0iDps9v+9HyBWill59g3yn5AgVwSblpINdEGrCWzp0RunX3fT++iRc4Mzh/96LdZ1zujJlUdDp3yvL4qpbScOPI6KtfLE60Lzgd6h5oHb998ZF83oGphMzmCt1SU+jvPM4NBbZUxCmXL+HDaBN7JyT9O+YVPPm+ufPKy4/gWYDMDE5hJiXJ522nt4Cg7j/VBzoUPH77icn3m+cMHHtudt/XBY91Zt0Lp0I1GgogRluuCDZ639Y3t2Nm2FTEdZ43CVPY3jGjkQQwLt+dn0lEYMpiniA+BUgfTtDBfn5mnC703BT84x9vrR/Z1pxXIe0ZGw7vBEi/cLtoIsgyWGAkxMMXI09OV6/UZZ73K+88i2npPLpnb7VknOiJIb9Cqnofi6APmyehr+56l9jNYn9U++yksQfg3/Y1/G/+ev+vfrwqpfj7mRBiifvV30natlVQPBpYwTXjrMGYwRqH3pEqcU14nYrhcFkL0BB+VFmotdqh0L6fCaOdPMAxO9H0dHaY4qzVknmil4+W9OOzsjx2wXK+3M1es410gmMBlijhrGcNijGOOV5Zp1klvK9Suhf51nrRgEoO3jikGQgwEN3O9PHO7fsBbjZoYtTOHhTnMROd1f3RVY0yz3psdFiceg4ZTKwDF4IO+Zr0Xem2IGJyLOHs5FRyGIzWOVNlyYU+VMpIyJkyltDOrcxgGamsZ1uHmiA3xnPx3+lCLUBuaBzwYlCaaV5cGv/70m/zb/vC/nVMw/QuHiLyvn8RY8yeAv+d3fe2/AfypMcbfCvyp858Rkb8N+HuBf8P53/zPRX6yK+wYg3/mn/9n+NP/4p/WTk9AzcOzdsWcFYYTXJzwVhgjY0Vw0RKmQKo6QbleLvRsmMOC6RpqbYyG3A0MOYGP57h0gDUBFyOPx6qhgMAUJqQO3u4v5JLoXUEbr28rP/z4I17XO6nsCI1WCqUdYB3fvN7Z004ulXUr5H3nfhRFcjuVG72sncemyH2lZqvfo49KqYXggm6gPijHwewUxj1ksOYEVg2q+16wohARlT2CDZ5ShThNzPPM5XZhXhaePsxcb4EwGWI0hGiZphvL/MTt9qSFrqmUXjiqwgwkWpo0+jhxpq3SpXCkQy++ORNiIC5OwQlAKRvBeow3OOMIzmGsw8qZJj+0i2/MIDqh5IKfHJc4Y7z6eZbrxBDRxqkxROehDw0l3TMlZ306vhdqDT1wDmAH8oAm57DN8+HyxBwnlsuFYB3j6EoRiloA965Y+D0dpJbodI5jZd/08+CC4t8FLSgGFmdV3rNuK491Y0uZdd9+ko/577f+BD+HvfZzWwfv4EH6sJrzVBuIKI3UemprpHqQy46lQ1WKYDCDaIQgg8VZZBRGL9gBs1u4RJVIpLJibGcOHmrBy8COjukqefYnbruPohRVI6S8s6ad2iqvj42/9P2v+f6PXvj/ff8H/PaPfkgelTUf7DljvCVeZ3JqOFHZ4uQDt3kiWtFpIJ3RtHFixHGJgdEHOVfWtPP6eOXt7Y2SztyRIZTeGAZKrdq86EoRNT4yGBxrUcm9CWA8NnpSUR/ry8uLwlaMOS8K+nJ77xBUihjnQJg8Pmgh6QRcH7gO0XqWaeJ2fcb4SEqDlBoMLdg0hwdKylhxKsOxenO24vjywzPzpPls3glODMFG7TK//zyf1yfxd68/weeyz87n1xDIHZyNeB+wpjHFmS+//IrL9UqpjY5gfQCjWOmhhwpffvGB5oR1W8mls8xXzeOslSNnSm/saWVvr0zzxP3Y6HXQWlO50XxDcEzTwnFsHL3QRKNv5stCjDN+nlmeLlwvTzgCqVd+8M3XvHz8mqMeyHAMZ9hK4/svd77/zUf+4tc/5GXdKANyy1gHPmjI9Bw8e9bmgLGBj+sbqSamSziJzuiHqaDPkcwnH/In2eOJl/8EFhGUADydf28AB8s8I8Py4fKB29MT83SjlII9Owt7arw8Hqyts6eiQ7mhOVLDiu6zAaN3+ukFf2wH25ppzXK7zczzwuVyI04aAP7FFx+wJvL2mhiHpeXB04fvcuRMPjJmCGIG6/agZj1j1YsbsD7y9rgj6O/tnWVersh0VU9o7+RtY3v7mtqyRgSJ43r9knl+5nr7oAAL1KqAgPOBbT848oYZ/dumygL/7D/2z7JMy0/tI/1j60/wueyzn9Lyoh5DOtrc7eoRK2mnl2+Tw8cY1F0bZTEoyTTnzLHVU2OgYdVyettLqXTR6Zt3gRiV4mg61FZOv8w4IVfgjII51L/qEIF8rOzbg1QO1sedbd/Ue98qxnqmMDHNE5fZE92E66dyC1iWCx+uF57mhcmprLrVSj6x+0bQX2OauUyRYKxK+B3UnGmpYsURw8z1ciEEr2H2Ziiwp3W+vD1zvej9/bo8Y5ooWRwgN9bHGy9vb6pSojGcIBcdxvRuyDWTeiOnzF4zW0n0ltWfKgbjdUiybgf3x4N11ya7DRbnPXb8zqKrNy2+J2/Vy5kqv/HFl/yX/96/H2u//eh9DoXa7yt9HGP8H0TkX/O7vvwfBv7u8+//YeB/D/zXz6//yTFGAv5VEfmXgb8T+Od+kh+m9a4jZIM+cCtQoHsoB6zbjrdCtWCqelBy0/Dn3AamGyYfcX6ilYYxnjk6wiykOqiHdtPFOyXM9c6QRjkOeu2Ungk+UDLU0s8CUac+iHDkjT4qX1xviPX0Bt4GGBZpQm6Fbd8126k13O1G2iuHWPqZVyNdGLljb5ogX3JSfHDL1FrwznPknfVIOKOY8X1VMqF2vFVvvCyL5mqcBwgeWqlUKmIaw1ilugXHNEOpg8fakCnSj46RqqbplklpJ+dKHp2P6wqimR/bkQCDcdoedxK5LkLOle4GMXuWaWbfM1063hquy5W0HmoUrQ3vIzk1luVGN5D3RPRRO0xnIPGWExYdab/eV3pNPN2emZcLYwzuj429Hljn+Juuv0Y/BmLBRNEDvJ8EnwTH3jj2zBdPX7IdibeXF4wVyr6Tc+F2W7CtkfaCjJWjZi7+wjxFHtvKUTq1J3JuODe4PX04gQmdbd94jjfGGBiskgdLZm1ND8S/xvXz3Gs/63UNF+TQCeRRIfXGMHJ+hvl2SjMEL6Ia+O7wUlj8RPBdDwcKDcO+GUrKTMtMLol6NExHQywF7DsBrWacc4jo3um9M8fpkx7eh0iu56FZEvvRKEW9KMF7yANjLXldaQ2eAW8MXSCXgjGCE6ck1JxPgtSg1YF1VrX60hXxTcfbifv6jcqpWqGUgXOe3nVSP8ag5Iy1jpwLVirRTtzLiojToN7g6LWwPR6008s2xZnr9YlUEsd6qGwXw4frhTHOPMYm5KJZWWMMYojEGMg560VUHC0PlmkmlUOLwjNCTt6BRBaMGCV0IgrVEcd1uQEK/7E2aOcRMBYkoo22z3R9VvvslD6+DzWG0YYEw/DhdsM5wTnPMq/0UfjBD76mtcoyR67XhWN95ePLR4J4nNNueCqVuGcKnettIR07LgbqllXyJkLpHYfjcX8lTJkQIjFEvvudP8S+J8RCbY0P1w+0XrBGz8vcFI7z3acv+NH9FSuOOpLCOI5DpeRZaZWPtPKd642tLMxxppxnbnCWfmb2rds3WOdYgvnkhSsJvJx308C3Rf+7F+1UT3x60d79bHL++4YWcAVYQbxw/TCz3RP2AaVtPPaDJkInEJaZ463inePYN0x3rPdviJcJuiXXxtvjDVMqxgglZYXqdGHfNva8cplvBK8+8Ne3HzFPC600bnNkvt6Y+5VcdvrovKRXjAiRBrZhjddp+dCIDmtVAXIcO1vOlHKA9dgwWF+/5un5C5anCx/f3rC5ULbC5CPffPyaECKTd9yuC29vPyTYwO1yY4qR9wBtEfctldXDlH82/urPap/9tFZVn0o3SiOvudB7VT5Aa6ScaU0b513OyU3uHOv+YwwGOdVEhZrV35trY2CJ4arNt1Per0JHfRYf6wYnuMNr957aC/eXBy5qrqCdDK1Wauk83a4MBiltXC7PiNXCSuFd9VSdGM3VrJkpqLojuMASB4/94NgPbtcJjOHIGy03Zjcjz5by8sa+J5agMKs9b/QOzkRKq3reOov3E745RBrWTLTaFIIjBjGnlcgYWup0kzn2gy4WHyI+RMrQTW+w9KpScNs7bgqUVgj21EeLQLCnEmpg2sFsFx0SMDBOYwG814mlc5bovDZs6qBXSFmoSd5f/s+iSIM/uEft18YYvw0wxvhtEfne+fXfBP4vP/Z9f+H82k++3r1H8MlE7AJYq9SlZgZtAFZDjUMXHuuDy/WKnT3zoljSdy279XLi24WUsxLoim6O0TppO9i2HdMKpldag33PlKJhrsYOUios8wWbCzTIVDyWIxeeLk8cpdCGdt+PPbFEzyiV7f5gmmb68Ox7Z46WKQjpxOOW2lVGV3Zmr2PzPVWFLjirBuztzuP+igtBw3ZrVdxuDOTSidF9kmHmkjnagXNWL4oDupx5UwWwwl4ywxjWdNCaTqha71RjkCnStjvS4agHw+pJ6KdZg1e9o6VMnILKOHtTnbRA7Z3r9cZ3np64r3eOfLDtmQ/PXzAHKK3rQ8E6jAg5nSPo1ojOIjZCHxx5ZwoO6wx7WvHOUcrBkQ7itPC2rhhnkQoLCgNRkxscx+CogtjAvm7s+0rqDWsNlq4dUQw5HUTvOKxQh37OjBjIllQrdbgzVLHy4WmADNrQPI96ZI5aCM8XMGDw5NKYpp9Z8+9nt9d+hus//+/9z7IsC+MBOX37sDNiNGphnMePNEJ0uO7wJ8kwBGH2AW8h53dZVMdaLb5Ky5S8I+hDGatAGN1Wqt+3zql3Z094F7UblzJ9CMZ6jHNM9gKmYtIZeOiEKURqa+zHzhClvl7mWUNujbDuG5PXacV+7BijzQkjg9LODMY0tJvdBCMdF2aolZwrrTVyOSh9cJs1KFqn+10PwkMLfkGwp7TqPV8nTJPSM49MaY3JGEKw5KQXvJwODhe4XMIZY1Ax3iCisR8+TCo3tYZeG0ZQ+pe+ktA75jT2tKLeIe+CUji75tkZFFZgnVqzjbPqpRIw5vSO/riP6Jdn/WL22SnXM4hKhYzF+8jb+obFEVzkMTbEDEoa3G439v3B9TpTUib4iZrvqkgwapY/jhUjhmWeeNt35mmitExOu6obvE61Wu+IMRpefUotX+53SlLfzLavwECMqhBKVQ9xjBPder788B0GwmNf+cHHr4nTjDnf9FornkAW4S1lqgi5GaQLl0k0fJ7K000x8ylvhGgZJyRhAPI+JYNvs/nQ14vO75RFdr7F9dsf+5o6AhgNcqnc103BYBa2decy3TDuylGSAsdap+c3lsuNzuCxq5et5sz69oqgpMbghXVX+ae179lMllqTRmq0Ar3j4sS+PZTe7A1g0KxdRyqJ6D2X6UaYJnI9yD2fz7tBiBNdBlsr5NdXnj88Mc2R0ivLfCGGmceqyg9rHXS9TwwRSjnUH+g8nFO1aZrwXr3i5QF+Armg96yf3/qlPM9+x9Irgd65mgLtWtepay6N0pQs3bt6oHIpHO1UAlUl+A6UDiwoeKf1en7mzalAedeOC8YoU6F0/XUnt2BsBKMWjr2tfFieuIRJQ9SjgQhLmDAGlusVa63yAvZEOMOjjQgylA3AgJp1ChtcpEVVkXlreF4uhCnyehdGyQxRcuPiA1IaLnrdc3fN3GR0/ew7hwzB4BQv1wWhE+IEYpmmBTFKf7Qd/JwptbEljRipTcO2RYRWE4LXvdXNCaM7YUGjKwgM9UiM1vE2MM9XBnIOXQZYQ3GWHvWfpRcMESPgxDCaUIuqXN7XLzro+n39tGEiv9fR/Hu6FUTk7wP+vvPvf+9fxfJJAmmdcF0C+ehcLxf2tHGk9gkdjHQlPjr9XlD5wrAKmBkW5kuArWL7ILWGGWC6XlJ8XMivSS9nxmLmSPQTxgEpI8bAmSs2sAhWU+NbxdBx1lGr4r9b6RgstEE+Er1mphh5KzBFxXa3Q1j3wn4kvDWYGHlsuzYJmwJFMLDvh3pQrJpBW9MLa6OReuESZqUzjkowirj3xuDFkHMHqfShdMVGP0MCG/e9crl4TBeOsrK3RC6N3oX74866JZaryply61wmzbKwwWGDUvMM8IMf/AjnvIboOgc0pjnw2Dd9X04UsDOiSGIZ+iArmuXUW+cyLYhYjnLoe+InUt54bZ2n60IpFTGGeZqoAx7rhjjDFJwWauZ8BpZByxXpAyed1gsxejjgyy+/Ql7u/PCbF8LQwMbWhubptK7oaKedlBgm5mgxUhCxpxdIJQiP+46zgbe3O7frjZSTaqGXnzv18aez135G6z/09/zHmOaZ9ALt1Gu01pSa1ZU61wpkuiJ+T7pu9B4xTjXmrdIR0p4pVXO9alPDdjkK4gRrTzicM1hv2I+ieHzgSDspV2rruClyvz84jh3jPXGeiCFivOO6zBjjeH35kb6IY5BqxhRhP5J6P6KnAWuqKiuqB51OLZ39yPSukI7gO6M79XiJ0ama02lTjJHt2JE2EBqlNdxJNu29U1Lmvt1VEiOGgT5zeh8c+TgncR3rPUOEdV8ZPeN8wGD0GdQbqTTipPu0D2i1aiB2nNjXVaupoX1GZw3BGYJZqC0DGmNgRGEi6l3T6b/qAgzSwQxFGFsURuStUU/gO9Thl6tI+yutn+0+O4sJ8WgcCFDbQW8HOav3wholn0Yb+ebjD3m+XRA6fgqk/cBZz2Cwb3ew2qAwrSGlUvZdPbZm8LZuOD8zxZn3sPZ4khDHKOQy2D/uKnMdmi32zesb3/niGTGWvWacNdy3N46SsGLPPKT3F2TgrOd+f6VUjVjhrkqV2+WDDnAsHCmpx3wIwc8Y0ctsjIEj1U95SyGIvj4H8K7M+/HiLaM3mPevvfuV34u496KtDY5HZduzEp9r5b4fhDjz9etHMBoyfOREbpmeG2IKtRRSOpTkagBrCW6i5MJrUa/Rl19+hYhhmS84Y5jPKXf0nnqo77SPwvXyhI+el/srt+VZz8Gu8uajHEjQZ8UwllYVUpUeG8Za0pEovRKip5iOd5p5KDIwRrCiTRORrhAJc0pHDeRe6dsdFxxmGL5cPjBHoXcYO+r3/jz26md9nn1aJ7xsFAXC9WFoXafM1itGPqd0WkQGOqxRj1fJFbHjbDZ2FBw/MOJpnBmgY/AeaSfi4fSKmqEexd5gWRaVHRqLMwajBraTlG3PJoih9qR5a73q/a9mWsv0qkWac059cm0gQxRQVw6s8zhjuS4XpTAj0AeLj7S4gMBcoV86R4gaTWQH0hrrMNjg6LbgjGEMi5XTIuAco6tiRazDd0trpzw7q4d8miLiVd5be2VwIBI++Vh98Ap7O+sna/RsEufOSWbTbNbozsxgBQlJ10ljqoWpKNxOhnzC+reqTdTSHEdWv9vnUqTBH7xQ+76I/MbZEfkN4Afn1/8C8Df82Pf9FvAXf69fYIzxDwL/IIC19tsN+T4efpc5nF8T0fC+pog9rpcnxCbK4w1XgTpIeyaVjLMRGKQM14uQk3a9xFhyqp9Mld57TNeQ0Mu8UPadrVTmEEl70gNL9DKV0sEYeglye2D2HiuDQmGaPMYaTDMnIhfCFMm9MmoDq1jTOjpvL/rPcboiolCUOiofH6+aSI9hMlrQiBi8j7gQ6G2w54R1cLRMG4JxjmYGPkakNI4TmBB8oNVOTonaKlseTCFQjkLKhddth2Dp1pPqwV6KXmCdFp+5q3zGZe2AbvsDvtANllplwmKG+dQNMd5hGJieqWUwxYVpDizXWVHNw2DHwLpAKtrxG0Zfp9vlikVf39IOnDimkrES2YpmRnnj8XFmmS/UQz0Xk1UpB+1EDA8NEDfG0iawEnjdLXOIDHb2rPSgaA25gOkda9Git9Szu+wouWmXUcx5AbL6sM2dETTDy9lKLZH7mrDR4eygngGUP4P1s9trP8t1em9S0aBrGUpF7HRwgjdCCBN2AEMvkmoiDipx6JWjDXpJ5Jaw3jK6Y0sPci3UPgh2YJzuQ1HIE+Ydz28GhoF1Qgge4x1inYJ7rEot8qjYocFMIhCD0p7eYRrvtFCx+uxJtYPRKAuRzuOxn16XlWWemONCXC60ot/nvEd6pZTMkMa2J0rX55e1QusZYx21NVoDFwI2e8bQCe6+rtpoMIZSKt439nIgQwi1MmjQC189fxfnLcMYuhmsObNXlZE5JxpYbD19NHxQSZV0lX04JzAqbXRKL+ckT00+dgxKSYhRH8MYDe8i/sx2OwXAGBGMeTdf87lc/P5q1y9mn53PLrHgZv3cORu4LDNOGtvHF+hGYyackI6FEAO9HfqaF1gl4cxEnETzP8Wx5oOjHUwucJSKNUL0ka9fX/g1f8WiFNScC/OsXeV9z4TgKUWbHS54kMG631VVFBQ41ZuCc2JwlJ4Zw56yWMN9ffCjH/6AuESME46XxJESrVtGGURvmH3gepkoqXC7aLMlhElBObnhJqe+6Qy9ggSQcr5WFX22eLQQ29Gp2sS3U7T3Jfq9bW84Z7BO4Qm5dHrT6Vajs20PtvXgsa/ahZfBx4/fINZSUsJFj/eB6+2Z0Rvb2xvLsjBPX6i3LE5YMXgXGKPx1YcvVdbG6VWqmsc4gOt8UUDWeVHsIogV0lF00j0afl54ud9xRiM0AHJRkNhxVIrpWLfRm6hdrxWWcOXD0zOpKZBhy5U+GstVoSK1VtwJidgPi1fHhq6Fn+ee/eU8zz795vqXWgblnIyp975TWueoicexkUum10wuVeFPXT2hnACS1gcWT6FgWqGfDe2jFtpZeAXrsRKgZ4xVoF5OVcnm84S1jmAC0jvzMuGsVdLi6YNOtdNGJR2ZZZ6IIRCGAuse6504aUE2BvoZ9p5UNc/MCFznheCiNhHbgRfh+XLFe70nXecL67Fx1IPXxxvRgl9umOhIaVey4jBKEQ96J6+jUvKBsUHBH0NYtzupZgWphAlKYl93ZAy8jzQEE/TOCR1n7TnRhN7U0mCGNkNFlJprzKDUHXERbxzICW7pSnBW5YhK+unQa6ONgjH+zH/jE0H5c1h/0ELtfw3854A/fv71n/ixr/+jIvI/Bv4Q8LcC//xfzS88ZDDM0Af/+aAFKEMnY3hDPnYmv4AZ5OMg4tR86YS3t520V6gNEWFyV2qBHvQSl0uhD73EmTPvRUZR38fkPqXCS2scj/00xhuOfYeh0AyzDFI+iNaQmmaM+V4wZmHdNpYYEWvUIzYMW9YLnTB06teE4DqpJ6xx5JLYk2KRpxgYpX5KZherchOVfjVSK7RtEKeFOM3UZiitIE2RqXYIBVRCYyxHyYw2mIMBJ6qVHo0pXki58nF7g9qJQQ/00QUzjKLr+2CZI491cH97ZZ5uiAsqlykZB3zx4QO9ddLY9WeoYBYhxhnnHZMNlP3QgE056X7vsfBmMIWZtBf6ObYyk2WZL1BAjGLTL8HhjcOUhhkdPwLeeHoRxjGoDWxQCp09/5t8JLz3lCEYb+mmY4Pnqy+/4uX+I8rrG078SdXsPNIbxijavZbCo2S+eLqR6sZoHWcGx94oR0WuAxM823bnam5Y59gePzMM+c9sr/1M1wrUMyuwNZUfdPVItHJQ1AOMDw47JvUrmgPvTl/mkTnSpkVL189xyeUMwhy4oF06wSh+e3Ss8SzWk0xFxNDqINddO5hlEKeIOHP61zSYNqcKwyBGc2ie5yfWfcWdxZ1CbYTWBo/7C7sNyNl4EJrKjOjsNauk7PBEr8RQDwxj+fjykUFnz/rcaqNScjrN4EIfjVR3DcCeoobT18a+JZIxeG9oplPrzujqUz1GwtCxXbivb5hhMNYqWOC9E9jHp6nZ7WrZ1wfe66XThYBzVjOBBtpVRQgu4uOs+Ww1aWD9UMmqiMINxBjEWvyZL9NKx5/ZaZwBvP3dOPrLs37++6x5cPJJShVFeLoE6tN3+QtHxbkB/Y3LtLAdG0N0mmK6eqNHbxij8thHfsX7gI8LrQ/Wx50YHMYWyl6I1vHh+QOSKh+//hGXy43lMuGsIAJ7T9z3B2Y75a3OcItfkrNOpX2IpLyfMS1Dp2PLhMHyyA8e2yspJwTDF9/5HqkUGPbT5TG4wH27s64b3/viu6RaMMGztoTDMYenT8Rl57TjP1Bc/3tGJpVvC7R3mIjmBnOGJH273v87q3uw1sa6H8Qpcr19yTFeeF03GoPaOo/1zjRfaV3zCDHqv/Tvgff7inTdV6PpRdu7wNvbC5fpiqB5VgP4+vVrPlw/EKeJnBOj6NkwxYVaHwTnNL/QLLib58iZfTuw4jhK4+2b3+Z6uWHE081AguX58owRx3Lz5KNxnBLp1hrXeCUGT23CPAXSyBhjNTcyZ2KYaVi8m0i5qcrIqp/0E4jr57dVfznPs/d1Tmu7vBMfO0dPpJLJrdK6kntzTuyP7ZNXK1WVxRsntKobfgClqjJqmWbKaNTaqTUhdEaA6GZ9hvsJHyYui+fl9YWUErerZ5osTibmGBgDWu3nvakxujb+vbVMXnBmIpXOy+ud3Rw89YtmX3rH5JRq/jTd2PJ2erYnLkuk5YOPD832VJm7nI1uh7ET7a7n9uwjaWSNwcGqt+wskJxV20stRadXVeW41nnCFKEo+UcsmKxKqyGiubcnvZTSlNCeCtYFtaucZ50ApQyEyhCHFyEdB8MP3C3gRKNP1A8HiHrbRTWT2AhiBuH0u1tr9Vnwmazft1ATkX8MNX9+JSJ/Afhvo5vsHxeR/wLw54H/BMAY418QkX8c+HPoI+C/OMb4if9vmyn8U3/yn+Tv/jf/u/juF9/Th/DZcXROs8icFWLQsFk3DBatfp213OYF7zwpJUra+PLpA+d5oXeGPvAhsCcl2bTRsMHg/ZWSGiHMuDGobVCLZphcbleic1y8euKcd2ylEf3EZC1pJHLJSrCrO96oWTFtiW4H/nqhHqphDkE3zbZt7Kbio0qZ5vBMGw+FGT4Sl0sgH0n9PCWxl3x+0CymgwxDGUI5snazR2LUgqsWMwVKqVwuC10G6Thw/gzsduDNoFmdkpkz7HdLb6RUaE2IwfDh6Znr5UI7p0RLnLDG4rHY3ql7Z19XnBgu31GkfhFwTgmPKWcmq1Q6Hx0iSrIUYPRBLY0QHDRhiYGaC3PQ/9YHC73z9OGJemzajbKaSl9rwWOIwTHbiV4NxzooqHfcOA1WLrWRRldaV1WpXM2NkjMD8PFCkY1hMs5DEwsCITqOkriv36hMbTcYe0NOac5rTTgGKUE6KljLnl746jtfnB3av7b189xrP8v17/jX/h18b/kuY4VcILVBLoXaOqUVeh4nOMfibFTpcG9gI3aoySnVQh7aNtuOxDdvL+o9C0qp6EUPBIvTfERrkCGUkrFGi7dwfm/ugz46Il0f0qPz8rYxTKF3o9RWHfTx0l8Y3apkwnvEDI7j0F/fLoyqOUdNBpewEKdIqYm07bzmB/1pkNrBh+UDTc5+RIgMIBoNpq69sdWiB8HZFdernBBi5O3xoLZMaglXu0aPdCi5qefEdDCDUYUwR/Xf9AIt0059/eV6xYVASZk+BjlV7KzPhqfpGessyCBYrwd7FQKOEGaM8ec0P3CkRK+VaAMh+nNyIoxhEPFnl1OXfQdAGPif/AP/U374/bd3N/xntT6XfTbG4Ps/+D6/+Zu/iVShpfN3aBVnLK/rR8S8S2sH9/tHnLE81hVjFQmeS+F6fSKOwsv9Dcbgsb0hXimdxgS8D2zrylIbl/nKy/4jUtqYpkDvhjg5zJboTbDOqaQ2DVL6Ec9ffsnj9WvmaHm6PmNxdCd08Ty2hBV4eX3BjMDb60NVGQK32xekUgits62wPv6/5FxwzhLCK/fD8J2nr5iXiYElHUX3nGn6fOh6bpugF6tPEVIaA6rvY+d3+tXgvUug33d+9qyHb9YHuTaOppCfYC3VOfV1pkY79ZO/9tWv8/Hla7Z9p9aCjM4clKA8urDuD65PN8YQvnl5w0fP0VZKc1iv3fllWnh5e+FpmQDNRhQ6c4w64feRt8eqcJHSsEM0Ry0JVswnAqMALVXqXnnbX/jud79HswEfLE/Xq8aInNanaVlwzvL2eIUG92MnOqdTg6YNUmMMIQTe7hk/RaLX1+ZnFXX4ueyzn+o6ISwuiAZLq9SAfgxonWAs0XuOdIAIRgypaJZsM4M+BLHvJjd9MJac2QQllRsLRtUcDEOphdkFxrs8zxiu1ytvH18pNmCmhSV6riFqo94KtXYMjut1omZVkOWcITT2daPUjI0zGvIiHKkQnCf6oSC6YbSgJzMVofWKpROMhte3UYFBzYnRGtIHs5tg4pQwe97uCYPaXXIppOPAem0uOafnSy4JEcsyXTChqsXhKBQ6dQxaLrTuPsGEnFH1Sx8q7Q0hMhmhy6CMQZVMq4ZbUNOlBok3jYPyagviPL+8EeIUwGgI72iCMU6tAJ+yQT6f9ZNQH/9Tf5l/9e/+y3z/HwP+2B/khxl98E/8c/8b/v77f5XvfvW9bwMZvRZqwQjXJZJzIx+Fq7P0y0LKiclbgvN6MxqazWDPVuWQM5RwGGwMLMGzr4mUHhxpxfqBH+HMHlrJXRhWmOPEZY7I0DDqMTrGOG4GsMLwDlcbwRotqmpWnXAIlNEUslErJTWsM4xuGEZDn/d1p6SEiBCehWAHrSTmMNFSgdrPAO2D6xyoTdhzJfeGw2BypgG365XoAr1kTNVslmmO4AetDYwdlKOygXrqSocuuNHZ04YBWs76YBlCq4bedRS+90YrmTBUNtMZWBFSSjw/fYkXg/M67Wq1E2NgiZEhliKNVjqjVJyzWDGMlHQiCZq95C09ZybryBzEExBjDJ8u1e8I5ZxWbtMNBqyPA4bFeEsqjSKNkiem2ZBbp2HOLmpl3e4ch0o+hgy69xg6y21mXzsld/UDDchH1odubmQSD2OQYLlMkVZV72+lM02NY98Q63ExqgzopxCS+PPcaz/L9Z/8D/xR/vDf8DeTv0Z1972TS6H1ijOO7ht2RMwYSG+EaPHda6D1aPS8UltBrKOUwl6SyrFqwxtPCJ5UE71VSk88suDx3G43Si701qld30sfPPkoHPuu03qBLR3qA8MyxQmTNBBTs8+qNl66YYoL3Vj2XLjMgZwyzXScd5Qj60Ec7Jmh4+itcX9b+fLLZ2qr7If6EeZwobRKGW/k2rDe4MUyzFB/ZR20nDULCQ2tNuKY50Wn9TGccRgahK2xHo1cEi1ajPOYdh5A3mOd5TIHjLW6p88iOeeO9xq16qwh+EmNgcoRwQV7yl4sDUOtg4LBG0sZmYDVjiT6M7xLHqPXTqW35/E24P/45/93vOSPOoH7zA69z2WfrfnBf/SP/gf5f/1v/zxu8hgPfQcbZpZ44Rv7YHSLD0LdM9Y5dQTYSqrCsszE6ZmcMzVlnpcb66ZNh5YzTJ7WC2nNTCGyH4leGxklBaacab0yLxPC4HK5UnujbpXa9Ln99voN3gWW603VKDXhwsxWVpZZQSBdLHs+mJYLYt8HtA0xhirC9vbKPC/U1ig1c7eB5w83jl6Jop/Pt9GZw8TkhCMX/FCZequC6aKwlLMw6xVs41uQyHuuJugkbeifIwNZIVOv28bHY2Uvlf2ofP36CiK8va18/OaVWivRLby8fVTgz54wTlUlvW88XS9n4+eJ/Thoo3L54qbTzHXFWcMyRXqpfHHVSJhaMqMlnq9P9DHwXpH/iOEyX2EM1vWBdZ5Bp7RdKYEVeq589fyMRaN69pQ4joRhMN0mWklEFzAyuDx9yba/0taDMRRo1mjgPNHPWKN5q73rs9hbQ4hnvfsO/vkZrM9ln/3U1wAZgjX6YQ8mkEKlHo1SKiU3opvpc2N/7FjR7DClQ3YVaQ0HZqBpm+/gHC3sjBi9p6F3qjY65YRc+Ghw4ohT1Jw8RG1zuWBM5xJnRrTEaaLkSpKDUpo2HrrBePi1p69oTT55YltVgF1tjb0ouCsEVZLk1pl8ZJq6alnOIskayzxF+rESvKdR0YyZQT42zQHmnZRs1EriHDImWqsaeXXsjLThYkAk0LphW1e6GHz0uGApqTDqeae/OIVhMfTc6v2TJ7r3xmjg3EBOdZYNRhU3fWC7/r0xQi+FHjyt7tiwYL36+iwOawQXPq/zCn76MJGfzjqxsZ9G8g7sBD5BrUIYSg0UYPaW6GZG61p4i8FbwdiZgWCNIKbztiau86SZD2NQWmLfd9b7XelKZlAGNGOprRAWSzbqTzFDcAbW7WC6XDH+rMaHBpRqgdFPWRAgA28twUdkGMx4EG08DyqFe+SjsDxfcfbEf2NxZmCto4+OCZbLMp8ESMO+74Q4sbVKrw0/W2pRuaPxih2tJYMJDEEfzK3ikNNjVVizhqN2gVo7r28vROcx58NmdKV7rVkvxr010r4zaqYXA84z+Yg3E9McsWKZJw+t88XzE7loNp0zggTPsIINltHrSZ2sSu7suumXEOhDcItlXTvOBlovuGg1YFqE3kXbqc6S2k6UgJjAuu2EOFNaYUgHr1Oz3qGMDs6zrm+Uo0BrlJywwelUTQRn/CcgzDjDn6rUM+BXpaslZ458cJkDjU7uA28Mr9sDunriMJGcM7mkv8yH+a+v9RSfePZPUCGnQe2dnAr3x87oBSdOJ9suQMlI67S9MC0zwc889sfZgUx0tLN31Ea3TmV2NEo3GONpZSW3ypEeSqoSRd13Gr3r86H1RquNlne2XGlDmzYDMBHqURjDqN9RhK7ceqx17McBFmLwtNoxdmDOgM77fjCGnNEQ/fSoWErPHDnjzI5r4VOO254zTTrWO4wVbPDY8h74rVmN+ShYN/De03thWS4Yr/4SMe6EGOnnbgxw84x0NayLdeq1bI15mk4/jsE6NUWHs4ArvZDqwXJezlsfWCPMk6Od0JIRVLLy9ljp1mKsMvsHwnAqQxHAWA07tmI5mT64d3/xr9ZPviIwg0SwbtBaQpwjzB63OyXexpk4T9xfv2ZZLpSkGU65JrZ15SgH3jrm4NiDwzpHb3pOmmEZtmuj4qTVdZxG2NjOum3UPHBhp4shzjPzGFyvC70LwXh6HWzbzrHvxKiexmP7Ghf8eeZVluuXYC21FmKYaHWntca0XBjDkPOB84aGSvtTShzhoNbKFAzedJpoZ9afcID90Vhunv2h56CL4LweCX0Hc0G7Awm9Nxx8Aon0BMdaeNt2Eok2Gq/3N17vK7XBut11puANMix9VLatkPYD42CeFvUp90Y6dpofOqF0mgVljcUM9aOWUpQoawzOCM/Pz3x8e+E6z0wuMi+zNqJ6Jfd0StI0XDyVcgIPNJMrhokYI8ZarlNERPdlH4P5sijd8cjYaFimiWCgh4m9aQ5qN9DbO11QcMHjnD8n4YP5zN36cQbAr9YfYIm+zu95aka0DW2M4IMjJQU8YQxYQz9gyLu3uH1qYIU54L3KffsQ3Kcxpz6brQDSGXRqasQ5ssQFJwYnWjR6ayglYaxVyWwfmlcYL8xTo9ZGagedymIcs/Vs6UEpjWkKiNVsz1wz+1GZop5bA6EjeOtPGb0975xCrgXnNKuzSUHSxjgnXuOkFSvF1jFEwSfDCLXBXg4ej4QEIXSDD56BEOaF4DyVorEgVhBrqeU9zy0wvJ7VpTb9HKNNHDM6/sT/j9HBGB1U5Iq0RAyBUgrJqOrGWIMxGgvlrMEbbUCOz6yxCJ9roeb59rB/H8sP1au7NEgFjHOUlMj7QZgnjNWLd8o7bVRCmOhAq4PjKGfAJ2CEdGwMo+AJaxVvb6zBL4F+gBjDtq20VvCy4LxSF52fVIseHNZYop9IeeCCFhalVlrPDPG03LFd5UPBGawz5JFAFI08zRoUu0wR0y1BAt3Z84IF8zThneV2WWhimAb0IYQePk0GhnOazN4Mx7rRpWAzSoOcJ/2Qnx86M0DGKYEUw+iNyTr2lNRjQjg1uYLDsqedWirRR1wMbOvGh+VC6jDQn9uJYZ4d+7pjMHgLncwYwuwWZNK8ilEalYybA2MM1n3FDjV+fvH89OkyLWKw3VFSppmMc5PCUFJmsZMeiqMxGy3gcikslxkx+mBQeIIlWM+RXhlNNeGpDD2QBZ105KRoXANdLE0GY1h8DIzWcGKUVGgsow3u95XJW7CCiYHjGFxmr9KEkrmPVzXN/mrxR/72P8If+Tv/CL3CccBjy6zroT4XPXF0UnZkKJkpOKUFon4LYSBGQAwpJR6pUupp2raG0gepJFw3+DDTBjQGeXT6vumkx4J3nsu8kPOBTELvM4/yQs76/rcOcUQNaLea64JRL10MgWm+Yg2nl+vdk+W08SHCNM+03DjGTmlZ9+pyw6IZimBQSH9Xg7MoCr/0SutCKRpN0Vrj9eUjWP8p760B3WuzQIKn9Z3ROq2dxacI3hlcdOqDazqxNNZSaqHWTtqy5kUOneqlUs97mXLOa6s4sVqglc4yLZRaMcZro+cd/mKEUgvWO4ZxdGXAY4ylN72UIGruNsInGtev1k+4BD2F3ekZEsg14ayjpIa3juEjuSbyvtObRrf4S+A4Muv9I8HNgJCLEgov08y2JVyMiBU+YeQ6PLaNXis2+jP6QZiXia/3H8GY6DXjzYQVy54S27ozGc8UA/u24cSR80EqlSkutJTpTT8fpWYtCtug90YIC6Up3EvR9xUbJublgogQw0Qth4K2suPpesHFyDCV3CyjCS5Y7o+M4JlEp2T9hK/8Dsnj++duAxYt0rYt83pfed1WPt5fSc0oFTUfbEdSW8GWmOZIMAogSPvB4+0V44R5viiEJcysvYB0zXBy6seopfHdr36Nayvsb3eCi1ymgA+RmjO3eWIKC9f5gjHCvqk9YHGR/dhpZWOeFCbmulXgiRV6b1znRWEIGLwzfOfpA4hwjZExQNoghkkhI77yxdMHRtVGVBd02iKwl8f56xqsdNJ+cGydr75a9GZQ+TYg/FfrJ1tDGwWj6xM+pUTO6aSfavyJc57go2YPbjutVry3iBge64PeG3GKSge2BisGUBWWIvvdCS5TNZKRgRMNl17rwInn+cMz12lmOr938gvWGMY78dpPZ0FTQTq1DnKpvI6PPF+fNITeaMTNXhJ7gXpUGoNUBdd1qjZahV6JzlHPAhLTyL2S8mA9Kns6NLSbzrrv9KYO8hiVht1qZlfxBkfJpF703hw9fUDpGSOW5bpgEPpRzyy1gGqfG9Z5JWF2newZr7jv1hvWQDU6WcOj6rXe1TJkofWCSNSp3pm52lsnl4qzCutTOon6/D639XkWaufBhcpH9SHcVNYr6GX7MkeONiDo/0IIHkY7KWWWWjpiFG+Mt0yTo49CF4PxnmPbES+EKbCum1KR4pUYogYG5oS3VulsojrzW7jg44IfFcRzvd64jgV6Vs/HGOz7odOjbk8AwRvN6rRMjFWTfRPsFDlqUbIilXme6bSTIqcmbKXOdEWIuytHLkjSoO9+GvfXtGPoHGlj3zd+7avvkUrGW8MSJuYo/OhY6WNoDlXWCIFjO3i+Xmlvb6SaFaFq1WXsrMpWjFUyVasdLPgYcdbSm3CJE2MUpHdMVwPrddHCNXjdTAFBxuBynXHyzGO700bj8O70F1g1bFvH5Xal5kytQjkO2hCCc58kAW3AdiS+uC56EBn1xBiEPrriXa2jjkofUFPistwQ4zjyCl0w3ahOueiEzRuPjIGNFhdF8xzeM06OTJFODJ7H2ytyueiUc74C71k3HYuhjEYuvzrpAH79e7/Or3/1G7Tva05gyjtHOU7SleCMYAeUUeg9E4dKB4coTr80DXw1J7DiSA9yOdhKUmiIUcJcEQ2KrakqLdUOjlp4ulwJ0Svq97LgDsPb+qbxEdZjLp4qlVEH7pQhNRqDQanAEEqr2FKJ1wnr9VLW0ef4ngulFIJzLE8z+ThopRLFI3RutwtPl2es0QZQbZWjVo7jUGBKa3RBi6BuuN/fWNfMfHH4SZ9lCkyx7PUgPw5q1WmAjYF+FASPwdHP6bwPllpUQoNReXUtDess7py+CYNhCtKhpEwSiwRYbhedYDuLF8FYx1EypsNym+miAdcg1NY0x9pokLYEg2mqM2vd6CXjV9vgr36devAhEKzhOk38hR9+jRWDDLBicMZyzxkRR/RGu8Y9U3sjuMZkJg2R74nWh05TjQFjT5y7kn2e5hunKYAmDazmt33nO1+Qe2XyN/KWwDj8cNih2UZIYRjLUQrTfOU2X2Honm2tE2LgRz/6mhAmvIvUMgiz13DdclBzYloWgo/UZvjmmzfoWphs2ytf3L7g5eWFvGS++uJLgrWkklT1YDy3q1GfZmpQhRiEIzVmcYwG4pRQWtrA9sh6P1iPTq6Dbc2UMli3B6NDyiqFR8B5Q95WYrDsa0esxUwGEQ2/9k/PiIXb040yGvuuEIRybDjnqMfBoPH8/IR0pQgHP6sf3RielhnvLG+PnQ8fvtTcTjHQBylEbreZGHbu24NUG0+3L6mtYERIqROC5q9Nc+RyeeJyuUAeTEEv57e4cFCxXT07hcGoB7lllamNTi4Z6z19qIHv9XHwVVmw7azPEj9PmMgv9zqpo72p+q5WbTC2USlt4J0hjkgqCXph5IoRsFYwooj5WtRAKUSdynbLsJpTie0nH0PojROAYc48TkdNmVoa0+yJzhG9Dg0Q4bIs2jwZmW3P5HJo0xP1X0WvXu3cCh/vH+ldVOZeoe0VOxrGRbwPSlocnXRmvcUgbK1wrA/SsZ8wD88jbbw+Vo5SOXJiDHNSjAfWeIxVC0o9f60hldJVeTWMTg9FHL1XLtNFM0bHoPWsUTTO6ZTRBUY3HGXDh4hFlHJcq3KFjEdso/ZEHJdv36+h8Qger4NN65jmmflkToSomaOt6+SwD8g/O4L3H3h9loVazeonEiva7al80qYf6R1aAbcl4M2F3IRxSuVu1xtHSQwUItENTCFQy2Bdd4Czm2jZ+8aYDNIsfa+UnqlZ6KcW9xoiYgaT8yxhAj/hnGXyF3rvLNfIMFB2TwyK/3X3DbrFO0trIMFDKfRU6CeG1brAeA+u9p5aGn5yrI+Et/Eciys6dNsLflRGmMn1wBnYaiWtK20ITgZSK1OcWcRSaiOYofTHnLTgahbv4Zu3O6UWWqr0DtV0wgjgRYtgEQ25LtqRc9Zi6IzhGaXQEYIJ53jOQHd4D7IMnHV4b3m+PZFK5kiFljLWO44j890vntiPHXELi7XYPojWUnKHk77zuB8465jnZy1KjcqurNHg3YbF2IC1FlsbIUZcsLztKzVVajd6OHmHdZb7Y2OeFt7YGL3T6qChuSDBqYysN4E88DFw//qFOEWdWHqhrJVjXzEF2lRxGGQoKjfndwOuY8jv5kL/dbzeGysnFcs4r53zvpNTppNYwvmaiaegYJDWu0p8UmGIoRlLap02IHc4csE5hzHatRwdHo+NXFWiO1MxRqfNuWgUw31bab2SW+dxbMTpgrRCcDPGNUotXEKgtMGxbdSesGII80Kqr1gn2LwzRidvB188f4m3DiOWKSggx0/LpymuFUsgcJkVBpBy5v52574pqridRcwYAx8dbsDr28A6x14SW1XvHN3RmpBPqVTthck5aBnnBe8tzjvSmqi1wpg+RQv0WvRzbQVvNF/ujN+mbE0HONFwHAMrF0U3L5GSNqVhEojOU0ToPpwHZiVE7cDvx8a0zBqhcP6h2Y5CE6F2lKL7y0V8/MWu0+OOV1lfdIHyKJiWccYqFTAdBH/md8rAeeGyXHHG8/LyjQbQ3hYmCTzuD53A9sF3PjxRsmaNRj+RUsVEYdtXDZauQqbx4elL5jHYjg3rLLnWTyjrp9uVXDIgVJsoNVN64XpbCMbz2A62Y8N7pVi+lgdTD4RqsUPzJ29ffKkgIQdHUQllcDBaZUgnzZmYI9s4OC4a6O4QRtEX6O2102ui1MqH68KedUI84iDnSnrb2XJG3Ex72/jByxuPfWdygVo7b28PfvuH39czoMP6+gbOa+aiEXJpuBh4vLyQizBfDT4GcnpDRqSVgbWGXg+cD/ig0tGPLz/gN3/91888MyWuvq5vPI+J5ekDpXbeHg+c8fzghz/gw9N3SePA2cBXX/4GTTp77dwM3IB1TTg/8/H1he9+50uG6ATVDMNsPa9f/4Df+O4f4na7clkiqRSs9bytd754XmgvBzlVnuZnmhnk/SDOE84FSq08LRNxnpS6ez6nKZrBtR3bL2wL/NKswRmoPqhAbZ15nqi9KCzHeKwUovM0GwihM3IHaeScaV2Dx0vNtF4w4vX+0yzDDhgG06G1QvAnfh8NkN4fGSeWKXoFmZBJxxvdTywxMMVAb4ljy2AHOR/EGEFOgqGxTCGSc0KBhqIB2zJotVMHjF4I3bJEneKXpPRsTGD2Dh8mUupqR+iF+7bz8e2FbholNwra5BejE7XaGt2qPSDXnW5QnzWC8TO1C94K0c8n0v9smpZKaRWP4ExAFSqVzkEfBjGBtO+IVdxrqUVz1mLUgldOFY6M8yKidodaCyUlggVnA9SCnWa6UvoUPvTpjf581mdXqFWT+RP/o3+Y/+E/8D9QQMPv6tBGLwRnNF/FWKRFLrPTzKXa2Pcd7x2T97ysL/jTezW66sHv652WFb/7+vrGJc5Ev9Drxrpn5JzWBD8zLRExnD4zz+Qs1+tNJZjBIgbKEOqwiDdEmZAmvN7vpC1xWa5cp0gPjvt6Z4xB9JOijlviEiaExhdfXCh1EP2saGRv6AxKrRrsLY6IUGuj9IZF6LURYmC5LMhQlPH1dmN9fWAnR04qx0IKU4gcVQ2e0gb51FM/1lUzyoyndiXu+OBBumqgvaXXwp4SIV6xTv1+DMPleqXuBRmNZVaZGWNgvWHpT7z0j9R64LxoRpZUUtmI1jG5SAyW9e0VhuP5+kRKGe+9arr7wBoNRRQ4ke2G2+1JM3xyJVqPN5297qTWEWmYIRjn6VhyXokxYo0hTp7pMlNKUqqg6UxBTa11aMAvh46+S6qKSE871mgRaRerAAhrThIYeBvpzdCbjuej238R2+XzWx1IKoObgmGKnq1U+tYpqdAwOGtOacSgo0hihvpWjpTZS+Vx7Hy8v2lmrQtc5qv6EdGpTUqJbXsAhnlaAIuPRqcEwGiwPzTLprVGR1HXrTRKr5TWiM6Ta2JgyblinWFermz7A2c9+/bQLEUE52ecdXx4fsI7RdYHZ6mj4VzkEmd89EgfpCOT20EqjVSrTh16R7yj9U6q+ewqOvwUcFNgSzvrvtGGEulyS6fNXNdWMtGplLjUpEViDArP6R1q1QBTY9n3jeADcfLaUayNnDKUQYwRHzxOlKd/lIZvKosyQOuZ0tWHNnnDY2048bhh6YD3DmcFazzBOvUc6ShBvTEW/uQ/+Y/w5/7Ff+lTxMiv1u+zGrpvBuQGW27cH3cqDWdmnM2qaui6Z0SE3prCY8LMsnwAa5njpHEWk0r+r5eZ1hop78wx0trARU8fg0YjJ83Ne376QBuwPu60UhhdHfrrKZl87DshGPb1UN/LZSGng7f1QX1XgMyBl/3Orz09IUcm5Y0wX3hsDzBCf/uIFUsvlUMGsw9clgtvjzvORlrrNOk8XZ55e9yJPmKNY8udVjPXy4WUV57miW460+KpFbajc98OtmNnLwl6pgNv+8bHH/1ISc7W0YZhPypiBilX9tTwolETqSRaghEFrOVpvoDprPdXnm43Hvc7McwMBvO8aMh37fgYFJQwVK7mQ9BQbO+QKZJbY9jAkTvONebrEx/XV6x1DLqGG/fOvieMATcaMjZS2hCrEk3vHbfLk2L4Lwu/+d3vMF+0gTJ6YQ5BC9Q+GKmzuInkMqY1qCg+vTTiJEzBIr3z4Xb62Av4DHxP+DP/5J/ht/6dv/UL2wK/NEsAq3m+pX6LFq21fGpG5prVP1oORAwhKJm3NR3H2TAxx0jp+v4PO5CmeZfSjRZw3hKN2jrMUH+XE8OHL5+RVtULLEMLealMyw0nqnyaF8t+FHqpbFltQLl3WtUJVQzxlFirJeSo5Z3BR88NZxrbvlFbxQ7IfaWNzLipZHm4QEk7KWW2slNF7UWp7lQBjNCqqtu2tCPGsCwT0+VKrw3rHbkM8p4Y0qijY7qQa+bYE5fLoqAqZzXewhWsixz1oA9NuE+1knLGBZ1+lVIppRLcRJdKTur/9n6AGYQY9Pk5Ons+vXxuYk2V4SsX79S77mC+zHxuWuDPrlDrrfOP/NP/KP+9/t8hErW8PSlOxkIIkA6V9pQmpNKoZ1bWtmeOUjWI0KhvbD+K0o6GkHIi56IfIkkcKePEU31TSYLpWDSI8Pr0gUsANwV6NSzLrJW/6YToaU7RrL5DlkHeO7NT074xmhtRUsFahxjL89MT276dmU8qpTzKyu0yESZLfiSWEHQDlUZthSGNIyfCZChNC7RL1ABCK0+EaVLQAGBFcbHeKcHQOENtFahYF3j9+gVnIiIwR89xVMaAoyecOIUSDO1CjAbLrIeQSITumRc1Saucxukl0gnbnrlFj3iP9I73HhmGyUdGdHRpxHlWjbZz9FbpMrC4M8stsZeD6APzogHZGENqiTq6RjGcJiZjrXpt2qCNQj6K5tV5h1gFx1jnqDIorREmxbPHGLhcZ+5rY/ELIXjylijZsNeDOgoWsDjGGFgD3jol9dWCserZadLpDKRCahVrHPd9Zx6Ny/l7/XW/3nNmGtQO+fSXeecZU2NUnZr1qmHNLUMwMIaQa6MPYUuJl/ubyllD0C6b00m3INoB7Or9mueZy3zRSXHvbPtKbY3oA9Id1lty6xhnNMOtD66XhZQLKSVqKYQ4c3l6xjthClEvYq0AZ8C5OJZ5QoxOudXKaSm5Ya3Be8vtDMMtqZDKRkqJ+7aRS1PJxxD2Y6ePduLTLcY4jDhciBpPsCXcmVE4jFK/nBhKhVwzNRdu16tefGm01sF21fuPQafjp0jJKkOZcqRJo7STiHVObqRbJAh+cizzTOsZxCnQpDZKhTDPBBzRB+xwmGGovWKMZTSDOVn85vT4plp5Mh47w7/wzf+Nv7T9nlm1v1q/ew10zzT1X5XcWfcNHz3lqOS6kvOONYZp/oC1iulvtVJKwfvIPAXm5UKtlVYqtRxM88Q8KWmx93EqFWadavfK8/UDr28vCAYKtJpoR8EIXC5P1Kr+yQGkfFCbgq5A2LeN5Xol3V/OiXbifiS8d3z9zUemaVZZU3DEod7nY12ZpwU7z5Rt5fnLD1Qyz9cbA0OpSh5++eaHIEIMagewrtBH5S9+/yPL5UIpiT0lPjzdzmZK5XF/8MNvfoSfI1O48MOXHzGs43VdmcfAi4bdz8uFnBKtFZwd7Nt6ejirFlPpQES43p7UBxfUU+rjBEaL31w6fd+ZppkQPC5MrMfKbfG0WplioA547Af+GgnOKNFTLG/HHe8cj/WF0gYxLiyXiWnz1JrZjpUxhOgd3upU/nl5Yp4m4jTzfL3wfFXpvTGLTjdqZU07s3dYGvctYxBulwvrvvHNxx9BubKEmXGxxDhhPVyfdXrLQGOQ8i/o8/9LtiSac+Si4BczgKGSOe216HRq2zaOPWmzSjrihmallUIuhdEVAoKcSqYxOI4dZ4z6zdwMpqvTuXfEWZZ5UQKiGJVMikKvGAYpnSSJ0YQpRqYwI8NrNJEM6EoENlaw4qlDaYx1VJoMatXsNarm1ArnedwqJa069P/4gjcezElgtQqjYghtDNZSELHEyancser917mIc3r3tN5Te2PQsTLY110b4y4jzhBmT8NgbCAYofRDiccdctppQ5sp7fSm1qyvem9DAWOtk0cGsVirdzInglUqIGOcQCWMTt4MWNGIASPgRWOaPjcJ/2dXqH1a/vzzPTdlgHiNFHJFqFY4SmfLmcU69sfOngs4Sx/wcn+h7AkXHXXoJKrVThUNmjZGM5j2XKF0ZHSVEWGIUbXjtlakW30zrWYzPY7CxTriTd5zMblNjrWenfwxmH0EK7w91Gsl1nK9RHLJiLN8+OLK68srtSoKe9RBsBbvVPesf1Ud7+2DZh7tR1IyzjC01kmS8cbgvKcUTasPznLvBTOUmtN7xXuFMkQfWY+DMqoSIQVqa2xHgj5YvMNbz6iDZVm4zgstqy9omSeaaGCxt44uFkPFBEuvFms8x7HRpWPNDSdaOC7XJ30gnHk/H56eaX2QSmE7DrwPSLekvDFdJpZpUlNq7nQ7tDj2htYHrWbqoxHwGGvoVOrQKVcZneA8fVTGKKzrrtptgTYG7r3QM46cN0Zr53utwa4tldOvoASzOGvGyOPYKEdlmtTQKmhOlxuTPpx71+lmF2r9zHb2L2DNbuYPXX/jzPyCo6vsoLXO6HqAHfuOdwGDon9bK7h5ouGoLfP6WFn3TXNfOD1P1pBT+qSXd9ZTaifGiRA0NiLlREqDcb6vzSXV5cusxCj9MNBHZQo34nzh5eUbpAlOLA1BTMBPszYEjk33ZoduDHX081BEdfVDH/r7vjP5D0TnWY/Enndsd4zRSalwlKJ6/ehU4uwtXRSn7Cy46OhNP38+qORsnAigPjqlVVorOi02Ri+Ow7HtB7VUgjV61x+NYQY9J2QMjpp4vb8RXMA4hx2ik4WufgonGo+xTDrNSMehip4zamRg2YtGHSiXQLDiyFnllqU3vA/g1GdqToWJ+/wiaD7/Vfg2xLmDdYbpMmvwealMPhDCxBiaDZiPjeEtNmX9fmuoR6L0gveeD88fGEOhOLUVvLuq35hBCBd6V19HrQclVVrNOO+IMSAnMXUM3Xt73gjOMUWdwN63TSEVx66X0456O3pDZKL3Rk47wQriFCo1RsesB9Y5vLVIjCCDPWVGMJ/Ogfu60afBh9sXOKeXLr3JQs4Nxo51Qu2VlArLdKU14bEWzSmtjpf9ReE5WTv3b4+309fnKCVrplMt3PdDpdQiiES6bTqd8IacEz5GDI58NPa+c1ueaH2QU8KYgWmG0LwCqr2jFL2YGqtTinm+cE8bnaYxGcYrjdUI3Vr6tnK0jbY2msA0T4jo5d86hZyF+cIcPdYpaCU49fyFoJOWViu2C9E6jSzJhfnYKXRKa+wp850P3wG0+HPmBDCc8KZ3uS2C0jJ/tX6yJXrvM2cuVyPjvCH2iGlCplDPcOtaNf7HWQutY7yl9k4fld4KA1FaME3vuMbijTkz0xJDDAbDaEaHDXsmzo5WG25esDYwhrDtidA8U5xVHo2oZFK6EmIH2GiJIZJrpzVtwLShn1drLa01yqgc5QCxqnepmS7KVWB0lS6KIMbR8kbKhdIaWIexHmMcVhyYgp8mprgwx0U/273QR8E5Qx2DKcz01jRbd3TEiEZVaBWrRasx5zPMEaeZt8edcWhQtuYryqmyOb3rvShtXYR5Xgj+VH4YQRiK/jcBYx3DDM1Gdg5rFc2/HoX/0//9/6wqq89ofb6F2knA4sfjqQKQwAXww+jlKgmYwd4OKhr010dXffZoeDuRa2bNO9FHNdnKYHRhDkELNSyXZWLdVowYvHXk1Fgmj+16CSzO4WLE2ZncYDl/RjFwrFCSGrBb7Txfb/Q22As0tACs2Whmk7dMwZKXCdMUZa9e8n5KwARnBco7EEw0FNNy6m3HmXUklFK4Xq4EN/BG6FvVzkmwSjVER93HkTToMm3U1khHooyBWMteNrwEctdYgkucccYRXKCLjp5r61yXC7Voiq0aDAABAABJREFUwLYTmLzBx4XrEmhHxgqs+4qZOstlxhrD89OFIyXu60P9XCGSasZYy8hZvYgM5uuNXvVAs87TeqfVhNQD5xfqAHFK1TTAHOL5OpxmVyNaTFYoJVNKwTiHEWil0HLRSV4t5D3RaibXne2RsCedKfcD5/1ZrHnEGXyMSDPkrTG5RhOL7dA9io/uWoCUlHGfWwvmF7D+lr/pb+aP/kf+M9AhJ9SsbCwta1jncWzkk2Rmzi5i6YPSOkYyqWXWtFJ7w5gztFK0eGilsT8OsCdVC4dz/pQOvXEcO0G0E2it4ciZ4AzsmS4q68A4QhCitfhl4vVVCGfXzUhn9EQf06lON4Q4EWxEgGlS8mtwniVGTG/kQ6lZrTXyoSTJJgORwevrnS1lci0aZjsq1kWct4Qws+0Pas203qhdqOMcRUpDTFOqadWAbM7JoTOGTmc7NpWnDUPrRiM2jNFp1wkNct6fVDLF80/R48Ry7DulVK7LBSM6vaTrxDHYQO2ih98JbjJGMyUlWAyGfUuM0ZBcmS4dE3R67pwi/OX9uf2r9ZOvgcKyHCwXw3UPvNwtNUclwnnPkbN23ntljjNH2pGhEh4xhmO7Y61lWRbmKVKzerSVcqvZaksIKqGdFsYYfPE0uL/eESzX56vmG6G0RGPRsN6atPOPnFLWjqDAmW3T5tygY33QZ2Id1DNYu+aiUvZhcSEQXCA4C030ctYa+7FrzqZR0vAlRPakuWStDUA/28uiMk5rtVN+31YeWya4SeXpBvb9jeGEnCu5jVOWqJTlbz5+w/q4IyfkR4A9bQhy4vCDyjXP54qgxLrROsc6KKPibVBa7BSRIdyPN1rPXC9P2txolSNtzMvlk68whY05RubpwhIX7vc35imyzBPORXrrXBZ9bad5IaVML4Wnyw23KNiMAtRB6QcrXadpDnoftDPXakt3rI0st4lHa4jx+HBhWS4E7xjO4qZJwQ1Dg65FVWR6r/K/oM/+L9mypxzY+vMZa1TVM4VIzbDVXX264vQu6bShazAM56jtpOkCSKfljLczVoYqg4zFMDQjszaWaWKKDoeGRE+XgLWCE6HWQXODOpreEY3HP6ussXWV+I0uxDmSasE6bTYb4yj1wXFCQWqrdOcIIbDEC3UUlWSez3FzQkGcV+hH7zCkkXIj1UIejTYUPqfLY4yn94bDnfaBQWuZkhMuqI9MjHBbbtzXh4ZTd4X5tJIprSMdVaEZ9Yda43Bu50gZqRUzhHiSWRtdydtSCXYixInJB2LUxm7wShwfIoizJ8jOn3vdau6yNfwrf+lf5X/1p/4h+vhVofYTrQHfIncX4Au0eCkwHkMDWo1wmReKdHI56AhHOahj4AxaAEhjfzzYj51dMsty4UirFjHS6XUgVh/OS1jUB9MrBqcPegsXf2G0QUoVP4lS2Tq0pj9HyxDE0Ec/AwENpVS++OLKy/1BMAMzUP+XGciAp+tC3iqXRbty1nl6URBCyo1aC1NUreyad26XG499VcwoHWcht6Jj8dFIR8E0YaRGtwVO9LKIgSi83Fdy7zjjSENNREMg+EgIgV66BpS2qiNyMZhTRimmcV0uPNZOiJGWM5fZE5yhmkCzwpdPHxTP3FWeacTphXsMDcseYK3XoFIZRCPMc2TLB8F6nNFO02VZcC7zgx9+BBrHUXExMNmAF0uuO1cfGcOwrwkBLs+zmqV7JbeCN5a07YQnx77tbNuOtE50lt0YaofJRaqpChdxligR0x0SrOayJSFGT1oTrWnha+rg+XLhw9OVY83UNsi1sswBZz6vjf2LWMt84bd+/beU+NgVoz3EnoRCvRy13BBTVccswDDkPOj2IJWd7dhpHWrXw8xkgxkW6xzWespIjFb1Ash7YZ7Py9wVGKSyUvOA0mh1YOaoPtWh4b7WQT8ywVtaHThnacMwTCellZL0oJimWXG+KC3qHfrQW6W3ql0/pz9HY2C6sPhAHo31SDppstCr0HPDRsNjzYwmeDOz7m/0kegytKj1WkhVgZGVCinKa8ZpCjz7elD2nTBNOknpAr2wzLczuL0h3nCNV0br9NJxzuK8ZWRtWmSX6KUzKtz3O8sUuUxfYB3kLWFE1QOC5r2V1rhv93NiclZwdnx63lkftJEEvyrS/iCroE2/CP0OdM9XX36PNCX2fePxeIURqK3hQtRsMoHWK7fLovl41yvrtnG5XDAC+5G4LDN1a3xxvSpptXUudiikA8HLghmQjoLtg+vlwpYO7FNkDEdvMEznOB6knLjOFyY/k7rgetU9N8+IUeR1GRlxwmInKAWxE3TDtt0JYaKNg4HD+0CuBekGzOBx37gt1/O81eksQPSWPoYSmekqrRdDOzLTtLA+0nn5OxDrOeqGI6qPedsxbRBD4O3thZwSj8fG9ekGor/m0/XG2+MNOOWdubKVwRJvpMcd4w3Tcjkln4PvfPUV1jse685lmni7vyqsyxjVektj2xJHSkzhwvOHJ6zxrLvmJDpncc4yakWaZmSlXDBu0Fpnnq4EZ1kfsB8Hz1FJj7lpNEAI8bQ2CB2DdQMnnbe1kHrHMVi3hLWeVAfTNNOlcnQwtWkhfJ3wRidC7zRtDuDye30wf7V+9xKGTiRFtLASIYSF1ga172wlk1MHG/BD2MsrQwbGObp09od62Z21jKFkcKRpzm7XZ6pzmosLA2cNIgFnvVKuTcCg2ZnG2FPuXBjWk2mkknh3zlnrOHphtg7bO+u6Y0wC0UiBAWCtnlHjzAF2ntCF9biTS9HhAAMnhT1XpaUOUQBQbZQhp79NCHYGUA9sU4XZUTM2WcKkTdVaK000lD3vmfn6hLNOYSxHPgn5GpPjvMEOgxRR2qt0og8KFayZNixRDNYHRA71WpyvrfUGMV0lplbVKFb0LBvjPbxbVFlGZ1gtqo+88rp+/Hl/rH7f9VkWasUe/C/+W/9L/mt/7L+i3bwL+lD5BqVAvg1GHpqPNfSylmslOAdyoj91S/FYX6FX5slTmo5Hg/cc+xvOLbSa6K3w9lb18jIsxglmVMToYTSFgA/+7MzrKZLTgHqCLaIWZnLmXuRW0eLeMLtJpUPStbKfDcZCLhAnj406UaNoAG+cAuk45UamIzYi0piCo2yWnhJi1Tsg3lFzoe77Gd7nQDr13Pydzr5Xcik83t5IpbJMEe8CwTpKacxXz9t9g2Y4amb68CVv64MQJkIIpHwQLNzvrzjn+OLDBwQHFLp0ZrfQXSUugSe/8PrNg1Qac3B8/fqR2QV6AxfcKbd4vwJqx9Zj8Tha65ScGK2xHxuXecZYw54OQBiTQ0xQDXjv1FKYZ8+6Js3C64N0VHLpTMFDOrjf76yPB7Uk0n5gjWdxE/OTJ7dDs6JO7XZKGdsGpReOkvn/s/dvMbtla34f9HvGcc75vu/3rVWr9t7dIQQp7XCBRKxwAUSRyQFLicAhKBcgjBQjOYmEfGUp4cZSsIkTEEgIgS3ZQbFjlOD4gKO2I/kE7sR07A7tbgfcjuS23eneu71376pah+9733fOOc5cPHOtagklfTK9a/euIZWqtFbpO445x3ie5////WmDshWM8Zp3F08qw6wDUwXTwRqVNQiGNr5MDX3vd+gdWoc17dQsB9xe5bDRe9K+EuOkUzUrbNsVby1bVthINZ2KbpVqOtJ2vPcsS+TpeVew8aTZJ611nAs4M8AOpBu8mWlGmxRdBiPv2NkjGGpp1KyHiBmG3Ari1OPIEA05LxqImdKKiJLvZDthguFdurJHy8VPtHZ09NHirdJ4d9vYksqwQwgYE7g8LgyBN0/vSEnNzyJKm9VYM80hKZseUHkMqOVDvkuY9OKcysawYKKG8GIVJWz9zOXxRBCnxKyu0pt++PiCUz9DQ5HpyxLoPdNH5DTPnKcLRpSG14fK2HpvGBt0pCmD3BqMnfn8eHRskz6H7chnO3Jdv2CwrO+O9T4TbHz+47s+XfE2YowlLifW9JaH88Jt3Xk4vcCYwcvzBW+tRjKMwWVZKbXQR2eKnvu68nA+cZ5mctp54QMihrdvX+OngFl3hgtIgI9efMReNpUHVfU7WjG8e/cWsTC7iW1L9KEez9t253Q+k2vBj4bBc5kX9l0D6WUKTH5C6JzOJxhW89fWQh2DMzO4Tq2Cs4M1bVxOC24IU3RKrRwdaw1yFGvBe6iO8+MjuWSWyfHpZ5+SemHbbpxPJ9ro3LaN2pQOPWrhdHnA+UDaM3hLXQsPDyfmZaEDT89P0AelFi6nB/Z0o6Sdk3/UiX264WvkZ+XbxDkSbeS2rpzCwvnFAw6DNUJOd0Q03zNYS6kZF60WtyWx7ypXfjg94mwlbTvzaeG23nHGMRlPxxEfI6UoBMxaQzQKR5vmE300trwRyudZaV/7yvfz/PbO69uThg2jXvVUKtN84vr8xEcvHhEEF+CehfYOXp103w0ZfPrNT79Tu/+7auVRSWnHjulQWFhSEYZxaq9pAxsM3hxRRiaz5VWVFscDrkWe12D4I2cMBqNnlfDZhgyNsokmasB5Szp5rivWzXgzAR1nPCFqiHQf6v8O3pLWjJ8iry6PSjscgimVlDdsiIQYGfUo0ppSge9ppVyfWCb1ldaa6H0QfKSMwZ421j3rtMl0OHx5W0rsJXFaHnHW0UdjmmYYQi5J66esQL8OSNYBw75nKk/YQ42kU7xOaTttdGrxnE4LrXXWbaOMxvnhxHSeGLslBHdItJW46qNRC9HkEYbSwn1kWI26iL6h3G/NTdVmcFBqsxiiMQT5Yh5gX8hCrdXG7/tT/wb/i//tv/QhYwbQEX0F4w3WD1orNB1c8nB+QSobbnTGaIzeuaeNkpUqN01K+dtTIhjt7otoMGEqO+uasGMgLoK35Fbo9461lrQnzqcLYQnUooSmdRtI79TWyVnlHtIbYh12DEppVAYGHen6Ix/D2YFYg6mHh7xAmNCOtBGIMG2W2Bbu90Yr4Iwjb0WzH1iw3rKnDaxn23dKrkwHiMTPlm3dQYZmrAmMVpinQLcoiUpQnX0I1AZDNnLXTtyQgZ8ifTRarxgruGlmjMK0TDjrWeaJtBsa6iNrNXO/7bhl1oe8dpy1xDhTasOIUnk0fb4roOOQtlkvNAo2BCyeVhveKfp8SCPGBRkD74OG63Y5QCEzwXt8iGzrBsZBr7Te2XMB67g/PR3BqrPmnVBVYikDh4MhpKSTj23LtKH+plEro3fO86IUoBhZpknvrE4YODpZ0bdWFEdrv7cLNUF4MT1AVZ9la0pCW7c7XYbKWq0WDOIctRZ6VykTQMqJ27qrvKJVTFfiprOOPSXyqgQt76I+xzkRvT8mOsKeCrUJo3SsMZxOJ8SKGpf7UAlmqer7Kqor7mI0fD2tTNOJ6AMmRj04xgHOGRCNh17Y9p2eCzV7xqSRGw8Xh3c6Pb7um3YcMYfnQKdyGO0k9nbk/RnDvEws5xOp3mgd9r2y3lfyKHQRlVmhsu7aKlvZju/VqAb/Q8gk0Ae3+00HXUanZ5OfdAqMGtz1lyR453DoYZrTxmwdpa7k6vA26sXfOfa8UuuOSMA6z+WysKXOvu/M84yRyBhCrZBq42I0AuTL9ctYlvdMaLwDbwuMcWQRGUYtRKeQpVePrw7JktCNgmyMEdroDBpTjLTe2J6vLNPMq8eXbPvGFAKPpwdyKeR5oTP46PxIP3U+e/NaJeGjY1xkMo1c9TwI0RJc4NXjC27XK2+3O329Y8ZQBQWdgmDqoG6dKZ6JQS8/abvxtRdfY9vfgXTMFNi2lfP5TEmNxZ/IfQMG54czXgy5ZIJ9yRwjMiq9GUpvXE4nyr5jyNhaCQZSXRldY1NijNo11yEdeV8pVuVc+74yTRq0ve53aKJ5m72TtoQXy3BVs0v7zvO6cYoLfXRev32LtcLed166mbTthJPHx+kA6wzwWtiOQ45vROnILWX2VrHGMxrcyRjp3Pcb0Sokq+yJ//JXvo/r/S29r1jj9HybHR9/pIXiu+cnmhH6aBgKplesXyilIKbhWz+gMfD48iWfPd94fvdOCaBovunjiwewQirwGGGegBm1ltzgH/mf/iPfqd3/XbMGg//313+CP/3n/gT/9H/zNx+Tm0DfVnouhBh4fLiw7zulKBzHOIMbkbQmRGCaTiqZ3Tb1zXTt0uSuROPoLfZ4Y48h7DUTg2UMR607Mcys+Uoud5YpEtwF6yOtJ/pQiEkaOpkOEhjSFOLhAGMwTs9M5zx1dHJN5FI176w00rbBqHjj8M4j/ZjgyqDUpuepaENPhkogrQMvntq0wdlbZd1XJTcao/c9L9TxHkTXccPhJo93hpob1r+HfYBzEyPr+6hJZYghl8ow+v8OazktC9ZF1m3llu7I0MicOIcjHUi95yDU3LG2kZsyDawxjGE++DSNEfTYE2JQH+gXbX0hCzXgc3+aR3PU3ncdCxgPdhpI0arZRkcdgyqNNBp7LlgR9m3H4CilUNquhVBO7C1jh2UtG7kWtnXjfD4R5oWBsOaNYNVc3VuntcHzuuFa4jQHxHZq2ol+oRbtYLau+W/OafdhKCYKExw1J+ZpYfRBb8JyBjmy4dx8fI8NOOv3LfX4txhOMwiRba+UPLiczpTRsd5R64A+qLtqiltr5NbIo5BL0swcZwjGqudKYDsIXiqJMlrsFg1l7DTqaATnGFbzl4wLB5Z7wljNYsm1Ugc8XCZCNNRicMZhZXCaAh2h9MFUT+S84ZaJ5+udUvVnmXNlPs3UlLhvOyZ6vCjlMbeCiKGkXRHkfmC8ZcuJ0irzNDHE0DEaTlgyW8r4SSUwvRRqHYyuI+4+Bh2reVy1U4ri1cbQyVwbnafrs/ofTKC3ymid4FQbYrwjxAkXAmXfccax7Xes1y6qHtAdF763qY+neeGf/6d/6+dGawveBcSs6r8xIEYtzohOwfsoDALDyqHZN9ReoA+VDRpH742WNFMlOIc1KBSkFvqxf2trtAoi7UPRXHLRzLHg2LesKssOrTRGG4gX5inyfFVPgBNBBEJwGNV8KZU0ZW59VS+pGCyCjzPWOlpodBlsJdM3oUjHx0gZGwOlzIqxGBms20bOhWmK1FrUP5QLKXXyQRcVJ3inF8SUE/7AsrVWabWotyxc8N5TStKCVjSv8fm6Yo1hjjOtqXfMWoMVQ6k66VdpZKf2Qh0Ce+ccL9DAOQWttNZAtMOKdJWiHPEXjEY3mpfGMbG0Xi/l3qtP6JuffpNvfuvnvpys/VKWR886p17Kx0vEEvjks2e2UhGBNhqS1Ycdw4Q1Bu88IThKS5A7X33xit4HW9p4nC9M3ikdN6+c5gtLnPUZkM55eqD1yr5eccFyWS6UIXz2/AlNBtOB+g9G/citdYwLRFd4OH9EyhupWN4939UnJ55SC04Sad+YYyAYy6evfw4ng5QLy2lmmmasObxyo2vTzDtKzjRTeJhPR8g82iyxCvIZQIizIom7Rgi0VnFeCcR2aFxOboXr7RnrIm10rqvGtLzPNNx7wflA2TZqblrcTY4+BtZEcm3McaK2hmk7UBEc82nGiMWawbbrpOHl5YEt7ww80amHaD/AXa13vA/adDEa4XJfN16+fKFqH6Pnx2U5cXmYKM3TayXGiUc3KU68VZw1XM4RFFulnjsbuOdNybkM1u2JimZLtpxYomF36pf3xnI5nbD2UDRYiBPEk+43lmPvffHupl/I9Xfe/hw/9lP/H/4H//BvVikiBhmCWJ3gmmPKmUoil6J3xaYxLdFZBWUMyH1grSDGqkfYCMF5WldKr3qzHS13hECMmlGZS6a2RnWOyETuFStGITFoMSmOI+9TqFWzOK83vX/195QgIxgjGguAAkes9VwuD0BlUJGuxUztjb1kau0qUxzaiW0A3bBMFyRnck5s6X5MdTW2AADppJK4Xp8wZnyAcsn7iApTaE2p4Nap4bT3Aa0hIho/o5MVtnXHLwE3PH2op22kCqYjCG2vn9/NukBRwuQwRv/cOoKPGBlYM3CiOXKIEDyEYL5wxEf4AhdquW38yJ/8Yf7h/85v0D8YP++fSWEil+FpQ0gVcquH5M/hvBy+ksa6rmx5I5fENM1IrQQbaV2R16UXcsvkFnA96uXHCMNBF72sWB/AaDf8VnbsUMlHTlfCETRbeuVyuWC9J2c9cK3TjrzBYMTqNEtVVziNfsK+14YPPi9Ij+5qDML7LOVpOnwAdajheDRSq7Ta6FRya7TcKUOnZmDBdAZGcafiNCttdLacEXGIKBAhxAkxg33f6Shy1XjH6I35NJH3RJhUq7+VnSqKmh3WMAzMIWDswATD6LCn8cGC9HA6YZyQe+P+vONMYFkcc4wQHM/rM85M3DaVIiqRsbD4iVLVpJr3FRcUJ9eBnDO1dZIxBLGktLOuGvBdSkWaHHEOAYZOVHrv3K6343ewY70aZH2w9KT6fxc8rXtIiVrVS7ScwtElUs/UEGHIQdpr4LzDiP8gafteXTFO/FP/5H8fXms+Tymwl6wht6N9kD8aZxmAH4PaDXveue8bVpwSo2r5nNJoLKATWYZOucYBAohxJnhD2Xfk6KRbZ+h16GGXK9N8wTvHNT/TxNIrdLr6L4dhniLf930fUdOR5SadtOaD+NRJedcmTGrglZhlxGCsQQzMcwA6A0sZndw0w6n1hrWOXBIlb+RSaV3zr6Y5YkykHl3w9x6AcnRUQwiUWnSy4L1Cg/aM85p/Nfo4JFQFYw3WqfxjdJ1i117ZU8EZnRhbN2g506yhVMU9R2/x1uJ9oLROtA5v9FJfe2bouFFhJUO/HyrqfxvavHJBnwvjHd4bnBO8hx/563+JH/5rP6wH7ZfrF1z3fed3/97/Fb/zt/yr2uRwIAHOM/THC29u0EoiuplSMlPUYmGOgZeXmeCFt09vcQwWr/RSBY4EnRoVgzVRpVEIp/OJV3ysEsh3r8klc5omLucLT9uKd5Ges2qXR+fF44V925SoK3ppS2kjtUTJldM80a2l9c6r8yt6r6T7nZEzW2s45yhDJeKIymrHUDntGAMfJhpVgVVhgj5w7mjsdLUqeBwylI4nGLxz7NcbDv2zvVYlXornszdvKK1zv77V/KbLhZTU61dFfdjOGqZlJm0ZY0XzrXpXwvF0JoRIK4neN0QG02lGRlfKotWJf9obZZqZXKDsheVhxoYzOTaCVTl9iJN683JmjE7whvV+ZTmdCSFwmiP37S3bbnj1+HhIID3BWsxQ5cl2veGDJ04XBawA+b6xbgnn/DEx3NjbjvVKtst74zIvlDrwwTI5jx2CSMGYQYhaJHBEQ/zu3/u7P1B2v1y/wDpImeJBZKAvyIEZGuVSeiO1rHl6kyHXjTbqkU/p8VbVDuvYD8Q+1FGP/S6klEGGyvZbQTqaoVsG3TQkJ5x1WDHU1iijMQ31o3W9riLeIh72vDOGUrFLrYhYfQbHoIlOfqeg1Mgt3bFGmJyjdSHXzrqtCIZ9L+Te1esleja01g7ZoaF1i7OB+7gr/XWYozF47DHT6a0fTXA5JLgGay11FMSoYiqGSX3sAhIttVSNq2kJ4z0xztSWVEHQkmZLmoEPAemHnw3Rz9sHvRRs8BrbZERpldYeYDHBhYhxij01VlhL4i//p3+ZNX3xgt+/sIXabb/yv/8//5/4Y//4b/hc+vge/Txp1342husVgh08LAtvn++E4DGmkpIaeI0xtF4R0VGtGMd1vdNKJ0bV6hiv5Ju3b98cmSWRYYTUCr1kXkwe6y0pFUotlLprzVg7uUGYAy133IPFxyPU9rhQmt5VJ4vgoyXMKm+0CrSC9wyK91O1A5crgso8j7/vN5WStab0r14HNe/se6b0zLat7LXTMeSSiGFSo2TObLZBE8wwOALbdmW0TA8qybq8uECrRDfj7cSed9pQvPGeq6JYZeiorx8vJtFupwZnNibvDi20XjZu112zNowgVlvF1/s7TqcXzPOE8w4nDusczhhK1kMw54SgF91aBuvtRqUSZCJOE9tBfvRGTR0SA8s0qaesFHLNTH7hdr2qbEsUyVpHJbVKroUpKtIdqZRcmaeZblViczrN1KHdoG6hNDBOdf/BLngbGAeyHBpT0NyP8mW4L2SoO9xX2DLsSX0ZIvry1GmXoZUCBsZBZitFs1yCEfwUqdLIuTFqoZakkxtryb1grWDEEb055A4TuaXDP9qZlontvjGAvFelnLWG94J1wkA9hQyh5h2plTEaOScQz3W9Hl66hd6S6t+tZTmfmFyg16LP30H87FKZgsegJuacCse2xxmhlowVw3yK9O5JWyLO6j2royJDL55+RPKo1FE+f+hF9DIAIIMQIsYJ+1Y0a8d7lbN0lZiE4Cm9UWol5UI3BWlKqqy1MNCJfmsd7x1jOMRZGiC90tGOqRHtaN6zgicEoTUldIrtlLoRZ0+MDneYsMNRZDzXZ572t5/LLb9c/4Url8q//+f/JL/zX/hX9ZwLB6ulgI/A3bGcHjBmZ/SBOMvD+cQSHOr6bXx0eVBJeM6sKXGaZ3pvPD8/8/j4yDgJ0hUY4Iflspy5rzeWOGG6YU0bJWVuT2+p+4Z3nm4rt+uV0hq328rchSEWi3C732imEax63gaaVeTp7KUQQ2D0jnVD8wzFqJy+Z9ZtJYTIPEfayMzTCdMM0sE4f0QDDIUpDNjWnSlOXE4nhYk4gxw02cla/DLz7vrE+nyjdyi50FqhtMIcTjq9yIn1+UZKmWlZjjxG8H5wv71j8g4TAlYiwVrS7YlxNGuW0xkpQpOGC7M2RIzhNC30vNM7XF6qD8h5xzKfiU5YFod1UeMQ3IQdGhVzX68qv+9Q9p2eG0s0nBb14siwLPPMtt+5xIkwOu9uV4IPMIJaMhCcsxhn6AyFcr2+YXzFGM95mllvmY9fvWStO5flpJP8tuHNMS44fP+/63/3u/g9f/j3HJmrX65faAmi9MQIxunPclCPPFs5GAgTS1DP1et3ScnTozIyTKeIeIvvKo3XSJQDvGbMAV7TCbLGqXQwliaD0caHe0rP6fAcq0TeoPm8vVXWe8MkGIYD9KH/oYODgRE9WwdOJ3lGGMESg8UJBO+xRwMxpUKqGUELnC4dYzrBW/rQhuUx2GX0z3H5dIP3hmnytDIwGM7LA7VXhlj6UFtRjPquwCg1UsaglnwoO1RiqcBmy3Q+MZgpOZHSrtN48ThjsMFihw4IjDFItUdR2TWIXpQAnocgEojoXV2jZTxTsHzy/C1+8Ef/PW7b9Tu0u/7z1xe2UOu988ntNS02bLHqTwsoTAQ+oPFjhJGF4C3zMnO939nXO7moBr3VgmCZgmK27/eb+pK8oekNhdQ6756uXOYzp2VhdIHhePd8o7fK5fKAZxCMY++D12/ecDk/Hih9juBbT0oNH/XrMkNoOekE4egmzhfBX1CE9XtLUz/+W4W1+m+FTNEFrXyANQ2Ch3l2jK1pUbJVUsoUCuu2040nl4T3nnVVulAqiSyaG/by4QEbLKe4sB25NjZqJocF7a60ArVwu94xTr+oj1595chX0pyZ4ITWKzU7ylpwxhCCghFS1lrOxYnRB/e0I7nSq+BMoOZM9Za9Jkw1RD+TrgkrXiVtXaUn637FiVepiwys8eScCTEwugFrKCXzfH3mcjpxvenDlbZCryvrmulj5XJ6odlU1jNfLth9VSDMaIwOtWYNy7azTiyMdoKG6Ah8nieMDJXxAWTVpebe6b0RauN8Xtil/f/3gfiirwFs0DbYa6d27V7N83wQmwa9V5UKN9XSh6i6+yAoQTEo2a7UTi1J/R8cMsgD5DP5gBVL3hMi7YCJOKwztCH0nvHW4b2nlsq6vaHWQhCL8UYHWKj8pNwzQ2BPK7d1w8dI65UuBndM3sYRmLvEGVrhdDoRvKcl9X8Zkc8hRuVoZMg4HmWhjkGc/SEzPsQgH2ovQ4yeKpUyMjlVffeIEK2nt84QDQ7uHJM8VGastaYgzSBRJ/b9IMn5EPDeM1rCxpnTvFBTZ5mD+uBKJUyBMgp7T9R7YVDxzjL505Hzo82Joepq+gDThcaOkVkPSYOioq16q7rtNPM9/hz8MtZgkCSp5zXD+0rfO3g4eb752R3jLb0DQ70iuwjn6PAYcA6HdpPv246zET9ZHqjstWOsZ1oiey44gcvpghjR521ceTFF9nVlip44Tzy9u5L2nekUOcuJMJ/xbqKWxmjvMBT6EErrOCtsKTGs4NJO6ZlogoJlrHA+R+TwaJVh+ejlK4ZY0l6YzwvbtrFMkWEgpYaZPbV3Iko+jCHw+PDAFCIG2O4rIiozU7DJmW9/8gklZZiE8+kB5wKtv2NPG8/P75AuPN2vdDy3p2dtBuVEr40gkT0n6r7ysLzknguTEXJVJHjeNl595WtUIgbLeZ6xAsFok+N2e2a8g/P5ATs5vItYo/E5GjllqGXHucBlnvno4UEhEs4SveGrH/+92mjsQgyLStYQPnpxgT6Il4BbTry7rXTJDDuwzhF8UN8rg1ozL168IJdMQ/MS4zQT/MRjvOCiIfWKD47ghRhE7xkn+Klv/RR7+jJE7Re7Sm/81Z/8Cf7aX/9xft2rfwgXwBl1lXlxzMuiEUN7JvUn9v1OKR1n4kHxRiOK3k+bUKWFt45cm2aRScd7T6uw9Y3WMtY7zOHJ11iXQV0Tl6XDolFNUwy4bth2tbeYEBAjxOkgEx+2DkDjjUZhDIORoZmBqTGswn8GAYxnyE7cVXXWjma0PfzbMUwYY7jeNsaRA1dLxk0BZwzOKWnRR1XXRDPR0kZpKpOclrMqSqxoeLjo3avkpD8bMZRRaVaJqb1nECVtOhtIdccMOM0XYpzpNTNGww5L9EEVOVYniL02whyxx3ujDb07BAcuWMLk2HJnLesXsslofuH/5Tu3vvmtr/Pv/1/+lOqoAx9eLj+/yFFg2iDtIK1rePFoGKnkfdfpRzfUXLler2rmxxKsp9XCthXKnljvGWPger2y3p949/rbbNsdb4Wn5ydue6YNodVETpV9z0pyKvnA6Vf2fefN2yv7umPdIHiLKpAauKHj6zY+l3Ae38MHOa9BD+rjzw2wbo2eITq4rpl77prfNTo2aH5EbQ1x+lDqNE4Ovb4aMqfJK+XHBmoduOA5XRSHbIZOOIaBe1p5tz6x5UIqle2uEqvZWx78QrCRsu3klOi1MnvUR9ObZmXlwX2948JxURWVKt73jW7a4TMItAEpVVqvWBNILWNsQGQQvWfbNu5b4b7esNawTBN9FNbbDemGOOnvrmwbbcCaCk9Pd/Xf9UopjdQzPszHBLQxjpH48nj+sL9aVdQsQAyBeXJE53n14iOW4HG2abDqvDDHiSUutPfptOKYlxPezzhrOduJ7+V18icox4/TCbWXDwj91ppKmoynFs0LHAP2PbPtiUxjMMhlo/TEkEqYA3GetWimAhU7dKosAlMMhOBxzjH7idNyZo6RfUsarDt5pTshzMvCcPboLBrUaXaoVqQhJjDNCzHMvLh8hLeOOU76OUS7/Z99+inbmjW8u1RC9Lx4eNTssarm8d46ec9c396x1uCCehZ6UehCrhl/ctignhwXPN0IbgpMcdG+aO0fsqF0ejeIy4nlpNEDtVT9/qKGehqjuntnIBclpF6WE1aO2WFXaYp4BfU454jLBCK0oZjmey5se6Y1S+uGgWZRgXZkW2tKkEQP6WjBW8F5S7Se8wwxwE9982/zh3/wj/Jlc/6Xtv7mz/w0/9xv/83ahHwfQOwGDSUDv3w446xjCoHTsuj0NBpstCxf8digl+95mfi+7/8qxjXe3L7N3jMfffQSnGYq9dHpIty2O7V1BMPD6cyWN6Zl5jI9cA4Tr16eWRalspZ+x4sl5Y3n2xPzMiPGkFHFRaVhPcxBKHUnGk9JOzknRtGCJVqLNYKRQAyRVhv37UYfnS1tPN/vCrqJjn0vXLc7e66clxeI9dyvK9fnd6RSaKhn79VHHxHnQC6Vl48v+MqLr+AkMk3Th0nH9XpFRLjtdx7Oi9L0vKXmolLOVvBmEK0liJLuWm9so+GDpTb1pz0/X0EM0xwUqb+rJNK0jql6zo1atekng9NlYd92eqs8v/4W6/0tW3rG2oaj8jg7HI2Sd5YY8FZz27z1mvMY0UjFbhhFPuTjGWNJpeOMpdeqEtVSOcULS1iY40kbOdbz1RePnCfPMhtmL7ycHJN3xAn1pJ3h9dNrrl/A6cEXebVe+as//eP82N/6Tw4oGThn1XsZHO4Ijq6i03JrLQ8PZ07TjBW9bssYOCM4Zw6ZfeM0P+KdTpf0zEMBUrVhTDhmwIL1EefUbmOtBjVrvKElbZU2Oi5EbIwYDHSH4DHGkksm5R0YhBAUMoLG3wQRnAwsjZ52GPWDLD9OWmQGG1TJ1SE3Ie2Zdd3Ided6v9JNw00eS8AYiwxLzStb2shbYt1vmvmGxn68J6gbsQQfseLUcjI6tacPd8g4eVXU5Mz9/syeEqUW0n1j31bU05Bx1jK5icvLBR8tLhiVXGM0d1QE6z3zPClIbi8M6YQw2PrOv/eX/gR/65t/41d5R/3i1hd2ogbw7Tef8Kd/7M/zz/yW/6F+pRdgBRIqE1Qbhkp3pLGtd4zpOIE9ZXqv7PeNPvgghZyDXqhb1e63iIAxfPzxx5qvVDItFe20t8bklYTWy041EXGOWc4YnP7irT8wuQoPcKPRsXhjKb1gxFBbovbOPEf8brCeD9k5ND4vQiuMon8mGqNBnC3bDvTBnnbKrkWhoXPfMvHkyfeEYFUSEjTQz4ql1cawjn6YUMf1mZHVNCpGA6F77/Q+MN3y/PYN277x8Vde4a1Qj6nl7fkd00eNXisC6llzkes10XtjMpY1FQwdi6UXOQKNdbQfQmQtlYzm4ZQtk1MiGS26sIY96wMnNPoYhMnSi1KrFu+454QgjNzAoT6JvGFlIpXDp3d8b6WrX8wYo/pnhFZg9EGujdIrNW30BvNJL8h9FNxw9FIx1jAtE30fml/VNbNk23eCD5ihI1FvPD56XIzHi/R7d/22f/Z/DhPIVS/xIlCqFjaaWaIZgdYHZAykJJ7vV6U5DTBBfz99NHrtCg+JgTA5np81iD64qJTIY9rjDNjoscFpjk0e+CNvJq0JunA5n8n7nWFEKVbAaVnY0859XxlVCH4mTot6M53TzrPzGBlgLb11aqq0ohWID4FLnJmCw9JJ+/2gSOnUt7UCI+J91Cyq3mkYHZw3IaVCbf0DtCPvSo+11lJ7AypxXhSOMoRWC/rS66R95/xwhiIwBtOyMIVI2u96cBstZAXwwdFGJeWsgAMjxHkC6dRukNHorWBDxIujdCEgusetZ8uJ1gpbzhjvcNbho2c+LR+IMd6JEsCA1+U1f/WbP6pm8y/XL23ZoU3IDbhBybAWnbZ1A7llnHEsy8wye5YTiEZ3cXpl4Q5kyHUwzZGwCtdt5931Sm/qNXTOgveUsrPmzCmeyelGq4M393ec5uk4TzUEer9ltlJoo+tBK10z/4ZAhb2uGGMO1HbhvEyYMZimBUbTqZ0JXO/aQIDB6zevebg88rWvfAURQ5hfct/uXNf9w7T525/u3O+Z7/tYvSXnhwccQm4VcY6GJQs8bzvXmwbHK6iqkkrl3fWZjhDCRE6JKXhKr9y3Z9yYOF3OjOqwobNv6yHRN6S9gBGidfRgMOI1u8455jDRc6fZphJkcSxLIEwebx3OTQpq6JlRHK9evCK4QPKZUgsPpzPeBeY5sm83jAineabVSrf6/ppO/kPERVPjKX0Ieym0AcZPTMbgLNSSWLfENE+s28oRkoH2agf0Tgx6vTOt4xfD5aVD3mfSeviDf/gP8uf/4p//Vd/qvyaWHRivMsgYInOtpKL3DmstrXRVEVlVP4gzjNagC04TilSKeORwGis8XC5saVXZelafvBVLKQkRDbK+3TTYPljH7GYMhpwK4b0PC1TRcYTUi2ijreRMreDjCWh655MjjLoPzZLFa5NjQOuD3Hdy2nDGMESoovLEIV3Pcunqic6J07Sw58xgME2e6GZy3Um5qFUGw5YLuVbiNINf2POOOXym3jl8MPShRGJESa5iPXsudFdZy07vA+cMxlr6NGOtZU+7qtiwLNOCdEczO60aTPDgBD8CMpw2MlzAOY/1HmcdyzwB7/gb3/4Jrvvzd2I3/YLrC12oAQftBf1K33vU3v+50j7JCd0QRj1Z93Wl7k2zikSohzl/mnSzjzFIOZNaYbjAMkXu28boBifq12h94ILDG8M0zUdnw4AJ+OA0n6kPct0pbbDMF0V3j4Z4zzCV++2Kc45pmg5NrkoiP3xPHe2g+uN7MzBWaLuSLYd6nLlvGdOHYu5TIhXV8XdpBDdhQsTWwrbe2XMnV6HWnfu2UcbAJUcdhbXuLC7SaiIEhZwwOqUkailqvp4nlXZVpWP12rmvN4IXBEM5XjZzy6QMHJ3FKJGtFnprGCsa8FgbuWalQOYNvOX102uMOO0ctcFedraaAe1gegPNDrwYhlHz9G1Vz5EZekC9e5MoZYMB6xiUPdF6Jc4z+1bY045zhtv6jBHB20hrnZwS2/NGq6qBNoexfJ5OOrqHD6j103wmbZlRKmVPuNkRvec0B2rX4s0hauJFlPb0Pbx+67/4L2gTxWojzojQSz/IbJZUEjUn9nXVKei2kbNeRBiNvFe6VHrLlJbZ7oneT3gjzPOicges+qdGwzrVB0tvB5m1sW0b3iopkj6wB9nJHJ3D82lBxGAMPMRHxEKqFec8xhru+05vmSlO0Bv7tjHNE/M80a1SPd9LPuZpga4kL/ETxnrWVFUebNRs3an6+bzjPRRFrFO4B/qzUUCNIvg5JmS1NUKw9CZE56mlsO+FMToxeD3YjHpmlW6qpusuCh8xdkATtZP2TpB+IJoVNtLKYJCJLuK9pewbw0ecjTSEilHoA8c7JjpaP94Xor7e0WC0jrOHwMHy3XCafCHXGIO/9Y2f4i/8lf87/8Q/8BsVVnBQyFLp5OOCk4b6k9oItB7UWyVgu4CHlhq5VmQIy3Si1UHKKxAIflEvZuk8XTdGLYCo7MdPXJ+v5FaVuChC7ZY37555ePlI2nZaU+BHuW6UVqhdoU8hRugqQXw8n0HMofhoKsa0Dmsq1lklNAoEZ1XePBpxspzPD6S00YblPeOi9cGeEucpaFSMNWy7mvyN9dzfveV2W/W53++sKWO95o95E+hGc6fWNUOr1D6Os7dCryzLREob5+XMXnbWvNN7J8ZAq4XpcsZNHhF4eHwJdbCuK/PjA84KrRduaz2m2YZWj6B40TDxaVpotfL48HD445XAt6XGnisP88Lp9IDQELFMQS/VdVRMM1grpFpJWf/eGvUCpn3DxomWlYiXSiOnHTFKhZxC4MXDQnSOKmjj0RvM+2Yw6HNq0XvHl+uXvMpo/MynP81tf4tzql5QOI7GQvVa6b0gRomKLSvJWg4kvN6NtFk3hvr9e884H4g+MOqg0hGJjNEph6QPFxAR5vlEiFEtLttKbw53Xii9M4yjjU7vFX/kYJaaSbXgvcUaS82JnBPBO6Q73OG57lKZzEJthXVPNKf5hUYMt3WjdYNxTgcjBroIpQycD1hnicfZoOf/QbUUGGYovVKUDGxtxxhHLUWJk6XRSqaWRC6Z+6Y2hCHmGCRo9hmA906JjkNYZpWScgRsjwO6sq37QYpsCtM1ThVboIoaF/AhEEPgMp2Yg+UbTz/Lz7352e/AbvrFrS/40Tr4xk9/nb/9n/4UP/ADf//n06f3XrW7GhjN4TULztN84NYHRgaCBaOFmneO1hteVDfZhk6TJmeIzvJUMjHOtDYYw7BEz2k5aZG3Z0V6GjVTl1JoVo0bKe8sU1RAHcI9r8gulJaPgrCwLBOPjwveHG/KXS86dJALH6aD+hFQre9RrLX30goD1nt8izQG7949aRbSGGybUrjevn3L9b7TxmCZPbfbyr5t2OiOTJxAqjpp6L2DV7lHzgnnIjHOxMny9O417XTixeNHmojQYNsLPs7axQuedbtjrLBtK3a50PMgdwjWsG4bqTVay4rAb5ozl9JOlU4vG040pHqMwZCuvytBEeWE43c0ENO454btME+Tkh1r4Xpf1YiaM3vaWOaZnAulwvOq4afGCH54mgx6rVCKwh2sxVjBij26oA16w0/6efW9O7icTtyvNwWOzDBHlR3N8TC/d4MzOr2M/nsbz/+h+TCOOEBncd5rx30Meld4RjeDWjopZwaNYQbrdcMKYAaOQaPSWuV+23Bu4JzlcjojXclRIKo1Pwh0tnv2PeGdI0T1ota0E4PTQmJaaKVTU8F5q9Q5oyZnhgI7StHsKuccNWd600M3p8zowqvHR33XiKWUwi4rpzkwmlK8SmsfJI6jdqpkhmlYH5jDrH+PUQBEVz9bKht0wYaJMTp5WzHO4bzBGIsTh/TOqBVjdYoY43xgnDumdmpZSdLxxlByppcDFy1C9A4fPC4YzZtykXUt3G8rIXqcNcch3ZQm6xsmZX0m0Lyc0TWbzTihDfXjGVG5jQGsEcL7S9+XF79f9vqpn/lp/sP/13/AP/HrfyNkcBli55iEeaZlovbG89Mz6yZ838cvmcL58yZmVb/gGJ1oPdVNvOtXbVoZoeQrvVfm6cR6vx0FzkqwnmmKfPzxx/zcm0/Ubx0Cb69XfJx5vq3QhVo7677jjCfXSnCfSwV1ZGCobSBSmOcJwXO7b/gYKCkzTRPL5UTaVpXT1g3nPHMIhHgihYnoGr01gj9hnWYwmp6hF/pQImqns6YbYyg9FgOlanyFC5Eta3e9lkLZV4SDVlkys/MMhNYK724bo6t0zToHvXOa9WJ8Op0OWZnVyUQfh5+5sm0rr16+oI9CzZVg3YFyEIYRTvPCxx+9womj5MR6e2aKEw1Rhc+qsRolLvSh1gGx0M2gF9S+YDQl8b5rwHj0J65v3xCnE2Z01ttNo2ucx8eI9wFnA7lsGAsDwZhDqLNoXImNIEczmAY//qM/zh/+wT/8Hdrt391rLSt/+sf+HP+9X/+b+K+9/PUEZxl1YIfFjkJ0wrpt7PtOKxVnBbFeCb11IEUjMnKuGKPNypqVQGqtFjzBCCZqJNB231SSW3amcKIj7OUgU/eBNQu1RJx3NMzR6OhoqKmAUQx5b41UO6nu1JyxpwvB6zQrONjyxr6vpNJ4vl2RYOm54qZZGzhtHBj8gbGeUjPlgHF5Y7UZjxIcUzkoj4dqrTa1pAxR/7PC6PQM37cb7VBrlVZJuTKJsO43SkYBcCePPZql7yXJWHcQJdvR2Io45+nGfMD615ox4QCLHOe79xq9FaNnmhzWJX74J/4if+0/+6vfwV31X7y+0IXaYPBX/tqP8kP/8Q/xA//Vv1+7QO+9XD9vgLHnTimdwTGStUoZ2a4rJnoe/AMtFW7bSkJoe6E1zT3rvpIRLvGkaGRRrfjD+URLiVQ1W6g5FBYwBnveACGVTG2J0XSThRAg66Xv+alxvsz03tnTzmVcSHWwVzhlvcziYSQdEbr3vrsAkqE19d1ZD9Ps2crAecG1xkja/esDSs7kXlm3lX0vPF/vGCcsywTGkOvgFCz3+6ryJxrbumpuTutc1yt124lx4Xw6Q1JQyf1+Z5k0Oy26idKM/tx6184/jlEy1gT20pQqhgYO35JeEHrXHJecMs/7nSlOaqx1KpXKpai3LyWin7FOv17vHLlmnHOklGi9McRy2xOn84QZnW4M91zU4D4Mk4QjI2TQD1rRNAUyFckFK43gHaceWWtmmSK9JVqu3LZNO8PGYcPQrK26YkPk8vBwSFwdvSeMPbHtiRfLA1Y0r0MbAL+KD8YXcR3P5Cga4m6HMAfH26zdstY0I8ggfOvtZ5RSNIB9NG5bwtnGPEWGteR90Iel5kyunegdy9Rx3uL8UQ+OQUs7tRaMcUzzDFYlikJn9Ip1E9YaxFiWKbB/6JpPlJoI0wxHVy/nzOl0PibrXUlUA5blxL4njDnCumuhCTQrUBSGU1tmTRvWdcBwPs8qHalZw2ktOBfpOSmsZ3wOKhldMEMLRhucHoi5UUXDUj2WeTkhNWGH5hkKsO9HmH3vlLRROQ4iP6msxQjLvCBOmxKNDGjH9u42zaoZQq5Ke6Q3xFr2lij3pBfBaA95ZoPumeaF4CKjG2KcVBbuBOdhTSv/1z/+x2jf2ykVv7IlfD7p6FDHYFjBzoHJKk6/jYrBUbuQesN2i8+Dtg2er5k9J4asRLcwTRO3lHm6PjGwxGVilI3aIKdM7TtWhI8vH1EPmmAqBWkFHz1v3j2BwF5U4m6M5lE64+hDqYjeRYIL1K7emFEzpWTWtBPjGRHh4XJMlTqqerjfETqPDw+EaLmubxhiWZ9XPnp8hXdWYyVKIxdhzxuPj19lL5V1fVYKXjfY99Es26bxFslSy35Q5wYWwYmh0Hl8fMHT7R3Oeuqo5KyN1I4QRC+ro6mnToYwhQlBg37XvDG5iHOWeY644HA28Ca943ld+Uo8McRgRBU3122n18JkPdYMbUACe145Ly85vXhgngIuBKVL16F4dGuZp5nW4Xa/47wnrxu13BHrNPbAONaU8d7inMVKo8hgipEYNCS95MEdeHwp2AcdeYtFvf4OOMGn10/5yb/1k9+hjf7dvfrovLu9ZRs786TZgsEZnDiiDeDA2zvzKVAcuq8QpA/EqkSvpI7pOpWyaBFVUlFp/vlMl65QC++oPrDn9fAwRnrdyVUgGARLyo2b2zmNSd/Voql7jYqW7YKxnlR2nAz2PWO60Pug1Iph4EPEWaeNfEBksK2J83LGh4m5wbUeIDYDfVTWnKmlYUxn3VeEfrQsCqUA43NDSC2Fjg5B1i3R+p0xBmIsac8YZ5nDTNqfsVHP7Nw6e0vkvTAcwFCbw+j6irRdp5Mt0xrYyeLnSSnjfSBJI2yCs/gYYMA8zUzeswTPw7zw8hx5OO0Udvb6xYXqfKELNYBcErd0o4keSoC2im7AgHtWrW8ZDemdGCKbzeR9I49CWleWacIHj2ehtsa9JDCDsJwRY9nXQXB6MbycT5wnpS+VUXEG9lzBaEEGEL2GgeaaicuMGXrwiRjCtOBDg270kJCBGMNnb5/xPlJLZZxnglEC3RRQCENCL7pHhE0qVfmqGLIZ5F6531ZS3nl3v7LmTHSGfd+574magSHMcSLME9104hKYauR23yll5+npmWXyCgYIRul7m/pQbq8/BdEAQS+GZX7gngfWdWyqDDvYS8J7R22eVDN0IaXB4+WB0js5bwiD6/2K9xZB4SmtD6QOXBiUfIfuSR16F6YY8M5z3zeenzPeekorBG81yDwXSs1aBNeOTV5DEcUiphO9pe4Faz23241gHaflTG6F+XJhu21s+UZ0BufA1sbFn5DRCadHNrNq2OoQZvc+NsEqKlbQEXwdCAoeKa0wuQlrrQbKpkT0ljl8OU7gCGpvxySgloH3Qs1o5skQtn2n01jLjumiXi2nPsb3gJFWK9YrxdB4Q20ahC1DCVuzm9lSYn8vhaIjxjG6hVG1gdGFjlBLITjLPE2IARsCwqC0jrcgLrLljWHAWAsN7QTCIdWwPDw8sJfMx48v8FhMz/oxssqs9n2nd0HszPkhEHzUfLgVruszYj29DXo36pXF0KUT3YRbAgMopRDtRPCKb76uT7R0FKdGWNyisSCtcd/vWlxhMF0/Vi5F4y4mIc5OKV6jEqscoaiDVBLWKBGy90GqBdMFkU4jE3JChhLtwjQdk/6D4iiDTkZJBOAMBH/k1xm4cueP/OgfIrX0q7/vfq2s91PJo9g1Ave1cbvvrLdE2jN9dI29qIWpBLb7jScJfO0SOS2OlAZ7rvSWuN92JufgtJBzUZ/XtmKkHTYBDZL95uufIziv3hYr2gSpg4cXZ96+fcfldOaTT77FGJZp0eBnjDDEU+hM1tJHpiYt6LbbinWO86PH9ExJGkQPGRcil4cLcfeavSdRQ7LzjhkNHxSowRC8n2h95/p0I84PiAxSE0bNfO3lx3zjW9/i+f7uyHQaUCrzZLk+35mixfsHSn/kzWef8vb6Bjgyq95DHRAelo+IUaMAvDPUOriuT9A6+7bBEHobJLnz4sUDYgbPz+8YHKoUVMZ9Op2x4tj2HUZnmmaatfSa6Tnr1Ew606I+z3tauaUrX3nxsaoOrCf1Sr7fkAEvXy68/uyGsxOlZtb7MzklzvMjvWbSALecMNayv3vmYVmoYjgvE8uiShzrQRLwiBZpFngJLTaenp9+dff2r7E1TKeQwIOznugj3mVy0wy9h9MZ5zxP3Ej7nV47oza6zYDK0qsBatf7mBmMrrh7csN4o0qgkukUrDgslnFExnxIZZZOlcbz05V+cVjTuD8/8fjyQrSBlAoheGpXUmRrDX/IK6/byouLpWJ1BiKGGE6MmhCxnOaJ84sHjAhp3xlVowKMF9ro1H3jCBwmHxCQr776CsNU2r6p3aQWpa8z9HujU3tWGjiCY6INwbuAWSIn/xF9FHpVKmPJRXOTQ1AvtEAMXuE+YaLSCMsJaxxYi58cbhhqrbjZ6bRZLFP0CJYlTkTrOEXPR5eZl4/CT/zsT/KD/9Ef/U5tpV/U+sIXap3OX/jBH+I3/aO/iV/39/2AvmwSn3vVFOZCtIFhBqUOau30rvleOSVoShMUUWCBHD4aZz25FgRBrCHYCecm1fGWRvCB2/1Grhmphvlg7w+BLWuuzWhdfdYYoo0MDBWlLhrjmL1j33aGb2AjOWf2JHTvuJwiFR1GjBtg4XYb0FEO3ujkDM+3lZIaz+tNtf21a65b2RV0kDP7XojeY5xTQMEtgwNxHiOV4BYtzFKmlkp/8wYxwjQFevf0MDHPM6eHM7fX7/DTpMjyPnhXGudlUq2xaBdyzYWdTi+VcR34qICS0hNT1OT50gZ7VhP85XTinhLOekbRDlIzGgJe9kKtmfX+xPl8IZfGcIIrDbGGmip1q5ymE0Ma215xVg2ug060E9enK60nvF0IzjOGaLZOa5ihUq08BiU3fGwqyxsG5yJDHJRKKwU/R6Yj925ZPG4EStopw9DaIOfCV77yMd7qBboByxSP3JHv4aUMDA5KLzlXBoM5nhhVyHui1EofluXywH3bSVmpncEGrPf0XNlzpuRGiMLl8ULJBeMVumFRjC8WvDWczi+wHro0Ut5pW0HM+7TcgWFwelhY363cxsB4j0VY9zvI4J4L1lpKqfSu3rAhSrMzxlJSZtt3ljCpjn5qBG85n096qcTTRQ8vsZ31vjEvJ/WyDuht4EyEDhbHMIU9b3QGvQwsGl+QW2HukVo9VhouRPY8kdJKroVFzog0gp/Ztyut6CHmJ6tZhkMhKuYgvsmBxS0pkct6xEtYzg+e+7Yeob/adQTN2RlOWLerov/dzEgbS/R4iRijuWpSB94OnBOCCwRjmaxgw+Abr79Be49+/nL98tfP8xLtCRhD5bcM6Jay3TldFkq9c71mvGg24d/55MppurDnnX0vrEO90zF4xrhTW+K+rrShRU2q+xH23Gi9k+kMY/He8ubdW16/eUfv6rfMOWnRJIM6NDJivSWMg2WeWWvGi/C033EO4hx5OD/inScEy+P5RO+D622D0nl88UCZFu7bnS3fcAK4SO6d2+2ZzTq2deXhcsGI4JYTP/f6NZfTQqmqavn260/Z9pVlObPnRG+NvRTqMEzzidoKxkdGabhpIvSkk7/RWbcNK4ZpnghThFEJcSZGbcAaZ+ip8nCeMVZIuRH9zPd/7Wv03mgt0euBazYe5zzeKwXWGMOb5yd8b5Sq2YpDoLfG5E7kXLA2K1q/63trmgM+GNoubFvBec9nbxNNPCUloHI6X6jdYcPEPAZP6x3vFRT04uUDg4EMuO2ZOHnCbOCw8DDQ/spFp0F/8v/2J/mtv+O3/urv7V9D6+1+44/8uX+XX//P/UNE+0ojYvwEqdJbJefOXjYF8PSh90abdeY09F6r2XUKjZnCBN0gdPIxEKh7o6EwK2cczlhk6MxKDPpxAUYmxAkkM3rTJvmAtDdyG9x3zRe2ooqxnqE0jb4YR06Z7nsPoyMN5uVEbYOaNSRtSCdMCqYTY3HDELxjdH+A47RxjgiWSPCdvb8PjlaFR3CB4Qdjq3gs03Kh1aaTOKfvIrGDtKklxlhDmCdKy6SU8HHGu4hg8Id9xQ+LHYKxQeX4XZADHFZapTaNxzGiFoUYAud54jwFTovBusx//JN/kb/5yd/81d9Ev4T1xS/Ueuc/+okf5htvvs6v+wd+4HOoyAEW8V7PNR8j99tdL4C10E3DGkeMkd46e9ZLP0VlArTBGIKPAVuHSqd6Y1fEInPwjNKZomeMSi2Zp1KIUXWyW074gzSzp4Y9WXIDeyS+t1Yx00yYPG1LpKZ+mhC95t7MniqDWpXcNY5R9J4axkJrSoLbN4WkpLwfkITGNAdut6STviG00mEMrDj2sjEcrHUnHoWht55Go5UdQSmULTWc9Xinkg0XPf14EZig+mMZmlE1+iBVDfbth9cs1UKviv43NdHNYIyKdRqS2w8cuSYQWm5pI9XOnjLOGWII7Hvhdn/GcHRyZVBaUaDCljEx0nrRC36HUt5xHmd6LvrSOjKc6uhcj0tCGOqJM6LTGhkw6Gy7+p5imHHBUmvTnK6usQ7L5KitKdhiq1g/E+3EHCI1OnIplDagK90yWEXDZyzG2g8Nru/Z1T5PnTAGCp0mHWMFZy2GgRGDyFDy0jQjzmicQq6HP8PhZksXDdcUMeofpGn4e0R16gZELE5UdjpGxzuvkgk3wej6XrDCvmZqq3ohw3B9vrHuN1ywlF5JaVC6So2vt6uSR60GG9roKaWwtsppOnO7r8ip80IWgveMop6aGBw4YS9Zozhwh+nbMy0BF2f2vGKqhpiqP08jIWptpC198CgYa6FWBR9gj8tcIjjVfLeueTnWRJCBtdCKo5mKEadSUIsiv8Uqrtl65gPnjxhyLgw0bw4xGARrBt0MyuhYOnnfyTVznuFyWvDB4v3CFCZCUOmIN0J0gIff+W/8L0npywy1X9F6n6EZAA/zouHxp2VhvW4055kvZ1prXJ8Tq804sTxMnTla3m5XtqyG/FYHGMdt39lSIuWMdY5tLx+kyNAwB3zg7ZsnQvTkokZ8HyI9614qtZJbIpfKHE8qhRTow7DmnUs84aeFaBzueM7VyyiIGHLNnOKJ5ZUWbOdp4bOntzhnqb0zhZk5TNy3O9YYXr99S6+VkjVsdwqRrar3LAaFEJTaWOZFsyytIffK+XLm3dt3Ojm3nj6GNjbazuPjx5S0MUohWsscT5xOZ9Z112dyT/RW9B3W4HyaEIHgA1M0zPNMrZvmMfmAO0VqK0Q7M0znxcODhsh3BTA8324sU6C1wnmamcLEWjOjGLb0hlY658sDqcJ+X487g3BbE7WvtDYIzhwtl8Y0efa6MY+Z1KtGBVihVsgHEEwnO1YDgD1I5PNIozOwwL/9x/5tftu//tu+M/v719Dayp0f+89+jLWvnOPHBCsE5wnOUVvGOKGvaBO6FEKYGMYjrVNHpTSdNHnvWKYTzjtE9N7VR6FLY1jRiAYXGF2LrPdLgErCdK+gmdbI206MljD5D36wViutdq4pY6zRfLZWkNZwzlPqoOSdHg51Uq1sKVFaxRyeMAWQ6nN6TxrTgRFOpwttyOFX7qQ9U0fnFCJiVHFipWOMwUeL8VFVar4ThmFUnZjZcDRXgVYHrWd6HZziGTEw9nH8DFUN48wR3I3HeoPBqO8cvfNZYwku6Mc0Fuc80QWdsgcN4b48TLx8KfztT77Bv/lnf/93YAf90tYXvlD7sPzP+yfwYao2TdA9tLeZfb+S0s7bt0+czlEvF+7M9fpMb5WeBsYYLvGkQIBSlbBzjKWRQWkZ1wzr3rEdnG1anJR6dMZ2KsAAh0eGBSeU2llHZg5KUmy1UmPBZkc4pje5Fob3iv0fnufnTEE17M5ZSq1s2w0jiijtrR531EFJO3VXTfCWdhBIu2ZGibXs97uaJ1vD2YARq6PjmjBGJZepVKK3DGs4IqXY8oo1lsWeSDXz+rky2qDkJw3ftBbvPaVsOnIeg9IzCHSjWR6pFvZS4KAonpeopMemqNpyYIa989zWG9ZP7LXpBSJpXkacHX1ATolcGo8PLxljsG2qG36fn/Pu+ZlT9IxaGUUI0ZNaVbqftRhnKamQa+EyLypRbZmt7YxU1adXGqNXtqKSuZSSap3HYEsbvQm+G9K2YYE4BZZ50stPa/SSaHRkLHjvCVM8LLzfw8ugFFNRb+lgMAyUqrAaRAM2t5zY90SrhX3fMRbi5DAY3jw946wcBmgQ0+kUHDo1qrVivJB7pmYlyeU9Y60ADRcM23ZHjNUutXOUNeNCYDqfaRX2612hBxwY5Z41a9FqJ65XQbxVKilCbw03RXLKBD/Rq1JIpyjqUeyGIQrjcC5+mOSFqFCQXqFjqFnDEl++fMn9vrHuK6De2pQ3JWUNlc/e1yu5VpwYQpix1il6PN90GuYcMUScVUpeMoXWDbV2De8tndPJ4EM4UMQOsZ7aOuv9TqqNjh5o1mrsgUZ6iPr7rHZZFaw0NH/NO6VNimM6yJOTBxsBP/hPvvVXKCP/52yOL9cvehk05uICcRNOJ8uWC8YJMUa2NVFSZT7P5JS455VaBi+I1Fp586Q5Q84GQpxoRaVWuVQCGqwro9Pyruju2rhtK5+8fsPlcmLbVm3OVT1L0r4yRqejnujc1OMswXKeX2CMFmMDIUwLctBSb/eVVw8PXE4naqlMPnBaztzud6iV7//oY7797g3edYxYnHV89eOv8ulnn4A1TNOJYQyjDbaysUxnUtHmgqBAgToacwg4BCOR0QfTEjHWUouwp420bZyWhevzSikJ+mCaJk7nM2FSvHkqWXMerUXE0KVyOp2QrpP5GDw5FVqvPJweWaYTWFj3psVaWNj2hBgLo2ONArVa1kiN9XrHx4kQJkqtWIScM7VXcqvUWlnmCWMtuTZSzhoN0jWzx1nLSAYxgS3vhOAJPjAYtKGxQDFGROA0OwWbHR54PCp9fAQq/K7f97u+Qxv7194SO9SP5sFHh0saKh4lUNrEHAoiTpvupWCi0VDnpjEwxlqWOeIwBBcQcThrKFWovYJXBUpPg0LTDqiIyneHBmJbOrPxTN7hnWFZInkv3LYN4z2tD7yPmDHILWGMygjvT3f2I26otwa90prGUew5U0ZjiYcKbaBSZ1SSXKr64ILzCjCpHVqjtMLYGsEGRhs4HN3pWVPLOKA+jdqVdllbplFxxisFsnW2tLKvifk0a8N0dJyLnM6POg0s7aBuq590DguloR5vo3fhYZS+eprPWOMJPjLHmfnkmUJgjo6XF8NwjT/+//x3+Pqbr3+nt9IvuL4rCrUhnSHjc1nI+4laROl7DRbnuFu9TCyTw2KYl4mcM2LNQaTp1CzMk2oCak2kpDlOY8A0q+68lMJaM64LcwxYp9lCtXV8cFzmmbxVZDSsNSh3QDC+k3I6fFkNuwdELN6rzCi6gLTOsJZPXj8TomNLu15oS6HknRANKTWMEXTcZugN7vcVGYZSEiXtbCWxrSvOT+xpZ72vnC9nBo6SOyVpOCit02NnPgdS2fTBdYFh4Tnd8RjsaPgS2FOitq6I2FZ59fB4jMuNFnttoNEsncnPFCqCyhedE0qvXLcd6z7CBaH2Qe8JEacP4tAcnPfZbYj6iF48nHn97i17zZz8QrAgKGXsen1mWsIHj1G6bxi/0EtTvbUYastYGxAU015rVSpXS4xhtDAbAxs8W85czpFRDWtOEDphjnQxWC8sp5mcMjlttBqwMmPHwPSu+VIhsN8aU9CXmPP6MsF9j4/U3kvmtdmFtY693Mlt57bvdBFqPyZGXjDNE5eJtG0KoLBKMJThmU4zMQghGMyYdaKbdjAKoRli6KPqJOiYXuf9juqgDW1owGV1aqSebCRnneYN0ymj4M3EYFBHpo0DMT+GQjlqxYohRI80IQQltBkHEiDVRCqd4AJWETrk2sitqyY+6OE3xpGBVVYuDxdKybSeCd5Rq2amTd7T+3RQr4TROqVl5hixZtLp8qjUou+veTrD6NS6IyjCWMRgCeS+M1BPWltXLgOi04DtlDa2lHheb8S4aKMnF3ywiA34MRi9c15mQphZ1xVrBBFLrRCbMBjsNXEyE9aBD2ADjO9x4OnftfXzo2iOhvAU7LGtDaMnvJ/Zdo222LOa2d6uN6zV5+C+r+RU8U49KDFE7vcrHKCtAXivv1exgjjD+nYj10TNUX/nKBI7l8JWlCw3zRMprzw/vWOYcXSoPYh62lLauQn0nBQo0IXbVTjPE3GemOOkDQwXKSURJkuwKocZ1vLZ01v6E/hpwc+DMQqpJmL03O8767ZinaHWQs070Vq2PXErmdNponelxYHmIvay02pimgJtDFrNGBPp0pjiCWehl42n250lzuSWyalxWhy5GK7XG4+nl7x4fER6Y9tecwqWy8NCCDOlVR79C4WFlYoR0cL5fidGzSFkdEbNSnmtndv+jtc9cTmfsdZyf/uEvL1hTWM567kjxvPy1VfZ1ndH5qHmc9XDK3evlRUwrMzRU4EQI2/fvOXVqxcIkxIeNS4LHlBCtoHf/r/+7bx9fvurv69/ja63+zP/wY/8GX7zb/jnmReH34aqK0wgtcJUFiQE1vXG9fpM3QvRRz0XhmWePHJEs4w0MEYjMxiqEiqlY4LRkPYtEUVx+0bsIVc0FMqhFDpRtp0enSpRjFBrxfuJ+WGm1Eq5ZvZUMA0aXfNlW8dbx54LJWvmn58jEa+FnOWIGbAgOqWb4kynfchtyylT8o6IRuXcb3eWGJjjTN0q634nFxg10RnspapMXoRpnjHOUFtlSzvrbaePzigNOwZdBOcdVizeBbo0QKWWPjiV/qPvszAFjLVYiQTvCCEqGTVELsvMPE+cTp5Xl4lhC/+HP/Z7+EM/9Ae+k1voF72+Owo1Bj/0R/4y/63/xn+bE4u+eAo60ld6L6dgyCFiekJevaQK3K4a1jfFmX3bEGMQZ7jenglTgDGIXkeuIQj7ljHGsO8J6yz3tFEZvAwTJRdCWKAbTB0s54lWG/SuSPG6ITVinWZGqZa9kfaM87CtO30Ymgg2OspIhGR0urTvmrthB60URinHKNeSckJ6Jd3vIELOQv+gfXc0KjaobPDt/XaYtlUyaoxBLLS6k4eQhuJSQai5UXqj96rfkytQBqflRK8V71V7vOdEvqnW2HnD1z5+Rduh2I1UyjGF2lnMrGG9xpBkUFLVoFQHKd3AgDeR3jtbzpznM912mhOGdOboKLtKw+bZQ4c9b7ReMGZS3HjQQ5sBbXQGx8+1d+QgUdZ2UI+GJe07tcOekv7ujWZwlaxyOWst1gaMs6SW+MqLr2FMV9peNCzTRPQ6bh8MrO14LPHhwjxPtD4YQX1KcZm+A0/GF2gp3Z7e9X5QWiOnyvO2Umn6dwNimI6pUOe+Fpgn9nsi7Y3pNKkMV4yGgQrk0pl8IE4cXlLP07u3nOKZbbvx8PDA9XmjlaJdvmWBUhm9k1LGe09FKNtdvSW9kWvBJAUKKZXfYIZTZHlWs/YyBUre9Yvuih7e1sHkA95rvsu6b4xcmU8XhhiGJAaDVHY4JqxDNMTbW6E3wRrPzgat4tDYiId51o8FiPGcLUc3/QCi5IoViwTBGs2gSjlhxJFref+psGIwXaB3pA+qVbppqYXSKu/WZygWezFgPEN0AjbGoBWVbKdS6GzU3jktjwzr6VZIpTI1aKbT68DOCiv4UFh8uX6F6/DtVoVmjQZ9h3Uf+g4Sx75tPL19jYmR63YjpxVrLcM4fvbbP8MSL+SsAbTrvvPVr3w/b999Si071gUWP2nXe2gUydO7J/ZaOD+eVaZOZ3RLrpV1vxFiZGahmkpuhZQ3AKw4Hh4u3G7PGodhLfueCdYj4mAUnDHct2f+zs9tfP/3/33QIfqAN+qpK3UQ50CtwqdvPuPNu9eEeWbbnjAh6mS3NuYYiDGqz9JM1F4REUrRZkqTRtq24yc4ePX4gk9ev8HHGREPVQOBsZoRmotKodM+wFbmMGHQ/LTHxwvWGh7PnufntzAST+8+4dWLr/B4uiCmM4XIeTnh3cTbp0+ZlzMdx7untwr7sVVzO1PmxauP2LednO6UUjHRYlJk4NhSYQxtErdbZt1WnXz4wXbfYERKN8jwlLqzbjeWELjeNtKamKaJdp6Yl8i2bnz15UeclhkxCqGwAvJC4AJU+Ff+tX+Ff+tP/FvU+mUY/d+t9e3nT/kDf+Hf4X/8j/3PiM4zWUt2jS2BGxZvDLWB8xEXImXP7O0gCw7Yt4Yz8PKjB0ZpyBjk3DHOY0pRumnTGKHgAtZY9cI5lVmmUhhV0fRiOqlmxrvjLlTV/hGmQLrveg513W+9mCNjzeBC4Hw+KdE7bzqN78IYwv22s9pVm+t0SlNVC0aQbslboZvK9foW7wzeWWqDtdxxYjGL1UYOjj4yFC1AjRWc18Mj2ECXzp5Xem9qmzGe3iGnnRAnDdsuiTlExAZKrUgXopuwztNlUGoniNE7gghyZMU46whGg71P0fHxw8JHH8E33v0sP/jjf4Q39zffuQ30S1jfFUdsrZXf/0f/j/yLv+O3cJoX0Obyh6BoY4HW8dESiqVYpxu4N2ozSO94o5lOJRcqmVI0d6Y3HVunY4riDv73WjqXZaH1RMqGaB0cOtz77R0PjxoEqoGXgVx3nHMEA910DUwuiv5/en3VhPmkvh2y5mWMaWHUO6UVnHGcgmVfE6cQoBvePj9Tc1VE/ehc98QUz9SuAdHWixIfR6YJpL1weXxkiPD09kmnSuhl9ZbuOuYWYU+J0gvCILoJrJD3ldEhpsC8LMyTJZWOrUIp2uUoxfDJZ5aH8wV65ul2Y5wrxkdyriynyC0n9k0lJyVr/lNpCiCobiDWUVKl9kYbKlt7fl6xZuDjwj0lrPNYpwbaWgr7tuO943otOtkslZI0SDuEmTVdeZjPAOTcEAbb7YaMhvMnRTV7S2kZe/ifxjCM4BFnSbkwEKX4BTDSWJYz59NJp4tdJ6cxBIJxLPNCbRok2kWwLnA+fY+PFSrQITeFILx+e9Ug2a0y6IxWqb2wJS1ISt2oVQ+OVG4K/cFweXjAW0vbKk2EshUNF3eQ80bOibytLOFEa5ntfkOGEMPhnK8DYywC9DHwk8V7w/P1mZy0YNlyoXDF24k2xgd62zAqpdUP0yhr5jSfWdMdZ3Xavq0FYmOaJ8bQmXKTRjdD6VdFsd/RR8QIphtqqbSUEDMOrPnAinYs4yTUvDEoWBMIwSl0aK+0XjWzsRaqDGyHsGiHM7igcshaGdIIzuONBt/7U8Q5xxx1YqHT+nKQ9AKCUsOsqL9yAHvNdBPopkJLGGcRUQlkx1LqoPXOhKGPzOjHfn8fl/Ll+hWt2jq/7w/8fv7rv+4f5H/03/2fQAHx4H1Xz9P1ihjD46uvcr0+kVPWbMJWSWVltMr19i0+/uhjpuXC67ev+eYnX8dbS5wiDGFvhfX+TMeqv2kIz7cb46aXp/k08/btu0Pm2Em5YGOg7ZlUKmUYXHTMy4xYh/GOXDuTC5jReP32E+Y48Xg6M/zENAktJZ6fr4SPLSITLz56xZrufOPb30BcJMYLLz7+iG4dOVd6flZZk+l4L9yudy6XhV4tl8sDKd3oGcQMXj9daX3ndJo4Lwvr0xPf+vYntC60tvL44gUuOL7xjZ+BPqi5My9nSqlcb28xCJMfuBh5uDwyxUn921L5e772/YwOp+Wkfm3TOccT3qn0d4oReIkPnufrzosXL2lA2hL3/Q4+8Pbpxhw9xliut9cs0wVLp9am8shbOeIvBGc9JoTDj7dCr+x54IzHeU9pmbfrnevTnRcPF0JYEBu4rZlaG3NwLKeIdbC/rcw47AP6Xn6Ee75/WaT93V4i7GPnVq48mpd4q1Erhq7xJtPE3irGW6ZZFUjbbWXQMRgkQBOh7R1vIzZYXKi02liT0EsHqSBCMPbwcQ2cjYTJ44yQRtLA7DG4XC5s1zsDcNFjrOV2fdbCzVrM0CbqQLcFaJRUqZWWN+5bwvpAThloBAdP9xvGT4QYSXnjtt05zxeMEbZ0oyNYP4gxsMQL1/tbtn3nJgNxF+JyojSNvxkyiCEQp4U1rbTa2atSWK1EovfER8h1w7uoZxCqmFPKasH0oxjTPia1Fvr4vJAFKC3xcDrxcDrjnVOP9ux4OEcuD3DLb/iDf+YP8PVPfuY7sm1+Oeu7olCDD03jz/HFDfWpNUCE5aJ6kbw5rj2xrRu5dgaN3gfeOJ34yKDXwW2/4azDBY94vZyVvWHlCJM1Qtp2jGmkkcDp5bL1hneWXoZqd0XRpG0Iz+uVsz1jQyQzyFTSfae0zBQCMlC/V2+4oNCDUutxIRqU3DUzojR61c5arY3aOssykeugjUbuQ4MC98K2J7aq5mMTDI3Bfb2ylTshOMZQo3VwgfW64mfFMOecYRiiHTjRnA2MwVihm4T1Dzgj9FrwopfCfUu0+szpNOGdwRm4bzfGvnI6X46JR9euyq4dWjM008yeJt6uV0ZT+El696QXTKsTlj0nWmmklHnqneg9ORftjoiwrTvRWy7LmdEaw2qxt+13HBZjDa1WelekeYieMQIpbwwjOsGwXuENrR0Yag3V9t6TSuK+3llk4bLMtJqoZaIZ0SJQYJkXolMTtw2WxFBJj1EC0vf0OiYrY0AZnb1n1lIpo1FLIW076+3KuipZ0BiV+dVS9Gd46OCdeY8+zuqvMdBqBvHUNshlx5tArgnpSuKcl0X9ZTKOjppl2zLlmFLd9o0ig2J0QrVcFgQNrhdx1F5pozLNM7VZjBkInThF4hI4x0VDnwfQhDYMfagUVrqjNTmyy9SMnXKm1Mb5dKKjWWy9d6hDCbBNePnRC+7XJ3JNWAzeePoQxfeL0tlKbey5sK8b0ynQxZJbpvaOjIEZHW+FIYYpzJpHOmmIu/OKUK+9HvNgmOICCCLqCTDOqgy5VmQ4/BQx1YBXLfigUWrCO4sLVrPXzFAptFVUstif927+cv2K1gDGewnxBDiIk2U6GezuaLlxXa883a60rs292/WJ1geYQa2NT96+ZZpOVIQtJybnDnUElJKoKAH5ertyu91Y942cNW/o2598xhRnUk5Y79jyjhkZbwNt04ZGLfXDhV/QzFk5JFCDRowTvVX29RkJE85Ynp+eFKV9ctTPPuWWbxgfsDbSRuH5emN0Dc6NMarMs+7McSJtd8pB+V3vz6zbVRswYqHr51vmi6pjhqc52LL6yXK+Y8SwxAtbvTGsQWzgZDyUlYfzhegdxkWsidReqbXw8vKCKUTmMDFNE1bUN/rVly85X86EuPBwXpijJ9WCvVje3d5RSlG5tgSsn7jdN0rNjFZYYmTdbxjnyfcrPkTiaeL69KzRADJTetGpw17Z1p1S7phhmaYZa+MHH5uJmtVlvCFaq9YQZ3i6rzjvmc8eE45fUIRvfPYNfua76FL63bJEhG+8+xb/5p/6ffxL/+zvYNo8IRdCc0quptPNIJfCnhPWTPh5kEvGicFZS3BCF8vpMpNTpXWdFpsOA1VLOOfoXcmLrQ/W9U7ahOjdh2ba7fnOq1eP+BcXUqq4YGmlYem0IbQ66KC+yNKw4phny9P1ifv9Dr3iMEex8x4LJljreR8fY48mtQ+WNioxqlrDycTkFw2djkEjbkrndlsRqwH3xsJoQhCHwxDNzDru3K93jFWbUogBEzzctelpjP1wtjirRdhAM+KMswwatenXG6LDWgciRBOI04k4LUzBMgXPaZm4XBzGZP7dH/rj/KEf+kOsef3//aV+Qdd3ze1ySOOv/8jf4O/9p/5LiBPFza5omKMDa4RTD+z3mTdoILVzmlGEVMIk9LzhcVTXML2x54S0Rj3IZ8YoStcYg3eGkjbmaWFPCYZhUKi98pXpI3LeCNOMGCHXQkPwxjO6JVHJZaPVrnhTZ6ijKxIbqNvGc95xxtEQpdJMnloq+7ozaiPXRm2N6CzOGbaSaR3WbaXRcHEmt6rZSM6S8464wC2tDBksp0gqinU2YjBWpWQpKV2u94Gzhlqban2NpnJab8h5510bvHr4iN4NvVSlYRqH8yrH3Ftl3W7M04nGYFvvPF/fMS8zzke2tGGNYAZsaaVL4+m6wjAEp56COjItdIx1pFwxvbNET2uDbd+Qw0BvLQiDXjttFHofiqMtGZHBFALWW2opOGvp5eDEi1FjdgzIGFgrrOtOahUzDDFE+tAL9V53RDqmdxyw75VbX5HhmELnNPvDXGtoreLCmTmAD/oyceF73KOGxmQYo2rBaVpoWJ5ud1of3PLOmhJhOiFjIEOluTFGlTiEwBQjwqD2omGuNnJvd9xwBGsx1us0VITe26GdFwVheIsZA6lgnKP5g2ZVK7f7HfFC7Y0hcDpdyPuGwdJHV4NyyozRcJPi9VsT9esYoTP0YDWGGBzW6HNjgsNEd3QrNWQ7F/UNDRSfLKLd06ZgVsXoe6uk0Rg1f+agzZYO+ch5ul5vGKvfnwseGVoFK3zHMEYHGTirzwgyaK3Qe2GZdQqQsx641jny4QuNwSPGMqp+XW4KtG6hC845QMNGlZaaMaKhvc4PGoWUGmmaKK3Rhv2ySPu7uGpr/Nm/8Gf4x/7Bf5yvyfdpRlOF6J2qP3rF47BozEwMRkEZ1zv+yPasTWm71hmMsWz7jjGWzqDUhBXH03qlj0auleAmWutsaSPXzH3bmKYTzlmogvNRZYMPF1yY9PLlPGNoN77XwmiC7rPAGJ0tJ8ZQJch5mbHiue4r1RqqaOO0j4YbGR+8XkzNAc5og5YrRgy35zuz93SEfb9zmSaCseTSifOMdY5SE6VUtn0lGEcfBSuKg66lkEvHBs9lnKhNMK1SWuW8LJzOkWU+a5RI62ANwZ8+TDzmaVKpNp2v/D3/FZboOJ1PCkeqjWgtThzNdVrPmPVOZ2CHZd12vBE6jjA9EMPMSzFsZed6u2GNZQyjGYtDQSYlZ6op2qAcFhGVgKVcmCfHuu/M84nRYc8FYzTix0aPGXqmdxouWr0fWfjm17/Jv/x7/2X+7F/8s9/Zzf1rdL25f8Zf+skfQWaYF8tpd9x3C3KkxJihzTJjEBFsd0hv6tXuh+zeOvacMOPnvdedEMUr1ZhG6w1n/EEkRvf4+yUKPAvWU0bFilD3zDDjYHyNw0mtBNd1XVWB4WZyzhiE2QfCcfeqVem91lnNB3WG2gZNOs4GehswjDZpJDB5tSzkkWnHuSJOPbO9d40McEafDVGpfbCRlY3gPblmck4Yq/EE1nvqnjVH1ei5FL3aYUZX0rH0QdqViO4sepYd0tA+BoaGFYgxcDnNvHjUadrX33yT//Cv/z943r+7cgS/awq1XDP/+v/mX+M3/pP/KM47yHxOfzwDd5ChYYPReUJw7GuiDRBxDDGUdic6yySabTRQI3TJR/ie94f23VFpTMsJRj+090dX2jsGwvP9xmkIwUfSlghT0MNQOrUWckpY8dQxGKlg0VDfXApjFO5PG8s8sR+HTq+OfddA25zuiicfHUbEB8eWtPDoox8jX/VdtabY1NY2at85nc46KSr5kFkJ923lfDpTpeso2Ris9R+09JhAd1rIbGmj0nF157atOCPkXuhWePn4qIbQnsg5UVMhS6YO7bgMunZDcyOXrBjwpmbXlDK9G4zTKWcI7jCE71AqjKZdkWHAaZL95CdS3ZGmYcluCmgzV1v5zgeWGBSrXBreQKkJQTAmsrUM1tBKQQxkMVhvebNu2DbodM6nmb1VuhimaSY6g+kKwxAN3gPAh4kpTqSa6U3oo3CaZlzUAtjF78hj8cVZomrkUqGLIMb9f9n782jdtvSsD/vNfq71NXufc2+p1BDR2MEJmBiHzoaMEdzQWCEExvAIeKQxwxjHkHgYBxNsJzGiEZIQTYJkG1WpBYEaGoFkCRkhoR5JEZQASZRAEpKo9tY995z9NWut2eeP9zu3BFUYlVTSvbeoOcYZ5959ur33N+e35vu+z/N70Kah0GxJunjaOoyxlCx71/qZVrL4Mbv4JpUaqJuhrTUhkA47KDc4hzYWrTqlNzSKQcG3JtOhkhlVQSnkNUmA7ZZpo0BR1N7Fj5hkMj764Hq9inQoSk5UXhYhePaB2c20UlnrSh6ZXYy4+dZsSZ2aN7Dt1uSxGC3dz6Ea9IG+5SsqFHOUDVJbZ70ulJvcNviJ67JIgVoSaxbpr7UaY8VAXap83qNnQArG1hRaD4zWaOUkXDRLsSn73TK6ItWK67eAVN0xViZhMmSuqCGZatpY6f4P0CoKLVIZgnUSDK41bXSRcHehvJZueP5Xf7Cl9Uc1kR/Kaq3z1V/3Vfynv+V38uYXPxa85GsarZiiZ1k2pugZfc+zh4ZWliloCda9riKRsh6jNAwlDTEMl+uVVIvs8ynw3pdeYvSKNR5jI84GMI789GXiPBHnCWsd/brKeS6yVwGBcxQJ6V0uV2rOuK3hveHFR0dGE8hAKQ0VDBV5L+UmHR4Melc0jHR0bpfClLJEAxQhy6HGja4tEtzdJMVjLplGIhfk8qkMKW08e/oKNQ8ePX4R4xSlJtJWeLhc6E0Tp4n3PXsACqNVXAyM3nl49pSBwtmZu8MBZx0qV6Y4MccdRne8dcyT58VHR0zQ1GqFIG2UEC2jp/fI6IVlzQwTWa8vo7Xm/vFRIFc1o1AYozFGYb1mDMP+sOPpswvLskpmXl0ptbKbjyg0h8NOoFttUFNhejzJhV8bvBOCZx8drEY7x1CW3uR8E+GdP/JOvuobvuo129Mf6UtrzUvre/meH/ouft6b/5cEZ3AavLNsvaHReO9FGq8UWgl0rfZOK4WuHJHGkhoBA/omjbcaPRQKQ6MJ32AonLZo3TGMWxE0JIBe4gVJJVFrwTkv+2IIv6AxhEisHXOMtFZIKQFiRxnG0hA6d6oikDSADZ6OpY1CqoW2rezizJZXct5k4mxhtE5rhXF7n9HCYoUxcMFQW5epf2+YNkBJyPd8CNikBRYI9FxptWKtl0askveaVgbOGG4xcsAQ5oEy+BAJIeJdIMTIGB19o5oFZ9lPgUdHeN/5Jf7wl3wa3/y93/RabZef8HrDFGpjDP7Bj34/w9zojxlufkFpXzv5eQyRPsU48XTZGAzCJNlFRnuU15hh6VuiK+mW02+GTCVJ7qNt7I97jDPkUtFjSEEUAl5rck14a6glwwCjG4yONp3L9UTOGe8CVmlaLiJ3zJXq8i2nojD5yFYrWy4sq3Q9U0qCQ6UxRuMuTqx5I+weY6n0Omi1spYNZyJOQ5wMnSIyJN5PoVyqhJX2IVIKtYddmOiMm6ZZ/HaqVZZ2JYRIcxrQ5N652+8ptTE01F5AK07XK2pUpqYYo1NGp1xXfHRCZneWXAa5XKitUmrGG01tBaUVqTS8MTLynwJGaWqurFsWL1uH3MVbFLwnTpZcYZRBKwmz2wt2P8ySpdEVo1bS7fUwSmF8JJVMboWhNNN+Zl2ToOC9AW8ZC1LoRYf2hlIL0VqZpNROjwMfPbtpzz5MzH4S+t2A1Dbm6U6w5l6jp9v+270Wp+L1s/7AH/p9fPJ//IcoHboCrKLlQR83KpMNGK3Ztk1w0kgxV0ujDrkGPs92qTffWEoFNRTGhtsUqDJ6YzAkgLcWeqkSZZErec0Y60jLItCBpmXiPhStI9Njo6WLqCwpJ2rNWOsJ0bPVQkoZxmCyjuAiWttX/40lSWGUt02kID6Qy8Log8lJhMPdcUeqoK0UaCBqAOVELn05PdB7I8yTxGmsGucGM02miN5QaiNMR7wPhOC5XFYGjcuaMQyJJrxNwBXQu6bkRB9iSE9JNP79Fpcx6HgzYYMlLYl5J0TLRKKmhJsidYjnSXWFLYZgLK0OzGzxNsqUoSuUVeQ6SAMKg6Gef5UfuJ7Llj+6PsRlYUwDFRQ2wtQ18xpQ949430svM88zvQ1eefkJlUzwkTlElq0yqjQpUIOHpxfmQ+Dh8iANSzSlVrZN8soO+zuGsdQi5Nz57o7rcqLWJCHOceK0XV69DJphMFaTloS3lscvvMj5dKFtCVUUKWXUyOzjHq2teD5jpJbCs+uVR9pQrwXjJJy2NDBNcOW9d/oQCed+eoQ1g60sIkHPld0LL4ovLjhuTxuW5YqbZ+pQYALzQZO2DUcg586z0xlrDdu2gjWonmhV4W3gdLkQd0GaiQO8m/HWE4MnxAM1J1pZiXPk/m7H5EVNogZ47xhRoisGBrJCHQ6387jxvlfOBC85a710pilSbefZ+UGmBrqT1402BiYanFVYJxPQtnS2kik5s59nak/01klLJcSZ07OF3ezpphGtpaRBGZU+3SSjKKlzZ2Sq9tH1U7q00nzfe/4+n/ylv4/f8+/8V/yCj/8lzIsntU4cjdonXrh/xOl6FhI4itpuMSZhIjrNQJoVpWacF6nycl1hKLEIDOEpoCU+igZqDLHi5Mb9POMOe1JZ2bYLGktvnVILqSW2VGjKiRyewTxPlKwllkgbnPcMLdRSbRx9dLac8Wrg8GgrxZ6xEsuilaLVjNEKa/QNmrdRcodusFiRcN8UHz46dFm5XleU6jjbyWPFDk2cZuYoRVpumVI6ow3c5IWpUDMl11dBWiHODLrIMI93bNeNrqUBQu84DZPfM8XIPE8c5om7vcHP8PYf+D7+wnf++Rs46Y213jCFGkAh8db/+nP4Hb/nt8tn7hAju5b/7kMu+TZMbKeNOMUbdbCwbBm384wK5+uJ3KVLX8pGyZn5OLMuBUVFOyuUtFPF0iVjosi4V02OljailRDkXIscotKpKLaaaLVTts6qClsuTIiU43ptGGM5n5+R1I4R4HS9ArxqhIw3kEgujaJBK8Pp9IDRmlI7a82czmemuXE5ncAMmlIoa9F1cH4405VQEZ1x5G3BRYu3M3hDygu1yddTcyYGLw+36ASmYQPlfKU6T+6Qb50OhmJLZ6KGPCxlFKyduKwLwQSUkRwnZTrGONZtI3pHyen26slDOIYdpRaenR7wypJb5Xi/53q+UMqQw+gtx+Mk+TzNwW20rfRgrBk7SV6PjODBas+2XamtcTzuJVQSyRjBGEIIeCcevFwT94cDNVdU7VA7hsZWOuaycpg9wXlimIjOE+NEDAHrPcZaZnUkOAiTQzlQE9I4MD+dJ+H1t774W76UT/6tfwjgVTLUUAqlE1prrNXkouiq03pjbRWvghRdJmDckMiD1hgZCezsg6o7tjRstIQ4kbYrWllQBtM7Wg3skKmCPThUb+QtyYNEaVR7bj6W5seyNbSVTvRA46c9zulXi4oQHS139ruDwIG8A20wahD9hLOabWk0KiN1jIvkumC8wgZPKQ2tKwzNmjecfR4SL0Xne195iRcefQzWicwzNPESKQ3WO6J2pHqitkI0EecdzieMcaihOK9nLDdZSpFMHJBw77pt0olUEkWhh3o1CNR6i3WRFjoy0x7YGGhrY71s2MmRt8zkIjZaDnvx5aU1o7rk+9hgCM5jnBY/qwyT+WOf80dZr/0123sfSeu6JX7Df/Dr+e4//z3c2TuUA6PAO8NaKspq9IBRM6fTU1wMhEljsdzt7qldgCFbPnP36MCar1zXK+u28fEf/zPYtpWGvkkgr2AMtVeR5FqLDZGqNA/LwnK9EvZCs221U0qjlEo4eM5XQXBHb5gOb8JZx3J9QI9O0itDKXbxQPQTxmku1wuvPHnC8e6IbYppN3O+PCXnwm7eYZRjno9cryeGqvSmaVkiBQ6HPSklzGwJYSZox7KtmCmyLhsxTOz3B3otrG1jPResgxgj58sZH3dcLiesjijViQfLtDuSUqF12M17fAxsKUsMx6zR0TK8Y94dgEHtK8TDq74vVRWqKYaBYQf2bAkuECO86bFmyZX73YEtr2hjWXNi2gVy3iTzyXoBmy3S2Vo3UcMcjjtSWjns96zbA8FGaq7UUejrhYGidsd+P3PdxP+tlGY+3NGbopSMGgEeEDT/G+qG98ZbQvnNfPPbv5Nf8S9+K7/45/7rHJNnq40tV5z2HHcaheG0PFBNJgZLvVF2pxjwxjBKws6aYB21dIxyXPMiDYxS8VOgtcLl/CCNMy332jlOaBc5na/QEuiK0RIx1fug98Fl2xB6QRRCdu83tUYk5SSh00ZsAU5rlLfUsrEtV/Z7Q9Ci4mLwKjjqsL+X58yAUsUTqvQghECvkJPQt7WCyc2kPshaVDFKCzMiKEcqGesCpTRoGqsVx3mHcQGrNTbuyamy3+1Ejt+FHu6nSIwTGIVWDu+D0DG9Zxd2zDvHbp7YzZZ5N3jXyy/zqV/8KW/IIg3eYMc4pcRn/5W38Ds++bcLUMQDjxAK5EX+XztDHxkfDM3NXLaNrXXaGIKud1CpZCpNDSqw5kRbOh4hHsJgWVbC7CUc8FLptdEvVxSzdOmq6Oo73JLZB2ndKDSMET3tmjaClxiAXjKXpVJaY8srzJ62SPdAzNiDyUehQDmBJJy2jVEVtReOcUdpWeSXcUejccoXjBGZVGuKrgetNXoZKPfclQ7BBWpdhIZ3Q9dPPpAUoAe7RzuimyS/oisOu5maErlI7gdq4JwAILBaxtjNkEYixICOnrRIQZZZSGvGVCVBrQ5cmChpw/tIq1J0lVLYVCenih7XW57dYBcnCTXtsC1X8nIVn4BS2KHRt3Bp8d6J8cfozrIsaKtoA6zz7EbnyemBQLyh/EVS50wAKobOsiZyzgTn8E4mDsYFWu2YqNm5SPSBMMkPH+XirtRt78XbD88/993LNhr6ebaWViKBUuoWmFmprdOrkA0ZSc6NUvgwoUZn5yTItvSMUpU4zaRto9EopeODQIDqgH0I7OKEDh2jFPO0u4HsBzZ6xtgTs6e1zjCQz4lUEt448rrRcxNccq0yxcKh0ETruFZ5qLXRJJ+tQE+Vwz6+6kOMU8A1J6HTPtDqDqWl69l65fLyFaU12lucdVhrxTekLN7PjAG5S5xAU43em+jqteREjWEpGWoZnE4Xem3EY6SHjkua6GdR5AZw2pFbBqWwPjL5iHWesI/UDZlm36SR4yZtTDlTSsE6h3YOY0TLH5xnnvbMfpbCV4tHAqMwIWC9ZXjoymJQtC7d+7/wt76USzm9ltvvI2rlnBh+vHoxGkOyz6JWvPnRi5zPZ+I0czge8SGwbBllC/t5T9kGKW/k3LmcnuAnhx4WrRzn85mSq5Bzb2CQ7Xxmf7jj2eXC5BUxBnKpdAXTYZYCyVkhmcZJpOpIDlOrDa00NSeisex3B5blgnGeKcyCzm6CCD+YnUz6hsF7h1Edpz1hjlhr2e/vWNMGvXO5nAjB4Kz4tIzqpFUk9MZ5gve055Py0TgvDzy6f5HlupCH2BCePTxlW+WZlzbB93ejsCawXIvk09GZdpFULkQs1RhULbj5SNAO4x0+zninuHsxyHTYwhAoHjCgQ107tTSRoA25rAarOZ0f0FZxvjwjGG5IfhCgT0H1KjQeC1Y71m0lWMcLj18g5wWtDKU1tPZYpbg/Hrle1tv7ihJJdi/sdgeM1Wzbym6SC63o1hDl0UfXT9lSSgjenc51LBSbiPNMuDZiqDQFpmpyrZjsMb3jg8bqxqgikbfeM8cZRmFUyWRNSRGMZ2mb5KVlkSVig0y8tiR2g95ZSxZIh1aophmjorGgB6msN6eIwliNGprzeuY474nzjA+BLW+M0fAuUFqjD8k5NM2htPAVGoPL5SzZby4ye/H997xi2+Au7BlK0fQg3RRUznumKaB0wxnDdCNjKwzaWZa1U7ZKWatko6pB3M2gB6o14ZOZiJsley5vVe6wDratgNuwzuGcJ0wT8RZsHX1k0p7JGeZJ877Ly/z2/+9v4zv+4Xe8tpvlJ7HeUIUaQCmZH/n7P8rP/FmfKIzR55FFGQigo8bMjjEKbSt01ei6EeeJkgqXy1kCJHtDW4XVln7WMCzGenrrDN0kx6Z3SpMU9RACXhtarRgjgA+DItVMqwqC5ZqyILC9ZKD1UVm2zhQlxynlyulyoQFGB4ZWt/T1gXVOvC3AtmWWJaONo7WGUYOtZprqGKdpXVNqwQfBcJckMkPnJk7nK85ZrPXkljHaCAp4W3FaE6y85M4aFAHlxRJQesEOyxQmdGwslyu9dtQtHNVbRzNaDpCRbnrvlThHlmt6v8SpA7WAEiqP8ZPIQ53DegvtdvvomlIzMFhzQiuR5XQatRXKpjg9fYpqDT0q825GqcouzowblbPUggK8McxzpCtFG0NeMzXINRFVpKYsMpPb2N7oztCFwQYIUStMluNhh1PiiYhhwjqPCRofPXEymMNARSUPaYPIHSekWPvnvFATBBwYDTFozKKwZmCDoz2cqTWhlXz/rY9YpdGtShPAqJuEr7NsV2KMaBQXozBdMu1yW9HKMdmZECLOy4PJG4c3FoPBGPG1hEOk98FaVlptQnVcDFuRQsUai1GduN9hjREvmR60Ci0nGIp1uYhs4wbxcFZRcsYqg3OGOEUUBmO4+cXkRt3aAKtpTVDdm8nM88zoCoxid7wj5ZXrk0WKuQG5bJRRGQ2scUSvxDStxGtTW+W6DPJWMFbjjaaPQRuIJj+LJMaZQK2NMQpmM/R+k6ncICqjDIbSMARrDOCixxuROprg8C7grSVYkaeZ4FHagDGUG9fZTZJHqQ38/Xf8A9b1A2+DH5U8/sRXLpWv/Pq/xP/x3/r3UUb0rRqYZ8+FjrIKFwIf+7E/g62sqG2hjs7pcubh4YGcVvFl2puyIka6MaK88A6Lp6bCeiskhmpYq3Eh0Epnua4oY5liYLhBqkKYLHVDURlF0Y3ivJ44zHt2fhYY1YDZBw5xzxR39AGMxm4fOT8kmgLrPcFGct7wNlBbYr4157ZeBLJBE/+NUujRMMNTdWdbM6RMcQEM9NboQ7GshZKe4LwUdw+XC6lU2jAoI822MipOWYyCWhLn85WuGtNuxzTJc3bWGm8t19OVMc14LX/Xx9zdoSrSkHt+Y1IwEow2uDxcifNEL527wx25FM5LRZnB6FW86K0wtGLbEqls7OKM9YZeB9ZaNHC5LnTXya1SS6Fl8RS6OLHbHdHG4PaN3X7CaEMvBasNk5uxJqBMZd55jEE2jAHm12QL/3O3tpr45u/5Vj7pF30P/8rH/WL2k8hqK0huJ7ALkVwz3nkJeU6ZvF0oasNNj0hrZl3PNwVGYrkRgGtr1A5dK6oer2bhKi0Dg64GbtrJvTAlpmhvoK1B6wNnLW6aGMC6XRkMztuVuxBoo4FxlCoes1YSyiAyY23Ed56EdxC8v/m/uPnIK0rBLsp+zK2irKFbYSGEGIXWOCraSAMIZJpeewe1YX2g14a9QYM0oqZpfaBKx7shE/YxBHantDQ/vWNUgeohljfMUHIXjIF5suxmhzaF73j7t/G2d/+t125zfBjWP9PtrZT6PKXUS0qp7/kxH/tkpdQ7lVLfffvxST/m1/5LpdQPKKW+Xyn1az7cn/DLz97HZ7/lLa9mqBGRNyQPegLtb4HSqrF1mUA56wjBM6i0Ul7FC4/WGVWjlKGkxvl64XS5UFon1cS6bSyr5JwpM8BIJzGllVoajCbBurmwbg1UZwz59VSu1J5pPdF657qtMBoxynQoj4ayhnErwraSWfLCsm6kNaOVprcKujHvZ0ovXNZFwANW4bwjGCf+qQEWjaoSLFxqx2hxXWptcEbjtHi4vJF8JaUapWSMFuKjVrxKpfTa4XXAx4Bz8hATF2ej9ELnBiUYml5lkgJC6NFKitra6w00IJ/H3d29FMGq30ziCqiUnCm3YGuj5IKat8T58gxFx3sBGgQnAeNqiLnUWwta42IkzDP7uz27/UxlsNVCHYreFSkXLsvCsl0pJWGVkq6VUqANMUQ0YtzNa8YpxW7e4b1HOYMxBh8Mzt5CmC1SoEVkDzoEZvNheCC+3s7aT2gpKda8URJerb00G/StKdKlGeFtEJx9yXjrbyGVIkHstbBdz/TW5CLiA5Of8N6itfz9yhq0BmuVSCmCkiw+Y/HGSrHhHM46YpwxWIxyHPYH5nkihB1WOxia1oWWxxD0h9OGVhtp3Wi1EKKno6AO+TrcbaJU8w3JfTPLqoHzhsPdnvmwx/lIraC0xVj5McZg2xIPl4Xz5co1reTayKXRlJbJmDWMMUhbopZM3TbW84WSV0a70WoRY/q6XJnjjPMBY72AhvommXbbynXdyGVj1CoX21oZTSYh1lhut2lyLyI3bUKDfe4xUNZSNWy1kWqjIiRAYzTOwxf+tc/lHS+/+wO2gb5Rzl6P6/V+zrZc+P2f+cnyvnIAO8E0wRzAqsFhFv/F8W7PNEW0gtE7RsG826G1hNHqLs84hjyXtjXJZUmBsZo4R+adxIvE4GltsKSNWqWb3caN/gZyprRB9U5JieADzni0UoTgJKsJzX7es49RZO8lcbjbM3pnXTecNYzWuC5nau601ml1sG2FlFaM9jjrudvfcdjtpDlqLYfdjsM8Y4ZC9QY1Y/qgl4JSnSl6jFVcLw+88vSB8/UscS96kKsQIZ2zoAu5bZSS2LYVowx5EWpkq51ckoTDl4XRK1tJXNYzQxX5JqQGaaAYcpnlBjxRncv1zGAQo+HubpLOfrA3FYum0eX9rndQmq0Utpy5LldOT5/x5OUnrClRaydvlSUllBdPqHcGHyy9Vw7zzBQCaUuUTeTd0XkUMFmHev6otrw/NOs1Wq/3c/bhXH00vucd38O3ff83k/WF495w2EWiV1gFzohiI1qR9HHzGrsgwc/LutyenRrvnNxLlHjDUAatb3cz79HWgLMSLuocpcDpunBerhJJpQQONdAC2DMWMwYaeW8HmdJLlEyh1YG2ljVtXMpKakII3srG9XpmTVdSXrFOE10Qn9ro6NHEemAMGvAogtFMzhC9RVPYlsuNG/FjKOxDYbQjRgmPn6bp9jwS35w0V0UBp9BY7ZhNwGmL0RbrLD464jRjtGV0yZrsrWHQeKeZguM4GU7by/zZb/wizusbW/Hx45mofQHwWcCf+ic+/sfHGH/kx35AKfXzgN8M/Hzg44G/ppT6uWPc3vE/DGtLG29/19vfP9q3yDQjglrlAeRswFvHftasaaNXoQu6EPBBaDKn0wM5N6xyOOtpOVF6guC4Xjo5J3Y6cL1eMd7QJ8+wipQKYRhqH9Q1Y5wFBWutBONovbx66ZwmuYDW1OkYbJzQvdOtIdVCmGaoFTSsdYOtcN2uxDCzPxzJtVJz5bpIIVNrkU3cqtAtQ5TLlTII5Gaw303kKpOKGCa01uR8waKwYzBqplkh1GndCUqjlaUbjWpArZSmccHdcOsaZy2X8zPiToAQVmsmO9NzwilNb402IMYJrw2nyxk3RYYyeCe66Fwr67JijCFOgU4l5cq2rYRgaQq88ixbImi5kMw7f+u2eOg3TLWChibVjnEebTQmeoKqXFIityI+ReB4uCPnFWfkNWqpsrWM8wZlwDiPCQZvAi4GmTSUjNUyxTEW9tNM8Brlbvts4v3eSI8UaA6+6As//8Oxvb+A19FZ+1CXsuANBKtx2qJ6wVnJNxlKM0oj98J63VARzJDcmNwrc9jhFUI4vTxlaxl/A7w8D608LxdBcZ8bXg8qQqoyFjSdoQfo/irK/nR6kID1kqWwsNKg6BXoimU9E4JIfpXqeGU5xj3eWS7rhlKDkjJuwNYbkw2M1uk3eqK7hUWP0Ri9UGpD6S7ywqQoXVH7YFsTu/3MUEMmYU1uULVDK+LtMkYoWZVB6YnS5HtjjSL4GaU0l3RmuV6Z48DOhrUkoUauV3qt9F6AgbcTRluUbtS8EYzH2ffn4bTemKYZhUYrhVMejYE66Kay5YQ1mo7GDWi1YZ3FWYvSRgzvVkAX7778KGu5vlZb7ie6voA3wjmbgCPoJF4Pc4EX7g3XU2Q0xZozenSm4Oi3T+dR3ON1x+nOs9MV5wK6F3qrKK2wykrMSe8YZ6TDXjaskdgUrz2EQcqZdoua0DdZ8n7e0VImlU2eIyXjdjcZlO+0lDFqMDvNlq/s54myFTZWckqE6ElpwTmPtYrJRfSolLwSp0Ctlbu7e3TvAsfyCh9FHbHzkb5v5FzxwVJav2HE1a0WaQwUuSSM1sRpR+0y4a6tcbmemGOg5sS6rtTWeWHaYZ3kb6Y1k9YNoxX7/cz98TH7/R5VkUIuDWlONkQ1YqTBoYZm3u/o6yoTaIVEcfSEMQNtGtdtI7VCaQ3rHQ/rhbzeIgguJzmXrXM4HmlD5Py9NvQ8o4yjqcaSrxg81gh+HAaPDnucDzgrTaroPK0MurlRH2+AtddwfQFvhHP2k1xKiaLiYTvx+V/3RTyOj/l3f9lvZr/3XDcjALpbHtkuerakaaZTBowiuMbeJSRbZJQN0wVxb7pm3MBUVhnKaHQjDYj23G81Bjpp8V8aRx3IJkSiWy7bhtWSFxtdoJaKDUYad61LIyJLLq1zE3VUekv0Jv5mhuSYGWuFiH3LKzVG7s4WORe5N0w1RGvQWrOsC+fTQquReT6itCaVhKpe/Jx+Jm0r3t4GKyVTWpVJnFbEEPHWoZUA8CblMcFjvcFpC7fYqT403jqCd0JoDZa7vcNNmb/+7V/P3/7h774R0N+46585URtjfBPwyo/z7/vfAV8yxkhjjH8I/ADwS38Sn98Hfj4M3v0j7+D/91e+Q4o1xfsLNis+EW8Uj3cTn/DiI47TjBqKnDM1JaZo2M+eXYj4oejbimWArky3y3qrjegcZdukCGmdlCppS6xtw+33bHkh3aQXPkaGgq1ltFXM+xnnRR6kjOa0XRlOk2lU3XEuCPGtppvXSuFxrHnD2EAuiXVbWNYry7by8pOnLKcrRluCDZQ1M5qARmrNvIpdUwrTG0F3VFOvdvOCDljjQXl67+g+pJAMETscu/lANJ6gHZON4lVTiuVyFWIWiPzPRsksQ4t5VCly6ngcj/d3eOOZnGDsax1obtkuRnHZlhtOFh5OFy4PEkGQq8getdLUUWm9UlXHBENXmmtKXNcrZUvoW4deGQVu0FShMcg1U7WSA+sCwUcGYJ1lmvfc3T/CmsDo4J0mp4yqStDmxjLvd8QwM+9mYojs5wlrNDEG4j6gdwrukELN8/4C7Qg9dv7U53w+//Vbf/9Pfm+/zs7ah7Iu1wt/9HP/MN5DtEJ6CtFjtONwd8d+Popk0TiGUZSWKL3inCXlJpl6oxG9lstOqcQQmCaRKWoFViks4lU9Pb2wLitpS4zWBVqjYEtFuoRDOten64mURHO/m8JNWiVd8VIz1+uJsmbykqEPdnNkt9vx4qN7Hh/vCT6ypsK2ZrSTP9vLzRStRA7Zc0GNwRid1gbPHq6s2xWlB9Y4ljXRVZfJQlnQTuODQTOoeRVghHOknriuZ9KWBd6hYTft8SFgjKFuBdWgdzgtF6Gb1o20bPRR5M84CX+XMG+NM17CRCeLGomcVpwR75DWCu8d0QfmMBHmSUi3rfFsWcCI9AUFxiuGMWhjsQ72e/jWv/MNfN8/+MGb7+aNs94I5+x9rzzlf//bfqMUazvgFiztrOKwV9zvHZNVHPcC1/DG4FXA3fzRz1+ToRRFg3LilVzXK2vJ8vNFut3WgZ0sa1rQGlrvuClgJsc1b1yXK2teOV8voAaHu5m6Zh4/ehFrIyVlSlpwTvHC/RHjDXGaOe53TNYyG8fHvPACd4c7vLXMbrqd+42w2/H4hTfjtWcOMyUtQkukS46ZC0Q0lsFkLC/e33M373nh7p4xOqNVAXQozW6e4AYxuW6Z9ebjWcuZy3rmdH7glFayBBpSyyClznpeqClxPS+sSyZXTW4yQXbTntNNgoaSGJEb9RyihglssFjrUEbTbzEEtSdS2kCLleJ6PbGklTKaNGEQCJiNFusN2lpya1zTQh+dpuDhfOZ0PvP0lSspFc7rA603LteFOe6Z5wPOe+72jznuJ6yDaTJSQ3q5KzVeuzrnjXDOPqxLDd7+7r/HW7/2LVzsmXnW7GNg8p5gDF5Js9ljMF1LjieabZPoBucsCsO2JpbtFsY8RPnjJom28UbUFq1mxujUklFdAB373R3GW67LyrOHE9uaGMbclFISIeOc57CbicZL3M0Ac5ueoRotd6hi77gxi2+RGp11uZJqpQ3NQOOCRylRVTEGzkkWYs0y3XLOc5z3BL8Dp7HWYr1nXROld9qQ35dKoTfJZRxdywQRafAqowgu4F1kvzvI89B5AZ84xxw9+/2ewzQzh5m7w8TdPHF3r1n0iW/++9/IS6f3vmZb4sO1fjJBN/83pdTfuY23H90+9gnAP/oxv+cdt499wFJK/UdKqe9SSn3X+BCf9H/vR97On//GL6fUmyTB8eqETWhPhuAjh11kioGaV7blQlo20lLIm0ynamssa+K0nJh2E20oGQenVdLkx0AZT6+K87JKyCSWrod4r7RjTYXrdUGVRk4Zqx29FUreOJ1PPHn2jGfPnrFcFy7Pzjx76RWoBW8sy2Xj+vBAWlZKKjgbqVunjps0cDSi89wf9tw/OhC0oa6FURvtunA9P6O3508NxZvu7pi948UXjjy+22F7Qeci3QYXcV4q2xACTskDc97PWGM47PbU1jidT0whoErHafHDvOnujo9/8c28+PjAmw73RGPxJgidR2v2k0gFB4pERWtAy0Fc0yZUSe3w0aBsw9ohAavrhjNe/DIjo6iUcmGMxuW68uTZA+u10HonlZXSoYznyG+F1Y7UJe7gckkoZVHOckkbT65XriWT2sa2LuS8SJ7P0CilUcaglZWCVmmUgmAs+/0BGzxTnDjuD9jne+s5NOQ5ROQI2ST+3J/7Uj7lT38a7zu//CHt4Q9xvWZn7ce7Uk38D3/nazEDooGgFK6L7OJ4eMw07TDW4YNlnhxDVXJJ1D4wxnE9b/St3khYkePxDuccWnl509YGbxwGJU2UtpFLoSMemiUX0ta4vPLA9XomlQrOUrJAamopEsbZFXWtXM4nop7ouWLU4DDNTJPheIjYMThMkRcfv8CbX3yRwzzhnZXmiJawXzU0zgW2bcPZ9wsTrJcH4BgdNSraNGKcqJvo7sttSqGUwgWDCZINWHKnZnkgOg1zmIhhJ4j/MVjSmWkO7Pd7ondYNZhcAAbD1tt0zGCNZ02J8/XKul4wauCMSNMGnvv7F9gf7sSnh8YMResJZTrWCRyp9kJqmaI6eXS6MnRlCd7izBDAhc982z/8ev7+S9/L+Cfa9m/g/LTXzTlrvfPu972HJ8vL8p4zAXtQAcyk2O0NL9wd2EXN/THy6LDjhbsDTles6hgbOBzvWZcro3WMsE8B0GMw+QAN6pLko+0msa9FYE0p00vheHfAGI3q0vgLIeLQ7PZHyRDTjnkKvHC4x3RL3grHEHnx/oA1jd1xorfObreTS6o1r+buKSU5UCUnaktcljNrykDl4B1757g7zLzp8Zs5Ho/s5gnVKzWJnPe4P/Do7sCj455WN15+9pQtrzJ9MjL60kDQAa89JWVqbbTRidMBvAPnCLsDxnruHz8iHvbs9zuuy4Jcbhsf87GPGBp6leneSANWgZmoom5RIjLdyKWypSvX6yIgBSy9GrSNnK5XTpcL21Z48vCEZ6enbFvjumR8DJRS6V1gY7pX1uuVZUvktnG9XgVeNjr3+yNTdARnCM4xTQarFLNXhEnJXgGe/uBTfvV/8Kt/Uvvwp2i9bs7Zh2s9l3mPMfiB972DL//6L0PvFcdD5LjfsZ8jUwg4pYlzwHqH9R4fJa+1d03OnY7ChRk3zQQ7gYZWhLcgwiBLSQKueS7dHwNpFCjNwHK+rJyXBaxk/lov0lh6p7V8eydQEvtQV1JdGaqicbjoiSGwCzsOuz1Kd6BKjJWSuxNK4GxpLdRcGUDYR4z2aK2I0RCDJ7qJ+SiTNBRobdFKhiElZ3oH7W62ATMI88xut8MqQ4werwVGMh0OxN2B3W4muoA3AStzPJyN7KcDh8OBx4+PPLrbcX+vqHbja779a/nGv/0NH/B8eiOun+gT9b8D/gXgFwLvBv7o7eMfzJTwQb9LY4y3jDF+8RjjF3+oXoZO51u/4Vt42998mzzEQH52YDxYo2ilUJpMq4K3eGcxWt/yWiRUr9RMN4M+Osu6sKyLQEaMpozKWlbWvpGpWKtJ28L1euF0eaBRSXmV6VMb5GWlpY2crqzLxmhWCrzLhTVvXNeFVDLXdePZ6YHL+cTLL72Py8MFg755byzxEJm8k4T6Phi1MseJsjVq7UyTEO8GFcOg9Yq3lsk4eqnMNuB0xBtLcALImJ1F6ypJ7dahq2BY97sJqwb7acJoLdkVxxk/T0yHyOwd5Mq2nFGj0WqnjsE87wkhoI3hMM9oYxgD1rRyPZ8Jzgsu1WiMGvScyMvCtogpdKBAKbaccdqR1o20rSzbSqdTR6bcpnHaWLT2jGFQQC4ZZYEqspagPaMqtNFgJOC3IBflZb1w3Ra2vGGUxRiBvxhtCMYRTcBqL9pm1bAaYgg3gp4j7BRqVjJJc0iBNgMTbGXjL//FL+dTP+dTedezd31I+/dDXK/pWftQ1mW78K6Hd+AmCE7Ru5h/9RgoJT611kSCoLRhKC2T5dak2FHSdNjvjjy+u+OFR3cc73bMu0BvDa0V0xzZ73c3kI6Q20ordBopJ5Qd5LZxOj9Qa8UFT+kSrqmAWjdKX2SaZC33h0fMYWKKDnrj/MozodNVhRmKYC2P7l7AaUdrBT0kQsI5RwyBF154AaUV5hbEWW9hofo23e+ts21XGEJ3NdbThjw6Op1OZk0Xlu1KHx1rHFPcU3uVgqlsXMsVEyyHwx3GiEb/7tEd+92MuYWDexsxNxDOPu457A9MweGteCQmE7g7POLucCAGS5w9wYtPIPg9Q0v2zVADtHS/zpfEkjPKG5STM+FiJAb43h96G1/5zV8j8JQPsl6v/rT/kfW6O2d/9+3fx2/93b+FH7n8MLwJIRzvQHnxZgbXmb1cqI7HyLSz3N0dOd6/wDxNDCOhzHEnF0M1FNO8o+YiaPhaqKVCF8DMaBVnDShwzrKbZgwGPTTjFtBbamfb2s3P2eUZsHsMWB7dH3jTi/dY4zlOR+6mI2PtHPd7em2oNpinmU6WMHtlCMHinWHkxmGeOOwm5rjHYKhlodZC6YneO3fHO3bznqE1Tx4eEAGWlaabkX//7nDkeLxnniact+RaybVTykA5hzGO4Pe0XOi98vDkgZoKu/nIPN/z+PAIsJTUOT+cWdYrT15ZePLKlZwGaamvAh9HE7CD8pop7jBoes08fXiCsbBsmfc+fcKlLNKQ0nBdF3KTr6e2JtYMNSi9sKYLl+XE9XrlvGygDVoZvJ8wJqKH4zDvBA5hRSEi4eYdNQRYMaxI0LlJ9V8vhcyPWa+7c/bhWs99uU+uL/GF3/Cnebq9TDwajrNnHz1TiMRJvJf7OTCHgPcBOwXSrTnWUKBuvqzdzP6wwxpgdJkwKXn+WOPkddealDOXbWEtG21U8KC8I7eBUp7RBbKGkoxdec/ujFGExhg9u2nibrfnMAWmKAqOXrMg8XO/Aajk2TZGv3nIFAOLnyaCi8RjIBx2+DgzTZNkh+rBsMAtdNsaTfQBawOpJHqv+BjYHfccjgeOx6M83224+dq9sBiCx7pAHY01JZQ1WCdQkWnyHHaR+33g0dEw7MJf+Ja/wB/80t/Hu0/veW03xYdp/YSoj2OMV2eJSqm3Av/97X/fAfxPfsxv/RnAh/0WO8bge/7R9/JN3/LX+QX/83+ZSc1ScgYgiU9mip41VelgBMfkPM1WjPE8fSpZJmpInsxwg2Xb0EM6VgpF6xLorFpnH2/hzGpwvVxRGtzBsS0ZawYxOpwz0MQ03ZWECGpjGKXRGQJRsI75MHFaVszoMjEwEkIIsOaF+/sDVkeW64aqitqadDmtXHxzrRgLx71k5rTTGdUbShmcj6TayUvi8ZteRCkxn+ZScdngfKDXikbjvEMbzX4XqblAa9wfjvTRiZPjfS9dcN4K5as3Mab3wRRFGrmlLBlRHfwUyL1Cq7ReuFxPeOfIaaWWTM6rhOkqy7Z1ulagFWEW1OzQkG+ySLwl1YrXTvDhTWGdITq5mHcU27Khhui58xiCaN6uhN1M2q5YPajIBdZqCWnVaNqoeB8xoxOnAMNgtUH1RrDmhqt1OG+w0aJ+LNVxuv3wUE3lL/3Fv8inveXT+MGX/+GHe3v/k3v9NT1rH8r6wXf+IF/0NV/E7/pN/wUxwv4g+yKPii+OYoIYl5XBuwmnLJQussHeaENQZdbFW6B54Xy9MkZDI6AO4xz1FlJrnEU7jxqdWgfegHKesq4s2ybUkWEIDkprKCP5MoPBLgaCM/LwG+rWyevQCtFNWCvdT/oQeNpuT6sFbW/GaWWxA2KIrOuF0Ro1Z9bcaKXTKoyWoSu0ElJfLpmcKuUGMyo9yftFkynVjbNC7o4tifRFSlFkuqsFuTxUxznJW5znA7k1kWOB+AmsKApalWgNrYxM6rwAXZwBZzrWelx0GB3oA1ItKCPBlB3AGvH1TjPOOVywHO4cuwM8e/e7+cEnf4/OB2r/X0+Xpx/vej2esz4G3/A3vpnf8xm/m0/7z/4wP2v/s2UzNCCD84Z5J1l7JjlyeYW0ibfS+0A/PxCmyHDS9MJ0cu8oYyglS6fdWIbWlCr+KYXCWkcrieWSUE46oRIELzmgk5+xVhOcIacLre2Zj4FJG/Zx4jDvKG3Qcmb0irWWoYTiG+YZ5x01JYx2jKHEOxoaXhtCOLA/7NkuZ1JauV4fuL97hELTRifXRK6Zad5xWpJ8DjnTdGNLiekwcz2dRaY8KgrZ+9o2Rh2SixknjNIYp+lUjHW0llmuZ5zz+OhoRTJVjW44Y3G7PZd1xTvFcbdntCYB02MwqtAicZZKxljDlgcPS+KabpE8LXNeV06XCykt1FyhJ4bWODx9GaS0oYxh2u+oueK9ZwoehoDKtLFcLxdaDDincc6wnwLBGqZJo8xAT8ABhh289a+89adjm35I6/V4zj6cSyl1m6r9CJ/1lz6T3/ar/0NeOH48uTpKa7QeZJrVG3Lh0Rjj6K1SuqKXJk0/NGiBPpmh6EqTc6W2ijVWaOOjicS2JGy3jHmPNv5GC68s+YLVkj9bWse3m02kVYKSIOugI+YW26SV+M56b7Re0caCC2RtqLfuRGkFVxR2QI+355FVZFWpSSZtrQzWslGH5AMPYyi1UYp4TCWKpmKNluepEd9z70Io7m0QdCBOkwDcAGst8t3SxDAxhZlpnggxMgXHYfa8cPSgr3zRX/8i/shX/lHeff7IKNLgJ1ioKaU+bozxHPX1G4HnVJ+vAP6sUuqPIYbQ/ynwnT/pz/KDrNYrX/wXvoRf/+t+Az/3zf/SPwZ4GBbZrCljFajRcVbIhm0oWmm0qvAhMEpGdUWpDa1vU5qb1r1dT1jjmKcdpnfoDmc8ZW2Mg2B1Synooih5ozNQSks4JZ0wB/aHA7m3m168Y0xAKc1+nnHeUzbpLuZaaCVzPp+Z/MQYQ4yUQXQMzzPQci64aLl7/IinD0+5O9yxLCtpEzN0UzDFGa00x/1eZCajEF2EoahkrL2hl+mMKnlXdTS01YwKamgO8xF6p3pBM7dRuD8cMVrCrEvOuGhkqqEGug+8tSxpoxUwt4fLoIJq5JppTZPHYFiNM4Y+Bvmy0nvDKSnEcql0LMIPEYSV1hofHNrKA7S3QesJ5wK9KUzQlIdKLc/k6zAOpURGp7SSSy1SaMZ5R1sLdI21nuAtU7TMux3KKfw+EuZIiBrcbZoWeBXFP+Lgiz/nT/Opn/+H+UevvOOnYmv/Y+v1cNZ+vGstK1/73V/LJ/3S/w0/882/gMOmSJsn50R1DmsTMQQJLm+NXMbttSxkI2bobcsYFEY1WsnIoNRD0JSehZxGIdXM2MRjpcZAj4694enr6LQ+pEEyCvTOuha07YBh8iKJNkoBHaMsc/Dc749YJe8TKZWbZENhVMdaS2se7+yNnuVw1tBzR7dOq5WWG9E6ipKMtKGg3vLYUs2sy8p1S4JO7xqMwThPGxmFYfSBtprSmxBTx/tbysu20qMAdEpJrJvsf+0so8kDXMh75hYbYKTj2QctNZQfr/qXdFfsph3WWaFZWkWuA6OshCFbR1eKobmBmbR4AabA3azQ9sTf+J5vFz/BP7GeB4e/0dbr9Zy13vmab/irnE4XftabP5E/8bs+C9vd+8Nfs0IrQxqW6CdSGFQ0xid8nFheudK3hkZReud0OtN6R1mD6uCMpeSCdZp1XYneodWtHsyFXrl10BvTHDHOUNaE9hLZMluN85rHx3sm63EaJu+p14XeCodppnVp/uWUGL1jbWRvPeH27Fi3BWcswc1MwdNreTWUvaEZWrE/HEhpoynNfDiSLheUHnTTaVozlOJyzezmgLHuJl3UdAbee1AGYwetVmgF72dUhTnuAEh5w6uB0ZpRrZz3Ie9Hp/MF0wfu/p4tVeYoCpvRO8pr+lWK4No7p+tZJn6Xp5QmEKXrdiW3ysNlIZUNZQI+BPJ1kUmj1fTcaVvFT4ZWhPrcShF6c5dGTuud82UVWvToWBtuEuYuNL+jhgNCCwU+4099xk/XNv1xr9frOftwLX0r3p+tT3nL130ea1r5Hf/mb+eFw8eRs6HWSuuaXBU2GHTVdD1wNqL1oKhBb7LzQQmNWCna6PQkNpCh5KnQe6f3irL9Vsg0MmIHCs4zmkQ9aAzBhtvIUuI+WgNvhaLogruBg6QpCdCtwukg2bnN0raEVZo+CrVBQSH/1KC3LF93EwhQKYNaOt2AcpqhHG3I+cilMtRAN8nmHArQCuciClivK71pfPB454B+i9DRBCeTO2s8IQSmOaItHHaB+0Og243P/9q38t/+1c/ipetLP/0v/k/h+mcWakqpLwZ+JfCiUuodwO8FfqVS6hci94gfBv4vAGOM71VKfRnwfUjK2f/1p5La88PvfQfXur46ScMDq9yBtIXoDM+WTM2VUhreRtLDVSiPurGtFRct1MY8TRIFpQRIoTy0JoG6QozTBG+IwYJShDDTRxLViFVcTok5RobW9NJI2wKq4SfB5/fR6ENzqQvGOqwyqFvGxZYSWEtulbI2VJWm6WE+3AzkIl08PTzgg0Vbzelygm4wymDJDAe5btw9PtK7prVG8A7nxWNnrRDemCZab+ghXdctFxnZO82yrNgYqGMwzTt6bczGyFShQ8sa7QfO+JtEEKy7obyNYGUTMnFrvZFTkuLVWHJe2dLK0hphH/FuR04btWVKU6yXhfvjHusNCiuj9q6ZrUMZyZvLObPmFe88aPH79FHYmmKKE1u+4K0ntYI2MM07kezURpgiQU/0VtDKSCgoXeLQph1zCJg5YKfI7rjH7ZSMM54XaTvpUn7Z538hv++tf4D3nt73Yd/Pr+ez9uNdb/uHb+O7f/ht/Pyf9QtIE6yrZUuRnDpt8hyPe7akWU5ncA6swtDQdJyS/JfWGtZrjLH00VBoooJeKyjpLhpjJO9s29BDvUpdHAPaGBLCngspLaRaQDlU6gT3vIExCNZRW2Xygdl5JitULO81yWbyKAIRAIEM5As23OOcQ2norTNZBz7A7QJaSye7Qe4JhSbXjdY663Wh90HtlTWtOOswSIPAhcj1utJGlcwzIyGjDpFKllrIpbCmFesl/FPlSke8Q6UkUq7S2LHPpyUTShu8VfQKCo3TGqUbGnOjwGrq0JQiTXuNoWpFGYNp3oOC4CNTjOzmwN3ecb+D92wv8SXf9Gcorby2m+0nuN5o56z1zjd/17fwtinwx//ffwLbgQJcBed9TUmy84zGWEvfCigrRDbr2coKKK6nE9patmsi+pmqFFOcYQzO56ccjneUdWW9LvgpgJEmiEIkx0ortDFMdxGGCHf3jx5Jw7I1XribiFqR0wK9cn+4w+rAs+3KNAXe7N+EtQ5jDa88e4A6KEqaG5TK1hdcDDx573tQGvw00XrhtG3Mh4nLlsCJVH0oCW2svePdRKuDPs68/PIz4hzlvCvQrfL4xUe3bM7M5Xohpco8BWpd5ZmVV7TWmK5oQ2SfYY6s1yu1DtLWeBgro2u0lkvxfvaUkgljRltFKpUtJdacedfLT1hz58kr7yHXBsbwyuXMkjNDO0aT9y+727FezrTljHUSmjxGY7lcMM5yvHuBy3IhWn+jYhYe398x+RmlPUZ5QozEnb3J3XgVIvKb/svfRC6vbdr1G+2cfbiW1nL/euX6hC/61j9LzRv/6a/+Xdwd3kxrN6m/MUQfWZaMMV7sFk7okbUUcklAR/uAdhVypo6GQrE1eV37GPQhNMaUC7k9CCugF5nG+kgHaWQaR+5Z9lgbhEnjzCxTNAa9K6yx1LyxlYLxHnX79vdeGEOUUJPxMtnOGWf9TRKZySXJnVbJ9D6XdqOsR7EmDAPWEg9CP1YaREapaLWyLRvHwx3uEFivAgcagFUOrQWUFOOEsR5rLd45TDDMrnO3i9wfLe86/whf+p1f/BFXpMGPo1AbY/x7H+TDn/s/8vs/BfiUn8wn9eNdVWf+0md/CT/vU/9nBB9BAIUYA7VVotaUVETOFzy1dzZvmEqghco0KsuWGEqjnSI4h9EG3TV5KUQzgZUutxQfRooEA10blOm4GGi1crw/Ykyg1o02Oo1bAOBasMHSSsfvIvlhoafCuWV2845+kzY6Ewhqwk2iT655I7fE/X5PqxVNZQqGNWWW05U5HvDTxLiFXpZSON4foXS2tBGcp2aRcglNSDH5yBiFy3rCH2ZGtewOnrRk5jniSsVEz+Q9umlSrVgl3RmN4rqcKB2s9czhiKSAapRR5CqkMNczengufWFrhVYL58sDqSSMD5hlUHPl0q5YpFvknMAOuoKgNJgODFpvVK1Z08C5Tt4uVCrmFjicN/HoqTpordLKwDuNxzNu3pl1WbDOUUvFTZLppczAei8ZaXO8+XQ8fopMUyTMCr1TovW/gUOqqfzZz/uz/L63/gFe+iko0uD1fdZ+vKu0wlv/8lv51/6Ff50X9/8ih6hZN00pntEdzXr06IwdIpWtlZoyY0h2k3eW1jMl3yhum2KMTunyep7PZ1JtWBewdqK0jHeaug1q2SQwvatXp91ryeLTcOCVBEU/n/eUWoghcHe3kzw2Bvs4oXSn9pVJadaS6F0zB09vu1uenkLfuoPaeua4I8Ydp8uFc1nRKEaqDP/+eIuUCxXJXdTq5uksC9tDwji5cK7bJvvUWcLsGF1C3QcwtELhuFw3jDMok2lNZJZOOclIdFGIYF2zJDnTWgemKLk9SsHkZ5wRupiEiA56S6ACSkHtTc6kv1HGZsmEOk6W+1nhfOGPfc6f5Nn58kFN2m8EkMgb9Zxd1sT/6jf/Mr7xLd/GPM2wg3Zt7CbP5cmV03rivCSePDylY6m9EHYzsc+8cn7KtD+AFsz8dbmITGoMtDUc9jtqSyyXi2SBLhnrIkobVK2UXPBTYD/t2c5n6aj3xJYiaRsEH7huC+ecuZ8PdKQBeF6vKC3emIHIq1oR6a9RmvvDARQ8Oz9QUuduyCQhzjN1SIZU6ZVn64bb7xhp4z0/+l7WdaNpCcY+3QobZwZmFyi1MlnLtq08vn+MGZIXeF3P2G7po/Ps9JQ5euoozIf9zafsOOxmQgikdaWqzMN6prfCetb0Rxsf9+KbqLXw7JSY4sSTJ8/Y7SbKgMtWeNdL76EOKEMC4s+b5MM1Btdl43w+cz8d6d6++twz2lJKYppnZj9RWxcPrjHMLsJo1FrZH/ac14U5zBgN+11kNxuMV6gDcISkE7/t//Xb+Jpv+5rX3J/2Rj1nP9n1YxUFTy6v8JXf/Vf4d37F/5Z/42d/IqN3GSQEx2lLlF7Ir2TqqJSqUM9jZpR4mNUwGGdoRV7LoYTCqLRGG4fXCmMVSWlqWimlobQhpwRonMo4M/MsPaAZeO9oNFKtGCWTsO26SjyHViyt8HB6IMbIbtrRWiUGS+8dNTQNMNphtOZ0PWONglploOEUzk6AIkSHslpasF3kjqUXkeDHSCoJxhBC94DcC6eHBw7xDosRFZyWeB59y1PTSnzl1jmcteyCZR8dL9wZSn/gT//VL+RHXvqR1+Q1/6lePyHp4+tl9db5b7768/j3/5P/iJ/94s9GaQW3TGIzOrkNnFV4LNZbllZp7ckN3e5AS3r61iu5JurWUEEx0GwpUUtj2k/Ua8FNjtEKTYNVFqUkSDvlRFeDPCrkBloKu3S+cq4bj/fy7/vgWK4bY1Schd7kErYuq9BrQuX4+MjldEbZyj7OaKPJJdNzw06ewyEAC1Y3udCpzrD2VV30yI1tXZnvDigGl4vkG338x79I2rpM18bANY9SHuUVNXe836GsQ+vMYQ70onDB4m0QP55W0Cr+cE+undoL1nms8tgpSLdyNIZWrJthTSudRh+dqjqpVZTxtNxws6e2RsobZgpYFzHWoJtISZbTQpwD1Sy0NujKkNPKZTTytrF7NKGs0CsHhXxZGUZkMmMolNas2xmaYrhONwZ9y7orJeO9BMR21fHasZ8iwSoJgLXmli+nUBGRkdxD0htf8ee/nE//gk/jpdNHXrfmw72++53fzd975/fya/8XP4cxNFvx9NrpdYZDpZ0Kh3mi1Mq6LPLg6goTPNp7VFNYpSllkFpDMegDSlIsa2IrFWU0Thn0DU7TzEAJf4ctJ+q23PxooKzHK3OTwkqo7xQ8cd5zvz9gh8IOoTlGL6bpMRLRTjAs3ViayuzjTRgyFClL2GxrVYiqzvNwPqNUJkRDa44tZclpKgiCWHWRGw8B6Wx1Q6mC58DzPKgOXC8XGDuqUSLbGgoYoGR/a23ZUsGYjlUKYT4aWh2gFdo5lIG0ZXYHL2e7yWSk5Mx89IAhbU0ehMMxtCbVRodXA993u5k4OaKDfdQcd/DO87v4c9/++aS+fcDr/kaVPb6R1vf/8A/y7/0//13+8h/5atQK8Wi5ngTGo4e6hctHRoEwzYRJ8XB+hrIBZQq9F5Rx0NVtijNY05m0XGlbRWtPp9LaoJQVF0UGq5RCdUVvjbjbk9IKWfPkyZn9/Z5zbpT3PeP+EHh2ORPDzNoqzcILL7xI2jaCiygMp9OJaD33xzusM6xbYfYzxzc9YlkXHr3wIpf1yjCKh+3KYbfjR9/5TmIMpFLkmaK2G9gk8XA+4YzHuxk1Bq0m6JpH+3t6blQLtXZCjNTcaK2RLgsfc/cxDDI02M171suFh1Nh2SxznLnb3wMN5xxWCw312eWE0oZaC2ur1DFY10wpjfN5Y6uKJVcermd08Li243x+xrPLMywaqzypQ+gaXTRGB7ayEJylD0U3BmecSNwGrLkQrGH2kdY7H//Cm/BOMUdHCOJ3Igw4Kh76A7/3M38vX/5NX/5ab9N/7pcx5paXCU+uD3zNd341P/djfy6f8PgTGcZir5k2BjnOpF3nUiQKKm2LRBbRuZwXRm8C0hqGdvMDz3am0ii5AlZIybOheZEqjlpIZeX07ETUlv3RAoMQJpTq1KWSkEFEHpU+Gm4YUiqkmiRU2niU1jgThE3gFWtKbGvCmnCjTga0rsRpL7J6NeTPKY01ohBbUyaPTlovKONQWsjqRlnqyLfsQYGw1NopvTAfA1ZbYowYbSVWSgmbwuhBMIPgFfvouD8aUn2Ft3zNn+TzvvHzWMry2r3oP4XrDV2oARSV+PTf/4f5k5/934kcZAVusseWkhRtRgvdanSii2xlwyorpuZWoCiMguu6QVWEGND7QekNDahbdoVWhl4rLgZSugjUoA+0s1yfLa8GUe5DpFWY7EwtnVYL835mutF6jHVcLie29UblMhFnRAfcciZoIT8KUVIub2tOuHmPM4Z12Tge9ow6MNZgjcJoRWfgjnsh69hIUxml4HpaiPHIuqxMs2MXdzjvaUpTdWY0JR0RK8VX0Q0ZYIiXbJQNFwwamSx2REc9zTvWulJqIQRP6YP94ci1rmybTNtGh9okbkA7B0O6qspYxhiSb7d1dLdoLUAIYw15yVhjGKZz3c7k7LBac11WeRPIctgxt0usHhI0vGVUU4w6aNymEyGIhFRZ5jliesdozeQ9c4zs58h+F7HaYtHoW4A6M6SW+Mqv/Et8+p/8NH70yT/64Jvwo+sD1h/803+Q6f+051f+q/8WuRhKipQKtTiJQzDPscKWGCKmK5yBjjRKujL0lnm4XPBeQddU1cAo6iqvX2udUsUP2npHAVYB1tCLoI61Uqg2CN7RamMUGDdCox5S3PngiTeEcZdmJnOYAcXd/sh1WVi3ivWGNjSlNCFzOYdm0IZkvMVpx2l9hu6Kw90BLhfWG7xk8hOpZ5btSimdXAvaarSZ5IHe1fs74E6CslGi9W+9UXu9oYw1GEstkt3WFDQ2og5U1amlEZXB6QCjoQbood6PRNeanOTy6ZylothPE1sfLG3BGss8B+LkiXNg5x2HneWwgx94z/fzKX/mU8n5g4eHGmM+6Mc/uj58awDvfeV9vO0H/ib/6pt/kTAHtGLNCev3+Alcgcv6lLVvbKlwTRsvn56K17gL2Go+HiklU1pGMfBzYFOdXppETxhD6hmMYQ4TSkOrldPlAdeVNNNuf1dv49aIKIxL4RhmSltQzhBd5NmzJ1gfsc2wm2be/KY9lk6vkoGme+Hx3R0hBpyGy3Kit8y6NcqaeO91xTg4PVzRxqCUQ/vISJkwacKWKalyyReisdzNe3ofpJpucRkdffOeztETXKQdOnFSLMvAx0gIjpIkxgYl0khDp7UuMmwLpVbGLX9x2a5cq0zcc4VcEmnLlJZ4dlpYaiaEyJpX1pRwemKMwhwGW830puRSbBQByf001tF7J28JH8SP460n3ppSTomP9bifiV6ziwMbh7zpefimb/omPver/qkDq4+un8allHq1WLvmC1/wjV9MroX//Df+bj7u0c+k9sE1W0Jw7PZ7TJm4LldSXkEpSjEMbam50ZsWAqJBiNlazl0MTiSTxtN65ZLOogizFjs8zWTp8QEgsvvROzZEoW6XitM3eN7teWiMZb/zTNMOjKarAbVih8XrxlY3xhgEt4MxGF0znKEr2b+5dTSd0itrqTw7n29qEFCtMDqkknHByz1gaKYwY52UIvO0wzvPPEWmOMmdoXU0Cqs13lh2U2S/8zw6WBJP+Jyvewuf/dfewrP19Fq93D/l6w1fqPXW+Yq/+ZX81m/9LfzSX/avvRp8HSfDaJ5lsex2kX5ZGXYQQuDOBNZtZaguoZlmYJRhVRmjQI2KYmB0p9dBmAIY2NYNp4ZMB1rHagVWU2tnFyKYzpYlny1MEdWHZInlFd88IUS8E6Txti3U0vAmEvY7jNGcnj5jPuxQbVBSxjrHuKHjR+2kbb151mQMXHujj0awHmcd2lkh0ylF9A6jDzAabTRG3XA2QDM3I7rh8f09y+VM0wNlDa1VJh+JfsgFuCsstzeMUjF6yKFRCuMdrVd6KSjVQDlyLmw5Y5RDqQ2nDZeUUehbHtTzFw18ELlhqYWybIwmZlMXIo1BReG0YuhO7zdARNP0pGAPuWYGBRPE1AoweqZUmKeAcpra5dLvjaEPmH0gWoPukp0WjJEf3ksu3N0ev7fo5yh+D0+ePOEPfNan8EPv++HXZH+/Udfb3/f9/Bdf+Hv4rl/+XRyy4nJVBCcZfnOcWbcVazVxmhhGjM+jrSJLVEJIdEbjnZestJ6oelD1AK/ZSoO6ohjkVmk9o4wSwEfXKOUEDczAGQHxKCNFjzMeGGxpI/qAM5JDFLQT8/XoKGupdZBroz03qg3DQFHahsJQijykai2UW7G4n480JZCUk+ZVFP/zDCtAPKJK42OgjUq9QURGlovgvNsTvCCSW++US6EBLW1McaarIaCS2on7CasU9M6Wb3IXt6fXyrh5CeZZfEi1NqY5SKCo1qC0TOasJm+FrrRkpQX5PkZj2U2G46SZd/AnvvCP81V/6yvIPX3A6/1GkDx+pKzv+6G38599xu/kj/7Hf4xf9OZfQj91lPYMlWlVnmmXdKaMSklwuV7pKDKD2gejdnovOOckDiU1tDMYE0g1iSdZWZyxaGtZSyJoj9MGu5vp20ZeNvb7AxXF5Xwlp403vfgCZiie5hUzMvOYMXoleEttWaatSrriNVd2+xmbLevljLtd5mrNXJeV83YhtSF5fr2xrRvdKLSxeC9F15o2ohZqq1YiXZ7CxOiNXAohRub5QG+SpaiIqDGYpwmQ6B7mwW6emeeZtEmH//HdPbRGLhtxmnDR4JQWP7rWpFYpCi7XDWs1p/OVNS1cLxfWtJFLJ1M4L6tI3YY0VH0I1F6JPmCsopZBzTJ1GQxKLig0YZqxxpFyYXJRZJBa4ZXF6U70nsk7jAI9KVRQvPz0Zf7M1/2Z13JbfnR9kPVc7XRJJ/7Mt3wZtQ1+12/4nXzs/c9hbZ7CoDRRB40Y2TaxZ2RV0DpgnMbYSk4JF4QSvi6LZBq6KP/IUGjtOMYDXXVKy0Q/Y7V7lROgh5ZMUa2wWgYP63bB7CZ6g7wVISH7md4bY0gEx+gdpZ3Ey6hC8I6BxGG0XnHeU1GUVPBA2Qp9VFCGXKTRobXBRyEQl96wWJyN0MGYQNzNhBvwzbsozScb0NoTvMJ3xWQN+93E3WHHcec53mlKP/NZ//1n8rnf8Hk83Z69Zq/xT8d6wxdqAEu+8Ec+9//Dl/2KLxH64wSqK2K37NOBOiTY2gWHWQyUhvdisu5NRsujI9kPtchUZsC2ZnbHnZiyvYTuahqqdoJ2jJ5BG5TumCnQlNC11rVgrIQK7uc7upEMi1al6FCto7RMg7RxKC1FUq0VPWCaJ8YQw+k2ipDa0JKTpOH+0T21VnbHHXSNZqCNZp4DW7ppec2ANiSnqneCMURvqb0ztCDp1kXCpWMIxN2BnAujNQ7zLDKu0cSYagMDS+1ZyJpKgj3rLb1eATmtMKClQl4KrVT5fhmF0QJ+QEnux263Qxst00jv0JtkvIFGK02tGhscy6UADWs19jkKuReWdcM4i0JybEqXqYXkKioMCms0wQZaazhlqK1Cz/QM0Xus0hznGWcNwQcm7wnRYm85ac8pornnjxZpP8H1Q09/kM//qs/j//yrfivzBKkoevOM44w2imVdhVylNbWJJLD0gkHR9a3I9jOXfKErRWtQm4SDruWKUkoKuY5MoGplK0VynwavTritFfpizoXoHNpYVDP4eYYuU109Gj5KeG1OVc7qUBJPwUDbQFNQSqH2yuV6Zh8PhB7IubDbzWiroRoYnS0t9DLQKBqdtV1IOUt2Vcs4H8R0PgJKVTlHdhCCxfnnMk2hNqZeb8JISDlRcpFu5oB5HxlDjNcojbeBMip0iF4AEK1XDBoXPMFHEUpaSx3go2fLiT6kiJ5iENKjC0yTYxcU8wTf/r3fwre//TvY2vpBX+uPSh5/+tYY8Hd+4O/yvf/oe/lFn/hL8FHjJ8dly7ReWa8XxoDahIA7GiitSD3f3vM7zlmZZimNsu8PVNU3vzZA3hpOdYy7ebh9RKNZW6PmznVJqJ2hjITVE8bNXPPKdlmILtCG4cXH9+SRmd0e7w3WNoK1DBXoOTP5gN8Pct64PLzC1ja00TjvuZwvPFwulFGoCpmkG0OIVbyiSnG5nMlrItfGcbdjTQuowXF3ZNrt8WESwFAWYmx0ouRY04WOQo3G5CWsdz8fsEZjnaIsRbLeWmU0hXYBbTRbEmk1RlGB8/lCzpktJ9a8cbo+gLZoH+h1CF5dW8lF1UOiSFQl58EoWl7MXglxlrgRbfAx3rxrilQSWg/e/Pgxs7N4q+R5PUfMTuBLTPD0PU/5qu/8qtdsT350feBSSuAgvXfGGFzzhS/5G1/GVjb+81/3f+cTjv8SpSpq9igtJG3vBNahrKe6SmsVrSpcb1tltBtwDaFytyGgOKNQTmwo57VC60x2whtpDhitYSiZoiNqjGANGmlodtVQzqGGoVWhS2kGqWTitKOWQm2drgxKGbG6KMCJiqIOUWV1ZaURaRVOW3Zxd8sPlXOnOzfJpKirdvuJOc4inUQUH2iJntDW4IwhWMc+RA5z5P7o2R8gqTOf/iWfzhd8y+dzzufX7DX+6VofEYVa752//UNv42u/4n/gV/3qXwNVOBc6QgwWt1isNtRemLwn9w0zNLXJrEcrS6MwTYFaNOlyRXfYHWem2TL5gPGGefLUnMklE7RHKUfuDe8suWfM6PQOoSlqq9TcmPc77g73bMvCdUmEKVBqIh735IcTfcjvjcHxMW9+kW1JKGcJ5hZ8vYl8KRiNtTNDN4IPpFrY7x4xSmFZrjeviWL2Aa001khA7+gQzc2UacCiqVqB7qTSydcLZqfxB0OnULtkTQXr2EpjKMmLMcqy5gWrDdc10VpmjM7kA10P6GKEtcHSTh2LYc2ZVhS5NZnM9crucGC0TmkV6wyjGeI043SHLnIBo8VwnntFbYq7YxRsOINSG6frlRAtetzkVqbjdJBizMj8Yp5napUitHbYhUBpCa8juzBxdziyCxFjrEzaQsDEG47/lpfWTOOtn/nZr/HufuOu1huf8uf/EHlr/B/+7f+Q0R30zmCGoei3wNissmTiFag1YZTQTDuN3JsAQMZzD5ZDO4PKCy7IG75SYIdlKPFo9lbpTWGdJlo5SzCY4g7nFOOmfZynPcFBXle0gusiU2CF0O24Gf1Rg/MqWYBlFHKWLLRSG2s+CTEuG6wxLNtKbY3T9YK2GoOhjE5DGjGtNfm7rSX3RhuQ1k06mLrj9ARD/oy+xRBgGlp5IYLljAyvFEMX8bBqjdWBtK3YvRM552QkONhIwGkfjfvHM87PeGcQj9qFnCrjBjWIwROmGWMc3hqiUxz2inAcfMXf/ov80Pt+8IO+zh+VPL42a7jOCAM7KXZxoh8Na7qybR7jH/HOp8/oTXO4uyefX6FdV8I0YYxjWZ6htUUrKFkuf2kpGKcwTuAB+7u9XB6NIaDRvZPWFdU1h8Pxpt4wtF5Y8sJ73vVOIe0qxVYLuq7EzQuF0Sl88Dgrz1PtLaNmvDU0FDll0nIm7CULdPRBCJ5RNsroYKRJuVyvnC7P+LjHb2J5OLGLM8opGCu7yRP9gVor67oSvKch8urDnQBDlnWBAYfdkbRcuKZC2q6UmjnEiGbw9NkTHh/u6V286Lp3NI2H5UyqFecjtTaWuqKVZssry+XC+Xplqx3jC/laCHF6fzZiyTx98jL73R3WOral4NDYIO8xWt0uqQw63OILRCbufUBruLvf461Cq8qtTYnyirQmPum/+qTXcCd+dP3T1j9ZrC35yle/7av5l3/mz+M/+XU/n/saqT1RT5qLvWXdKgWp0sygI9OpsD+wbSs9F6bdHqsVoxTSVkBSZBDnvsZ1Ife2G5VXGteWVgcpJbpqBBcw3sIQQAdKU2sFC1stcg9TTUiQVZD8uVdKl9BrWgVv0bUyzQE9GrmCnyy6iJxyKHDWorxnjEHNmXk3o4dhtIEJAa0txgq99PkyzhP8hNWa6A2H3cwuzNzvNIc7yPrCZ3zZp/L53/oFXPLltXlhf5rXR0ShBvDul9/DF339l/K//lX/Bt56uWwDPinCNTBPkXHbYyZa0pawA8LwnC8LxViCU9RusLOi606ImnXbUEqQpkoJgn6MQS8wxUipK8oA145ySgyQqnI+rfigGTTSujHvdsQpsrWKKbAtCyFEjBkMB84HKJVpNqRlJR73aN158XjgfD5xtz8KgUtpuagmRU4XTFdSKNaM6pbaK9P8SAyiJtLrYJpnKba0xhvNQGGsw/vIuQ96TaTlTKqZoA2mg508JVdKWUhqoEkEZ0kls60PKG1w1rHmlc5ga5XcJJMqRkO+DM6nB1KpdAYYMdv13khrwgbPaIrT9YyxjsMUsGqgi7whJBrDDnpU5K6wrWN9QKsGNHoReaZShrv7PdbK66KMQWlLHwZnFCiF14PoPQc8+8PMzkV2IeKNFo9AcISdEbyxQ97xHDTd+G/+yn/7Wm3pj4j1vvNL/JGv+HQOcc+v/+W/mTo8pTdyA58quVSha/YkeTFtoI1I6ZZtozUYXbO1TDEd5ydM6KSWUVhy2XDR0rpmDHk46FvuCoB1M01pnLNM1qPVkMbIfk/rnTVJl967iLZCY+SWhwhKsv5a4un5FXycKX3w7HoVMMdQ4tnsjWu+klJCa82as6CTq0gt22ikVZDK2nq8k0Lwuq5sSwEteYFqKK5lQSvJgpzjgV61WDCNBNr6OciEu3bSNjg/u/D4TY/lvSnuMNrRUGxlsJug0emqM8eDfE1KM5Bg49409eavm0PA7WbiFKVIM5o5wG6G73z73+Bb/9Z3UOs/nZb90YnaT+8qtfH/+OO/m5//ib+AX/Sxv4Rjg4rlUX6EQvHO9zzh0Wy5lI0lJWwbRKSRkNqtiWC0gLPyhtWaaT+xbVmyxoCS0w3AUVDzhPaeyQfK5cy6LMQwUXJmP+8oY6XVyrJciNMevAXreHI984n7A6U0rm2lbgV9NByiJU7xFq1umSfHto+UASVvXK4LQyvuXvhY1ve8Cx0tJSe66lg0pWTJ9LxszFMEGrUOzGQxxvHk6SukrRBj4M0f8/EifdYKpx2PjvdobVnwvPDoY8VTUxasGqRc2IWJ0+kZ827mbndPjIEnT9+HDwf0GDx9+RUe1gdqh+ADl3Sl1or1gb0PnM9XjNYsD5fbRbezpgWNxZhbxquHaAPODJybqHkBI7mGikGtheMUMd5y/+iIxvLsnPiEFx/Rh6UqcAOJjemD9zz9yAn3/UhbHzhZW/i27/92fs0v/bv8nLufT86BXDP7JtFG1ntKPbOtSSS/VVgIRgusw5nBHCJ4c8sHlpiatGaUEspwzZJfK01J2EoSSJZq7HbyLBhdUXrCagF6jDYoreLsremtOhpDb5Wtb5TWACOxTNZjnhdxRUtuqG7krDBYaSKo93uZvdHE/Q7vJzQyTQtO5P2Ti3jnULpL5JSxEuIeIlOw7KbA43vN4QjLOPFZf/Ez+dxv+EIu6Z+PIg0+ggq1Qedtf/e7+Pqv+3p+7b/5awWSNhRmMhzuZ8ZQeOvkcpQyDuiloyUdW4hxvZHYsFZJh1t19n6ml0YfCu9l07ciGUnDRHZuJpWC95ElL2hl8N7inMUYRbqu1NGEzmYGy+mBfdjD7CmpMowilYXqngMvDDY4tFY4LdlH+7iT8Oc2MDcgh1WK61YwLuDsgCGhiNaK78BoS3QRqwWzXXvHG0vJndErs4/czUd63SSQuGzMzkvGGJ2+FaFTdpFy9XG7vArjALpmChOlZi5p4XR6oIxOmHby5jIGudw6MAO085i5U0u+ZZiJIbaWRtOAn1Edqq6sayFvmSkGgvX0Ipfd1g13xwOX5fpqDod1hjEkSNIHJ99/O9FrRVuFBpz3zIcdDovzAhcJwTMFw+E4YyOSlRaRidrzYo3n8rmPrp/Meun6Et/+w9/Gr/3ln8R+viNXTW6di/MYv6H7YFCxBHSWabAz4rt6uj2T7JnaaWNQS2atBaxjXa6gh9BajUIpTVMKa0U66LTDOkdJiVQbuI418uu9d977ynsIynLY75msYg7+lteXQFWUsdTRWFMBbbluCa2FwLalTMpX8WsaBPZh3U3eLJTKwaCMyitPXqHTUF6aCWMbkrHoLVklxo3m2HtFe7nI1bWSxkZvXWAjtYITvmPPlWmeOOz3XLaVkhvDcCtOFdpaRu+kltjZiWg83k/UNLDTP/6Wr43B+ECYZlywTDEQrWc3ew6TAr3xLW//Rr7nHX+HzgdCRIwxHy3SXqNVW+Nv/8jb+Fd+9i/ELo5d1ORdZM0zx0eNl3/kh5l8ZLGeYCLX7YQ2Cm+mV3MAc9lQNFJJOC2gJ5TIzLVWaDTKGlLeSGvCKcnVnHYTIQbmKPmjdohnWaNuk3Bo6wWrLO94+SUeHQ6i7Jh2XJeFaCytVKzS5Hzhfc9OPJwWrA2c18QYSkJzlYJgeHh6IkyOUbrIfIfBKUij8HA5cZh2HOZ4C6ZvfMLHfQK9N7yLpLJis1wI60j0kiWAW4nsMJdM741LOrE/HFBaEyaJdLksF55dntFqIaWKdRNDyfk21vP/Z++/421N6/pu/H31u6y19t7nzAADgkAQo6LGGrtJfPzFlqYiEkPExJhiNIbHGmNQ1AAaFcSCKGIHEQVpERFEUKQIitJ7mcKUc87eq9zlqr8/rrVnJo8akTJnmNmfee3X7LP3WnuV+77WfX3b+3O82dTPoFjncXIBP3uG3YhSiq5zRO8hBBbLmj0WAkTOhDiSg0HJCmVobbMHLAj6/RydVgqRM323b0s2hoO+pe0UciVBwcte97LLeBae6X3RrYO1kALP//MX0j+159u/8tu49+HHkIoj5ULJoGbP3ATWgyL4BFKirCLFSOtMhaiVWiUzjSKGQEAiGoX3Ba01Kkn20EmiKKQEPlSSlla1UktOpFzwcyU9ClG7y6TQFd9fasJznLcVYoLYt+QqtDGM04AyijBHpFS1ug4gClKANIqYCviZbnmOtmkwsm6uSqkWA03bYoxDybpfLqJgjcFZTdcoDhcty5XGtjNvvPEt/N4rn8fjn/8E1vMdv93x1rrDBGoA77rh3bzgT17AZ37WZ3LQHYAH6cA1ir53ZCJCS6TIyJwobcvxvKNvDEJKQoikElBGImKuTvFMCKGgwBwiJYKUihATIXqUqu7uuSRa3RJyxa4iM4Xagy5kNbCN+z6IyU9EDwVJip6mtUxxpjMdVhmUEcQwQuMoUuKahjl4cs5IVRBKoLUBZjLVeb7pFjeDC6Y40qgGpTUSgW0dOkSkkOQYMFKipCXnxOHikGke2Y21rfHo4IhhNyCLwlkFpTDMIyEEtNbEVCriXmt2cazIWF376qfdwGbcklWoiHWnKV7SWYPtLOREnKbqi+UL6D0KH+rcjVSkUJHhTulKsxQVtKCLxAhRZ/Fah5IC+haJxNhKR+raDu9rNriIQqYafSshERmklTgjaazGGoE1pkJNVg6RRXUZh4rZnOGVf/LyWwAoZ/qA9NxXPof7XHEfHvIP/z192zNMiq7RhGgoUhBnMHrflptr1k45RyQRAeUamEZiKeRcEAqEEvsqajXZ1Lpi6kvKFApJwZAzwU8oIZFqQaG2RI5+ZJpGpHEYY5FKkBHMKaGUIpQCqXqKSaXRpsUPEzmLShedZ9I4YpzmYLGq5Ls4E3xiOw21YpULY5iQRhKmhAiFyU/4FFFSszQdxdT5WBAoY9FNXQMlSeYQEFIghEJqQZYOhULsZz0TFcGeCqSYcVqCFMTk0bqpBuCdxDaW+klQNwrs/Qu11WjZoLt+P+egMUrQN5qDBTSN55l//Eye/oLfJqW/HKRJKc+CtMsoHxPf/iPfzm478E1f/F+ws6CbLYu+Y72duNsVd+d4t6Z1DelgSYqBohWR6lm4HbdkAVJXg14fA1pVIlzOdUY6i1LnIRXUE1XTdAsaqVguK/lt9oFcYJzGOn+s6/Vx9h6hND5GhmnkwLWUIGAlULstVoPTmu00E0qmX/Ssp5ntuEObWt3zAm66cKnOaOaCkKLCs5QlK4/pW7bDgNWmQoJSYR4nmq5Fa0vbdkgJfbsih8Ki17TW1rpVCYSYEAJCrDOyuQhkgZQSw7RDKMUwzYR5QilFQVKEIgZPOUX9z5EYwz65qwkJmr6jlNqqb01LibVbzChQQuCcBqWRURLngLIaiUQrhTMaIRNt26Olw0iDNZrDRc9q0eOsQRpZE4ozfO2jv/bynohnep9062BtjiPP/JNnUyR827/4Vu535cfVKheViJ2EYE4Bqepa0tpQct27OSPJwe+DrYhGY5VhjAmt695HJk1IgZouLBUoYhRKWmIp6FJQQjL6CSEKidpupqUkl7nuTXMhll1NLIhc2ySVpUgJKeK0YQ6eEjONbZFGUURCSoWSspIaXaVQWmMwav9zoSulWUuca+jbStyWRiAxtI2hdZplpzlcaaTz/NqLfo0nvfCJXHtyLRfHS5f7UN7mukMFarkknv2iZ3Hvcx/B1/2br6czPViQFppek4rD2YyIEZHr8KPAsB43hBBRqtIIhYJ5s0ErhdXVEb1kwTh65uQxQlPKvDdVziilaVZLtrstIitUkWg112w4ZV9dCsSSyFkSpWQOA6VIjDN71HykdzWTSaowlBQiwjZ7/wxLprZOJSFJJddZAlnBC8LomyEKJdYLh9Qao+swtTUWUTLOGRrbVKR5jHROI4xDnQ6Bpvo3XNPiY2R1cMB8MbAdZ4RRKKNppGQIM9vBo3SNZWafGadAKpFMwOquzn3JxHKxYI6BUGL18JGZOEx7X7OayUlzRKhCzpmubdCutsWImHBu324qIYxzDa5ai7aGaRgqHEJkpKhebJVgbnDK4rTCGI1WElK6eTNqtMJah9b7F5CBCHtEH0T4vsd8H3+Vqe+Z/va6cXsTj3vO4/iiT/2nXHXF/ehGxTBpmuiQUVGsJU6KIaUaqFFhPm2/IpZqT6GLQ0Od+QoRpas/jE8zKWUKqfojUsi+ehTmXHBNtcTYTQOts9isKldU1CFnrUytMIiMRJKojP5Kocv4mBgmT4gJpfdVh1goKSNtNeT2MeFjYvJTbeeVdRhaKo1pWkqRRCFJ80QqBQXEGGurpRA3o5DnuQ56Sy1IvtpgnJ6nWju8n6lJyho4SWMRRSCkQloHylR/rFwHvEURgMJoSWMapKzejNJqWteB1Ait0K5FN5auMRyuDEcHgq064VFP/UHefO1b/8pq2lmQdvnlY+IRT3gE60snfPcDH86yVAsMf7ism6P9HIrSCik0OcM4DYzTGlKqwIySaZwlGYMqck9GrZXSGALGWtjT20qMSBzIwLJv8PPENCVyLqz6I7a7NYi66VpvB5arJUkUdvMMIdVrz4nnphuv49zhAUerI6YAc4RpXnNpt9u3USk8mSnlamcxTRycs3VWTghELNjGUGKhs45pHpClEpVjrp0b1raUXMcKRKmVPm1shTKkSL9Y4H2d41kslyAkm/UJy2XPPM04W6+5hYK2PSH4mhAyFcalraPsZ1dzycRYaFpFHiakVOx2Q/ValBkyzHEka4uyGiHr7FzOleCq0PtZdEVjHVIJnHasFiusNrS2pXeORafRnayjHQoe/VuPZjvdeVrAPtx162BtDAPPfPmzGMaJ7/nK7+J+d/lEEtXGSKnaFeG0ZgoVqy9KQkkgRaST6FIbZbOS9XwqmmH2hLGgdIvIUEikUEglobXGWkMJEMgIK2F/LSx7KnHIsRpp6+qHViKU6IGMMZa26+v1rxT8HKtfLgVBJmaP0Raj6vWqyIy1FqsNfbdC5ITWCmPq385C0LcNrTMYVT+rjHV0TtE7xXIlUDbwxOc9kR999o9y/fb6y3rsLqfuUIEawNU3XcP/+vUfQyrLN/y7b0Dp2taolaCNlmmobUMhQiKykIZSOmbpSSlgmgonwM0YJXFG7YflJVYbtoMEbRBlTU4Ruyc1ZQXaSIYhARnXNlCqX5IytYUqs1+kqVLemsbWbIMzUCQxBnSzQqiEEpaSM+M0o2wDWldX9q4h13IcIki6vq/+T7kaEjrToLXFKbn34BAsmx4pa3toEgWUwmpdUeYpsGgMkxf4JIk5IYTEx0jKuWZcJdTmekkRFU7gY6QoScq1P/pkU0ljJYPRDQKwQCqJYRjJKjONHtfaajpa6gVSKIORtbo17Wa029M1ZcX5Rx/JBXKRkDNWZpAZSsUrN01XPbEaxW6asNIgS66eG42haRq0rAPbVkmcthVBrgyI2jNOgWJBdPsnrQEDb7vhHZfjFL7D6sJwgZ98+o/ww9/4OA46yTxLYtLIufrD+JIhN0Sf8bHUQWPVgYyIGGv7bKxGsIGAlHuiaJoplErAQqK0ROjCPFX0vCgV848sKCHqPFiWtJ0lhchuGtFWooXYs2hOcfwwzRPDOJBKQmmNM5VOZaxBJdBKMo0zPiWM6YiyIsJPA5siBdNuqu2Lp3AAbUHU50fRIDKIQiqFnDLGaYQpSKpHlVQSZxzW1dtGH2tuIVfKqrYalfU+15CQWWO0QQuFsS1tv0TngmkM1thq+6EVRao98avQOE3rLH1nOFgI3EHm5572VN51w3vOWh5v55pD4H+/4jn8969/OGoWHMyWnHI1ZTaCZWPJJTKbqdKPlUYsF0QKBFM9y/yIVpaYIlpYSgzkElgdHKKURJa9oXkCKyWNkxQqPEuUSo3sXU+KkTInLq23zLmCc5arA0KYQBk2w8haZEQKrMctU4TOdsQiuOnkhO00YO0h2zCQRf3sv/KuV7I+3uK0wipJDIH1fIxWBb2vePd9j9a1zbntu7pBtA3DuEUZBcWjtUCrgjMOP42MwxYfPOeOzqOMIYRAihPTVDg6PEJpwTTPjKNnCPX6nUW19UAo/DzSLlqapLg0HJNSYPYTKRfGzY7Vqt9XPTK6aHa7iNl34MQUSCmwXK3wUyVhLlpH17YICq41LPqOw4MlvevonaLvLKZTsAIc/NBv/hA/+owfxUd/uU/BM/0tdOtgbYojz3vN7+CD5xH/8nu535WfgFKmtgJKRd84NsNYE++ltrdnPyNSqMGRnyioapc0e6bNiM+FmDNCaGJIgERqjQ+RQvXj07YmB7VqCGEmlowukq7vELq2XJZUyd1JSNq2xVlL1y5QQhHDRPDVyy1TL5nGKFzX42wduck5UMj0TU8jNNo6jJZo61DaILRieTN5u0KGrFUsF4puCdkEnvisn+XHnvNjd+ogDe6AgRrATScX+N5f+F5MgYf+23+HPqwZLBskCltP1lSQJiGyZtH2DMPAbpponCP4gCHvs421tUNLDdoirUMISdcu2WwuUHJCKMW02xFyJMXarhSmiFCCpm8ZxwFpDKlEXGv3syRd9ZgQglW/JPhEmCZEv8AKgweKEqAMSVR8sQwwe08umeWiwbgWay0hlP0FIrHerDlYLQmUSvASkqIEPsxAoQgFCqxtsNaQfESKWmpWmUptRDDPA13fsp1m0j4omr1H69rKklMizhFlDLtxqm1oe9iAkqK+LxlyEAQ/E3JAqDpDRCmIWuQnhMDicEXxCStBI1CyDsLllNBWV/T6fshakmmdI+dImSQ+RI6Olmx2W1QB6xTaaEQpHPQdiEzbGBrjUFrSNw2dNRRZKFogHLfMp+1n02KOPPHxj2e7vXP1Qd8WevIrngKl8MPf+DgClhBmSBIfC85olFwwM+LDhDISvGD0gSnO5JQQRrI8OCAfZ2IJtd03aYiVmJZ0wQiLMBLnMkrWYD1DrdgWmLync464n//ajSN93xCSp7cLQpr3+cVS5zepbcPWWIQUxBhqxU1A9IGUqVU4OSNkomst6+1ITBmf5kp7LHXmtF91+BDw3tdqrQDbrAhhQKQIEkIKKOpQuSjV30qqagBeUg1QpRQoUwEqiELMiTKH+h4KgQyF1RUdxpka5ClDISGNo+wreCHXan/fGZxVtE5x0AvaDh7zaz/Bjzz9hxjjX8bxnwVptz+9/h1v5t8/+t/yE9/8eEwwrKJjnj05LRBF1EpSChhlmKcJj2SUEzLOaNfQd0suXboJLSRGF4qWyNyQ9oGHkpq27ShiJGU4PLxrRYnPGVkkuSTW60torYgS7nLu7pzMa0qK3HD99bSNIyrPJhZWiwVtawkhcNOFGzl/xTnGODPGBNKwHU8ICOY5cmm9xTQdyjpM2+IcbC9drC3CY8IXwcHBgmW/ZJ5Hjs6vmKdYQVNaoBpVryUloZVh0fQYLXAacvFYaxnnmVYKlIRFd4BrNIerI0KcybnQGI1UBp/h+OQCSkuCn7BuQSqZMY7EuZCioISZvql7iu5gWSFCpWCkwrRHzOMOYWqFWyJZNi1m4aDUGXnnGhpXfR5bVze2i4Wjc45mpaCFZBM//7s/z6N+81GEGC73qXem90OnwRpASJ7ff/0L+R+/Jvi+r/4f3O8un4CS1TtPEDFCV+uknBAkTNuSwkiKnqAKvmRkKZTZk0iUAko6ikmo1pJiYrfekPcmL9IYdGORKZFLRkpNihG36DCNrXYSecc4T5Rc6PseIzS9begbi0QRrWMOnhBOydsVZuWsQ+sGgcAaV1s1Xc+qa5A5o5VCGocWBtdZus5gtaZzhrZVLA4g6JGXvv4VPOG5P8fL3/Fy3ru5cwdpcAcN1ACGceB7fun7mFPiof/q6+gXfW13tHW2osPgZ0nyEm0VHs/SdVhhCFrRNJrRe+Lk915kiTnFfeagthcJcQXeD1AKnW3ZzBsarSkCiknkPdkmxozUYt/SWJ9fTNVjxVmNSBmNwFqHH6ZqAEzBJ0nREVNqoJHyzDiP5JhZ9JVkmZWmsYZEQkXFybhmmEdcU3uCi5DV1LRkgh+QRuH0kkwhhoBTBpULtmnplGHrZ4yBGB2Tz8yhmu3KnIglUlRD8AG5R6eOOaI1zKFUpKtSpFyQgNIaa6sjPUEinYRQW0KbpkMqxfrShjRFnJHIVbuHQAgSYLRFoAFR5xNywroGKUErjcp1rif6xEG/AgTOOozW5FhIqfYyilJQqpL/hBTMomBtQXUK1dfAVei6aR62A0/6rZ/lh572Iwz+r/aMOtP7r5gTT37lU3FPWvGIr300Ye6QOjFPiXGeUSmRo0IHid+BtgaR6iBzRlBEtdQoUiOKJDKjOosukhI8pQjmOSBFNepUpkHrhmnasttt6BpH7wy5WOYpYLShFMHkZ5wzzGEmptr/r7Wm7RrKRG29pRBLZr3e4Mep+t0IWdtujSKE6udkrcSYhkT1JXSmY/Ajwc/YzuBaTe21rXOxSgqK7klqhhQpdRwAo6sBaUqFREUxu7bh1PUql4xyjoKi5FNT+erfeHTlQX3PiiSWQnVaU5xME6519WAog9Ww6JY01rJawLKHLcf80kuewMXpwl86fmdB2u1TMSV+/flP42BxyPd8zfey0Avubpa0J4qmkegTgVRXcPH4EqnrufH4Io3tMLpBN4ppGDi/OM8cq7dayp627TCqQBLk4PHThoVd0vZ1liuOAWsc58471tsTSBJpNNZZfAjVAqfUxMZu9Cy6JdM40zUNFMMcAj4l1u+9kTnMtM5WaJU0+O3ITRcvYEzHdr1GW8M8rBk3iaaxaNcxjzuMklipUUbRuw5FyyAGnHMs+gWb3YbtuKMxFh00dHlvyaNY9QuKgJPNGpEjq8URgxxZ9rWqhSiU/ezc7uIxSrYYZTHaIGVhN01opwnTRNsq+qKRsmW3PsbP857E2pGmGaHrJjUYRx5qy/9yuUBrzaJrKVITwx6nLiXLvqNrGw76nkZL2qZ+xohe8PK3vJyH/fzDLvMZd6YPVKefo0opQvK86A0v5H/+puW/f/V/4/53/TisdRgjmQfPPHn8VP00VZF4oYl6wjpHWm8Y/ITSjrY5IMRqGdNoyxBGxikw+jqLWQwgBH6aIBasq11dKIFQCpRDSEXXK8KcUEnQNQ2LxQKjHUIYRC44qzk6vJJpmgjJ17k3KuZfSVVb9ZXGaUPjFK3rcLKOnQhVR2gWraNpNYte0S9B9IXXvvm1fO8vfQ9vvfBO3n7h7Zf3AN2OdIcN1AC2w44f+83HIJ3iwf/8wRweHSLWsCwCrRx+qhvEPGcW9KSUECVi2waRCnY2pM4SA8wxYr1HG4+PmcbaPaa09rs3TUcKnm2pA6C6M8who7RDihkSGGEIIlWn+vVJbaMKDp0UbdMgbGE4Hui6hJCQCoS5cMUVdyFnWHQ9VkVCDqScGPwWnVu0kwhRDUDlHrAw+wA2U6RkFgmkIO8XUYqJRM2kOteglQVVfeZyCZysjwHNHGd2fkBIhdIGLR3bcSQFj0+BJDIXL21RVmGtrajyVBinAaMNueRqyhhSNfHWhZIzqUyQJcYIWtuQUyDL2qOshcRIgRAFoqbkhBQCSUIZhRB1XmnZ9bRNCznhY0ZJhbWGRd8jhCDHRNO2KCFpW42SEmclrdNoY1iulkgr6p43Z0oSDPOOX/2dX+GxT/9JLu6OL+/JewdWzJEXv+n3ee+ld3LlwUciNezsjBlgmms/fsylVn5mz1Iua+Z6nsk5EXKgX3akmNhuU22D1Rq3aEkxEEOgJEX0I9kPtM4hpcC1Dm0cuSi244ykYISuRMZ9kFN9YhIhVpDIOE7McSam6uc2+JkQa09/SAllJapUulUpEW0EOSvmGEip+tVM83zz69axVveN1aRUExCzH1HKodC41uw9bRIliTq3YjTjVE2pC2I/VylIwe8fNyOE2G8gwbq6VqXStdrvPUII2qav4JYiUELjGkfjNF1n6VvBwQqO5+v5qd/4Sa6/6eJfOm5nQdrtWylnfvYZP0fbdnzrA7+dhVpypDuEkvVY2zWNlty03tBai1zUueQsAyI1+2A+MU0j3c3Z8cK8GwA4XJ6jaRvm8ZicM+vtiDGWrl9wxfkrWJ9smKIn7TzG9ZWS7Os1QSFRRqNs4GRYI1Vhu97QtC2lTNx48QJNv2Sx7JFZsNltCCWyWddkgaPDdg0xBXwIOFnR+0YohCyMo6dxhmE+ZnWwROlmn1iBzq0QKTL5iZtOEhYQKWKkpVv1NE1PYxRGOw4WDYhIzgEtJMtugZQKYzqm0aOAjGDynmQLKEnbLQjziFSSsofu2KYlFoGMAanBk2mEoW+aauFTBAeLZYVEINASjLFokVm0LVecO0fnLEpJ1L4yKJYwdRMvfuuLL88JdqYPiYSon+mpRF7w2t+je0bL137BQ/ioK+/P3e92D6ZjzThZwlyvCSlH/KyZo2KaZybrsVkQ8paD1ZKsBJthQBoNs6oJS6WRUqBVg3WVil1ktabRWsCeGE6uCW5RCs50xDSSU0EgEaVW9ozUGKdwrqmk4xwoQpCFQJsWpx1aKVrjaJtbIDkHiwVtU71FjZM0rcK2ArdIvHv9Lq55x7v4zid+D396zWsu9yG53ekOHagBXH/xeh77lMeSU+QhD/xaVssVoghapzA7hSyBoiDaOrcS04zMClkEzlVqzrDzqHGkMYqWht3kKVniZaTtO3IM1XeiCJQwKCUZU9jPhSXmyVcssrUYqfDZs1g4KBo/R2SnkGpPZJMwzCN922CkJsZEniaK1cyhDksroZjCjBWaeRpotcFpzTBNOKswzlKUJFMIJJwoFAnKWoxR+GnEdQrduGo2GjxprtjjkD2+7H07jEXECFKgW8k8T/g0Y1qFHyfWxxvmOZInaBtbLQW0wKu8tzuokIMi5R5sUufOZAtxihDgYNHW4e85gikIIyhZQqnADzKInBBa0XVtNUe0Gm0qvcgpQysKh90CYSRdYxFCoRB0rcEaByLjbD0unbXovkU5WYdppYCcGI8nfvGFv8CPP+dxXLc+86T5UOvdN7yLRz75B/iOr/wurjp/P6x0bDEoJlIs5D6jtYIiUaraWNhpxofE5Lf13I4BFWu2UadCMZWaVYEZqVaaSiGmmrAwukGpGgilMIOsaH1pah9jDBntDBSNUDDMHmE0pIndVH1oEoVUaobGaIkAlJY12BPUC6TM5BIxtpJVC7mCTzLM0wxUDHEkkcvezypNKKUJUSGJlJiRzhJyRGhRIUdGEEO9TymCnAVxmilKYZTFGlBa4bpqmuqUJoSafJJaY0TGGouxlqZtscbQOkXXwMESNv69/PSzHs8vveCXOJ5uIWud0h3PgrTbv2LK/PiTf5zjzZr7HN2L//KlD+MQix0NGtCyepAF3zI14FNgmguu1ayDJyKw2mFcixCytl91BT9OKFNtZ+bJ1lno3iCkIoTqadgvW7Y3jqQCNmWWbc8213ZeJQV+NxL9TNGazWaLVgbvAz5Uf6ZxN5FjndHMpeLuja5m7CHOXLw00LgOUuY4bDhsl4x+wlqDUokiNEpJUsjEPLAbPUo1GGUIKSP2tjVK1E4MJSq0yChNLoXdtMNaRddYJBarNSGX+pkiAsEnrDOkIgkpsuoO9uTZEwrpFjiQVHsMuqrEvVKqt1TKuEVH4yrUJxeQSGSp1y+rNc7WDXDXGJQE02jcUqMOJMXB9/3C9/ETT/+Jy3mKnelDJCEEPs88+9XP5s/f/md8+v0/g3/yaV/Mx9/rk7jqHvckT5B9Ic+OcQpsR8nOSLQ1dMFzYa3ZDjtWiwOSgEvrY5QwdJ2tFjBAZ1uk1LRtS8wBaxRKQQkJVRQ5FmKMSFGAUtt8Q2C329E2kpxKteFwCilrYkJKjXGOLOTeHsmhtcJZg1UGoxUL51i0jkWvcFagG1A9iLbwhne8nh9+6g/zqre9mndefM/lPgy3S93hAzWAa266hsf++o9DkXz91309zjnEADpDM0tklhQUfizoXBCp1HZEa5Cl1JPP1ZmOmBNKONbHOzrdIGWumQmh6qBw1+NLRKS0N8iui0KqWwZIkRmlFSkKpjBATtW7ws8YV4OvGAM51w3ebpqxIoNQaCWxpmEcN8zF03UNUooKYVXVl2bZ9yRVN1frkxMymTmMNMow+pk4TVjbsN5ugVKDS+NQCrbDiGt6xp2nCHCtIRVYb0dCCkgt9thwDbkGn1NOzMnTKkfJE23TQNJ4n4hMNK0jiYSh9tyXBLaNIApaSByWIWyJU0JLS0YDCa2qMbCkwTaK1vYIEelcg5MWkROHfY+Pdfg7EVFa0iqFkHB0eIAwtbqmBShjUHuCZMgBjSbFwlNe8Gtce/FqHv+Sn+Wm3V9u9zrTB19TnHj2nz6bFAuPeOgjuOronighIXfkItEBRhkQwrAdp9qyaxvG2SNG6oxXkTjTVOx8SAQfa2VZaYwRFGr1erPbIlRt18gUtJLorqX4mZRKxfNLVXvyS8HZCgxJBWKI7IaZEDKzD9UKQEpsZ9ACZNkHMSlATiipCNGz6JcUCZcuXazobiFQpgZOyNqKjLSIlHFdi6Lgw0zyMxRF2zdoazDWEcJcSVtZ7tuxBDkDSAoFicK5alXhbFsNdVPEC4ksiqQFSYCnztVZCc5abCNxTrDsYbmEP37Dq/nlFz2JG3c33nyczqpoH36KKfPzv/3ztNZxvLvEwx/8/XTHBUnHlALn/ApjLJe2E8ebNRgHSnB0dCVCSra7LQtX5yPnVG1bGtdU24uUWa1WKKExrUFQq7+b3QlzjFAKmgraEIAohV5aksnEecYqBVlgRJ2L8THuCb0GqUyFnowTu2lHTAlnHRJJKZ6sIcYZlMJoi1QSIxukACEKUtbK8jTPzGFmHGfaPuHO3QUlFMNwkUkUilKsugVKwLAbOHd4BESCj7Sux1pbfaBIOO0oSAQjwQeGeUSIRNc5Lp0c03Y9KWRSLIgiGXZrQgjYRhF9xjY1OSrrqFz1sJIaZw1GafqupbMtvbWsFt2eUCuxjcZai2s1dqERTfV9/Zln/szlPr3O9CHWHCfectNbeffx1fzRG1/CZ9zvM3nA3T+Wj77nR/MPPv0f0eWGZjB0g2S7c6zngBp8TfpJh/QjUYDPlR7edB3dtGCaRvIcKBJQEkWFcTW6Uo+11YQ5kHVGCQh+pCiJa1qMseSUagKitZUwIBVCSqRW9G1H2Hu7SWn2gBBL6xo623LQWpa9ol8JZA9iURg3JzzxaU/ij9/4xzzvL17IHOfL/dbfbnWnCNQArrv4Xh71q48ibAN3u+JuPOiBD0J4gckSRiALCBllLNWUvSBFNbJUDnI2zFNgDokSPLn1pFA9i7ISWOk4WC6qUWCOBDIpJIxQLLqWeT/0W0qhaXrG7SWSF/TLJVJr5uQpJYJUlCTZjiNd16MQoDQxgpAJYxUHB0egCuOwZdH0aGWI84RSct+WMQEa1zbV7Ho/2zJtN5UiRyEEz8W5ziOsVofYPX54Cp5WCbqFZfJTzYROgZgTsVRYiFSCOQlCynSLA0QciLH6WZVZVCNfCUJL2Bt6Wquqoa/UdE3LNIx1MFYbQND2HX7ylFSrf0IoNJrGWeIckcXS2o5SdmSfUa1itVrSWcuVbcdquSSkCSklVmuQhaa1GGvw80wpBW0t0kh8iuikSCHwlBc/hUc+54c4nk4YwnDZzs87o8Yw8qzXPJPyJM89Du/Fdz/kB5FSYlzDNCkkQzVfJ1PmQioRPBgBxZjaHtu2NLYhhEAhMO1mhNl7KknB7AfW6w2NM7jWVg+/4Fm4JUIbHAWr7d6YPSLNsq63UBBaErxHmpbst2jnSDkhpCDHQgC0gxxS9T9qW4ZQ6FwlwcYcSbmA1igpyLJQVEFoDT7T6BZpBY0zdRNcFMoURJLVQ1AKSNXzqihJaw8ZdgO7zQ7bWpRUCKlw1tE0DQBd22NdQyyFhKBbNFhjkVajjMG4DmMNWgsaI1i2sOgLF8tNPPP3nsWl7TFQ9qTbMwT/h7NGP/PTz3wC2hq++4H/gxbJudgABW0rxRcpuHB8qSbNZMOirabMFMFut0W4Qtd35JhJU8C4lsZoNpsTuqYlx4w1DYvVgvnGE6y2zLHOipIylsxuCvjRY2Sp9ymJYber4IMMKYSKDwcmH+rspdQ0Ttc241L25FaDVQJnWhrT4seJ1lnmecDaFZeONyxXK2wRhFipvz4NXDi+huALR4sVw+YE0WpmVcixsOiWKFXIWWKsQeZcZ0SlYL3ZYl2LaTpMEaRhR9+t6oZSZA455KaTExbdirbtuOniDfvODbH3e+swzmKcQubCOO+qSbE0GGlYtC1HqyVaSjQZaxWLtsE5QBSWS4toJaKr3lhf+v1fuvfGOtOdQXOceOfFd3Htq67jt1/129zt8O78P6/6PL7qH30lf/9TPpd2o3CNwu4q5dcYi2sa3DTQLhZY2zJNtXMEpShFMOYdWlfgWphCXVONq0kVIdDK0mgHFMbdhqa1OFs9OVOp8531v2odsFwuUaIaYGdRk3pK1XbHRduw6nv6RnLUWvrzIFaFEnf8xK/8JK96+5/yvNe+iDnNhBQv99t9u9adJlADON4c8/BffThXHJ4nicADv+xBWCx0UFJBd+qUlA0ImEDPp+bXFX9dtGMlFTkEpFWMoTAnyTQFtHUEpRBTwkpLMolUEuM0sduOLA4WlfZTFNkLtsOI1YYoIMwTi7arHi9aoG0HRiObulAEosILpCAVzxwC2unqdB89Ps6VEucF8xCJcSbFSpWUVjHPHm0sQghKqgFp31iOj0+IKbLbbYkpsuwXSFPdYxplGMdAyRlJwTmHdg6fA1M8qe2DOWBLpQk5owle45oF60uXsFYhVCYHQaMdSmRyrBtXYzOKGgwbZfHziLWVbmdNg1OZ5XKJnyaUsRwulzQWnD7ECFg0C9rGsVz1HLQLtC20LNBKodQeBNFapK6tabsQCFKgRAYjCCXxjJc8g0c9539x7ea6y3pe3pkVkucZf/ospJAc7074ga//Yc4tO7b7tkGhZhANokgEnpQTzhwQsyeEhu2+zXXwI8M4kOXE5D1921XDeWFxiwZZJCHG6jO2X99aC1JKbIfqr9a4nlRAC/A5VG8/4RCqIGxHtZj2lJRpFg4lLeNmV60BAFuvdvgQQAZizAhlaKxi9hN+qsRWUeqHzJw8R4slZInQoEs1mD84PMdu2DL7iBAJrSV2X+GwXVOTPa5DGsN2t8G5Bms1Xd9jTYMUmoWriOe2X1bSltL0ix5nHF2raBrBoofDJQzmhP/+2O/jN1761FqVPgvS7jAa5pHHPPUxHHSH/Psv/I/0wUFROOPQyqJUg9MN0zwxTiMxVg+k9fqkzhB3LQJBoy3bOLHbnLCNtR0Wt0efqowTLXe7a8vF42OUVOSU6FoHNEzzRc61C7pFi3GGk+MTcAGB2SfqwLUNm/WWRiu2w0grW3InmX2p1TkB1gh0gc4ZnFS4oxU5Rqa5dr/YtiH6gC+JmEP1jcJwfHyBRjfcdOOO8wcHGKGRJbM6uoLWNSiR6Iwk50DMA1Zomq5FyRUpaaIPXDy+iaLr97Zp2OOuWIwB4RQnmwFnHRHBqj2kbxeEKeDnwKpbsR229G6J0w65bxE7Wi5pjWLZLOhcrUI0SrLoLbItoBNipdj6Lf/60f+aP3zDH17Wc+lMl0c+eUopvOPC2/i5P347v/uGP+BLP/7z+JovfggP+DufwkGzD9g2Zh+USZoY6azjxkuX2AwDGkHrHH1X95KqJETb7T3RqDA3IWhNQ2MsOWb6pia6jXOEuYLZVIFSFFImnLMo1yBRCC2JWaKlwhhFYxSrtmXRO1aNoDsHs97xtGc9mae/9Bn84TtfyRimM5/a91F3qkANKinthks38shffRQowed+yudx1VVXYayBDTCBuLXxsQE9KQrQCIcJkJTA3VXVnvSTY/xmR9s65BQJye/NkytcIIa9H4UqkD2iQIyekBKLbolpG6QSMFdDzoRE7s0GlaqQkGke6JoFUii0NBV8IBLKKnKu8I5YCo2uPma7aahtUNlim4ZpmDFCknNES02hEKbAJie897VqoDRSQ0qepuuRQtfZg04TEsh5rG2fzqEC9F2D1EdMQ4SpoKSlbzq8Mihq2Vtrgy2WqCvev+SMNIaSwWqLNRpBQRtFkzJWVb8OIxRSFBrn0EIihKJvOtrW0LUKKxWNMnTWsXTd3vg4I5WgXzW1tVUK6oCbRMmAkYIxBt51/XvYlpm3XvNmfvQ5P8I1m2su38l4JqAayqaS+I1XPZXGOb7rq/8b5w6uRMsWN2iECNXLySuylkzjQCMUu21Aq4GMQKiCMnBweEhMqbYhloacMoeLJUY75jwxjyNSOlLyOKORWpFjoiQJCrbjSBEtu3HAj56m65C2odeWzfpSbc+Ske125OCwQTWO4CMxRtZhh7IKmU2l3mlNr20F9GzXICRZSIxQKJlxraOUwjTWyjay0HZd9UVSGr/b0vQtRRmIFmEqSbVfrRBJIITkcHmAlJK+WbLoFpQsaFyDNS3twlUcuVFoJVj0Pc5IDhaCroW+hYvxvTzyiT/C01726wTh99YhZ7ojaQ6R733Sw+lcy0M+96GsjKMcC1IBhKFrNJud5YYUcK5lnrfkJDlYLdiFLSUXsjIUCV3XV08nIdiNI01rqw+lqIbYi75DImlM9Q+74aYbaVpD267IBMIUq+eZ0fgQaPZJyBg8V5w7z3Y3sh0HUomIoCjJk0l0xrJY9KgsWLgaXK5PLnLu3HmkHFHI2tLvOiY/MY4TzjZ0fcvBwSHDdkvOcDKN0LeoqDmQCqX1PtGSyAK0qK9HCknf9OymmZPdFqUFFy5cwJlqnj3PM7koUo5MJ2tCrJ6cWjdYu6hJJiqhMgXPoquwMmstfdez7Dqca1guOlZ9Vz2kjMAogXQKYYAV3DTdxHf97Hfx/Nc8/3KfRme6jDpNmpVSeNelt/OEP3wP71pfz3/56v/MR131dzl3eAXnpUSpnm5yrHczTgWyT5CqR2nuC9ZIJLUTjJDRsu7BRCkoMq2yaCmRVmJMJXOXUmi7ChtS0qCEIYs6BqC1Q8iaGAdAGZyGttEcrSwHK0lRgbdcfCuveO2L+d7fehTXb266jO/kh6fudIHaqd5147t59C//ML/1vN/iPz7kP3D+6DyOho/9ux8HAUjADGIW0NbgTQbQY2GWAuUa/BRY5BbrHOv1jhQyTlmKzbVSVhKb7YCfPX3boJRiDHPFnzZd9UkDpNAILUAV/G5E6UpoLEVTcsGnTFsKJSem4QRrwWiDovrXUDIlJJIw+ClVfzar6bqOeZpxShFDxOk6ID2GiZQzfjuzXCxpuhZrND5MGKWwugFZ2G1mEgqjFKII4uyZS66EPd0gpEYWTyPN3ttJoVAIUbjrFVdwcrzGp4w1Bq0kYcpIJEkU+q7HWcM0bhGpsGoszlhc02G1JuYJbSWN65FSY7WgbQ2tM4iS0Uah3b5FzIjatkLC9AbZGIi1XSTNI++5dB1vuubNbOLEz/zOTzOmgfV8wrvW77ycp+CZ/j+a08yvv+LXca3lW77qv3L+3N0qCc0YTrYCsavBjFWZmBI+FBZiVT3NtqC1phTwPhDiVOc55bICPSSYaFEODApkwTiH22fXjTUY29A0Cu890zSTSgbv0daQEajOkWNtAS5FsN2OLA+WIAPb3ZbkBdopcsqkInDWIClMU8RojdAWmWrFWEqJMYY5TvgUaZSrlfaQGQggJa7tQVS4TkgJo11tz5SKkjPCWoys1bam77BNg6T+3b5raNuexlqcUfSNpe8ki1awWkK7gHe89+38yJMfw9P++Kn4Ml3uw3+mD6F8THz747+dMUz8p3/0n1lGBUkjksDIQoqRu15xnouXFFBNpJXK5F1EK0NO0K8OkdYS/Mxq0SOoCTdyRglBLglnFAeLFVIKgvfVrHozEKNHmVrVTmPg8OiQxtXEYynV4SmnQN85vF9RqBYAWo7oUqnJaYgsFiu6ZklOgSvOX0lOESM15IhrGnJOKGUoqSZXQ4ykOTHOE+cP7rKfUxVI7ap/Wt/QtwdQZuZxhFyDxkrVS/hU6tqdwFnDer2pRvOlfn5MYeLkZItQGiElMSdSqp5XRgmc06RUyDnRNg1aKQ4XSxZtt0+oaLSqNGKlC8IKRAtBRZ70oifxmre9hqf80VMu89lzptubYg48/y9eyNuufSuf97Gfyzd+xX/mPne5H+caQbcz9FZxsgskP2OVJRRFFpGUQvUU1ooQAqJItJCkWImmnZEoKSsBVkiUcgilKUApGVkEVhuK6HGtqtcnUUdVrFI0vcaZTNsomhVInXjmH/w2P/rbP8Z12/eeBWnvp+60gRoF3nH923nnDe/g6se+h0Y3XHXlVXzdl30tMWQ+47M/i/PnztcJ/H3QxggUgUSRUzWHXooFOeY6R5JShXqUTMkRkQ19L5hnD6JmL3SjqzltU72M1D6D3bQtKSW8DrRtbQdpTVOrdrkwx4BWdbGE6Fk0PSF5fPAYaSiisFufoLSksZXyk2KqqPOSybmQqc/fSItEsFyuWCzavS+ZZNwFtFOkqRq+yVx9r1rX0rsJpxWbcYNRijlErDZoq0kiYJwipkyMCR9npKgfBn7KrPoWoRTFNsQwkWLGqOohZ9UCJTQ+jThp6NoWJSVzAqEkvbM0pql0Iq1RgHOOvnW0tmW5bGlah+p1nbNoNVgqCWIqvHdzI499zmP4/Tf9AYnC1et3V9uAM90utZk3/MqLfwVlJB/zER/DAz//wbhGI6VDyIwxisFqduNEzmCMqvNYJbNe+xoAKUFJgVwitu3IJTNNA0ZqdOMoMeGcY7lYInJGpIQye7fzopDCkgQIqUBWMl4RkFJktxsQqs72xGmmW3TV0DpltG3JIpBr7zSnNu1aGZaLBUJKMg0xJIzTCK2JUqOmBKpaRRRKfVwBunU1WIw1oRNjRskKS3Gdw9kWYwwIaNuetukQAlrXcnSwQitL31mMFiyc4KAXLBZgD+BdN76TH/31x/CMl/8mU9pdvgN+pttMPiYe/sSHc3JyzH/7yu9hpRRORk5Eqca2gDWmVplTJmbPol2ijSXEQgqBWc1gFEVJSKlWa7GUFMkIrLbVLyzMQMaYBtcUwjQwjhM5RparFUoIENWkvrrwavrGkjO01rObJmJIaKm44vCKeg0WGWtr+37OiaQFQmhWywYfRmLIpBwZ5kpZlsoQYmKz2+KsxkfPwcEBjVYYY0mxIJGMuwHnJKVIhNKM04AvEHMBXSjaUGRmuegYdgNTDiQhifOE0Y4sYNqMdH2PlBDDzLJpycXTWlNtPPZ2AU1jaZuWtm9orMYqQessyoJqJTigEXzHL3wHP/v8n72cp8uZbufyaeaNN7yFd168mgvbY77k0/4xn/mAz+Wed7snbi0rMEodMcZCzILZe4Z5BApWaYII5FxwRqHokBSsFhVRleusqNQWqx1Fyv0ca23blVrSdRKlQKiClKJWhHtB0fC6t72G1/7pa1hvj/np33k877p0RnP8QHTnDdT2KqXw+mveCIC95vX82Vtfg5CCB7/pQdz/7vfnQQ/9l4go6gdojQUwCEoqZC2IRZJLZtEYwqLZb+IyOgmGKTAL6EzLFD1N2yBFIec6IG2lrYCEIkmpgjq6tkfLUrOVRqG1ZZpHMhnXdoiY0LplnCeUEpiiqyt9TFiha8+xUsxh5nhzcvMcmDaOnDXCapQWGF2Hs4UyGCUIYUIJDVkzjzPaQt+2lO3MvBtQJYIQiKRJY0IVkCnj57QnWGaMs8xhy2KxYh5nDhcGWRStaZEaop9olz05F2IsUApKG5SUlcKlDI3WCKlYtUtCCDijaLSjbysuWsnIsmtZdguMVnR9i1pahAMUlTQhgJLZpQ2P/M1H8rQ/fzpDPAOFfLjoZFrzpBf8Ak473nXdu/hv//Z7uFIrGttxsolsWlMx83pmmGemkNHGkGIgJ8mcB0iOEAFVyVZd3xOmCYVEGkvnerRpyWGCUqvIwzShgISgcW3dQ5ZCknWAX2DRJpNTpkTIIrNej8zziPeettWIopC6eiI1jYWsUDpioqaQ8XHe+x1WC4pOr5jNMaZxhMmTREEIqr+hcSSRyRlEMeTkEUahtKJdLmlsg6ZW11rnOFgdYPe0ra5raZyiayRawUFfv9QCrh2u5cd+5bH89sufzjasL+uxPtNtKx8jP/70x+Gj5/u++gdQsiL2tTXMEXIR5LCg+BkfHRthca5hO+wIUSGkQNkJYxqKSPhYcK1iioEUEyJlYghoo5lnT0qFRdczAKh5T5dTZFEpyFoqxmlkmiOuWbLsOzabgeADjesI85Y0R5RUoDW27VCqgoTGybNom5rYSBJUdYJDFLrlEj+PZCkoRRKCIHeSSyfHnFstUUi06wkhIUWpKH8hiVmQpWXyvs60ikKII2V/Tc1SIqSh5MzJ5oRYUoVmyQJK0PULtJTMydPbFiUa+qXBWYNQGucqLKRx0Bk4Wna4RiMOqDN/Gv7DT/0HnvKSsyramd43TXHkmX/6bF76ppfyqff9+3zpJ/9jvujzvoSju5yjby2jhxhg5w3j7EipsgKyzZQUMUpilEIBShS0SJSiEELWBKnSaKNRuoLklAbbiEoybfZfGrYnA4/59ccw5Yk/eduf8PrrXk9MgZPp7BrzgepOH6jdWj56rjm+FoDHPuMnaJqG91z7Nv7Ofe/HP3/wg5C6ZrqFBTEIxBZQGuEUGTjUAqGrT5IPHiEsQs6ILOjUol5sRMZPO/qm+q7pbPExIUImK2idIadEYzTdYskwjPSuQ2mFMQ5tBCoXYqhY7uBHtGtZNEuUlGzHEyQFaRtyiLSNQxuFFBJlGiiSmCd624Eo+HmLLxWjbJTFGEcKMwduQUgBJUutFJZMyYLWWJLMiH07R86ZNEcyCScFTdditEEXXWcE2p6cM6VkZgoHq55CZrOtpEjXGJzTdFYTY0EKU7OyQmOsxDjBctFhtaUxHUZlzh00NF1foQxOIxbAUtSsa4YYI49+0g/wrhveyW+87reJ+Ywo9OGmzbRlw5Yf/52f4L0Xr+HTPvYz+OoveAjSGNgZrCx1bk1pXMqEWNtrU5T4acewGxjHgZwTs59RyhBUhCzp+1VNCKDRtmLHfUqknMlCICS4riPnChvZrOucjETRdh1JZKKvBtghRDIFnz06R5YHK/LsKSJVTLEzNNEQceQoGKY8W5cAAQAASURBVOZ1nS+VDh8ycxH03YoiC8JKREkVCiQFRShAY60mhYIQCqMVR0dHdF2PUbomdNqWVbPg3HJF15vavqyg2bc5NgpcD6n1PPIn/xfXHF/D01/2Wwxxe7kP85kug4Z54qef+XgWiwUP+xffRqckzabhZBMpraE1K5wVzHNhu/VMJTDEoXqLWovSlhw9Wluinxi9pOR6zbu4HbnyinOYysVB6Aq8ck1DKhHjXLWzKKUCfrJnDAPOdfXnStL1Dbkc4UyLHzS5eDbjyNHBFRhtCXNta+67SjodvScVUROgCJJMhHmLsx1ZWITwdXOaCtY5tsPENm653z1bdts1bduSUkQryaJXDCGiDIwhMg4eqQWb3UhKuXqkGUUaRrIWDNstBEmzWjLuRozStAcLjFySZl89HLPiYHVEzom+VaxWjq4xdF1Hc85AIxALiCLyrT/9rTzlJU8h5XSZz5IzfTgpJM91m/fy3D9/Ni976x/znJc9h3/xWf+Cf/pF/5xFMIhJshgFczCUBDFCypACyAzWVi6QoTZ3aF0QijrrLwEnEBaQhSgSNIUkCi97xZ/wtN9/CsrAtev38sI3vrB6IOZ01rn0QdRZoPbXyEeP33oe8bQf5j53vReyNXze534BK7NCOw0KRBGoLCGCTJqFbvHhGKMVwSdOdluWixWFG2hsiw+Z3bSr2f04AxJlHWka8X6mswvOH55j2K5RGoKfauZdQbdYILIi+EgxAu1a/LhjGke0blj1HSV5Fv0h8zyR/Q5j6xybyoqD84ccX7oESmOMIksJshp0KinpmwbrHAVBmGolgZxRStB3PWmAedjQdxafCtY2CAGNjaTiidSZsMbUChla7H2x6qyekAKpoWkr6EMZDQikEPXvaIVqFI1pQUiKECyXDYKAEJJFs+TwYIG1GdNqRK8AVSudTkADZNiuN/zYL/4oP/Hin2II4+U8hc70QdDgB37hD3+V5/357yGQfNUXPIiutRzvOqxOWDUzhcgYJK1zeJ/xraExjrFpySUTQmLyE0ZbBIXGtSgMSUQMjpwnpmmoLbRS71sQFSEUwjwjZURrx3Y3VPPqxiCtYxg2N9tnmL5DCkWaA7q1hJ0nhoJRAhA405OYkOaobiSngKReKaXUxByxrsFaw5znypSzlmXrULoGaqWAVgprLVYbVv0KYzWtaThaLVmuLE7DooXWCVwL7gh2ccclJn70sT/Oz/7uzzDls1bHO7tGP/PIX3kUi8MlX/iAf8x9r7wvh06jTzqGQSISzC7hmo5L6w1H3QH2yOD9TJoD2zSSibR2QUoBZTWdPaRbHCBlneFq+o7Jz4QQSCLhc2babTlen3DlFedpbEMMAWEVRWTaboEPlTp6uFowD56mb6E0aDuTw8Q0SkKaaEVdy+v1mr5Z4pqOmCPjPBGngmoMY5iAjGsbbnzvDYiUOFqtEAi6ZU8Ugr5rGOeRnBLLvmU37Dg4OOTC8ZqMRjeKkAIpZ667cBFje6Zx4PDoiPOLBqkMfhpxrqFpWhrjWHQr4jSyWB3QNI4rz5+n71oQ0BhF0/a0vabtFDSQTOQdF9/Br/7vX+WJz3vi5T41zvRhrFQSN+5u4FlveA4vfdcrePpLn86D/vG/5O9/4qdhtOOgXe07p4BE7dbYw1sBKIUxD9w4rxH7LZZwpxEcxG3gh37pR7juhutAZ954/Zt4x8V3XL4XfCeRKOXy4zGVUqXrusv9NP56CfiYu/9dPv4jPoGHPvhr+ezP+hzkIGENnED2kKZCCIlxu0MWxTgnQgyEnLh0sma789WsV2SMNGx2F3Guq4tFCkop+CmyWDgE1cA6pcIwVdri0eF5nLF4P1NywjnDdjMwbndoITl3dITZe4SRC/PsCSlilEMpRdMYhj2opHEOYwzSKIiZ5bJHqmr8Ow+ekhXWKFKcGEPAxwQIdmGuRCztmMNMigEhCs44Qom1V1lJlu2CXDLz5Am+1PmenPHJY2zBCI01la7lvcc5S2s1VmuMbigZ2rbBaoMUkEtguVrQLyyiq+0hHNTjQrP/Ao4vXeLnfvlneNyzfoqL46Xb/DTZbrevKqV86m3+wH8L3e7X2v9F9zq8Jw//+ofzd+/5sXzMRzyAcRAMOxinzKUTT8iRySdizAx+YhxHQirkUhiHWmETpeBMpSKWNEPMjMOOGCfapqvYcSFR0jD7wBi2DOtLGNvhg6dIwRwDKQlCrnNwUHDWYbSh+Ixr64XQSIWRphpSNy1FeFJJZGCz2TFFT4FKrZQK6yxaKzKFKUWctTTWoZQmhAoRWXQLjLEs245zB4d0rqU3koOFoetqZnS5BHMAEyPvuPad/O4fvYBX/umf8PuvewEbf3x5D+IHQcMwkFK6XXsHfDitM2c0T/qeX+CffNI/o5yAP4ns1jPBJ3ZBcnyy5XizZpo9qWQuXryeYRxw3YLOtSAKOcUKzUgJKCAyRgliyFw6vkS3XDDHwmZ9QndQ299bZ3HSoLWq6y4rDvoFc9gSfELsLTXC6EllIqaM1A5EYZq2CClp9nOaISRC9KynDQC5FHyIxFBqwrAUNLWF6y5X3IVV33DQtxwse/w8k0um7zu01ExpYo6ZYZwICSafmaLn2vdeyzRPaKU4OroCbTXb7QajK7lSFolVmqNlT6McuSTOH55ntejpO0u/6EAF+oWh7Q1qoSiLwi8/95f5xsd/4+U9Cf4Kna2zD38JBFet7sG9D+/JR971vnzlF34FVyzOc88r78mVV14JGbLPvOGdb2COIyklXvrql/LcVz4HIev8mZK6FgykYDOuee11b2Q6M6f+oOpv2jueVdTeFxV4wzVv5I3Xvom33fhmvr/8AJ/7+Z9fA4UMjKAl+BPolwtUERQxIaIg+VAvAMZixhklZLWesQU/R5SqeFSEZLmodoI5FaSsAXTfNQzTTNc4tFYoJSgp0jSOeZiQixZSIecMxdAZiw8jSau9h5OrSPEU6doOqQX61GfMNWSVEQL8HIi+UMe7BU3f4seCMJoyzAij8SVQQqrBk1QIWbC2YoxDSShZjRC1lhhV+/JjFkilmEMdXE15xAhNYwxaSkIwrBaLfXAqoEikgoPVAiUF7UJTRJ2DE6t95UxxS4C2ACRsTzb84tN+jp957hMuS5B2pg+93n38Hn7gF3+Aw+48/+Urvom7HN6Nz/y4z2YeJFZbLp4InHGkUnDeYLUkFtiNO7TuaRpXvQWRCCmxakn2HqkUKfZIUe0wlJZoLQk5oXGotqdpFjSqAhnibkuJAVtahmkHZKSxuLbFi5GCQAowjaW1DVpaQKC0xaeZnBO2tWgMIEGZvYVo/UhJIrNserSs1TghLE3T0jYty76nbzsWruHooKFxikMHqyW4FswCOCy89BV/zLtveDe/+LRf5h03vo3rTq4986w501+pOUS+4ZH/jm9+8Ov4xI/4BL7kE74M0yrSkHADGAlGS4YpkFIizjNam0p8K4XG9Ux+IsYJpCTGQBaZOSWUBNNUOJb3M6kUdtOEVrbOVfcLpDF1flQWRj8zjR5ZBIu+4WB1wI03Xg9eooyqwBLXoZQg50wmM/qJeQwM08B23NF3Ha5tCWHAGIghUkoGJUhZsB63JD+hVSGWma5pKQLmFJhi5KbjC1hniVkwhsxu8gxTnUON3iObhmEckV5idUspdQ7Wak1rDClGmnbBannEYrmgax3WaVxjaXuDO1DQAy087rcex39/4n+/vCfAme6wKhSuXV/NteuredW1f8or3vYyGt3w+Z/4D/jsv/f3EQi2mx2/+Lxf4tLuAjnDDdsbuThdvNxP/Uy30llF7W8pIQSf8JEP4Pv+0/fxBV/4hbWqNkIZCnkHYoScCrtdYAyFXDIlFlKKeJ+YpglITPOeFFckJdcee9vU7GSKeb9tA60NKZY6yEnB50AJBSWqh9owDNX7BdBS4qxhO5xQlMHYFjI3b88kQIm0rcU5R2csx5sNSgusUQzTjLMt1ja0Xcc8DQjq7M7Oe4ZhR84Fay2TD7S2IQZP3y9IJaOVru0wnUNpyZwTKddZopQF3nuKKGglMEXihKKQcc5glSXGSg5zjWLVdwgDshP1omaogZmlphdOf9ZWVO3jH/lj/Nhv/BQ3bC/clqfD/6Gzitptp6tWV3GPK+7J937dw/m8T/48/AZOTjKzF8wBfMzspsDoPUOYEFkxzxPTFMipkIvCaYkshZhSnTXLBWctqXhKSozTwDRH1sO6gg+MJabE7AM+eFCS9eaExtXKl9OWkhNSZJRUOOdotMXo+rt5Hhn9SCTejP9XukMaR4oJbR2pJLSRSGFxVqOkQmuDUorWtqyWSw6XDY2RHC4FVxwInAXdgVwAh/DiF72I7/6x7+XC7gauvngNe97rHUZnmf4Pne5z1b34oW/6Yb7oU7+EsinkCzBvM7shsdlN7IaB7TgTc2S92zH7alWxHje0bcd6c4ksaut807RIEjIn5jBxstkSA0wpVfBN2yAoKBRxGlESVMkY3eC05XDRIWXk0qU1KQVShozE2RafPBcvXSLhUUYxbEZO1msymYPVOdLexmLYbfE5kgs4pbFNS98tsEpy/mAJudBaxWp1ABhGP6KtRCoFQhOy4trrb2A3bhAFpnFEKY0yihgSq2aFsRYh4KBb0Lva+n/l0TmOVgv6vqPrDbaRKCPQy2r38ysv+RWe8/Ln8Huv/j0mf/u0xjhbZ3dcdabnqKttwD4GLgwXSeVsLvJy6W/aO54Fau+HhBB83L0/hh/8pu/nH/7DL0TsRA3YADaQ50IOkDzMc8RZxTBEvI8IcsUUJ0lKEVESMSRCzmTkftAarJLV+8w2aGsYdlu01sxhgCyQaAqC2Ud659DKEGOgiEIhk1JtUQwxVNS3VkzjSGMUbdvQNR1GKtbHl+gXPUXAEGqmVAqDcy0lzgghCCmwmXdMc8AaXVtaUvWKm2cPWbBYrpBGk0RGW2isJpeEnwMpF3xKCAVKW0KO2CI4MC1QcI1AG03wiZIFdlFNGUUnamC2pAZpDjios3A4eMkznsc73vQmiil8988/mvV0eeEIZ4HabSslFJ9070/i0+/7mXzTQ76Rq87dnbARDCPMHjZDZooRHyGWzDxNTEOoPmdCI3I1YgeY55mUEtqKCu4gMafIZrfmeLOt7Yc5VLP4UAl3CEESha5t0UKA0JQUkRSMkLRNj2sqHEcVzXa7JpSZLGqCJcSMblooGikrMtx1HdaApG74nHNIUw3enXMcrRytE7QGjnpYnqfCdNrCK//s1bz65a/kl5//q7z26r8gc8e88J5tID+0uuLwCu52/gqe/iPP4q76rnAMeQfzSWI9jGymxHY3crzZ1uRaKUgtuXRpx5gmzl95npwiIcN2d8LsRya/q/Mv2wGlexarQ7a7NdZaYgx7LzSP0xIre84vD1BCIGRkfXxMigGrDaEUilDEWLj+puvZ+i3L1SGCGkStd1uW7YqQJkJMDLtAiJG7XnUFSgq2wxqJpFWO1cGCRjUoVbjyyisrnh9JFIWT9UUOD89TkGyngZAjORROLl6iX6wQBQqZVjfIklgulxhlufL8IUfLA4zMHC1XdL3CHEnoqJlSU3juy5/Lf/iJ/8Dx7viyHue/SWfr7Exnum10Fqh9iCSE4OPv8wD+58N+kM/5zM9DbdTNA5plpPquRYjbUv3PQrX2UgrW65EYJfMwklIh5X3Tkyo0zpFTIc6BGGaMa5EopjChhUQhMVpjpWIKESEEUihKEZSS2E4btHLknLHGIZRB11IaQwzEnOibBieqcXScJlarFSlndCMoRnDp4o5SZL14ykIMMz565tmzWiyQdbRt364lycXTuXr8ppxpOoezAmegZJh9JqRIKAnZNggyjVB0HchIrZDJ+hYQqIQhyR4UQg3SlsA5KE3mLX/2Rp7xC0/m2a9+Pn/+7mqtcHugZJ0Fare9BAIhBJ97v8/lLsu789jv/hF0NljRMO4KuwmGGXwBH8FPkZRAKc24nZEyE2LEh1Dbh2+lVDKXNidshx0lCVJJhBSIOZBLwuoWpSSmMfgY0aohhsjSOJAFZw2NNZVuF+osW651bebkKxVLCGSWZASNazhYHKJbS0kTQimMtiipsVbQauiXgt5CZ6E/AHlQGJuRd7z7HTz8+x/Oi173IuY7+PzA2QbytpE1lr9z93vxgp/6A5ZhSTmBfJLZjoLtsGMYIsM8M/vAdtgyx0jX9SShGGcPwJzr7Oh6vUYKmH0FPBUEOYGPE9MuEMaJw4MeSWK1OIfIiUXTsugkKUlmP1eD+GlinD0pCS6cXMQ0LdrI2lK5XVOkZH2ypsQZ2/QVM45gimuWiyXbzQYtNfM8s1gsOX/uCnJKGK1Yth1FGg4Ol1y4eLKnPAqUU9XxBfBjIE4RZx1911Jy4Wh1iCBjteRuV5zninMHOONuhvmIvrbsl7bwR3/2R/yT7/gnxHT7JxGfrbMznem20Vmg9iGUEIJPue8n8ohv+37u8xF/h3vc/SMQQVST7AhM1O/3AdzpTFsaIcbCsEnVLLtAlhmpJQ6JyLJWxXwgFgipME8zVmmMUDTOIWWddQu+zg2EVFBCE8JISJGcFUrUObXV0pCQtargI85orJE4BcwFoSRRgFvUlpVhU5H8GY0y1FmADNMwoKzmYOmIAUwjWG9n+tZValAR+FywLbhOIHR9vTnCnOtbUApoDUaBMiACt0xKaurVcEWdQ8vcUk07gOIKb/qL1/Hd/+938Luvf/Ftd6DfR50FapdXUkg++16fxSd//Kfz0K94CFcdXIWlZ54gZJhH8L6eVqrAUPeSxFTwMePnSAp7s+qSCBkGPxJzxocAohBzrn5KuUAuWGtQSlOkrIbAY+BwtQAKQhS00oickdKiFSA1iNNptFLNREUlyBpnca3G1lgOIcGYvTWgqjNoh6ezaA2wgqtvuIZHPvLRXH3x3bz4DS8m5nCbv++3tc42kLedBPBZn/CpfP83/xD3PboP58UVtcI2FLabmXGOTHNkmEZCUezGAeMM23Fm9InNtEEay2a3pjUtMU6sNxukFKyPNwzeo4WmbztyCjSNRgpF13S0rsEJQUqRcRpYti1aSNbjwKWTY6I0TH7Hol8QcyJ4D7Kabc/TtLfXqBYa5684xE/V7HccZzbrNUfnj2jbHmtcBfmUjNaOIkEpQwwwhoFcIqoIlNQ0TYORhrZtaRvLqmnIogJZzq1WNI3hcLXEOYlbAC1wCKzgxa9+MV/6zV96GY/m305n6+xMZ7ptdBaofYglhOBT7vP3uPLgSr79m78DmQVXXnkX7nmvj6xBmgRGaqXoNGADygRhB1rVQKbUfR8m7nGpEog1cFqvC1KCloUcK/Y+xELj6uOHKe5nxzTeR0AwTqG2EVpL1wnmuJ9Vk1BiomkUphWIGag+1/UxM8Q1SFv3lKlAShB8NajORJYryx6kVfGulUACcv/cu/o3sfvXraDsXw+nr03t38C8/zqdQTutopn9+7aizqP18PpX/Dnf+a3fzu+/4Y8+hEf0/ddZoHb70FF7yH3O35ev/qIH89Ef+Xf5B5/+eZAlaYQQapW3hBqoGQ0+1FbJ04JayjDPhRBhipGQCmMckbJWvtL+dnGqsyVKaYx1+HlgmkYODw7JGSRi72FYgzIlBUYrrK2ZCSkSWtVSspCV2KjNrWZKZU1oCMAaaPqaTBEreNd1V3PT5iZ+6qd+kmf88dPx6Y5dRbu1zjaQt72UlHzNP/kaPuOjP4MHffZXYycLY6UdpwgxZaZtYgqFYZoYvSeUPe03Z4ZhV6mQOXHTpWOMkmyHLbvdFikV2lhS8khR2961kogCThm22y1NYzBa0TjLMM6cDCMIyThuafuWaRxAKAoSnzwnly5g7YKUMufOrdBKc+nSJdrGEWNmvRm48i5H9IsVzrbM45bsPUpKlHEY14CS1b9UCXabSlde9CuM0khV1/IV589hleTcoscoRb9oMU7hjkAeAAv4g9f9AW+/9u18249+G3P48FmnZ+vsTGe6bXQWqN1GElLwifd8AALBp338p/AFn/kFgEQKxT/+ii+ulbbTzqpCDUJOq2ye2iqZgIEa5CQgQBEQp3o7lWtwRIAcCtqAULWFREhAFvJUEfmnvkvCVAJd2T/saVlLmZrFZ3XrF1H/frxxT48zdfNaPJTE3gCxBnH7Dq76XE/pl5ab/TZOkfmctjaevu7TIO30/uzvK/f3afe/XwIboId3vPnNvOtNb+cxT/hxXvBnL3k/j9CHXmeB2u1LV/ZX0rsl3/LV34IUivvf6/589qd9Rl0/GXKqp10cIM41gBMS5ghz2v8/1IrbZhvRts6QplyTKjlW02uyQGuJEhkpMk1jCKmAEAhktbDQtZIsi0Cb+r2ztwRisC+2GeoP9skPqeq6U7YmQI79JV7ykpfye3/4Ql7zplfz+ve8julO5hd4toG8fNJK8jVf/BCcsHzqR30yD/6CfwVTvUYwQpwKfkgEn9nOiSntu0J8ImXJOM6crE+QSjJME0JmQoisN2t2ux3GaYKfEUXWdSEk87DjqquuIsaAs4Zxmri03SBzIkVPETDNsbbrO4O2ipsu3kTKsOwOUGS0NWw2G4zRtE1HCJWonKlVb0WhxMRyuaCgCdGzWvZ0XUvfLxl2A9vNDmdarNO0raF3HYeHS2Bm5Vo6a7GdwR4KuAuIA3jhq1/Iw37oYbztPW+7vAfu/dDZOjvTmW4bnQVql0GLpuegXSGEwNmG//df/lf86JEFhNIIVfhX3/RQVLllro2B+r2nBjQztRp12hq4D9CAGuSxv5/Z/19RN3jj/menkdlpIHV6mP3+tnb/GOf3/57qbUqGst0HY83+Z9U3tBog2v3f25shUqgVMLl/rNPHNvvHO319an87casvTQ3kyv7vKmr1bB+0HV9zkd/7lefy/Fe+gD96zcu4+uJ1t4tZtL9OZ4Ha7VPnuvMA3P8eH83nftznAJJv/bb/WucqE3WjOdbzXIgaxMV9oOZ9rSj7/YypFJBSwe9PwxRBCXBGYG1t55X7ajPUYFAI6Jr6c8W+Wr0PwKTilhnN/ZymOE12nK5fA7/2S0/j6ve+hzHu+I3feyo3bW5kN19eeM7l0tkG8vahK4+u4H4f8VE0SvOE7/x57ra8Gwy3zGjHsTDMmZALIRU265Fpmuv6EoJx3qFV9Su8eOmEGy7cQMqR2U8orYkpoLWllMKy7wlzRClBSJ4YAuuTizXvpxVZaLS2TMHT9S2j36GVJYdIiRXgVUmUjq7tWC7PoYUi5YAoNYPYtQ5rNSlmnG1omobDgyWNdVy8dIlSCkYb2qbBOcOi61m0DqkTy16jW4nUArEEroRXvvWVPPS7H8q7r3v35T1Q76fO1tmZznTb6CxQux2ocx2llH3mvLZDfcM/+Dd1ULkIvvhffRmf+OmfDGMl2QkhauA0cHO74M3Vt5H6u9MK1r5d8ebArFA3eeZW99nPit0c6J0GbqcVMPZ/83S++fR+p3/7FPQh9vfJ3FI1Ow3Qbv3V7R/r9NSK3BKkpVs9drt/3ARFFbLM0MKT/+fPE3YT777p3fz0c34JH6t59+1dZ4Ha7VtSSLSsJ/xXfdaX40xHyYXgE//2a/8Nn/iJn3BLK24A4SWiyJvnLE9PwZTrV0w1cJMCnAFtueWcP01m7JMUQtcZy5zSLb8D6OAd73knP/mYn2EYpzp7qqotB4DSkkXf88yXPoPrjq+mUD6s2qc+FDrbQN7+dG51jvtc9RH87hN+H+UlatY1ATLtk3+7wjwUphF8yEwxEYtnM06EAHPwHK/XXH/hRrz34CQheFLKXDo+Ybk6wG9rG4qWipgr9j+LjPeRtm8AwfF6i1GWLAb6xQIfZnYnAzkXrjw6jyxw7uhKtGtopMGnCQEYZTk6OGI3nrDqj8AIOmdobUNnO7yPOGdIOeK0xlmFazWr3qAtyEYgVsASQhO45qZr+Jx//TmcbE8u74H5AHS2zs50pttGH3CgJoS4J/BLwN2oW5gnlFIeK4Q4B/w6cG/gncBXlVIu7e/zXcC/pW5TvrmU8rz/22PcmReblJLPuf+nce/z94Wi+P6f+AFs51gsF7cET6cVtNPvA/WdPW0vLPvfRWrgZW91m9NgbLe/7akPmb/Vv/3+9qfB2WnV7XTTenqfwC3VM7f/2entFDXwOp0vOw3ITtsdT0+z09vuKwXH1x9DKrz5tW/kaT/9a+jG8Gt/+Jtc2Hz4GS5+IIHabbHO4M691v5v+qR7fAIfffePwaeMD9X/74Ff/s/5h5//+ZSc67zoRD2XU6GcknHknlCqRT3vTyvIulbSMAJpBEi4/qYb+KFHPobtdg1khChY1TALzwv/4vcI5c4dgL2v+kA3kGfXtA+djJL8q3/2YP7r134Hciv4iLvfEzUpykxNPI7AXJi3dX5tFyLrceb4ZEYawXYzccP6Apt5Zggjw2YiFYGQM04a1peOGcNMjIE4BZSkAnu0YPKBJOq/yREhE03bMG8CbWM5OjziisNzlCww2tK5Fm0UTaOIcca5lqPVUfUsdA6KoO8MOoNyhpwzzqqbZ7GbHlQDLKrX58XpAuvNmi/4pi/gpuObPuwN5s/W2ZnOdNvogxGoXQVcVUp5tRBiCbwK+OfAQ4GLpZRHCSG+EzgqpXyHEOJjgScDnw7cHfg94P6l/PVuemeLrUobzZd8zP+PB3zyx/PlD/lK7nGve7BYLG8BkdyaInkajOVbfd06m3/6/Wkl69RTU3JLAHcanJ0emVvBTv6PStzpnJmgVstOW7VO52nglgDx1vNrp4Fa4v+oyq0vnXDjNdcTU+KxP/hj+Gninde9i5e/9dXv/5t3O9AHGKh9yNcZnK21v43+zl0+ivteeV9inAiZiusuglwSMSZESShjqvehOj3Bq2QR1cxXKpq2xajCNoz84WtfSrw5S3Km90cfhA3k2TXtNpAzmsc/4gks7JKrDu/GJ97n79W54x21RdIX0lwYpsJmjngPl3YDFzeXON6NzDGyHQcu3HSRtm8pObNZHzP5EaVUJbOOA0LKSjXe04ByiXT9gs41GCEI3nO0WrHsD3CqXoRSgoPFktVBXw3jlaR1DV3bY61BSkFjDZ1TCF3nR+W+LVrtr3Wi42YI1tUXruZhj3kY//tl//tyvd0fdJ2tszOd6bbR37R31H/dL05VSrkOuG7//UYI8QbgHsA/A/7B/ma/CLwI+I79z59SSpmBdwgh3kpdeH/8/r+MO4diiDzzz5/LH73z5fzBy1/CA7/iK7nf/e6PlprP/pLPvgUyEqmwjZFbqm1wS3viabviaYvhKX1ScUvl7bQidlolg1vm4E4DuIZbqm+nFbyWW4K4llsqZnBLhW3/0X7hupt485+8ESmr3UBt+xK8+lWv5nm/8zxCCLziba8mpDs+Uvxv0tk6u/3pbTe8hbfd8JbL/TTO9EHW2Vq7bTSHyNd9179BAB/3UR/Ll/8/X4mJiq/9pw/l6MpzCC/QG8FiA2ajGLcZaxcUIs403HR8iVnAsl9QREbZhtk0iFJQWrEeNpjmtH05IqUii4IsmhAipYU5zYhS0ErRNw1GKUIIrJYdi75ntTqgc+BMwWqNtYaua9BWoPQeoNXuYV0G5On1zgAtTGXicb/xOP7sdX92hwrSPhg6W2dnOtMHR39joHZrCSHuDXwS8HLgrvuFSCnlOiHEXfY3uwfwslvd7er9z/6/f+sbgG/Yf/+3fuJ3ZF1YX+CPNi/lnT/1TjrX0/c93/ye/0SOhRAScfb0i47FcskXP/DLboF1nOoU+HFaWRPUC8tpsOb5P2fT4JZK22nl7LSVseWWap6mBmvqVrc7/TsCXveS1/Ku172dmCLGaP7izX/Bbz736QhRA7WyN/a+uLnE9esbP+jv2x1FH8x1tv97Z2vtTGf6K3R2TfvQqwCvfcvree1bHoGSghe//g9Ztks+5iPvz3c+5LuRLTQGrBX0UYNcceF4oOSENZoTuWHOkVQKUgqKKPhQ/ddimBFCo5REWkVKuXqqkSqop0iKzGilcdbSdQ6tHda6CgPpLL2T9K2qMKBGIZ2oucZTq5jTLhF1y9fjnvI4XvmmVxLmwLNf8uzL9dZ+2OhsnZ3pTO+/3udATQixAH4T+JZSyvr/skD+ql/8pf7KUsoTgCdALV+/r8/jTqMC11y8FgApBN/2qO+klOqrVkpGScXhcsWbX/tGEAq1Z+tbbUkpoY1EaQlYHvSwB9OtugpI0OIWCMjpTJvnlqDuNOg7hYWcBmoWit0fpluRJOdh4qmP/FVQimf/0XN41RtfXcEpQjCFifW4uQ3ftA9/fbDXGZyttTOd6a/S2TXttlfKhef/0fMBWHYd1in+69d8BxhQnUBu4QhDCtXwutucIEUh5MxumgldR4keGkGcPCOJru2QzrCdBlQGlRN909H3LU4bettzfrXi8OAczjZYo9ASrDUcLB2rXqAcyI5b6MMtlKbUVv8MaLj6XVfz5Q/7cgCuuf4aNsPZte190dk6O9OZPjC9T4GaEMJQF9qvllJ+a//j64UQV+0zIlcBN+x/fjVwz1vd/SOAaz9YT/jOqFzKXwnXuLC9yPf+wg/+nzNpt6qiCWrG6T3XvBOF5d4fc28e+J+/CqgkLkTZUyWrx5tpDSopiivMcUYUKNNpSQ4uXn0Tv/z9P1dncoQgicLF44v83At+GYCUE7lkzvT+6WydnelMt43O1trl12YY+P6feTSP+eXH8YuP/mU+5b6fwrJb0WrB3YplOyZcc8ScZ9abiaP+gDDOtMYx+ZGBNa5p6JcLBj+xMisEBmc7YGLZdxgBy77FWIXWAiMT2ij61nHUWw5WVBCQpY4TLCCbzCZsePJvP5n/8ZP/4+bnW0phmqe/5tWc6a/S2To705k+cL0vMBFB7SO+WEr5llv9/IeBC7caCD1XSvl2IcTHAb/GLQOhLwA+6mwg9PLrnufvzpd98heBEEzzRC6ZDBgpEAge9B+/hnvf+76s12ue8D8fh1L1dkoapFTctLnAb/3Jcy73y7jd6gOEiXzI1xmcrbUzffjrgwA5OLum3Q61aBte8DMv4mPv8nFwAfIONpvChZvWDHPiwsmO7TiTw4wPExe3JxhnkNox+8R63HHu8BxaG1LwaJU4WHSsFh3GaM4dHNA4R9NYDpaSZlltM06BIG+/8e2cqBOOLxzzT7/pn17ut+Oy62ydnelMt40+GNTHzwFeAvwFtQkA4L9Re42fCtwLeDfwwFLKxf19vhv4N9R6zbeUUv6vU7Zni+32oc/66E/lsDliPaz5w7e8/HI/nQ87fYCB2od8ncHZWjvTh78+CBvIs2va7VR3v+IuPPzfP4IH3O0BfMJdPpF8XBiOEydD5KbjHevNjhgiwzTgY6iUDw1zDFza7bjLlVditUHkhLOaptH0Xcty0bJsHX3vsB3YHsQCsPDu69/NS/70JfzUb/4Uf/72P7/cb8HtRmfr7Exnum10Znh9pjPdRjozvD7TmT70OjPivWNLCPj7H/tp/Og3PoYH3PUTSBfAnxQ2a88UPDFmtruR3TwRUkK5ChGZYkAZyeHyCGMk9v/P3p+HyZZe9Znou75pDxGZeU5NqpKqJCQhEBKgAQkxGWQBBtM24IHZZhAyHjGDwZasqwEwGGzM0LYfjKfHXBqbS3totxtfD41nuy8G3DKDmSRQg+aqOiczhr33N98/vixJxhISUlWdc6r2+zz5ZGScqIwVO/bK2r9Ya/2WEZSudM5yetozbA1dL6geOINYI6/666/i9f/P6/nn//l9rqB83LHm2crKo8MHbc+/srKysrKysvJoUCv8+M/9BH/su/8wP/SaH+bJV56Cts38o8yGUirLpmfvPUtKSC3ozqCtIdaKNZbeCdY1J0e00I8KNUqroln4ur/ydfzCr/4C/+G//ocb/XJXVlZWflNWobaysrKysrJy01CB1/3yz/I7v/7T+ckfeh3D2YjZChyhJuiC5qRa6rFSyIgVqmiUFUSBOKC7XErtBOy77nvF976CH/g/foCY1v2dKysrNz83ReujiNwPHIEHbnQs7wd3sMb5cHKrxAnvO9an1FrvfLSC+UAQkT3wizc6jveDx9J5cbPwWIlzzbOHl8fKeXGz8FiJ81bIs/Xa8eFnjfPh54PKtZtCqAGIyE/e7PM9sMb5cHOrxAm3VqzvjVvlNdwqccKtE+sa56PHrfQabpVY1zgfXm6VON8Xt8rrWON8eLlV4oQPPlb1cAazsrKysrKysrKysrKy8sGzCrWVlZWVlZWVlZWVlZWbjJtJqP31Gx3A+8ka58PLrRIn3Fqxvjdulddwq8QJt06sa5yPHrfSa7hVYl3jfHi5VeJ8X9wqr2ON8+HlVokTPshYb5oZtZWVlZWVlZWVlZWVlZXGzVRRW1lZWVlZWVlZWVlZWWEVaisrKysrKysrKysrKzcdN1yoichnisgvisjrReTlNzqed0dE3igiPyMirxORn7y87zYR+Zci8suX36/eoNj+toi8Q0R+9t3ue6+xicgrLo/xL4rIZ9zgOF8rIm++PK6vE5HPugnivE9E/rWI/LyI/JyIfM3l/TfdMf1AWXPtA4przbOHN841z24ga549YrHeVLm25tmN5WbNs8s4bolcuxXy7PJ5H/lcq7XesC9AA28AngY44L8Cz7qRMf2G+N4I3PEb7vsLwMsvb78c+I4bFNsnA88HfvZ9xQY86/LYdsBTL4+5voFxvhb4hvfw2BsZ5z3A8y9vnwC/dBnPTXdMP8DXt+baBxbXmmcPb5xrnt3Y+NY8e2Rivalybc2zGx7fTZlnl899S+TarZBnl8/9iOfaja6ofSzw+lrrr9RaA/DDwOfc4JjeF58D/MDl7R8APvdGBFFr/XfAtd9w93uL7XOAH661+lrrrwKvpx37GxXne+NGxvnWWut/uby9B34eeBI34TH9AFlz7QNgzbOHlzXPbkrWPPstcCvk2ppnNyU3PM/g1sm1WyHP4NHJtRst1J4E/Pq7/fymy/tuFirwL0Tkp0Tkqy7ve0Kt9a3Q3iDgrhsW3f/Ie4vtZjzOf0JEfvqyvP1QSfimiFNEPgR4HvDj3FrH9DfjZo/3Vsq1W+mcWPPs0eVmj3fNs0eOmzLX1jy7IdxKeQa31nlxU+YZPHK5dqOFmryH+26mfQGfWGt9PvA7gT8uIp98owP6ALnZjvP3AU8Hngu8FfhLl/ff8DhFZAv8A+Bra6273+yh7+G+m+nc/Y3c7PE+FnLtZjvGa549+tzs8a559shwU+bammc3jMdCnsHNd5xvyjyDRzbXbrRQexNw37v9fC/wlhsUy/9ArfUtl9/fAfwjWnny7SJyD8Dl93fcuAj/B95bbDfVca61vr3WmmutBfgbvKvse0PjFBFLS7QfqrX+w8u7b4lj+n5wU8d7i+XaLXFOrHl2Q7ip413z7JHhZsy1Nc9uHLdYnsEtcl7cjHkGj3yu3Wih9hPAM0TkqSLigC8E/vcbHBMAIrIRkZOHbgO/A/hZWnxfdvmwLwP+8Y2J8D3y3mL734EvFJFORJ4KPAP4zzcgPuCdJ+1D/B7acYUbGKeICPC3gJ+vtX7Xu/3TLXFM3w/WXHv4uCXOiTXPbghrnj183DLnxM2Wa2ue3ThuwTyDW+S8uNny7DKmRz7XfjOnkUfjC/gsmkvKG4BX3uh43i2up9GcWf4r8HMPxQbcDvwY8MuX32+7QfH9PVrpN9IU+lf+ZrEBr7w8xr8I/M4bHOcPAj8D/PTlSXvPTRDnJ9HKzz8NvO7y67NuxmP6QbzGNdd+67Gtefbwxrnm2Y2La82zRy7WmyrX1jy7oXHdtHl2GcctkWu3Qp5dPu8jnmty+R+trKysrKysrKysrKys3CTc6NbHlZWVlZWVlZWVlZWVld/AKtRWVlZWVlZWVlZWVlZuMlahtrKysrKysrKysrKycpOxCrWVlZWVlZWVlZWVlZWbjFWoraysrKysrKysrKys3GSsQm1lZWVlZWVlZWVlZeUmYxVqKysrKysrKysrKysrNxmrUFtZWVlZWVlZWVlZWbnJWIXaysrKysrKysrKysrKTcYq1FZWVlZWVlZWVlZWVm4yVqG2srKysrKysrKysrJyk7EKtZWVlZWVlZWVlZWVlZuMVaitrKysrKysrKysrKzcZKxCbWVlZWVlZWVlZWVl5SZjFWorKysrKysrKysrKys3GatQW1lZWVlZWVlZWVlZucl4xISaiHymiPyiiLxeRF7+SD3PysrjmTXPVlZWVlZWVlYem0it9eH/pSIa+CXg04E3AT8BfFGt9b897E+2svI4Zc2zlZWVlZWVlZXHLo9URe1jgdfXWn+l1hqAHwY+5xF6rpWVxytrnq2srKysrKysPEYxj9DvfRLw6+/285uAF737A0Tkq4CvuvzxY5Rax+U+GEQEAKMN280WJZrbrtzGdthAAd5T4VTe7QuIMfK2B99GzhkfPLOf3+NzPRJV2McCpZQHaq13PopP+T7zDB57uWa0ZehHbju7g7OTU5SACNTSvnKBd56itZ3etbbb1HY7VyiXj5OHHvjO01remROlQi0Vkcscu3yuy5uIetf3h+JQCkS3L2jPI1J509vewnE+sISFWsujdLQee5RSqLXKjY5jZWVlZWXlkeaREmrv6X+i/93Vfa31rwN/HUBrXcdxfIRCeWzjdMdt29v4zJd8Bvc98V6etL2XL/n8L4FMO+Iz5HNIS/tRVUBBLFAoaCNUIygHpgPdQzWZ1/386/ixn/rnl1edhVoNVDjuj/zb/+vf8ku/9gvkkpi9v6Gv/2bicDj8P4/yU77PPIPHRq6djFf5xOf/dp70hHt53oe9gN/3OZ/DtlfkCOE6zHvYzeAXWCKQIQcIMzgBFKgCJDguMC0JHxMpFmpKHJc9tWSscjjXYbRFEHxOLMGjlKLrBpTWKEArKALWVjpn6DpD3wubHvoe3AibE3Ab0APYE6DA63/lV/hf/+k/4mK6xr/4D/+S17/152/ocb0VmabpRoewsrKysrLyqPBICbU3Afe928/3Am95hJ7rcYfBsd0MWG35pOd+Mn/gC76Y5z3r+dy5uRMOwDWoESggGcIRpqWSc0VXKEVYQsLPE6bvUU6wneA66Deabqt4/tM+huc9+2NQPf9dg+wyL3z2Sz6bt1x7M7/2hl/hu37wO9kfAkt6z9W3lUeUx3yeKdF88vN/N3/g934RH/+xH8OdV55AF2mC622w7OGwh3mG/RGmpf13ORTmnWdZAioXNpuOTrcT2cfCsgRCCtQCIUaOxz0xeJQYrFIMncWYjlQKoRRSTEz2yDAOyGVZrpABsLbHOYfrNIPVbLcObYV+A8MA1sLpKWzO4Bl3P40/87I/BR189qd8Nm948xt5+wO/zvf9yF/n/ou33qCjvLKysrKysnIz8kiZiRiaycGnAm+mmRx8ca31597T42/VT/kfTbbuhGHoEBGeePZE/tKf/0ucbs+4Ml7h7tvuhgUIUOdWPfMe8gLZV3yILDkiosihkpdCXgJVC3bbgxa0yogqbM42jBvBDELVoBxo11rAtGtdlFpAbWBeZt7w67/MP/6Hf5+/86M/QEyZ88OeXB6fbV2Hw+Gnaq0veLSe77eaZ3Dr5NqznvLxvPyPvpzteCfPevpdPOHeJ8CxndN1aRW0aWoVtHkBf4TDoXJ+SMQU8PNE8gudgAOsMRhrEK2pokg5siyBJXhqhdl7wjyDgK4Ala7rEKVIKXM4Hhm6DZuzM8Rogp8JacHYns45OtejtcZZh1YGt3F0VmNca4E86+C2q3By1qptegMMUHvweeZXfvHXCMXznX/je/nR//gPyCXf2DfgJmaaJnLOa+vjysrKyspjnkdEqAGIyGcB3wNo4G/XWr/1vT32Vrl4fDQQEahgrOHu257A0PXUAp/+sZ/Fq171CoigsmLoBsS3x1KAiTZmE2C+DkuA6CuLjxyOE8f5gFSNE4OukGMg5czm7ApVFWoJAKjOYMYRZRRusNgBcqmIFboOXAfKQjcKagBqJcZIkMAbf/lXec33vpqf+9Wf5s3veMcNPIo3hkdbqMFvLc/g5s41oy33PuGpvPxlr+FzPvfTGO7okYOCiybMLs5bBc0UiBNMR5iXSk6QErz92jWu3X+d/TSRY2LjDNuuQ1NRJXNyuqUfR3KFEDxTiBznHSG3HtJlPnKcZpSC0Y0MXd+Gzmhtk0opbN8RSiam1ESdaEAwztEPG5RSKKUwnQalqdVgjMYZ4ezEcceVVmlzPXQb2G5BnwAnwCn43cLx/MgX/LEv52ff+BMAhBiIKd6gd+XmYxVqKysrKyuPFx4xofZb4Wa+eHw00EojIpxuz3jes59DrXClu8Kf+rpv4KM+6iMhAAtIlCbKIuBbZYF3++C9RkgedruKD5BSZvEJvwSO04EcIhYwSjHNexSagqCNRlkh1ULVmilVus1It+3o+g6o3Hl1BCmElNmcKIZBM54IWl+aKVioqsIW/tvP/Dwve+WX8t9+5ZcpjyPThBsh1H6r3Iy5Nnan3HfPvfy+T3sZX/vHXkZ/G0gV6kWbrzyew+46XFzAYVcggCQhlkpMhbB45nnmuN9xfr5jjoGcM6pmNGClnfOb0eG6EdGKFCPn054Q46URT2XynhQinekwSuhdD7WgtKa3lpoKxvXEEplCxHSKzo4s3lMRunHLpu+YcwakGZWIohu3dH1Hbw2D7eg3wngibEYYNtAPTbC5U1BbkFMoh0r0TdB93w/+bX74n/4gIS7vMv9R8Na3v41rF9d4z05Bj11WobaysrKy8nhhFWo3EKMNJ+MpH/fCj+O+u5/EPVefwp/6U38SSQKeJsIeEmaHy+8VSE2U1QyhtO81Q5ozIQg+Vo5LJEdIKXI8HvHTgZwCY9+hEOZ5IeZMVYlhOAEjXBwO5GoJolCqoKygrOVse8rZ2RVCPLIsF1y5esK43dBZzTgaNoNgXHtNegROKj/5E/+ZP/udr+Anfum/kOvjo41rFWrvP9Z0PPtDn8OH3PsUnvXUj+FlX/pS7rhnaA6NB4gXEA8w7eFwAecPVq5dS1x/8IDVim1nySkSSqCEzLIsHKcdF7uJnDIhJUKYqTmjRNGJMPSOznV0nQOpXMxHpnnBuZ5Kws8LSmmsM1AEozWqVCqVzmkE2IwnhJiYYmTcjBhriD6hrUUbS5VCiJWiDBXQ2mD7EWcMSoRN3zEOPaazuE7ot+AsbEcYRjg5aYJNNiA9MAAR8uHSVdLSejkH+KG/+yP8q3//LzkuB/79T/5HdtP1G/iOPnqsQm1lZWVl5fHCKtRuAFprTsdTPvrDn8cX/J7P55Oe/4k89Ukf0ipnlSbSHqLSZs+uA6l1YuUEMVaWXMmA95npmEhLhlDRWnOYJnIVNIL3e6bjgeA9Q9ejjWaeFwqtpVG0IdfKtCxkcUQFqQRSTogxnGxOuHL1DtI0EfwFZ1cGzk7PWqWh7zjpNUjBaOHqVYe5XZFc5Mf/f/+Jb/0b38p/+m8//riYW1uF2vvHs5/ysXzBZ38+v/1TP4VnffgzMQ+54R+aOAsHOBwgzk2k7a5VLs49184PHHY7jGRG53BGqBRUqUQf2R0u2B8XfAiEnMg1E2LAKM3WdmjV/tYNtkMpxTEEZj9hrEMrBSnRdR3aKvyyUCtorVACRhnONlvGccTHwJILxlhKLeTUhJpSgg+VLJWqFAVFKRptBWN7VCmMfcd22ND3A9UIpnd0VrHpm1Abu2Y84vo2H6o6UD2IA+zll7n8ntrM3pwP/MN/8o/5sf/0Y/yz//j/ZfKHG/XWPiqsQm1lZWVl5fHCKtQeRZRSnIyn3HfnU/n2P/8t3H36RD78ic94V7Xs3ato9fK2at/rBDW1+0uF3b5yET2pVg5zZD4sKGWwqZBzIvoFbS1dZ5n3O+bjgSJQUqZSiFXTd5aLw44sbQ7Nx0CsQiqJKooCiDMo3XP77Xeha0TlRD9Yzq6cYo2QcsBS2G4Gxn5ke9Jz9TaF2grRBV73Mz/JN/21b+GnX/8zXJ8ubtShf1RYhdpvzofd+zz+5Jd+Nc973kfxrOc+E6Nos5UThB0sE/gZjnuY5mavf/FgZb6YudgdWfzM7rCnJs9J3ypjRkBSpqbCfr5gXjy744zPmVwqiYRU6LTF1EIJka4ziG6tvlQwxmKtw4imdxq/eJa4gNZoo6mxYLThnrvuwnWOyU/MhwXTd6SUiTGirSWVipiOqhRLmEgFci4Igu46FJXRObbDlt51KLEMp6e4zjD2lqGDcWhfxjahZlW7rQ3YrhmTVAE0yEOCrQc28Ja3vo2f/9lfImvPa7/3W/mZN/7UDXmfH2lWobaysrKy8nhhFWqPAiLCdjzhvjufymte+So+5iOex11nd4IXmEEWmmtjaWYgRFp1rdDanC5nUsIMwUMKlevne44hsdTMbprxc0BVw0m/JadEXCaUKmgNfj5irLAcj8Qlk2tG+o6YIvMyE3KloFlmTy6FOXkQsF1Hvz0hFNBiuHq2QeuKs4bNdovpFEKml8J207NxA7ednnF6anA9yO1CPstcz9e59tO/zmf/6c/hzQ8+dtuzVqH2nhDuvPIkvuYPvILf//s/k7uedjum6ibQziGcw7K0Kpr3sLu02o9Lm9GKPrPsd+wOB+Z5Yb/bU0vAodiOHduhp3cW7ycOuwOHw4GDDxzC0pZVa/DHhc65tv+sADXQjwNVVQwGZyylJGoB0RWkorXFdAMpJ/ISUUpx1x13YpzDL0dSjBjXUS4/0EilsvhAEgjRE3wi5kBFyIDrHFZ36JJwTnHl5HbG/pSrt1/F9QO9sRgNnWvVNBCMhc6Cc7RZ0MuF2lq1BdvV0gSbAjuAPQU2wNXKO97+AL/wy7/A17zy63jDW3/xUXy/H3lWobaysrKy8njhkdqj9rhHRDEMIx/65KdjrOVzP/UL+Oo/9DL0rOEo8FaaIJuhPlRBU1B9qyRogbiAxNpMCbpmQx48nB9mliUSUuV8mjgsgWvXrzEMG5ZaSNMMsaBVIZeMUBmyJlahCCypEs6vk0smlMoUIiEVEGmdliURQ8ZRSVqRiyBolM4YI2zHDZsqmAJaVUpK1FgpwLxkdBVcUdCBdpo7tndw+yfezo999z/jC//cV3L/g2/lrdeuUW6CDwlWHhms6bjt7Cpf8Dv+KH/2G/4kw10KEYXMrY23TrBcbzNox2NzcaTCdA7LXIkp448Ty3Jkvz+QkmeaJ/bHHU4ZjHMYJzjn0ECvHObkhFIKUQpVdaRcSCkzbB1yeV1fNYj01FoJk6eomeH0KkM/oqgoJWitMZ0jC+x3hSww9g5jhRwmwjK1VslaUFR89PhYWWJmjgu1aoqU5qyaMoiQRTCDQ0xTXMHPOK3ZXVTO4iniNEEgDyNFWURVsgj10tjV0grscnm7COTa7lCX4s4dW9XNHIS7nnAnd33aHXxX/Uu86ttezevf9ItM/nhjToaVlZWVlZWVD4hVqD0CjMOG53zU83n205/Lt7721XSlhwnk/naBGudm/uFMmzEJc/uk3FqIof2bqs1ePyRYQkIEilR8KCQfmefIfj4QKuQSQQqlJOLi2e2vo6KgS6UKFCkcpOCswUpBcsTPnlwqU0gc40JV0G/OiDGxOx7QVVFLwU8LRQqbvsObnv7kCmPnICfmfaBzjpPNFQiZpSQqE7YolmQYYg+LgVOQE+FJz3kW//pH/g3/54/+U/7f//QH+fGf/UnecfHYrbA9Xhm7Ez7/M1/Kn3vFKzl92oAo3rWI/Qh13wTaMsF8BH9ptU+ulACkwLxvLqXz8Zz5YkcqmZQSndIIlRBm9tcy3RVF0UIpCaTZ4rtkqKXiJLKk1Ba/S4VSWGIk1oIWIccFd3qGaFAUlFJst1sAaq2QM5IjRmeMFsKyNEMPIOSEnidyVSwlMvkF7z25KJJ6qJ2yI8Qj1LYgmxJQYjDi6LsOJUD05DQxR0WlsnjPFAfEOJTWDJ2m01BKpWQYB01nW/tzvvyAR1vwAdQMysDJDP0O1G3CS57/KbzkR/4t3/+//G1+9N//b0xx4md+4WdX0baysrKysnILsLY+PowYY9gOp/y2j38Jr375K/nQez6UsGvCLM8gE5jUhFmtbfGVlPZzTu1nRdvZVCrEUJqDXfFMy4IPkZoVwS/4FDiWTIgFnwKH40TNlZQC/jhxMoxYY0ApRIQYF5QoKJGSIsfjBFKZY+Fiv0cPHdZ1LCEgSjX3vVJJKaJUxVrFcNJzdnLG2eaM7eaUkhKDUdx+eoLTCus0IpWSA0+4csZZP1JFYU4N6nYFTpqLXQdzOPC3/pfv4zv/3nfz4H5/Q9+3h4vHe+tjZwZe+OyP59N/26fzJX/oC3nCfXdAAi6AXRNoeQdphuUI8wTTobU6Jl/xvhBDQqSyLEeOhz0XuwdZQpvBrKWSaiJ5j9WK0XVsNwOnmw2VQsiRnDMhRLz31BTYH4+UWlBKKKkQUqHYJopqLFhr6DrDphsYuh5rLSJCzU0YLt4DGpF8aZ4zkFIixogyjiSZ4+HIxfFAThURgyfT9QP9OBJCYJ4XNuNI11mc0vSuZ+gcm3FgM4z0ricXWLxHjCKL4EtFG8dm3GDRxLggyjD0HYOzGGt4yJ5HmTbHZo1gTWuVHEboR+jPwNxJK8MBe/Z8/9/4W7z1/jejLs1J/o9/8U950zt+7RE5Jx4J1tbHlZWVlZXHC2tF7WHCGMPzP+IT+Oo//od55pM/gqde/VB274Cwh3Ro+81kaW2OtgKpVcu0EurlLtuSgFyxqiK5UFJCGU3JhZIjMUbmKRBzJpVMLpk0J47TTK4Zg+DPd8zzzGg0nROUFkqFkDJaV+K8MB33iDJYrRAKzqn2Gqh0RhNzJUeP6Tp616GBEBfm/R6TBZUqKldct0E7i0VwSuGUkHMm+sI0LejU5t7M0XGWzrBbQXbAAMPVLS/94j/K2I286m++ht3s38uRXbkV0Mrw6R/3u3nta1/Jhz3raa2Kdk4zyNnTdqJN4PetilxD+znNbR9gCpFw9E1oRc902BPDgiqC0QrRQq25Cajgcb1GxJBzRFTFakPOAWs0hgoxsKSCrpUKGCxJRYyFXCtZ2ozXbjrSBQWprZDIObckLc1opHeOFAshp3dWxpxzhLBwsTsHKW35dUp0pieSibMnX5a7co4IGUuh0xqLghwwaJrTfqXmZt6TqVCFZfEsOVALpGWmN665V5qO3e6CoR8Yxi2iFd3QUeZEodCPDqME1wmLh2GC4QCbPbgroE7gZDzhT730a6mq7Wyjh8944e/k1974ZqyDaiv/8F/8I/7tT/0bUk435FxaWVlZWVlZaaxC7YNEa812u+VD7no23/8X/wofet9TSedw8WbY75pRQjyCrrAcPH5O6LJgnUYpg5aOEgWldbu4y4k4z4xaUGSUE/aHHeFyue+SE+EYoFTmuHBYFubZI1oRUmJ/cUArRfQLQbWLTTE9ISVyKCzHI9PuiIjm7Mop1IoRTVwiBU0pieQDVRQhzhQR+sGyHAKiI2O3oVZYFo/SGiUD2lgKiRDbxazWihgydavJUbHMC8N8gjYK5SAFkADjnVu++Au+AofiT//N/xf7Odzot3PlA+AFT38x3/yNr+apz72Xez/snjZ7eVlFY4K6gzRBWGCZm1ArAQ4XicOUUEWhaqFmj1/aLFqpmVAjMXqSKqASSEZRccYgVIxWOKsoyZMSjNaQL8WFru1DipOTDdMUENGgWoVaciGnwiF6SiqYqsl9ZgmBnDxUBaUty+6cYxhH5lnotj2iNDkDVZiOx1b+FkG0Qoy0uTWlgMo8L4gq6AoxL4zBYoYBXUGVQm9t8wnSQkqVGCIhNsfKkBZEBJUyerPFaM1husD7zOF4pJ+OdK7H+YHkA73rqKlSKGAMQ+8Yu1Z0Ot3Ddg+bEdwAyl7uaDsCA3zqJ7yE+qK2BgAHL3nRS3jbr72D3XLO13/n1/OGt77h0T+pVlZWVlZWVlah9oEhKCVcObnKU+55Bt/26m/mOU/5KMayYferMO0r+wMcds0AxBggFubjwjRPqJI47QecMySJTEukVoUywrKbMSmzrwvWgZsEn45oO5JjJEwzfsmkAkvMeJ9RzpBC4GK/p4qh64VlnshpYXN6hRgXLJVcW2tZ329aS9bhSD90dEazTJ6wPzbnAkCc4ONCQXBOMWx6lqlSq0ZEKLSZuJwjIQScEfbTAchcHU/p+h4fMt32KqrAHDXpUOkHIQI6g9LQXR34/Z/3ZZSseeXf+SbOp90NfF9X3n+EZ9z3XL7jG76Dj/u0j2Z7z9gMOy6AmdbqeAEszSjkeLkXLUYoEYKvlKyxFJblQM2ZHGeWwxElly2GIXAg4adEXAJ58UjOaCdoZUEJ2hoKhc46TNWEZUErobNQs6Jo2PYdR39p7JGBCss8U5PHWkMpmSVYalFEETprUSJUJYQQ6TvHdrvFbXq01uyu75Ba6JzlOC8scWkGrX1FlMVqQ2SheamCtT1+ClzMFyiEcRiwxhCXCd33GCVIKkgOlBwoKTDv961ds+sQqWhl2vNUKCkiPpPyzHE5RyqUbkPJI0hFGUOtQs5CTQWNgyQczivGgnHC0MHgwLpm+S+6Ga3g4Emn9/KkT7iX6gr/7tn/jh/9P3+UV/+tV/O262+7gefbysrKysrK449VqP0WOd2e8VHP/GisdXzup34eL/3iL6ZeQDgXDvtWQbu+g3mqhDngj56l1maTHxZC9FQfUDFizURIkZArqTZnRXJCElAjJhY6XdGiIM1tabSCYgs1ZzQZHQu5wGG34/zBBxnEsu22HI8Txhi09Whr6DrHqIVBDNZaYg7c/453cDzu6dyIMQ5Kc71LKVNjQpe2UPji2o5+GNBWUUl4v5AKVANjSbxjd8FJ19EpQ5wjQU8IzapSXEL3I0usDMly9IZ+q9rO3hmMFrrtwBd+wZcSa+Fbf+jbuX/34I1+m1d+E862t/Osp380X/9138infc7HAdJWTOxptvt7WjUttOqZv4DlAnyszYxDwC9QU0XTbA29X0g+oJWiG3pKiq0F0SeIAUNFmdpcdkQIKaBmMLUwnJ0ydB0ajVKKeZ5QSrHZ9FRgH47kOKMr5JI57A+E5Mmqkj04q/HLwlInOueIwXH19JSxs1ijqSmhLZQQEQeud6hZcXZ6gnKa6f6FmBJVaUTl5m4pAlKxZsRZw9EHdv4aygnb0wFjDAjM04z3HlEaK4W5ePzuQEkRZTVCxscj1m2gcnn8hBwjWpq7rPee4hPeT6DAuoGr1hKWtrD7OCtC0sQ5kqXSdxbnFP3lOoC+F0TafKyx0A9gtiCnitPbT/nCL/tCvEz8+b/57bxlFWsrKysrKyuPGqtQez+x1nG2ucLn/64v4lv+7KvRwVEWiG+DcoQwtZa+6aKyHAvHaSH52MxAUkQk46cJP88YqSxesVA5xJmEwjiHtZZpmej1yOgsSmtSCeQSCUsg50QqsN127PdHwnJAaw0ZrBY2o0OJwnUdnbPMy0wtGTBMxwNKWwQh18xxOuJTRFQh+RklmmoUKKHvOpZ5QsSgpKAUzMeJattFaIqVsct0aiBMe1Ip1OA4Gzf4FMkXM+OYSGWi2I7MOVQYOsvm5CqRAa0VwStOZ3BBcHf0fNEXfCnHNPPdP/I9PHBx7Ua/5SvvgSfe9lRe/idfw5f+wd+Hvso7q2c8tAvQA4eWE6TL+bMFpkPmsE/0fVsinZZISRmlCtRIJaFMocyB+RAvVwdmbAExipA9UClUSoos3hPnGRUzm76DYUPXt5ZIjUNf2uaHFCm5oErFh4TPCzkFChWVmpAxXYe2ljh7oo+4wSIlY/SAFDCdQinBKCixVaJLKfRdTy6F7WYk5NKcGWsTPbW2dRUxeRZ/xB9mlC4sfub6xYN0SrEdeuISECOYbqCkNt9mFFw9vQIaEoVShcNhjzM9VmuqNBOitMRW3S6FVCKUQr60GLm41j7sEKUYhgFjFCW2/J0VuK5rfzM2A93SZlWNUmgt2CN0Rxj3YHZg7hC+/PO/khIL/+qn/hX/7r/8e64fH9vL61dWVlZWVm4GVqH2frDdnPEZL/4sXvKiF/O7X/I/US8cx8Olk+Pcdp+V2PwIYqrE2VN8oJYICCkGwjSzLHuyTzgjLDmRc2FOEWUsEhL92FNSZc57+mGL7QYsDs2GeX47IVVsZyk50LlKsO1359JmcbSq9M7htCHFwOnpKVorKkKqhegntLaEHEmpOZgs89Jm5ZymsxuUMsQloJSGlBmGkVILc9lRFKAqKSWqq+Tadqx1toNSCPNEKZlkHaFafC5QE6kUjDGkrDkeDhzDghtHOueo1XKbAeNgvGPkZX/gD7HZjLzmb34TF4fHhhvkY4nP/Ngv5Mu/9vciQhNp58D1y9u+mYSUuc2kldgqZ9MOwiEy7y/YXyuM2y1IxXtPyp55PuDnmZQyMVagolX749RZwCcShSqQqMz+cn5LKXxInF8/R1LhrjvuoHOWLEKphSrCEiLTMuFTRBtFpyx1Y1ApMi+RTCVF35x8SsWZjk4r2rb5zPbklNPNts2QlsrsJ5BM5yzD0INuLZIxZ+ZpQYklEdkfjhilsNZwcTggZMZhYNv3kCuLnykpMvQDYjQheEJsH+yMmw3jMII2LClwOB4JfkaVgutHDJpYI1UERZtltWbAaIMqiRQ8WtqxzAj7w55KxShN1zuUCBwFrRRX4hm9sxipdNZQcgUpdJuOzsHJ3nDiwT0JXvrFf4gv/ZI/yPf9nb/Gd//A93D/Ya18r6ysrKysPJKsQu19MA4bPvPFv4fXfP3Lufv0SYQd7Cco+7aQus7NRt+qtpw2x0hZZkrKiDJIiZTg8X4m+oSfJ5KqCAJKUUIz+Sgq4KcZ5ywpehwVdyqkWum0QrQh+CMxerSudE4zdIa9n1FVk3Kld5ZaKksOGFXRIggKpNIZQwYohZIyvdIsFVQ3EmtpF7a1EpaZEgrjZkOJkeViBwLOabbbDfayipBroqTMMs0kLbgi1L5jHEemmPA5MC8LnXbkUsFqlpwxLkOADQVJG7w2hB5METjCOG75si/5CgyVP/E933ij3/6Vd+PD73keX/lHP68tEntIpO14l2lIagLNT21pey2XbqcJDIoaI/PxQC6Jse8oORHmiWU64peFWgWqJgdPqhklgpSCFUO1lan6yx1kgAidMfTW4ZSgjaLkjHEDo4xUqZgUCDUhB2mVM6MhQS6JbDRJJwoVXSoKoIKzir7vGbues82WJ9x1OyfbLcZYpmlmv1eUlPEx0o0dRiv6biCExOKW1nq5LFitKLkwe0/nDEY5TsYNp5tThr5jHAesUhjjOC5tLm8cRpS1DK7DGEMRoWZhKpnsJxCD93uM0q29EkWVgjUdSjKVSqwBnYRYErFUQqksMTL7SD92uNmilWCNwoklx4DSit72DJ2ilEqtFTtZemPwZxsyHVel2fybO3u+8iu+iuc846P4J//yH/FDP/b32S/rTraVlZWVlZVHglWovQ+e+xEv4jte8c0M5iqH681qPxwr6QA1QgqFZco4Y8jVM88z+8M5KQrWdPgSuP+B+zns9hhASiZLRQBEUdEsOXKYZ2oKjL3jtpMt6biwSxmrDNUV0nwke49xQhHN4itOGypCKQsla7TWOOc4TueEVBkGhyKTs+Zkc4XdfscSF+bjhLKOYTuSsiJNR0oFPy9Ihs1mS1kCNUXqpYve6dUTxr7Dh0JnhK3tULVSayaXnt08MfmZq1SKKA7zQomZbW/Q1jDPGVMjo7Rda0OsJCkcp8SV2yxpAh2AGfRdlhc965O5Op5yfTUXuSl45pOez1/+3u/iI3/b05EgbYH1DjhvS6zzBSgF+dBcTo8LZF+xFrzPxDhjlaF3Hc40V0VDW0NBDOS4UFITICUncko4ZxmHgZA84iGpTKoZ0zsEcNowDB1b57j97ASnW2WomDaHmchopbnj9tvZXxzYHXcsPpIqRB/bTBZCpzTWGQQ4247cduWU03HgSXffzZOeeA+960CE4zSz7TvGoeN8PmLtQN1U9tOeQRu248BymOh7zUnXcfQTm8GyxAEAJU1MSs6UxRMFPJ5IwWpF1onRdSgUlIrVgnGOOozoKpiha22VKTMfZ5TSmMFSS6DEhNYGSiJS0LUdoxgWlmUhFjheb0vErdFs+x6nDf3kGNxIcAt7o5FSGDY9MSVmgYOf8PkqIY3cNsNwhPGukU9+yUt47gtfQEHxA//8h/BpdWxdWVlZWVl5uFmF2m/COGz40HufyYm6yrSHw0Xbi5ZnEJ/bgukCvkamw5F5aU6LOReiT4QlcL67xvW3vZ2QM85qOqMZ+3YhZJRi9pGL3XXmxeMq+Bx5MCycbDZ4rXGmR04yJSkG17H4GVvBDRbbOXo3cAiZ+XBguznl5KyjP7kbSiLNC4hwut0gSugHR4gLSipx3mM6Q42K7diz+AlolbR53oEIJ6cbNjHjnGJ7dUNvt/iUiSHQDT1d13OYJpxdKGTmUGF3JKfUFnprx/nlLMvplVOUgdlHTgaHiokqmewKb7sGd5SK0qAXYdTCM5774fydV/5d/sh3fiVvvf72G3siPM5Ronnesz6Wpz37aW1p+oFmGLJvIi1ctCqaoXUQxgBxqlSBcEhIiqTjTA6XJjNUSi2k6DkcdkzLjDIdoivH3YGUM85Y+r5rVvyiCH6PRWEq6N428wulGDtHp1uVqO86SkkcDzPTcmSOCVUrWjTjYAnBtnMzF7QpuNzyaLQbus6hFdx29Sp3nN7GbVfOuO8Jd3Llrg1cBQIMuy2n257+uoNzWHKlVjDWoAxkX3CnIxe7C8J0pNcGbMc4CKVW9vsZKNRa8NFjtCNLRJQi10j2Ee8DQzdglDCYNjtn9IhSgq+FOEdKzQgZqpDniHL2skqvsKU2Meia46SuUFNimWdyrYgxLCkR9ns2Xc/iA4tbsGagSmV0I6kUIBJ8pOrKtd2OK+dn3HP7HdztHVeWitwhnN5+xnd803dx/fxB/v5//CfUhyxjV1ZWVlZWVh4WVqH2m/CUu5/O//zqP898WUkrE+x3lWWKOBIdmpBSm9kq0JmRKSn8dD/zYUdObUfZyckJcVmoZAbn2tJcY9qsWF2IqRkl2K5HiaFqy+7ocVZxsunY7SeCX8iF5vroD+hZMW5OWzujCNoqnBGc6eiV0LsRxi0xJlIF11lKSZRhoBPDYZ5wnUVpy5wSrlPkmLHGosctUivD2OzIRRT94Bi3J+jjTFQaZ7vmTAetxy3n1sZ1DJRc2Gw3VCo1ZyqwzIFlfwQr1HCKHkG2MOWFU3M7FweLscIg0M1gJs0nvfgT+Y7w3bzm+1/BG9/+a9S6XgjeCJ5297P4g1/++dz1hKvN1fEAXEC53j64iDMcd9Ar0AqUVJRpK8ac1WQi2mokCCUkzo/3kwGnNSpXOtVTLz+kCCHSWYfrNLlGEhCjh1rpOoeIbiYkUlACRhSus4AQlhlrDacnG0QK1kT87PEpUHLCiLDZbBmpbNNIChGjFP3QMfQ9p9uRJ959D2fbDXecnXFy5xa5XWAEUuv4tMWy3WzJWnP9MOFD4Iqx1FTIri2l92EBgXEY0FoTa2U/Hdk4jfcLQUHvekKcWULA9QPOdTilQYEzBmN0W32RZkRrnBFSSEQqSjTODfgYyCkQYmAYmytriJF53qG8xXU9BqHkgJZMypXjxZFUK9oYSko4LcyLIHWPsYZ8kvFJQ81UXckhM2fPHALz0ZPSE/Ch5/akMEUw9xie96wX8C/+y7/mYl5nSldWVlZWVh5OVqH2XlBK0duBeulklxcIAXIu5JCYkydWKJe7yUQrpGZSOiJk1KWBR+8sp/2GuRZECjFncgWjDFIVcc4QKiKQBJx2aFFkMsfjTOc6+uGEqjU+tYXSKMsSAqXM7eLRDZyojs12BKCWgKqOk+3Asj+yxIRkYSyGcTxDzhSHeQIRYsqYFDi/mNACOSwMnUO7Dgpoo0AL3dDRu47RjlCgc5bd4YKajpSaMbot15UKJReC3+OMRVSPD5EyTZTcLP8nVbAGxDfBF+NCLIIqhhRgPgpbDe7M8Fkv+R0sac9rv/+1vOWBt964E+JxSmcGPva5L+KpH/ZkCDSRdoR6gPk6XH9Hs7hPS2YBOqvIpeWJNUItCrSlSm3W+04z+Yr3C14qzcJQqJI47g+UksEIc/As08Iw9HTGcLLtWeaFkDzWaBQCAss80RlFFkMuvj2+76HCbneBDD3zMkOuzaDDGFBCLQWpCqUVVmvGYcvQGbZDzx1Xzji7Y4O+U8NtQEd77QKyQB8dU4xcOT0l+ESIHg0Iwm6/IwbPlZNTtNGEEMF7ToaRGhKl5jYnWiI5RJL3SAWpwvbslLEfMUqwxiBoSlaU2ubqas5oo4ihOTt2tiPrhA+ekhPTMTUHyFQoccbHmSwGSmyGRj5xPEyEWtBasRiDFug7S29HdI5MywERYXt2hX4wLMuCToUQdhynhTks7Jfb8f4KT8iOXgl/4iu+Fu89f/kf/FWuHc9v0Jm6srKysrLy2GMVau+FO8/u4qu//I9RjsJyAH+ENDdXu1wq2SeWFKg1o0XRGUOpAaMrprOIt5RUKEARwRqLlNhMOEoTcfPxiA8L1licgNaWxc/MU0IpwVlHSBBEiCKEkliCByWMfU+uzbxEKY2xmopQdaHXhm3f02uL6XqcTlhxBKlkKUBlODtFtCaVxP3Xr8PmhFKaYBzsgFjFnDzKGJwxDKpjqx3GaLabE4yxnIyOt98P++WAdj0xZCiRUiNhATqN2AIIuVSMaiI3msqSPCZniglsSqaEBNriJ6ihYkXoBLqrHZ/6os/g7/3oD/PWB962tlc9ihhl+R0f97v5+m/4E9z75CfAkWYiMjWhVjzMh8JyzOTo6ZwmBai1UMlQLM50xLww+4l5niilEGdPrgmkoqsGNEuIzUwEjfcRZSqdtkQfIDWBknPGGoU1zdBDEDrr6G2HFggx4JcFYy0igigFpbDZDojSlFJJtWKsaYYZ1rHpR0qpuN5xsnH0rmMYevTtFq7QqmkGcO1LVTACm9RhU2V0jpRcqxyXjJUrnPQj2hmmaWHH7rLyrBm6jlzyZfsnGK3plMWHCEyEzjJ2HUY7JEecNW1foSjoe3ytSI5QK9O0tL9DJVJKQRuFM7btWtOtah/CRKKwzDMX5wdCKIipaK0xziKiCX5BNGgdSUURgkdrRbfJsFR8yJAm5jrRD1t8CITY5t40d3KPHjBPFL76D30d47DhL/7Qd/LAYV2tsbKysrKy8nCwCrX3wrY/4bd/wqfALKTQdqSFKRGWhKSM0CppNS0YN6CMoiZBI4hWuN4yhwQi+Ev77043W3BrLG2fr8aajr7TJN/swWuB3TQhIiSXwAhyqJQKRSpVQQkBO44456jGYKzBGU0/DGy6nq3JDH2HqRp34rhz6Om7nvPdnil4Ykz0nQNtCCnjp4AVBbT9T9r0FAFtdLugFYOtUGNhXmacsRgtaIHtpmOKB0BINRFLRlGRKtRcWNJMyZVh6KiqXTznXIkpEfIRvCEGy6JA0IiylCLoyy6q3sKVkzP+xO//al73+tdx/XD9xp0UjyM+5mkv5tV/8pU84wVP5r5nPrHNpF0AC9QJ8hHC0rpel+RRuZB8AVWamBbBukLMnmX2TIcjx+ORFAK7wx7jOmynATged8QYsMahtKaS0TVhSAiVklreKWuwtoeYiN4zjiPj4OicxihFWGB/3GMvZ9iMsYgYdIX+pKfQHBBLLihtQVWG3qKtQyvNtt9wcrKlO3WtitbRBJoC2jpCGEBthc1iyPtE3xlKMUQfEYHeJGBAHpqfc4YLa1hCIlWhSMWoSk6RJVYsHcTWmjlNR6zSJKMYnGXoTumGnpAKyUecEUIGLZUcZ44xEVOmtxp/LGSbEKWpQEoeZRxhmZl8IKVI9JnOdbjOUa1u7aBOkVMkaI8zDmMMXd8TU2b2Ez74JkBdhw8JZxxaJazRvG1w9M5wu7F0T+748j/4UtCF7/iBv8i1dc/aysrKysrKB80q1H4zSrtGKwnKoRL3gRoWVC2k1PYV5RAwKKiJnCKGynKc8T4gupBjQHLGWUeJHnLFaA0qIBpqSbiuQ5lK8IGh0+RoqbrtYCpp5sFrO7YnW6S2Ga4glRJmfK7cfvsVlGpLb3PN+HTgyvbssvpQsdayPRlQSnHFjGxrz3GJWN2DKPaHI/fcdTv73Z5pWdgfL9C2o4iidx1SCzVlWBZ8CNihJ+eFeanokqF4tAJtLKFkhhODKhmnNfMU6XBIb5FOU9NE9B4/J2JKbLqOYeOYLvbU0i6gezdgNgOioSiBGZwYnnj1XoxeT9dHEq00z3zyC/iWr/lzvPCTnsXpfScoJW0u7aFq2gXUPSx72F/PLIvnuL8gzjOD7emtou87RCoP3n+kSKGmwnycWab5UkBpQgiIOKRGYpwpVWEU9MawTIF5mShKMfQ9SgTrmojonWOelxav1hjTIQimc4hMUMEfZ0RVwDD2GjVu8D4SQ8TYAWM7fIos00TOgbPTLX3Xs91sue3OLWpUTaBVuNwfDYnW/phoLZAbOMVQoiAG+ksnyjw5Fr+QBaRUnFLcfnrK3i/EWiAPKBGy9uQq1JIw4vBhptRMLIlNv2Hot/Suw2pLLjMAQkWKoLXl5OyMspuQeqTkViWvtL2N2vSkWigxv7Mip62m04aSI2HOVC9YZ6FkasikEiiugFTEZ1JYWJInLZFE2+1GEaBQyxWs0bwheSqFwd7NpleM9274ypf9EQ7zge/+u3+Zg19t+1dWVlZWVj4Y1ivf90oGmhOhkUqMmZoCJQVSrvjkm3MbrdUrxYKVilAoIuRaWPzC7jBj9cASIzUlZn9EjCdngzaZXnd0Q4ffTaRlxmiHqYlliVg1oJVldD2dskzTRPQRrQvzkrnzymkb6FcalKZmMKNhM3SEaca4tgg7lsTpdsPgHDFHzuSU/W5mOkZOT08JviPEwGGZcZstVRnOtgPLPBFjRivoekupGlGFlJvznFHQ9VvudCNFGfRxYlZ7SJbiA5SC7mi+7QhhiQQyYBHliClTKogI8yFR88K43ZBqISTNUNq7oDOcDFd49n0fwb+5uP9GnhSPWZ50x1P5xpd9E3/wSz4XexeQBJlpwuRIm02b297AmiCFyjInaihIFoTMMl2gBod1Gtv1LPvr+HlBiUa0oI0gFAbVo1VA64qzFsUJmLa/a7drs5KDsZSckFrRnWMJC3FZ8PMECN3Q0/dtnrNUxbJk+s0J5ESpzWiks1w6PjpySmQNxjhEWUwtbLuOcRgYu56TkxNOTzdIL7AFNO3kmwELRGB51/GSImBAC6ClLQAHtKoMpuNwfmS0GqMcRx9wneNksKjacZwXClCrYEyHopIprcVRtXygVlJuDibGaiS0WdYSZmLJhJKwTlGlJ80eEcFpS0yFnBZOxi0+BmIJbcG1NRAKKUAUjxscNUV0FbJ6qFxYEIQqhSoVSqIQsNqiRJoDJ0KKmQcfuM6030GpnPQdH3pyO/YMurs7nvq0p3F1e7YKtZWVlZWVlQ+SVai9B0QEqx2ShOwhh0r0C/MyEVNgH2aWsJBSRV/Om4xGgbGUUimlUCjE0D6RLq6iRBEXD4ASQLd9Trp3BAWx1MsdUpGcIylMyNgcF4e+x7qOU+PYH87xYWHTb9HGsMwLTipJKkULXd+EzrA1OGOpuiDGUDuNHh1ObSg+U0NBJcWSPCEe0QqMZKooTk97jHVIiKhUMJ1BDw5Ta1vEWyuqFpSxWK0JR89hORJjoUSFloJ1HVvdcZwjsQQQjRocg+6oouicoWKYUsFahZVKLYUyRdzg0Lm1m3YdUOApT72HV33Ft/LvvvFTKKW89zdv5bfMfXc+jVd+9Wv5kpf9nnbH8d2+PE2sXFaTygVM57DfV7yPHKcDKS9oUYiR5oCac9uTZiy75RytFTlHEIVxDimVzmpSTaQcCdHjdNfcDI0gVGJoFWZRglNCQVDaQK5waViz3x/wwaO1Zug3QBM4iszWDihRWKsx2nCyOcG5TCoVrS29s9gzQUmbO9NKoa20RfSXxiHk9pqxtOqav/xK7d/kodOw0oRdBbRQc0VZAyVjEYxUluO+PRdCCZkQF0IIKGWZwsQcFoyynI4biIWlLJQc6fseYwyuKoIShs61nYoxE5NHpOC6SkmFlHNzgFWaFGZyjEguOFHECr4K2ilqNkjKYDKlVnQRjMqY2t4fpYRaYRxGrOkoteCUpneOkgu1JHaHhcOkQClO33yFk7NT7h4dpofP+8wvYv+Oc779B7+Tt56/41E5h1dWVlZWVh6LrELtNyAi3HnbXfze/+nzGBjxM5RQCMvCYToSciBJxeeEKEXNlWv7Cw4CvXVtb5FkagUxmqIgLL4tsaWgpGI0SLWkUkgx4fd7cvA4Z9BF4SiIgZwz0+6cGAMnJ5rNdsuVs9uY5rbsFhFEBG2lLZ82gjaOeY5IB2NvCbmgxJPLtu3AKpWSMss8sT8eOMTENHlqrXSbDapGrBWc0dTeIhJJVIzSFJFmxFAqUhPVZ7Kt1JLJPuAnD7XQuZGSIJRANpBruXQB1ChtEGkzd94vGNOhtTBsNpxuNqCEJUZM6NAaSgfaNhOXKm0573E53OjT5DHF537KV/DFX/W5TZic02bRJloFaYLqgdIWvB8vKruLyrRv1vA1B1KaqT5Tc8YYYTYzPniW+Qi1LXcXmrhPPmGMboKotH9pHxIYjDHUPpNKQgqUEhEloBVj11FzIodIjZkSI3POhJQxxhBzpUgzoRk6R6kVqmoGGhKx2tA7fVndBSVCFTCqApmwLBTfIVYjk7Se54cqaeryQLWHNgzvml2LNPGmQRToUbBREUuhloKqhV5pfE50nUFryD6jtcZHz8X1PT57xm5kmvaonDjbnjRbfa3RIhhVMKViFFitMVJY0kKpGV2Fzmq0taQKs/fEJRK9J2YQqdQSQbW1IAaDSEEo6FpQtulMRaEz7feoWtHGUjsh+gXrOmqtLH4iSyVXYeh65pB5+/k5b7r/gm5zhavGYu6Bl770j/Kv/69/xf/2k//skT59V1ZWVlZWHrOsQu03sBm3fMUXv5Q/9kV/mHp9YJkhRIg5sl8mlvlIVpcfuufW9hWPM/sY2Qw9vemwtpJCwk+J4AOIZYm+XShZwUphmieWmClSKaW1UlUlZKmIdXSdJSwRLYoUYFkm+r6jswYzDoRQUVRSSRRxiNHEmDgsC1ZpnOpZPBgtjK4j+IA2GnKlLJkpRI4+kC/FYk4FYy1aNNkX5jQRgyfmQlaKmKHfbCgUjBJyqiQp9LrjZNNdtnDtUFU1EaozBE/NCXSz4a81txMul3Zx6RRWCT2KTlmU0hRoIrB21ArL0saELPBhT3syf/zzvoG/8IOvvYFnyGOPK5s7mtg4p4m0i2YWUmaoS9uHVgssE0w7SL4yzxPzfk+pBa00QaW208xZcgoc5oVSMtt+pJAICSoFZQy6mTFCTUhJdE4jFN4p6VKh1IjS5vIDDkjBU2JqBjdyWfW2FpSiKuG4zBhr2ZxssV1HFqFQ6KwmhkxVkX4csbqJxFQT87RQ3GWupcT+Ys8mDbgr/buqac2I8l3GIoX/fn7tePm42r7XUqjS5r9yyuSiyVWhtKEsczMyoWBEiLUQYybERK4FESGESFSG/XGPs4bKkRRjewJR7YMZ5eickGOgZPVO0ZnFEGogpkiIM6UkalUEHyEVSk4UU+j6HmctpkJnNVYErVSbQVUKc/mBE1JJOdP1HbZzLCHinG0fUkn7W3WYjlw/P+eNv/5mrK705nZOeg1PhK/+8q/np9/43/iVB37t0TuZV1ZWVlZWHkOsQu3d6LqOe67ey0d9yHMYyhnXd5XdLrHMkYP3hBSJoqmUd+5AUigmv+Anz3FaON1s0DVTSmCaFlLKuL5Hi0NqYl72zHMhRUOVZoIw9Aa77UghkUO5rJaB7RSmc1Bhs9lSakHQGASlCzlGQg3UmOn0Fl8gH2YogjYK7SxbO6DNQMmB+Tihq0ZSMyRQpsNSuEJHSoklBozuMIPBh4Wleo4+oPvm7oZuDnrBL4SUqbnQd4qz7SnbMVFL5vxiT/IBrXtSiKSwoIceozQ1tGW+rteUWDixPVYLp5sNnWq9Y1brNjcTElGB1ZaqIBo4u23Diz7i49j2JxyWdbnuw8ELnv5ivuQLPh3ZC+ya7T57iHuYD5XqW+Eo+srF9YWcSrNon+e2fqI2k456uesrxUqVZqKhVBNuyxQvZ8vAWEtnW3UmUMlFE3Ikl8I8HyklkXO6XOqsSSU2B9QY8ceJkAODG+m6jpQzWrU9bEprkMycEyq3dr20zMhJWzxdS5slLSmRYuRwPJCqsLEdSrd5rWlaOB237cAU3lVNi0BPE2iaVmnU7f4q9Z2VtZwyNVdEBB9Se31UqjRD/hAzF7sdx2UhxoxfPMFHrOsIx8DkZ5yBGjMiYJ2m77s2GybCuD0BrVGmYnLLmxACIQSqKEIuVDRaG/puBKfxaWbJse1JM5feKKng0Bip9NrgnKPkjNl2iEirqmHIacIpwVjLMGzY2sqyGbj/+gWhJIKP6MEQSuTa9Wu81RnOtj3uZIs7Ubzw0z6Ov+H+Fl/1yq/gDfe/6dE8rVdWVlZWVh4TrEKN9un8ZrPly3/fV/HqP/1y5MJyeACmA/ilcL6fOZ89IUNMEe8D0KoKZQko0cQYmGNGa0PnDCULS4bZR3SeUSqzORmo0ZJiRNmBUtsFXIz58neCkUKtrc1MRHGyOWF/3LM/7LHGkVwzLjjddoTg2e13DLGnKAvWsj96QrpOqb5dxNWC6R1pOqKUtNk2ZYlYhu0pJQaqy3AUJHlsb6EYjoc9yhg6N5KBguK4TFArRqlWbJBKQeFLIYQJ4zRGQVaCX2YOhwv6cQTpSDFhrCHHgOtGhttGtuMZxmmUcVRVqTkiRqOsQQkU1fZISW3tdzLDp7zohXzn1/9lXvFXvobru9UC/ANFiebjPvwlfN93fTdPfNZdcB3qBZRz8DsIExwuuKwWVZbjwvHQxFb2M8kHSslMxz1Hf2Tse7abE5wVlAjL/gIpQj90VKvQulnxj9ayPT2h1MThAN4XOtUzh5llOVJqm/HsjXtnx6ExhjQ38x4l7ffMOWKkYnJbEl9EWEKi6IWcK5TWBllyoe83WGeoJaNNyz8xFktbMSEi2H6DU6rtXlO0v4yGVimrtMrZhndV0irUWCm+ctwHakoogZQiJQuRwmGamIJncI6Dj2SppMsZVu8D++kCpQaMUdjOsPjAToTtZsQVgVQpMZFrZeg7pnkmhoTStAp1SujBMAyaWCrVR6Rquu1ZMxIJkeP5QkUhWuiUogKmdzilKDlQRSgiaGsxVei6gc24wSqhZEvf9/T9SEaYYyFev5+hc9QIMYY2V1oL03LkgYsdb3twx5WrI7edKdSZ8JTnP4V777yXX33gza0ddWVlZWVlZeX95nEt1JRSDMOG53zkR/Pcp3883/INr2H/drh4oBL3mXkXOL9+5IHdjt1xYvaZlDU1a/zkqcmQsqdmj1OKq9sNKURCivhlJovCOkWRhLWGnNo+IhGH97FVFWIh1tIWyGpF5yyiC3fcdgdObFtoLZkQKkbbZnigFIfjBLWgtUFpS0ERY8SXxBQ8viTmOYHugT1nzmBEsRwm+nHL2I3kLBQXCfPEMe7Jsdmo56zaTitb2RhFqpWwzMzeIzVz9cptXD07JSwzhcB+jkgpaG2550n3Urxit7/ADgafEz4UdKmQYnsNSmGqIuWEkQ5jNEYZpETivCCjwp06tBWitPUISkFchHHj+F2f9pm87pdfyl/7X7/7Rp9Ctywffu9z+OZXvJqnPfMpsAMuoByaUcjxCOEAMbTdeSUFpulADJFcMmGeyKRmi28VnW9GE4pMbgoeow3DtmNwI6XCdnvS9uuJZr/bobW0hddGQYYaMh3C5ANVQTKFnDO1gAoBsZrODchli6AxmpQSxloQIYZAkcph8hhJWA3YDVnB7njgdHtGZ3uqcSSTSH4BapsjrZXgJ9y4RZxq4nSmVc0eqqINlwcu8a75vQWWKRFCaE6oMWKN4Xx/JJRCLoWQM7v9AxTRpFAoSgi5UhC2wylJCU4gRo/qFOMwst1s0dLaQIWCcxaAWpsDZM6JEBaGricnyDWRS2mrL1IGUZRaWnU7RbKArQ7nHK7rGazDKtCiCCmAwKY7wVrF6XZkY1tvp2aLMQbrHKkU1Hxk6bv2oZJ1OGuxQ8/hsHDhJ5RS3H/9lDuvnXFyusWdCE+47R6+7U//Rb7+276Wn3z968gls7KysrKysvL+8bgVan0/8vHP/3he+JxP5Mu+8Cs507fx9jdWrr89c7hITOdHCIn97sCD53sOx4mQC36KkCLZB8gRpSqxZDbDFmhLnme/IFaRYoJcEalkItHPaH3ZxjQ6fMiklKA2u3FRBbHNItvHhUJmnhZiVnR9Rz9ssdaxzMfmmpgURmVyTpRlZo6B6bDDKMHpLV4lrl+/QCqok56lVKxUQiiMJ1cQbZlD4Hg4EnLFdj1IpZbK5qQnxBk/p2Y9HiomVXKt5JCwp5YoCzFGoFU9tOlIRaENdEPPbdqSS2F3fkHKkVQyKc3kBMG35b3j5gRoF5tGKxSlWZ6TyUURayFHwaIoRlCe1k5WFEo0pa4Xfr9VOjvwwme/iPvuu7fZ7l+Deh3SHuYjBA9+qZAzKUay9yzeE/xCyYHgA9vtSGcs9AN7UWgNVCGlgHWWzWZEizD0HYWMc5aUEvM0EWICY5GsoDSn0+YmaugrROo7Z9DmKTAvC13XMWw31NDaJIX2fKVUcq64viOWZlYiqpJjJUsENqRUiTlSq3B9tydET7icnzTGISissxRRFFWbSHpo0XWhzacZ/vtdahkQoXOGEDUhJlLVhCXhQ+AQIsoYRDQpgzKgncOkhLYLtjqkJFJIhOwRBK0NGAg50mmNvmyBPh6PKBE614M0AavEUGvBWovkyqAUdbNBL5FQKzG1BdzGaaRUtCp0otho23KswNg7TsYO3RksjqHvON0MbF2HktamXKtgnKXUQt85tBhKTuxmT9GaKopdWgjRMx1nduc73vHAda6cOe4cHKKEj37uc/iWr/sWXvu9r+bHf+m/kFfX1pWVlZWVlfeLx51QU1pxsj3lE57/Yl79Na/iyXd/GBfX4S3X4HBeOd4/c7g4Mh8XyJ4pJJZQ8QnCHJoNdgyU4CFHUlxQurLIEauE4D21QPCRkDydG0g54X3BaEOVNn8iygBCZy2d0RirmeMMKqOUxS+Z43RAK0EpB7Xgl4njtGOzGdmMp/j5QEowTQt58a2iNu8puiPaHl0iu7Rrczm+p9eKTW8ZO5DpQBVFVRoRTddZlnlhWRZqreS84HqLM21FQGeE4xxZsiL5wHF/pJbYxKjRoC2H/Y4YItZonHIgmjgHqBmtKt3gQCw5V2rNnG0cvak4BUprtBK0NGOJaXdEjx0hZXLVFGXRVhGj0PUdv+PjP42f+Ln/wOt+8Scodb3we38RET7rE34vX/1H/jBPvOOONpc2QTnCtIcww3xMHHa+7STLCzVnZr804xBtOTsbsMZgFVAKZ1ea2NZaQylIzVjVzm1RBWc1ITVtY4xpjxPB10QOlZIiruvarFWtpBBACX3XoY3Cx4DWBWU1S24zZk73aKMRFN5HbDWYwaKlmZFYZxAqIXmUyly77rG2a1W6mlm8p9OtOpVywiTw0wzbrrU42ssDVmiW/PAue/4MNVVIkKsgypDLTK2VGNtcWkmVVDKut4h1xODRVIxIc18ltbm1eUZEON1uyAIhRuY8Y4ZWPay1EJaAMhptMwbBKNuEKs24xFiLLqrlW0zUKsQEfd9RsCwxtlUAdcemszjVcq03is04YLsOqw3bzchJP3DSd/TGUZWm1ISxDp9zMxeJkePUYbRhSolDiDjryDnTdR3TdOTtb387J4NjNHexrSB3Cx//SZ/En1Pfysu/88/wE7/8OtYmyJWVlZWVlffN40qoKa34yGe+kL/0mm/lzN3N3VeewuEdcHiwcn49cLyIHM+PHHZ7lmmh1AQooo9IFYxSLMU3J7UcUTkSk8dimOcjqSpEmimJ1ErOM+GwI5aCqqCsoWqDs5rsE22bdiVGgeLwcQ9FYyyUWPDLzGbokZRIUsgSiD5hlWHqPSlkCpXkIxiNpgkd5xQ1RkQ7UMJxPkJNnI4D5IJfAtOy0PUDruuhJmIMoCDF1pJpnQUU2vTN4KFCKpFOWUpMXDx4jVI9gsFtR6qBQOWwTKhcsKrHaEeKkYKh6zvGTYd2hhIz1miGzjKqipKC63qUEpq7XSV7QRaw0j7VL75VOSRDry0vfuHHUdVr+Jpv/yO8+R2rq9z7ixLFZ7349/DMj3w6XAMu2mzatIdpgsM+cX79QPABS6GURIhNvGul0SiGbiSF5fJcN4hp02SCYJWFWumNoE0zholdZpom/LLgnMM42xZQBxjp8JIpBZw1LN5TciEuM0YE13eU0naDKaXQ1jTRojVd1zVzk2VingUbOwRwojAb20RciPTOUC9n3yoZqQqDQonCOEtKgalEeiOk0hass9D+Ogqt1bHnXUuvJ6hLJGVNFiGETEilzY8BGSHn3Fa++dxWG6RERTVXVKUQ3VZ7aNfWXYzbLaI1h2nX1mUAxuhLF9ZESVAR6uXQ3ENumFZZSmpr5AXoO0dZFnrX1hmkksk5o4cBSbnFUaAbewZjcaIZUDhj2FjLxllOths2tqfZc2ZSregYKV2P72ZOtiPMAV0dLAtKKbabLVY0pVQudgfe8rYH6TvLk8xVTnoBJ7zwEz6Bv/ra7+crX/7l/PSv//yjet6vrKysrKzcijxuhJrSimc//WP4ob/6t7myuY/9g8L9b6nkA8yHwvH+iXnxpAIpK3zKaASRymANUjJBhGWayLFijSbGGa3bfI7fH4mXVQQjFuc0fc4o69iFhbAcMdpgrUMUlJIgBYyzSAVrQM2VWhIKTQ2V0Y30tqcET00ZMYbtZouxPYfdnsNuh+4MGMG5oc2s5cpmOxB8YDoe8Hqi73pEYBxHitHsjkfGmum2p6RYiEWQriN5jx4sNWtyBVUSS0yI0pQUCEtA9wrnNDksLD6SaU53fTbEFFHKEpaZqha8b/bkndV0w5a+s2Qp5JoopSC6MmXPqBWpzuhqQHWUCqiMNR2RiqttzYCIkDPECNYYnnDnfRhjqbW1yq28b842t/G5v+u3t8rQ1Gz49zuYjpXjVNjtDkzHC4gFd+k4mlNqc2ei0FR8mBldz6a39FawfYeRilKavutRFURobX0hUKtCxGFsR6qVmMGHhFDYjh29FXKpdNYhxpLSA6Rkubg4YINvtvq2uUj2fU+OzXhHRLDO0OeOeVpIxwU0uGEDQKWSYuW4VDYdFL9gTPuTV0Te2W5YS2Y6zJRemKYAyuFyazsUS1NACaqvlH0iLB5yIUjl4CPHYxMrlUx6yOGxZKL3uC7hNNjOol2HnyZMVqQq9NaSg6YIhJjotMGZDq8CpVRiyhRjmkArhWk3oRX0Q48yiuATljZjpilY2z4EMrq1Fec0Me0iORd65+g2A+OlSFbScqi3ltPtFq0qpkiLoYLWChkUtQriEyVVVPIYCttubBW10GYBO2eZl8h+mkhZKFHxwIOGvtdsNwPjZkA7AYEPf/5H8Pe+60f4wq//ffzMr//SDcmBlZWVlZWVW4XHhVAzxvKcZ76Av/xNf5U7+vvY3S/MD1T8vnDczRznSKoFHzIxZ0Ryu9gJe3RVzXltmpmOc7MOV4VcM+qhi9cinJycXu5Mg1xju3gyhqt3XEWdXyeNPTW3K1ilFAVPCQFVAs4OdKbnZHNKWCJD70hSQDJGFUqvSSHg9MAwjuzniZg8yimobabteNhTS2ToDOcP3I/SGmMdzgwghegXDsc9Wg243hBy5HjYo62FnMmiqRj6zVlrzUqZ47xrF4NGSD5htSEtC2lo1bYlenJV1FDJ5ZxSMsZatsNAColFVWJNlAJjXAgmI5nWFjf2GN2MHFJOVBG8FJCE1gNVWYKfUUqhrMUXIS9Q9mCkzfyc9hs+/MnP4lff9HpgFWvvD5vxhP4O13amJfALTLvKfl+5uD5xsT+QloWSEyHOGKOIOVBLmyuzbmxrxaywHRxnZyNm20QNtN/50PyYxHanNop+cOyDoaRMbyyLn5uDqHY4N1JSRIsnVSFeSWjd5kJjSHiZAej7/vI9rkhpe8SsHZqTqe2Zj3syGVSbw0yp4pzChIVjrPS9xsplT2Ot+LiwPz9HVMU5R9c7ur6Z3ZSlbXXDC9jaqmk8ZPgo1Cp4v5BC2yOXKZyfXxBTauI2ekAwFUzVbDYjANnoVol0Dm1hGO9gnhbmsDAddlhrODs5aZXtUlgOEzElYsx0vQFlKFqRpKCq4hgXOtdhpe1q0wLOVdISELFoNSNKY63hyukpozVQM4Mbm/AdB5D2IYg2Qk6FVAq1VkilzbfGiA4BWwUrlZOhw2SHqBntFdnPXDtcw/uAHdvaBOMX3n7/js1wjU1/N1eMQUyrut73UU/hB/7C3+WrXvVS/u83/Cx5bV1eWVlZWVl5j3xQQk1E3gjsuVwPW2t9gYjcBvx/gA8B3gh8fq31+gcX5geOtY6P+chP4Ju+5pv5kLufwfIgxAcgXhT8YSHOAR0rYQmYmiBnKIVSM1I1tVRCiEgFcsFp1doAcwSVoQiHsCC1YKvCKEXNMIwj45Ur5FSgZlDC5mRDCglVBGszSV/uRTMKskfFxGAUpydbZue5uDgnByESWluZBlGtTSmkQFg81kCvO5RVpGzIIRJywYhCauW4TFw5OcMY4NK8wHY9zvXEnDgcZ0Dot1uUCIjG2I5QPXOEVCog2N4S50RVimmOoCpzTXTdCRYDGTptscoSl0RBUEbavJJWpBo4TJ5eabbbM4wYUspUVYlLxowDWrvLZb0TsSpCqYz9hhoDerB0VWM6WJJQAtx355382T/ybfzbn/qXHOcDWuvHrFh7uHLNGt2qaXObS8sejlMTaefn50zzhOSEnyZyykiOOGuwRlh8wGbotx0Kh9UG1WukkzbTZWhKZk8TbA4kCSkJKId1jqIKpWSklNYmmNpWaWcNJRfGrlDqKVza2Oda0Uohl+2ESimobQVA3/f0XU9nO5YUGXrD/nCkFDCdZuh1+/Dg0pikMwPOdVirIUdstQxdhzIKZR3GGmJqS6hrKnTW0I+GMhdEtfNKKejHjuXgKSmzGSyI49rugNJcGndYRjUgtXJ2usUajfeenBIptzhFDMpZfIiUPrfqX2ni0OgOK5Zl2ZNyIqVMkUqogilgcqbW9iFNByxLIChBp0wVUNogytB1HX3aUnJsxiQloUShtCbVhM+K3cXM2Cf6ziKi6F2r5AW/4OjaB0G50BnFyTiQcsZqsKVitELyHi8waoPaaCJQRHNcZuaw4JxwetrTbW5nMIJkECM84zkfxl/8xu/iFd/9Z/jJX3odaXWDXFlZWVlZ+R94OCpqv73W+sC7/fxy4Mdqrd8uIi+//PnPPAzP81vGGMPHfMTH8+o//io+6unPY750tkvHSp4jxSdqzBArqhZUChAj0XviPFOrQBEG65hjc1grRVFzRtOc1WpplbWcClIq202HqZkSIyloQgoMw4DpBmot9EoYjEGkZ54iIUa6fgAKw6mQcyHljNKazeYKaZ7IKVFEqJKoKqBM5crZCecpU3MESZxsT8go5mlPryzaaoxVaK2wpuPKdkuIR6bjgsY0B7mqSXEmUfDn7SLYOINxC/O84FNoBh/WYqpC2UJeAjG1yplWAzFkVGdwziC5MB2PCAafM0ESSmm6sUe0YNAM3UA/9hjXI6qtpaK01i9d2zLvGAshth1wVDDKtNefM0o7rGsVtdyDpMrYbTjOhzaL8xgWazwMuXZ2ddtcCxdIlwYih4vEskSmeWa331FzhhQoOTNojdEaLdL2koWIyg6pmhQjpA60bs6ImuaUWIG5VZSd0tQlMk8zpQpSK+lyFx80G3ldM4jBGoUWTW8dvu9JORFiJOfcWlyBEhOqCuNmZHtywtiNrXodW6UqJ0BlTjYjVjuCn+mdZRg7tLI41zEMHSfDBqQSQkKMRltDzoVlOmCUhlxJKRJVR0Xabj8jaGOpCSq+mYSUynHZc76/TkiRcdxgrG3L5Uult6at5FAQg2aUQqcdYjQhRhSVUjSqcyyxWfqn6PF+Il9WmrU1CIKYZv6TaiGFRFwWorOMQ48qmiVOZBG6bqQilNKMj6DijCHHSDJtp12h7T+rGUo2xGDRcpU8Aqq5rZbDgc62Kh1KYYxis92gkkcVoZbKrA19bxk3jmXy5JhJNeOPM0rBxbjhwWs7rpxs0KrDVdXaSRFe8Ns+lm8u38JrvudV/Pgv/d+rKdDKysrKyspv4JFoffwc4MWXt38A+DfcAKGmtOJ5z3gB3/EN38azn/zR7B+EsIPlojIdIvNxwS+JlDM5ZXJubYvSNlBDLKgqzawjR6gZaw3TcUFKofqFGhKiFc46TDeADzgtWCxKQ4oLV7YnbE9OWUIg58xJ7xi04nA80p8O/P/Z+/tY29b2vA/63c/nGGPOudbe57z26zexXTtfJJA2MQ0xbVLFuJBC0qQpMUQtVkugcuOkUWOiFIUiEpkKR60VEG2hRCmiQiqFSkndqBQBhRK1alMaQwkW/SClDalj+z1n773WnHOM8Xze/PHMtfdJFIk0fp34vGde0tJaZ+215pprrGfM89zPdd+/6/myEpwlbxt7z/g4UfZMt2MjW1UoGAzCZd9oahA1WNsI3lB7p2rmup2xdgITOBzsaI1E8H7GuUjKjVw6rVWmRXleV7aUCc5jBJwouRTePZ8RA+IM3luMM3QUCRbymM1TMXRRUNjThnOO+PCavBX267hWxisOsKJILWgzuBBwU8R6S5wCrRW2vYIq0QR4KUhbpeYNfERbQ8UhYtCutDbw8QSYCnz7N3+Z7/+ev58f/MP/HYAv2rzaf/x7zTJ6EzvQoNZRW4kq7XZ9S6lozgRnMWKptSDW4qzDulE4WGdGBtrLtbZ8gG/MDCZMElyEbbu1t/aRgeatw8SZWjOiyuRnpjhDWGjmAntmagPl32tlihE/RVqpKIL3hsfHV0xTwBlHLjulJUR1BMY3gVoRA8flMCA2xuHsoJsu08RhCvjguVw31pTwLmCNxdtxINBqoYhBriPA3aoQxWENlNo4b4ncC4hl2xL15lb5GECg94a3Fmc9c/SE4NADTNuCdujS2PfM0/MTxIXiO/Wysm8rKW+IdVgfqSkPXP888gZTaaQ+Yj16zRgRVHeMNfQ+8tnWlAh+xtzCs0V0RHaYce1FzM2ltFiB1gp2mhDpY9ZOoNVO78pkHRihl0JvFWMN2izSG9F7lsPMpWSmOOO2QslXriWRy0Blvj0885OfvGGaImI+4htkwnhBAnAQ/oa/5W/ib/w//0r+5J/+f5DrvVC766677rrrrs/qp1uoKfC/FxEF/meq+oeAL6vqnwNQ1T8nIt/4F/tGEfk+4PtuH/80n8afL2MNv/Tbv4M//Af/EN/28O1sb4B1BPruT419L+QqdAN0oe8Jo4NQ56xDXKBLRbVhqGxppSEDikCn5oSzATsphuE4vGSqOSu8fnwgTh7vRj/Y4+mRUgu9VOboKHtGbUScw+Y+wCPRkj55g9bAHC17KnTtHI6PeA1jdqg0tKZbPpUbP9t7Silcth1ECX4m5TO1bVgcswqijlUaZV+x1nO5XOkq9A57rLRS8MbTaORaWY4L0SizG21S9OFwtd5oOvDi1+uFVhrRR2xcyK2RWxmbWiNgQHPF+IYVS06dV48PGG/JJSFGqLWwpYzxE9EGLGN2L+/PqIzYAFWh9I4Wxc+eawariq9C3+HxceG7//rv4n/8z7zm3eXtgJTcZm6+zvQ1ude+9Vu+dRRpjC7fVscjdwRnLfOyoJdK0g7iSK3Qu2LNRFel9YyIEHwkxoiZbplj7vYMXzLGAG2K1htuv40CWnuntLHmeh1RDtYJyxypRTHblVbymD9zli+9fjXc09ZpXQjLMg4GjMEhbPuFPd8KpW4JLtBLpbeCdMM8TVixLFNkvoFIrCjzMo8oiJMhuMg0R9KeKDljOjgX8cHRgafzGV0vHJYDx+MBYw1+8rTUUbWcjkfE9tGTWivW2+EWy6CyGgyPjwe0FfTxARXDumWeny5ctzPiIj0nnIE5RjDg/MSeNnrvWCy9KKkNd3HLGUQxYpAQeXe5Ym8HRooiKiS94rAsMeKcIxhPdAZjRyuzMW5EYmCwjAOcXguCDhdexoGQhAiiiPWYfKVeV2ijNbz2jjGCEbA+MB8mriWxpm20jdfO07snPjk+4F3AWSHGL/NqtoOkuQKv4fv/6z/Av/ljP8r/5cf+xM/MnXPXXXfdddddn1P9dAu1X6WqP37bIP4fROTf/kv9xttG8w8BWGu/prE63/LxX8M/9Y/9k3z762+jvwPJA7mtbQyzO7FsuqOp4ntBqKx5w1rDEhzLQ0Drxvl5I6eMrYmmMk58tSNSsF5oSRFtUBsoqAilVqwDo4VWGvPjK3LfiGJxweLwuACtK8TAMs0EZ1kvbzHGcjpOzKcjl+tORymp4LrnKheMD0xuRnPBAkqlKoQp0vY0nKoolOzxt9PzKU6cn1fSfr5tWjPv2oXpMCF2BP2ue+Wa25jDkUq/PLNqw5wemKbIup/R3jEhsBel5EIMEYxgfMQaIaeNPSWUijZl2zKHMDHZGe/jLQYgk6qh90ypmXlasKI8Hg84a9m2FSdKDJF1u1JE6MYQdKY7wTbDIVioo0A2HdoG3/FLfin/0O/8A/x9P/T3Any9tkB+Te61X/Edv0IBNEPZoCbIuZDXjaCWpkKiE0PACGjPbHvDYlgeHNhI7bCmK2o6H00ngrPgBanArmgD8qAkpi2RciaXyvV6uZFBDSFGpiniFDS30aInBmS4otY6Xp0eiMFjRHHeY5DhNtOw0SBib85RACCVguuVJLCnhHWObpXjaSGGERXR+phBeymonLPIweAng/czz5+kAUIxBhsdJRXmZb7Bgez7ebnTwxHOULsFtQRt5Fywt9bPGCJRzHtASTAOJj9m+XRg9ter5fHxgd4Vt3nSttGqMLmI1uFydpQpemrpw9kWMwpkY8AozY7ZvW3bUK4E57DBsr+7YI3l48eP+ej1I8scqFnJ+441hjBZem00zfgw4X2gG0PuI99tED91vCbcficVM6A/tdIMVIWugx6Z3l3ZLjv7ulHbrRgMo3B99/zMFCKn44FXrzJznIgvrlqAL/+Sb+Kf+Uf/KN/z/b+Bf+3f/VG63lPW7rrrrrvuugt+moWaqv747f1PicgfBX4l8JMi8pXbCf9XgJ/6GjzP/xgaJMZJIlJlnGwr7Bn2qjRVUi7o3nACITpK6dS+0dVSNFC2jZY3DG2Ezoqh9UpKKyKGgOJw+GhpOdNbodZOjBbjLNeUSCiPrx84TA6pBts6zgViDNQ6ChB/iDjv0N4J0fKcx+l5Lp1aK602CobjcUbMV8gpU0rBL4ZeG2t+IueCX048nB4I/oAgvEkJbXA6PBJt5F35iTHvgpJrpvWCuIJ4R3nO7HUQ8vb1ijedh+XI4bAgYmi1Y7nlsV3OiJtwLkIfrVS9KmFRJI7crO1SuK47+5q4PF159eqBg33FpTRMfCBaQ8Qy20DPleA8aCOVddD6tHOpBbCUXGiDb4K3nuZ2SvaEKaBlFBqjb8/yrd/0bfz8n/ML+dM//u+9rM2xGr5OirWv2b2mjCywDNKBDq1XTG/QEl4a0Tm6QC+JfR8OFDTEe0w0bHWnXRt7HVCZ1/qA2wWDDIR9avTe6caypcK1JN48PXG9XFBVPv74Yw4h4qQTRPDWglbowsM8jzywMIKgrRlF92E+4oywrVdSShQElU70IGLIpRG84+m8kVtBgqeKp3blaV352Dnmeaa3Rm+31DEBmmKdQTODQukcNTdaq+wbiA88HBacFWwUcNAylGvF+nBzvsdrjCA4owQfWLwf/21HXqBMAtP4fgwcvIcyIxRSbkyPC9TC+fLMed1ZbaVrRVQxzuGd0lIeMCFjwRtqHfNntRZSzxjx2GYwCjkV4mxo2ig107JjmSLFevyNDpn3hDWGJXhcWJjCKCgDo811XCfACJhKqZUuoBaM89RyGWTYUnDBkkoCRsRIU8WZiI8zFuF6vfDu7ROXx0cuc8BHi525ZdQJx1905H/xB/9p/va/92/l//ln/72v6b1z11133XXXXZ9X/WUXaiJyAIyqnm8f/1rgB4F/Hvi7gT9we/8jX4sn+pf0nBBezx/z3d/5X+DojpCBHaSOoGRp0FolBEsvgo4xK0qrdG30qrxZN3oupF2hOoxRonPkrTOpofaG4tBWQTrTZAnHmbfvnki1UGWmqSEGzxwXjApWDI+vXzGFgGpnTxY1mRimsQl2Dovhy1/6EpfrTusZ5wXjHKRGua4cpoBpIK3fEOEjBDe4QK0NWxR1BfGR4AMYpffE0/PT2PjOAevGSFFOG/pcmE4za8tgA2nL0Co9dzgKxgRS6hBBW8Nbx+Pyiu4CgkO1MwePCtTe6TQaHSODOBmcozlDxuBaw3nLm6czj4cZO3lKV7yfqDQu+47zYTiSpdJbwzkhqkNF0CZo7bSUIFikQcmKsYJssATDr/pl/xn+zl/3vfz3//DvAxgtY9b+lVp6P6P6mt5rHdiGo9ZvyHlrLCIdMSOv7rBMpHVnzwmtHRscIQZS2hE88xKw1rKXwpunKzkrQRqHMKHaBshChrN5TYXtuo7f4/YU0r5xnGdO84FjiBgvVKloBt/a+xZJIx2nw307HA4jcNsafIzk1kilo6LgGlvJbPvGWnYUgxNLbYXn84VXpyO5dpbJEbyn50KIHuYxR5fOO12FmsdBiBEQDHRlDg7jQV7DLWMa62DqjvXTjZIze0ojMF4HcXFfEyJwPCzMMSLBwywjNFsZ72dY7AxOOZ8z+144Lkess6g+k85PWDUclhmxlq6dYB1hDmhTSkn0UsaMbJwovdFvNFpTLHGZh/snQnATU4gIwhJm5hixouzGoa0NwM8hEJxniRPTPOA/tpuXFYg4h/MBqQWaUFsm7ZVty1xTYd2v0NoAttiI7Y0wjxB71Y525fx84f/74z+Bi5bj8RV2E7gyXEaE+VsO/A1/3a/i//PVP8s1bT+9m+auu+666667vg7003HUvgz80Ztj4YB/WlX/dyLyfwX+NyLy3wT+DPBf+ek/zb80zWHhN/+X/sv8A7/jd/Pq8Ap9CzRoN0dN+3B9tCtGhFwr27bz/PRMrw3tQu0FulAAcQFtQqsb3sBxmenSqbWj2iil4cRwmBecDBT44RQJxhJcJLgJbz3zYWGZZ5worShOhEOIGFUEoeyFshcOfqZNjdYNMQRKqTzn85glEeGwBLoW1DiqF47B0/NG2gqXy5nSM8tBORwWasmD8lbLwIYbJe/beCzvRt7TnunNUXVHO5xOr3BG6ArXy5ngLZMZFLv4ApMIM4jBWUuYA+u20qtQa0WaRYrixOAfTnQEMY5aO5iK9xN7rWjupNumsVQhrRdmH2la2UvCOY9VwQIVg2qntozTiSk4RKEWcB6aBy2ACMFEvA2UNgKRv46Kta/dvdaB6yjURMA5iNbSDjOGRm8GcmLT9j4k3RmLYLDeDFooA0BRu9Jao5Ydq8o+zYjooDuakTPW1VCbUmvFMIKUD1PESid4S3iMmJMlLIo+d/y7ir+FyAsdesc5iw8RFzxTCOwtk/ZMVmXdLqTrCLI2MuA6CrgxWknaEhcdocyTs8zTNAAbXpAqtNLZ1o3cld7HHN1k3ZhZFYOxMvIKPYNsKYAFk2GeHOuu0BrOenot7zPUei/Y48J0mDCzGUWev13/DkwDUz/rQt47l8s2ijgdtNoYJsoNrmGDp3VFg+CDZb1caKXQcqX2jnOeKSyknCktE4wj2pkYLc670cZpLDFYrMIcA8sUqXOl1cLpuHA6HgnBj6BrdKwya97PM1I7tTb2VEklk2pl33e2fR+fzzspF0KcMFbINeP8mK1bL1dQxSDM1yeen09czwd8DNhb+yMOHo8P/J4f+L0onf/V//Gf5Zrvxdpdd911111fbP1lF2qq+u8Dv+wv8vlPgb/5p/Ok/nIkCK+m13znX/8r+aYvfRM8AwVKHnM4WqHXTks7fc9I3UmXC+u2k7c8ioSmROtBHMSIaqdvjZQruWZC8Hg7WppS3hAdbU7GGKZgsQasUaYpMoWI945lClijbNuGd3bMnbSKCxPROdKa2S/bmFMJjpMzFLWoKlvrzB+/xhrDZb2wl4qxQgdyHUHXy+E1woXn83m0IO0bp1ee63WFZhATboS5M1hBamcJR7Cefa/s+wWMw7kRYr0cD0guRNtZYiCEiLEGK2Oj5dQgxnI4HLFe6czY2pG108ugBqY9EWaHjR50YMJz3ui90OeZphY1he35GVGwGFKvOKu0qqg2tqbUUolxYooWiyAK0gS1FcGg3SEyZg+9Bn79r/51/Oi/82/wx/6VH6G29r798fOur+m91kHTeHNAMODdmKnqtdCKkHKCDoLl+HAg+ohQiN7jXKS1nVY6udQbvEV5dThwXlcUBTOcVvrwfs/rlZIz0VpOxwNLXMbamjxmsbAAiyDWEiaD3z3LRdHSwYPpCr2CNzjvcdnhQ+D5umKsoXWw3qDGYWS0MqeeidFivccYoeVKyglnLQnBWPCzhwbWOpw1lFpHRMWtHRnpfLDdGRcs3t6mAbq0onjjsdZRjcOYxjwviHSWOeKiQV6+50bDHJUkYEAizIdIXDN73lAUawOnoyDGvvzJyLXQu2CtHb+zgvFjPi7nTO+NkjLWDpCOoWOaZ5lmBAExiBhO84CqTCHSTcXMC8dl5rgcMc4CfYA8OxDllto3OhF674gxlNqpDbYts20FccN5ExRrRov3PE8Ya1jbRjMeEHJvdFUu1ws/+ckbYvzSrTWc0f2wCF/5xT+HX/Ndv4Z/4V/9F++F2l133XXXXV94/Uzg+f+q6Hg48lv+9t/Cb/i1vwESvI/kydATUEa2T76eqXmnt4r2irMd7w3rc2MrlWQrVgKtdaLxrPuV636l5MS6DnQ1ajgeItEdWObDOM034EwBtXgVTjEyi8Xh3hcrNeuNbpdpbUdlYYqO9dyppWBvBDUjQsqZyXuCc7x5+ymtFy7XM+fzhphxtF+lj+ylpizzAT87lMTl/EzpnVITcV4oeyFjsAo1VaxmwLOnCtaDCKkWns9n5jkQ7cjAmqYJbw3H5cA0TdANvW6Y27iNDQuIUDtEDJqfcd6zWINFaB3EGkwff4xeC9dzwTrDuntEIoeHBS/j7xPjxMF4moAaodhGV2FLHVPScBnShhGPm4SgjHmcAnM0/Cd+wc/nH/y+f5D/8Cf+A3703/lR4ANY5K6b+nAgtQ2TxwrEYKkZvDXQLd57lhjQaHk4HW9u2JhtKn1HusPKaFFttzmm61Yp7YILE8shUnKi90YuhYpiwqAxGjPQ8NYMt4dRG4y5OYBJhttlFfaXoD1Fu4UwWvmsePY3Kx2hY+gGnp/PrFsilYR2RQn4DrUJRkaumLuFQJfaiUXgCPbkCC3ScwM7qJCpNoIZJEytjMyOditadt7P+AXniMGj7dbRGAItF+JhZpoDh2m4SzTG7znqlUHGHDUsYgQ/Ow6HSM6R2gq9JzwTBuW6XhnQ/XHoUHOmNR3FW2nE4Gi5cTlfyHsizJGQHTYGvDU4MSM0vjWsCbSqtNZRVaIPBB85LQPlLzIKLq0NNWbM9xrouZLyRgVCCEyT592n73i+PLHlnZbHvJ9zo0V5OQRq72Ad8/HA87ZSaiHESMWwb4lt3VgviflosfstMH0FHuBv+c//rfzf/sSf5J/4Y/9z1vyyMO6666677rrri6evi0LtcDjxd/2Gv4ff/w/89zCbGRupBGWHvXHDijd626hlH/wJLFqUmispdfa6Ax5vA/TKdrmgzuNsADUY60du2PXKvCx8+cvfSIwvj9Rh73g/seXEYVmYQqDW0dI0TZ4QHc5OdGuIhyPPl3ek64WH+ch0OOJCwYjhnHc6HRs90uHd+cy6J0qrbHtD1dFQLILDUGhMy8whRs6XK9dcgELOiW1fSaUh1qEIWI+bPVvpiOmY6NDG+5DtnBLvvvopHz0emV89UMUixiHTATkuWK30vRONYV4iPgSWECh0svf4OIG37LlQW+fpfGFfC/ixiXuBLag0jHhaS2yXhp881hma6XQ1pFpw8UCEEXSsBSsdY5SWEkUqLpxoKE2Hw6gKUg3f+Pqb+CU/7xfzY//+j41Nu+oXLVvt/69Eb7VHG27aFD3WjJbEUjIP08w1BHIuqDa8MfgwY4yAGY6n9lvhUAs5Fbbrhp08UYWtZFKuhOhJW0Z7Z5knEOF8ueC852QXcqq46kYRdIsJwDNa4WYZLlQebyIDxNG3zttPn/jkfKZ22MpOK0reK/t6xarQ1eCtw/uJ4NyIazBgvMObSJZEu+XJiRP8PNplnfUwB+q+kfaRAxZjHCmGmeGqCWhVuBVnIpZ5sRgxlFJGQLW1LNM8YBkvZwQZuNx+t898TrNCh2CE03FBFawK17ThbeDhIbDljOw7pSQaBe0ZbZVyCwMXGWAVFy2H44KzHmdhWhZO85HZW6KPnOaIMcIUA0uITCEwxQnjb4RUaTfASrs5iAFqo6wXrqnQGJEe1+uF9XoZZqNYateRb+c8+75zPQ+qZjFCE0NpDVFhDoGnd2+w/ZFXDw+U1OgZ7M5wVRNwhflLC7/vv/tD7GXnj/6r/wKfvPuU0urP8F1x11133XXXXT/79Lkv1B5Pr/nev+238kO///cjbwTWMX/DPloey65cr5V9z2A94ha0KpftHc/rSqn5NtciNK2UYjCtI0YRL0RveHx1omwVEJY48TgvvJ5nmjSMMQPwYRRtnWhnnHhKHTvhw82Jst2Cq2wpU3rl+bwiXfHWDnqbAkZoLXO+bqixlFY5n5+IMdKzxbsxq9VKwU4WP0/k85leGz2OjXPrFqES4ww2YHyg1YqzC2LcaGEMhnoLsFVToTfmaHAoeUs8W8O0zCzTwrIs2GDxYSKXK9N8YJIBgut1Zy+JXjqIYZLOx8cDl/XMJcFxmqk98bxeEdeIzjM9Pow/Ti9E629tdZ1pmmhYFId3npoLIgFnLd4HDn5iMh5nMr55SJXqxtyUd0IrwAofP3zED/3AD1Ny55/9P/2vUdWvp1m1r4lER3evMaNmWLxQxYG3iHqSDwQxnC/P1LYjEvEhDodsX0fuVqkIQm+NUhPWzFAquyp1WKlctzFHZkSwtrFMnlIrtWSu2wXvBZWIRHk/O8cNyPjnOVAIdEUvytPbZz55euKcM2DItQ/yohH2XDFimeZIrY1aCg+nA9PkmUNgMhHnIARPeHSIlwEAmQwu2xG+XsDaiATBCqRWcd2/z4iTDr0qvXXWfAvxNoJ1frRNOkfwjjDLaHVs3FxBPjhpLyqM16m10mrFYDhMM7UlfAa/RLCW/q5yKYm073TtIx8xRj59fkcqhVevXzMtR7x4jFWUjo8zANYIxzkyOUeME16EQ1w4HCZinIaLJoyhvtbACeLsWBwAaRyqWAu1dXJeKbUhxjAdFnootOcrRUeoeYyebdu5rDvqPOKFUhreec7bSqmBYAOpFPbSqLXjkkUS43rJuF7mI8Mf+MH/Eb/3x/9b/Kbf/lv4k//Bj/3M3RB33XXXXXfd9bNUn+tC7bic+L6/47fx3/6B341cZJzIJtAztKT0DCUV9j1RamPbEqk1Ulp5WleqQkXIXWhq2C9Xqi2cDgdinKmlcylXvPf4OWDE0otjXo5QLdGNU+TaMu/WM844prDQ90wuhilGUq4YI1z3BqkjFjCGED0ihmoUvCXVAtpJreGcoSpob8zzxDQdUZMINXPZO8ZbXIy0tOPo1Lbz7t2GAF4VNYZgA6Y1DG6cbHco6073Bhc88zKxPV+ppeGcxQigikrHGEMtI28KRqaUaoFeEWOZlyOGPmbirMX7aWzi88ZjMFidsa6x7eUW0A1bbhgfUWOx6uk6gqlry3gxFB3VnzWCaUItivWdJc7E6OhlgA+MKq3viA9o8+wbVFVqF1yHxcGXXr3md//dv4t/8V/75zmv61/VNfqzTgK4QS70DvTWfegNaBO8sQQFLR440tpEb5XaGwbFY0AE4wStG4Iwx4nWFHGWVDO9GyyG3BLrto8ixhpUlNMUx6ybWDRXdGtIvFWMkVHMVEaR9lK0KYM0qI1UKqU20pbIvVFUSbWxp0KrUHoBY2mtU/LOPE08LjPeeazphMVgH91wcG7FoZlgEo9SKWWAT0ZGmGKCgzLiHkrq+GBoKHvO7Cmjapi8x1lDLsPpmk/zeP6G96TIFzfus+81dereR9B261gjlF7oreF9QMRinOPqLMF7ckrvv1YNnKYTPjbEDre6lIKUjrtBQLSOfLqyJ+Zj4BAj0TnmGEbeW2+jag+WkVXiPrh9HWjjtaQreOMpvXBdE+/eXcg09DZDZ6xBqsFYR6uFUhutFTqVObxCXL2BSBKtK4fauFw3tn1k9IXdjPbHdFsDt2skHwvL6Sv8ul/16/h//+Sf4Wk7/4zeGnfdddddd931s02f20JNRPjGx5/Df/U3fg8xxUGyS6Ar9B3qPty0sm2k64V9L5zPO/teuGw7OSWscRjjgYIzHm8COSV2s+HjOA2u2zhcDsEh0gdAwMK671gLNmdq3bDGEeN8C4q1lNZpKoiOosNYQegEE3DGQxCaNowz1NqxzrLuCQkB6zx1vdJbplZlZQeBpg0XPDZM7+dbpsmx71dQg3VC5Ea1ZOxzS0qIN4Noh6BNaaWOHCoVVJROR3tFTWA5HPDTAayjtMrbyzPOW7RuRC94H3F2XP/FRSzTaD1sHQdsbcNbw2QNzsOyeGwLHP2JXivWdZwNtNRBLVrBhoiIx1iL0Lmenwl2Zgp+RAB0JaUCwWCwiDZcrWgpVBpqAuLBD0wkFPiWn/Ot/MB/7Qf44f/lD7Pu6d7++FndLoNxYAMDxqGDomndAHMYFg7HiZw7Ke3s20rryhQnai2UVuitYNbRhBsmyHQMlopiZWTfLVNnz6PItstE8AMAI72zX1acHdNYZrGjLXDig5N2c6O0QE/Kdc08XZ+5bhvX7cp130naR8HUdLT49oyKYvw4fAh+AEwe5xsxVBjOzSOjGHlxcCZYuqNsoOKoNHoZBwcAtY4OTekj+NlNkZ6VKQaCN7eWQo+1ATvdUPzL7XpnYOODY2iAXdku6w3MUUkpE7zDWOF4eKCkxPlyQVGctRwPRzrKOW2s606YJx4fHzhIp3Zh3ze2ckVQluMD0S0YEWpt6G3OLzjLcYkjyBp7c/rquA7ejed1a0HVpuTrRmuNvVSaDMjMVgqpdYpA3nf2kul9BNAvhyNPT0/k2sGMx885Ya1HLLTesQq5VNZ143w58/wUOc4PmIsgM2MNKO9bRIP1/Oa/47fwR/7lf46n/+heqN1111133fXF0ue2UDstj/z2/8Zv49s++lb0Au3KyIfaX/KhBO1K3Qtt26hbIq0b12tmy5VgDSE6aquUlm5FgoB2Wt1xpiPWMi9+bO604MzA5u95x4ph8jO1ZKQVDstw4cQ6chmo75QKREPAUnNCulJLw9oN58ap/2QCTYV13cF2rIU9DxR2x5B74/mTt1Qa8+mRV4fI8/nCdn1mig7vPVor0i3eTRQrpLqjW6YhpC2ha6eLYT6c6CK02tjKFUUZLMeA2JGTpMbdZtaUoiC1sKedY5wJNlKLsueNGCyH5Yi/BQTvl2dMrdCVrmPzephmrLN0saylUqulrRk7T/QuN5qkwfpB03QusG9XonWcFo8Lnv16oeqg/tXiadLpNaE0Fu+xNuJrZ64GK0JPoBFenV7x2773d7DnlX/4n/of3gu1v1C31kdh7KmDB7lRCJ0KdrJosbQC1+cBHdlTAQOlMXL0Dg9M04FeCsZ1OsJaK++ez/Ta8SEyRc8Uy0DE94b2AbLY9g0aGLdijCHmBTkIIMPVOTFcp2elbo2vvnnHV9+84Xy98Py8c768Y+2N3Cu9C60qtldEwHTBxcjxOLNMo7U2eDtIhJPcKJO8JxqSbx8fR72CFYJ1aFb6znCnOjhrRsHRwIhhChHtBQj4YDDHMEiODjgwCsKXw4MZeMtwjez4eblUrtdtkEuBPSecjcyzpxSldeV8WWl0SmvY4JmnUf0ZsVjnyL1ijEI44I6eXivzPIEZbqALAect1grGG/ZUMehA9dvbInB+uFiqUKC3zl43Lucr+DGDlvKArDRVGo3LZSfVSpPGvq9g4mDC5MqeC+MkqWNapagi1uDdhIiwblfOT4F3y0QMjjl6PjYL1svttZZRrCsQhG/+T34bv+Pv+p38vn/s9/PV85uf8Vvjrrvuuuuuu3626HNZqIkIHz18xC/4lp/P5Cfa0yD/tTTe6jZw/AIYNbdMLkPwHpHCFCLOezBC743Tw0LdC2VSUmEMzQMGxd3Q00bBOMfeOvbWEtUUUspY0+m1cukr0xTHTIf30Pv7kF/TFSOd3oTaB+WxK1yNQaUzzZGmwp4SlcIukHFk7bxbr6zpwlwKp8MjrWZsGETF676Ru8OI0GpCqkW1s24Fce4FmofzDqs6cH/SwThUxmk9FrbLxnrZUaN86fU34ueJqIWulq1c6eaAWDsQ+tq4bCshBKw1GCeID/RZMW7B5E6TnePpwIN95Olypuq4EqqWWjqiYBib9rdPb2kCr4xnjoHi2wjYnSekKZoq5+2KqWU4hwaczLRioFbs1Lh2h508tkM0woxwmk/88l/4HfzCb/k2ek/8xJu3pHKHEgDvXQt3m58SC7IwCgxAdkEKyAZHExEDVTO1gjGV3Ha8dSzLAW+hlUwVxXfFimFdVyQ48l6Zo0WA47JwOi6AkktCVejXK6UrD11YpgUpcKP9DGV4vu589c0T764r7y4r13Vlr5VSC3tXmnaC9Thr0dxwHo4PkdNh4fRwYgoLp1cnzCsDJ/nQTnmrCwdCceTK8frDz5Yqo0vxooQZukKp0ErDe8PhYLHdDofQ3a5fZLyqutvjhs/8jMPt596otNINqTWMgPZCVwMSMMBarpy3RKez10qTTsqjLTL4iEqn5kItO26asUE454pKI9eC95bZO1Cli2D8BDhaGy6+8xZmN/IZFHSvtG20LdbayFTEGNZ9o9TGNWX20kgt3RILFJqSaqXj2feNy/WZtFdyLoOaGz25F3JbQQwHlGleoCmtJc6XK9FblmnidJiZE5Dl/TwgMq5ffIz8NX/dt3GcjvdC7a677rrrri+UPpeF2hIXfuv3/la++7u+C96ODZb20cYlfWSnUUC6EKYjYW6s+UowgmWja0OboaSGkU7eEtv6jMPw+HAYu1ZtTM7i3cg06wo+BGpt4EFFKSUPmpybyC3TKlxL5WE58vHxgchtzykjD8r7SE7D/Sot01HSmqm1Eo8TrXZKE7769sLz9ZnruiHOUQFjJ2yzlOtGN320KyqoQFgCtBHea30grWN2zRqDPZzopmN0hFS3lDACYjqljx2rKMzzgZfYsS2vTNkzffwNtFpYt50/9+lX+Xnf9BUEj6AoM+d1x0ocEIVpYQ4L+znTdGVfG8Y6aq3QDUJjOUyUvVJywokhOkNuHSOBkhv9QYguYotBvKerDoNFGlY60Vq2lMesIBsNA2LJFQ7uyG4G/r2tFu8Hdv43/frv4Tf9bd/Dm5/8CX7PP/J7+JE//r8ll/JXa+n+7NBLeDOMDKvbkicwnKUxnjb+/QHsp3AgsqeFpucR1SAGUUMIAaEQ3Ize9thLiOyHA0+XC8xC3hLODl6F9w7nLEV1zFzlja1l1qp842yZm8Nc5X2BU547n376luu+ct02Lpcr5/MzpSjdKqVXaqv0vmOmiPdmsEhUOM4HPn448XpZRmj1MsiRXMdjv3dtXsKohQ+kSQAHMgFnKEXwQfEWUi/0LMxTRB2YIOMxXoq/E4M8+9mfw+3aTkCH+lwJIXI6nbher6TacHbkMz6dB/Y+98JWEqpjhm/dCy4sg/Bfdva60ppQUyL4QeystTL5SM+ZkiLR+jFnJnDdM6Y1pvkI1o6/eb/9/s7SbWW77AOMJMKaMjlX9pw5Xy9spdCM0ozgvSelSq2FqormgnQzgq0FmuiYZTSNyVqq3LLYckbmGRsmauucr4lP3jzx8HAiHhbsyof5PuX9nOIyL3z08Jr/8JM/+zW8Ee6666677rrrZ7c+l4WaGIt0i6SRc9RuNLa8j/feQTXKnpRr2ihdwUX2lqi9s287jR0fIvSClkQ0DsTQmlJrIQRDCA5tg8PtrENLppRGnA4gOuZhuO0lfEB6YbKGyTkOUxwgDTq15gHoUOh0jIscl4UtXdn2TO7w7tMnvHNsuXHOmedtp1bQXMml4p3DBoO2jtXOtm10e5tZ83aASfJKyjvGRvxxxpuAWEszo5UylZVpCqiNbDmTt5UYZ+Y4kUtiTxnTDcYprVXO5w1aAaks88RX3z3xDa9eg1i8FZydyX3M7+W0cblulAbGWLIOmENed86XZ/bS8WUZOVjO0el06znGSCqVh4dHDocTWhNOodfGZXvCMlpPYwhI72jr+Gm6YcJ34hRoOMqesMYTnCBJMVcwVgi3U/mPv+Er/A9+1w+j3fIjf/yPUdoXuFhr3OaSRrsjo3vvA51QGa2BFbiAhNGOKIA1Ducj1hjklmRWqzJFP4o2o6zbjjFK1wN6fSbfIB1r3oklgsxUMVRV1nXHGMuaCpXKcfJM3mEQFOGyJ677xrYmzpeVTz79lMt1JR4P2EHmAR3h0MZ54hRHrqEqQcaspjdmtDXDB5rkDfv/njD5WSioYxRaBogQXt9AF12wwGGeRkD9DRYijg8QFGHkgcntGr487kvIdRr/Zr2htoYPgXZeEePoCvt25Xm9kqtSWuK6XUbcQBwVnooh+kgpO85P4DplLyRNzPPyPjdwPsw0zezFspVCSIlaKq+XGRc85hDHc9oyBDfIld7gvaXQKaWS85XeG703RKG3AVqx3IouHUWyNYbDw4mYZ87XM+u+4zrE2Y1uBgNYg4rF2ls4tgBi2FPmzdsnXr16xTxHHp3DuNt69LwHjPyKX/6dfO9v/F7+9D/xD3G5Xn566/+uu+666667Pif63BVqxhh+6S/+a/k1/9m/ib5BPY+8tLzB9QxRwHRoCtaAqkHE0xVq0zHP0jvW2NH10zo+eKR5Wmtob1hRHMISI9pGZpT4ma0krBuZTOhooepU4hSxRmkaeJwWZnFIrxyXhX0/48L4+WsqGATTK9oNNs64JlzrxjUXgsKaEq01vIu0klEq3tlBlctlZFmVhpcI2tjSimse7xzGK2nfmbwjOH9jA3R66eRtR7XhXKdrQVXZU6Z3mKYRQlxqxosnGEdvlfPzM945Ho4L9TZT83zdWYLHHyas80zzRKdT+yBaSlfKtuNQrPfYKJRc6JqpNVFbQ8UwTRMxLnhrCEF4tTgOvpF7R52ybY31uhJ8JLgxw4aBbgwVIYSIaqf0ipTKfs1EWSjauRahmoD1hqMRvIyN4Td94zfxg9/3Q0h2/Mi/8UfIX8Q2SL293XLE3rfpvRRsLwVFZWySb+HOcAtndhMAzhn2bR+Ft7X44PHBEmIgzgu8O3NNO8YGEEelsG4Jay8cDgYvllI6l32sCecjTYScI146VgwdwzVX3pyf+amv/hRvL9eB969KWc9YG3DODmdvCpgOopbD4cjD8chxPnIKEXfwH/LZPMPV+izY44W88+IwvXz+pYibP3NtAKMDDMRt5lHLAPW8b9fkM9f3hWD50m6ZoF4ql+cLpSthGeHYJY+w+7QlukLOlc6gOfaaKdoGAETGZKlYC12QysDxO48aQQuIt+RW6cDiLL1BqwW1nV4tNRXCErn1EA+SzGww3TBPnmAN+5647pFtu7DuidorxhmoUMuIZKhaqaXSjGGKM6oNpBGmiDOW02HGqFDLjoqgAikXrPWUWvDWDjKTmEHR3BLLxRC9Gdf85j6Sx8fLR3F8z1133XXXXXd9QfS5K9QEw7d/8y/gP/3X/nL0E+gJ6jpauHyCnAuiDW8itSrBeLaeqG3DuI5zQvAW7R1rDWJnjATq+UqYJ3zN5ASPpyPHeabWzN4KRRu9NWyHtu+o6u30epzWB+PJJVFrplrYUmWAvKExAqWtKCklSu/YFvBhYe+NN+dnmna6wvn8zLbtYw/tLdtW8H5kM6VayLXiOmjtKJ1qMhhhcjM+BMQJtlt6UdQoYgxGBLdMAzHeGuKE1ioYpbXCvu1YazFN8dOAJPSqXPPG6XDEiifvjWKVdU+E6Aea23mqGnqtiMIpTOznd7hSiT6ylw21yuPDiUOvVBXePT9xWTdytrSWMD4Qw5ilablynJfhDqY3LN6D2LHJpGMUruszZjkizQ0UijHUOgpOEKhKtR0VwYtDmmVBCGaQyL/5o6/we//O3wsNfuTf/CPk+gUr1j5bpMGf3wLYP/O5FyKiuX29gliP1kQtBefGuldVrBkgHhGLGEMMg4K4bWkQVisolo6jYtnSRjWWrI2Ud3JrOJTyrnAJhslYJj+hxrLmzFfffMpX373luo0Q6lwLuSRCaEzLgvRGyaM1WRSCiyxh4TAdmV/NyPGW0/bietnP/M71L3I9Mh8CuLldC8f71kZR0GzIWyVMbhzY5IaIQcqN+AiD9FgZ7ZSfwfWLGU5S1o5aQ9oTggMvqIHeBOcMzkxMcaGUTM6ZvVZSaVy3C9frhdYGft/b4Yi13uit07ywbmlksvVbYaeMQsqYkZ12cwuZ/YfiFIOdJ6w1qAreXgdpBqGrYkUQFIsM+mqH4DzOeS7nJy7rmVwbflk4LAeCEVrNiCrSlaaKNx7VztObd+wxcJhnvPds+8p1OxC8wc0z9iXG4GXNKugwT++666677rrrC6PPXaHmg+fBP472ogbuhUJXbwff4tAX9HSDnDO1J4x0lhCpk8WIo6RCWq9Y73FG6OJuLU0B6zZscDjnEDrNCLV1jB1Iar3NdVjvMGLwAofDwrR7jGbm6MbmyQrbnkAUaxy9K3bypNRQ43h3PrPmyiWPgq825XLZoSe8dWANLhiaQJwnbBEu1zNFFes8IpZDXDAYDIH9uuFDoDtAO9uemMJMWCKzm7isZ4wdbWVuFtwcuDxfadqo+45qZV9HHlYIAb3R9BTDIRwQtXgTiX5C1FJagga1rkgreBtppSAqWA8ei3eelDJdR0TA7ifqNHa8OSUOk0OIA6nuLCFM0CpTtPQ+cUk7z+uV1huCjs1oFXIWrDUkp/S2sm1XpsOJ+aNvwEyecm2cu2IaeGPxZjihosLP+8rP43f9+h/g/PzEv/Rv/0uU/gUr1uBDEfJSjL2ANV6KlButUG/FjBVlCo69bDRVgnEshyOtFibvQC2CpSblfF558/yOXCullRuEpFLqgPccp8jOOLToxmAk0FAu1zP2CsE65pjBeK7rhdob4gLGNtZ1o0tDm2J8QBWMCMbcZkl7Ju0r7uOPWaYwZtOqfCjOOqOAenER+2euReFDKLX+Bdeo8qHQ6lBrpbf+/mvEmQ+OXL69T7fHmG+P04ADGAwPjyfWdaWrEkJkWzNiDNiIhETeKtIayxIBwVpPu565bGf2vI3Mw6q02kY7dG/kVvEujtZhM4173Xta79Sc+fjjV5wej8RDHK0HtznFl5ZNCTcLsQu9jXlPYwzWOUyv7/H6qTWkdcqecM5grWGOnvWpIq1Dbni5Za+1FSeCiMECJgQu65XcK7RIsLBdHM9vA8d4IDjhVCJ2M+M13t/WooHf+Df/Zv7EH//X+Z/8c//kT3v533XXXXfdddfnQZ+7Qu07/1PfyR/4h38Q/YSB479toFq75UKp0BuU0sjrMz2v6J7wYtk1E50l2IViGm/fviHviSyGYqBd3SBVl4azhb5EsjbWvGHtwrIsOOcp207JHYdjmgKvjye+4fiKPidaLRzmGesDTQvOdXLrBB9BDZd14xRhTwnrLKaNQfl3796QLhshBFqt5LyxbytuWqht52z6yGKzDosHUUpe0abMx4XcGxID3TSiX3je3uFiQJ3Qa0dY0W0H03HLzBIfsYvjaY5s+8Z+HYWnLR5dx0WNwUNPbM9PbEaZDgulT+RciW5iu2bSllgOkTA5LpczjYpop24ZY8fO+HSYWPedN2+fmQx0F0mtYhC264o1lpN9hcGhrVLTRimFGC3XXW8ugAXT6alTW+KaO9oFrRknjRAjNTfKdSfg6Joo3fNcKpQZ2y2TH8RQ04Rf9K2/iN/6q7+fr37yCf/WT/3fqcNS+PrXi3P24kw4hgN0m51C+TC/1YAN+kXZU+e6Ny7XwrZd6Kq8Op0oOXNdL8w2UksBJ7x9euLNm2cuWyKnRtryCIPunZUL1ynycDqQaqP2URVdLxtP12e8EayxtP4WZx2pNsSY0WLpDYVCLpXl9EBwFnrHOkctjYdlZo6eaB3BGay9/R4L8MAomF7y2TIfircXpy3drslLsQUfCoWXz9+cNucc23aBKQzCbBhri8Qo6F4ywV5aJl+w/DvQlBCnMbPalW29oKqct41cldYAEazzqDT0ZnXOzrF6h6rHxZnSKunNaCtcloUogrl93/W6w+wppbL2K64H1nTgtHVaKJgsEN0HmAqAvy2KBHOYaA+da8qkkjFiyDXDraUcbXSt9GaxrrNdEsYGvBSmOMK5Jz+Ks+g8fppY80puO/Mc8N1TUuNyXumtvXfHnf+5PL7u+N0gV967uVg4fcuJP/hD/zj/yp/61/8yF/9dd9111113fb70uSvUVARnLb1Ab5Ab78lg9RbUWrOS9jPXutG0M58OpNw4CaSuaAe1Qi+VnMdGpKvi3QBzaFOcCzQZZEjfHHOwhMMCorz99B11Gg6cSB+kwZbG82qVnHZO3tFKxalhPhyxztD7mBd5d31m3xu1KrlWam601Mhp5Lt5PNV0qu6ELsxuRmth20aksBHotVJzRuaAMZHjaaHXSh8hchxPR87PT4hAWDw9FZzvqI6WSSzs+050gfDgiS6yXVamw4xJncPxxBQm/CT0Xig1Y/IoxoIbxLu8rsTF4IrlvCdQeHz9DRxjoGnnzfl5ABN8wNIwXtAinA6BuY+5Gj850lYoD4XJeNa0kraN0grab+NCxtFqhWZQCcTgmY4Htm1jLzu1VcQqIoa071z3HR8jp6PnOE84Awc3EY4O64arZrrlO37hr+Dv+dU/wP/0X/5h/tSbf2sgx7/epYxi4SWr7LNuz0uLX+Z9a2DLyptz5t3zhf1WcNXaOMuFViu9ZkzrdCmcHh9pVUY2n7Voq6CdktNAtvcCXQmT5935mVraLeohsW4bah3mcKCqsJUE6472RgiB3ju5FmKMaANqx0XBGIPSsG7YQ84HvBe8dEra0EMY82MvZMeXwiwDn/JhRu0WC6Bdh+OmjBk09+HayC3dAgFxip+m91+jIzbsQ7H74tYVRpF2g2LQoJwraW84MdjJj2K2PNG1UVoh5Q1RZQkzvRZ6qUzzTKMzec8UZpp0ZG+8Wk50a4ghYl1ERKg1M092gBM74ISmlr0UPr08MS8R/9L+6Pgwg1duz9kCOObm+ejxRJg8fl0xZ9i2DZFInSulNVJvdO3klqlab0Afz2E+ILXx8PCAsUIqDfGG4MD7hdoayXdyqqRScSnzdLnwar2wba9ZNovbBDncrmkBrOC+2WGOLxjNu+6666677vr61ueqUBMjOJkgj0yj3CDnkW2ULuC6UnMjrztdlN4q1oxj8F4Sac2UVEGFfnO+fHDYMhEbdBreGObjA8YINWVsH4Wh1ky6VsQawjQxG8vkHVo62pSUK10avSXmw4w1gjOWkseGzDHctN4KvVVab9Ta0VbJ64qRMfNjrAPTsDRmNbSy04oDC7UDRkglQ63QFNXCdX2HkQqts+/v8NbjpxnvgV6xOsKlD9PCuq/UVvF0SsvUlpjczGk5EI3FdTMKuZ7pVRAmDvOCR7BisU5H7lq6UvOVGI/ktIMI0zRxOixEMWw5M8WJbd/GLB9wWmbWvYIaxMASI9CZjkdMyVwvw64wxo7Ig5wJYZzEi7Wsl5XzeiYGz7o9UVsn+IDiEIWSMrkKtSqrnPH6wMEa2gotOvB2OLBdMU0IJvI3/rL/HP+vP/Pv8mNv/xRNvwCuWgOe+ADWcPz5ZELLcNgUtEDPg6raamfNmaZ9uCul0ErFGuHgPN47xMBkHWWaOOSFy565bE9c141134YbYw2X8xXnPV07pYyCPNdOrTutdcQKuSSi8zQq22VDGW24uWR6yWhrLGE4rWNd3syymnHmSK8V89n2xb+wlfHFRcq3a/ByPVbQfWSPWc+taNMbxX7M5MFoE/TWwy38WxpoN6O+a0o/K+IE8+JSvRRtDYx1xOhwbjyZ08NCapX9PHq4l3kajA9RsJbp4YQxQkHRh0fSnriWTPSe1kYWYa0FFLz3iCoOg9zcL2sMYh3NDJBSVx3r4JalR7z9zfP4/bkBUWtXeu/DzcTgYxjZj9uOsZ5pWajbznq90Hqj9RFV0LSRW+a0TCMXsYzW7iXOiBFqq2xpBGhXlNbB5kapjXdPFz55c+YQX3M82vfX7D3Y5eVvedddd911111fAH2uCrWvvP4yv/Pv++3jf955gES0w/qs5HNm8o5SK3vPII2qMk71S6PTaaJkDN4Kczhx3a7k2gehbJ4xXkg5QxNsH8TI5XhCe4ZeuGxXEkKYFh4eT2gZkJBowzhFPkRq9vjoAI8xhtNxRoyhtk6cF8R79l5pNLqp5NpQGs4qD8cjSqG2jqjB0dnTTmmK+EBpBTEG7yb2Oo6/jRuDMev1GakFaQ0zO2gNZyxiR9uYdxEXPdgBcRCjHI4H3r3dabkxGcviIl4siW3kIzWAwJ52qvEEM+ZOKpVUG9E6BEPNeczDiMU6T+uVsm30lAd5so8CzIbI43wceXPXMyJCcAFrLbRGrWVEJqihtzHXdMmJkhOlVrQVpJYb+l8HrU4Lp9Mr+i1o1ztPsI5aG9u7Z3ZjsLWxT5ESwfsRXi6ADxbvxy3whdn7vQA0FDjzYYbqhfb4UsScgTSQ7E07OEPTzrpeCNYR7Ci2vQv4KTIFT7SWjmLtyNma5kD7dCeXRG8DttF6p7RO0ULNYzaw0m8ueWfbN1Sg5kSxFqVTUsL5iBGDEYc4IXgwt6JxCpH5MGGEMbuJoH24x+9lGE7iy8eRkRX38od/aX9UKOjIJMSOUdfaQW/PsVekK0EC5jCIj7qNx5Q6HLm6dvZcCJMjvnID3/+ZCAAbbkUg0Hel9YpzhuAsEifMPJPKFaOKEWEKEWctZ9kRHWCUVAtiA9MkXC4XQDB+VJ9TjPTuRo6ZgreO6B09d6bDjLcW3TJyg/XAbQ28tH9WxnxvbVyuG0/rhfNlRW/5ak2VppXaeV+4quk4b/BuRIU4a5jihDiLdiglQVVijJzXM7kpvUPKGb1lQs77zHnd+PTtOx6PkenxgEtmZP29EErvMJG77rrrrru+QPpcFWqvDh/xXf/FXw1fHQh+KSA72AxRzMhLch57OJHrzrYnBIu1lpb2W8sSYBzNOXo20Dsp7xzmmWA9akdrlhFBtXMIjto2LB0bLKkoIc5jUF4KvQvdCMvpRPCCEzcG54zHhIAxnq6F0raxQTKC9ZFFlH5ZyUZYnOGSCk0ErLA+b0hJOC+gOshuzjNNCz7OOOOIk6PlFVGl9c75/Ay1cJrnMf+xrqgdUBMQcsk0o5weHlFVcsto6zxMB7Yt0WvB20DrMqAgTQcgwRhU+5jhapWpB/Z1o4iSamF/emZ+OLA8vKKKcE6FdD5jchmZdHRqb+ScmZcDSkSDwzhH752WC3ldR0+ZsTgTqRQulzNqoexXVAeu3YZAzTMqgrXggsFYQ913SlaCi8MBoOLEUEqnlkqvhbSu8GpCrKM32EojpUZX0C/S7u9lXuoFpvHiVLzg67n92/P4Wr8Ix92wXTvRCurtoNIbwIzCwBiDCx65odjTttFqYZ4CPgQOy8I0NUobwHlrHIk+oihqorROt0qwkV4Se9nR3knZYIzegpTNcLWMwU2BKRpqbfRaMDYRm0edJaWMPoB1gd6Vuu54PyPXlyw0PrQ7vhQn8D4zjgpNFTXDUaqtcn66cjwcEVFSKgiCR9EEPXf6VlEZbpY5CmSDUz9MvH7LqnuZi1tAbjluCuhVoVYW7/GvHsdBU0p4qzgjRGeYvCfnRg8FI8sAqDih9s6aK2Itxhi8j6iBgBmumoERcqBYbcNpt5BSxjRPMAZpBpIM5/AFmlKhlcJe2mhvzHkUVKqklkipkKXinDBPM60pKSfoDTdsQkQM+15QLWxlI7WMDzNrzuwFWmm32ILh2j1dnwdB1Bvmw8SnTwuvPpo5bmb83V5aM1/W6F133XXXXXd9AfS5KtS0t7HhqTccf4e8QvQgxg0CZDWoM1g7U2LnenlGTaXTyHXF+hnbQXrnNB8wvfI2JS7rW459IXg3WpdECTHgQiD6ibKeMRSCUdK6oxiWZcF7jw+erXdCj6h0cm3kdiFOR2Cgx7MKrZex+bIT2/WM0OlpR1Om7ivNRbRaggvUVgZ18kEIaYADrBtOGYAzBqzD2wkTZABOmqLRUbuQa6L1UYx5EfacWYwy9wluwA8vYJzDRh3OiQjaRltZt41aG0urGGspKdGq4RoyOTWOkyfXxpbPbGXDhoVr/YRaCkdvWdxEE8UYR/Se2i2Xa8YFh5uO4A3PT5/SLs9YhdN0RIzjq5+8I5MBJR5nuo62Utc9eX0mrYlSG6ePHtEqrJcBtlCF4ivH+RErltQqh8Non8xOkRwpl0awFkHROualWsmIti9MqaYvc1Y3JLu8FC6v/4Iv9CAPo91vOXhepcMoghVKqSMAvle89SODL3WctxgxHKfBp9cEX3r1QHCG87pyuV5JKZFaR62jaWW9Xsm1jnjrk4x2yNSoveG9u0F7CkJnWmZqLex7IpgHas2ggg2BnBNlzdjDQiuvqK2x7Rkro2VPu4UJJA0CpIreUPnyAfphgRWcGpooXUbAt7WOVPJosbVCrY3rpSAilG2l1UKME272iBHMDJMxN0eaD26a8IG0eCNE2pMwnZdRzAGXy5VogBhp2ui1MscwDh/siVhHK2KonlQr4dB45Mj5ecVah/P+Nno22iF7h5RWhE4Qy54yp3lGrKGnjqkbJDfaYUefJOm6c94TW02stVEE1Bs0j/DrXDPndcV5RwiH0bYtw00zzmG8pWrhzfVKa2MOF+MwPQ3gCoKLEzZ4ar9geyH0MNzL1ulN2Utj2yrHbCHLe5fvi8L8ueuuu+666y74HBVqgkB3o32pjELNCRCgXaDXTm6N1grOB7oqUwgkY3heLyhQSsG0TiPwcPwSBsX3mVd0jtPMR68e2K6J1ipFOxWDxom9JQqKmw5QM0aErWRsHZvXSsHWMsJf885kB2yjamG7PBF9QJtSSqEqpJrI6xPn6xO5NHIvNIRWNg6Pr7AmkrrHqEFzxbjhaOXSQdsI21VFe6PWdKNPzng3jd+9W6x1WBpTmNjysBJqbpRe2LczXcFPHtGAxAVvPU9PT5Q8isnjPLHnjWt6JtiJ8/VCiBM+TdjJUquhN0trlvVypf/UT3B4PTbIx7BQTaO2inZP7Y6ubuRnbW+x206cDyOLzoLHgbGoi2Ay1k1MPrKnDa+RSTvP1zPeG5bHR949veXpfCHOEe0QQqCWSrCeRsf6wDSNna9aS8qdbcuc3zxBORBPAbRjpOFpeP3CND6CQi0DjGEjw+XZ+BAE7RhF3K2gkDBctcc6U3MDhc3stA4YR21jzuyj04JzwuIPIHBomf7JVzHymslPtPqTlG3FeE+1HmssGUN1DmtGTte2btSa6L1jrUNEcV3J+07rlZ5BvEGcIl7wfgB0aquUlAhGCM6Rc+HduzO721hPB1LvBGs5HA/YaRRbNNBckFdhUCF3RjHgbt2ATRCBVBKqnfO+YZMwh0jJjXNf8cEhtWAxNFVy6gQ7Sv5SwFpBXub+FoYz9JmQbVHQKFjV95TJh+NMz46uQuuV3BLtM7Nih8NMRamXOvLJmsN6x+kE1+uV9bqhXYgxsgRPSmMGrHfFetj2lXWfcdajveGiQdfEviawQhfDljJ7Llz2wuW6cVlXcs5YZzB2xrhO7xe2kijaSbVgrSXO85jt7YWUM9c907tQWqL1HR8mjDUYMYTJUnNFdYR6i1VEhZYatVasg1r7h9D1jQ9zhF+UU5W77rrrrru+8PrcFGoP8RXf/d2/dgTK7rwnqzkzsPyljZPjUUhVHo4nni/1NgcVSWXDiCFtmWAM8QS5rIgWlocDxzijNaF5Q4BlOZCakNLOvm+UPVGuKyF4rB9zMKVvXK8Zkc7DMoNJ7OuK3tDZuXeMeGrbKGW4dCUXUt65XJ+gCdoa1hmmJXLdE9dtRazSq2CxxMVDE9peR2unGmrLdE30vRFfj1ZA4xSk4gmItWANYupA+leoDXx0dJPZ+k5ad+TicDESw4neEuXWqqTNsMlKqRmxERMMXRjXLxW2defJQHCGY5iYlxNiHdt15fRwulHdhgOoKqz7lVYNx8ORy/WKRRGUwzRjguewTKStoV04LgtqDa1UDnGiGMd13ylUenU8nCyXi+N5u7KuFw7xgNNOsP7mlCW2VmjSWaaZ6JYRIqyWJn7M7NWClgSlILXi2hcnR00Vclao4BW8jPXBmeEqvbwixNubDkqmC/D4uIy1L57adrSPwwLnPWEKGAcyjXyuqUS+1B95Pm/My4waxQHbvpG7kqtinSUu88hTy5nehmvlTKO2QlZuIdpC1QYt4dy4H96+eUKk443lsCxosMQYR56aCHvJNDq6enArk/d05zCtMs8BNzw8TOX964mqUvfO83lD0VuBBNu20+kDeiKWJspaMvmysswTUaBLpfQVmxytwzQHZnez0V6Q/S8RCDeHrV8H1EOL0vcBBzLGYFzA0LEqeOPIOVNqGyRNlQFuweB9wHvF2Yh6h1Pl3btnuhl5dalbCjpIt6WQPvmUOUTAULRjREnvVtZtw7sJkdEiXWqnO8u2d57XM+u6IUbwRsgtkWolLgc6nehmLDsxBBTBegfNUHsnhEhXQbOiNQ+IkirBTaS90aXSu+KMIU4TPTfWtJG3jXIp6EeGnsDeDudgXL+8vwwb3nXXXXfdddfXtz43hdrr4yv+/h/4fmyxH+ZMhLEJ90KvgjqHESGViuwrKVW0DygAamn7oP0Jjcv6jAtmoN0zXGvC9zZmuoyh1goKT2/esqeMDxYbAz5M+OAovdIVkE7VStKdyS1MU0SNctkzOY9BunnyqHau2z7CtUtFcJQ2XCdrHD4Y4g0v33qjVR1sg63hBKTryFCzYMWw7YJ1AWsiyth0dSt0LVhxuBAouVPoNLEUaVzKypwCPi44t1Brg65s6YKIwwaLaGTbztjNUFvDxQMqjq6Wba/kOrLbak8YOnzpy0zhhPWBfV95eh6tiME5nIAPEzFEmrV0bRwfFtR4Sq3QO8EGyp5J+451kWkeG0ZiABFKzVwuZy5Gcd5xTXXAKxRaK4Q5EpwlODdI6T7QulJFsDKK926EKgvNwCUlaq60lijlFpGgX5xCTQTokHOnVjBqsCJIYBQSgQ+zay8fRzANQrD42nk4nejM7PuVfd1orZOlE/ygL2KACY7fcGSaZ2od0A8n8PbdO54uV0rbcc5SmqG1RiuKdwFpnYZgVQad0wmlj6E4YxypdFrvaNqYl8D0OBOnhThNmBgQ60c2tTa8jTg/oBoNYd0TfRtzZoc5YIyBrQ8giBktoetaKLWz7SspZ1pTUB3kQ+dYUxrO0m0+b9s3mvXU1rGmAGO21boTwUxYawbafxcoY3y19U6tjXROw7nTlxbczhRmnPeojNlTFy3TcsBYx7buqCjWOg7LQm+VaQpYY0mpQGnoAba8k7Sw7Z1cKk2FXkdgfNVO2DYkBNbtwrquGBxdN4wI+3YdrwvOIS6M3EFj6HT2vJNrx7iI6Igl6b3ivMGqYysFesVYh/cB1RE9UhX2VhHbMThqa4hA7YVtzczzMkLLFUoWtu3K5fpETh+xl8jhhfx4O5z79Kc++St819x111133XXXXx19bgo1APogno1hBqgZ1hWezomuFutmVCrozrrVMRNTCqqARFQK8eDZryvl+palT/Q+iGO5VowzGNdxYtGaSCmTrs9spbMnOM4LYTJoVyyGlDakV+bZ07VxzTuuWXpRugoiBiNjd1FKY982vBlzYNt1xYeAM4Y9ZboRTG9o77RaKLXi40zLBRMmrHc462itsm0N0x3KQHaLyq3VEbbzM9Z1mio+eFSV3jPTNHG+vGUvhp/7Td+MtxNPz0+kPaM1DTdEDGI60xTYt0ZXN9yX84g7SHviwZ8wDrbLinGWvVTO2875eR2ZV0uHEPkoRAasTQg+gFXWdcNOgVTzcCrWC3s3zLfCeJD2FBsCLhhaqyCZEA2HacY6z+VSUBmORS0OrMV4j2Aw1o4iV4dbIwitjhZPupDXFemOaoajVlNhL1D0C5Gg9l7OQQ9jbXYBe2v5Q/gAGsm3/555n6kmCYwK3iqlg3eO7kaR8um7C6+OB2Z1ozjxN4T94rBJeX18oKTE8+U81pmA947WYLOJ2jNeJqaTpddGKom2p5FPFgJGDOr8aINsH4qOpuOAQnzEx5nUGq42Wh8UD2c9lY5hQ8WgqsToSelADB4jO713Sh+hyy4spFZ4+3ymljGH5v1ANGrO+OgxJjLHBe8nzs9PpDqIo84YJh8IwQ06440u+vJ6xWADUVc4XwcNE73BIHtnthbrHRItUhWMYIzQSiY4RwkBUKQodp4RaXgr1Hy7361hjhbjIloc53Unl9FVYILDGlAjPO0b15xGkV0bMU40GqYbai2j3XMH6x3GT2OQsRXKXrisF0yYhhtpBLQR/ItFmKm54p0gDby1iFeu+4CtqBFqaajJI/qhQ1oL0Td6VbSN+JPrdeXN8zv+o5/6CabZsTwckZcA9sY4RLvrrrvuuuuuL4A+N4WaiHzY8BTQDPtVeb7slDLoglu68hACh+DoPdGpowVor+QyTnqtD0gs9FKgNUxtqHYWF7HSBoWwJeK00PIVqQntHe9mBEPJI6T17ds31A4heqLzxDlSUufN+UwInjlElhjAjlDbShuzbetKXhN72cgtMxiFmZpg3wu9V9KeWI5HDsfTOG3PGW3Cuj6T8k5ulTg/cPzoiKqQtmfy5Uqwg1g3zREb3PvCq1/rcCeAunXSJTOdDhzcAXGd5eEbcc5RC5wvF5yfWNcLnU7JY/YOxuPGORKcg97YW2FPBbdleqlEa5DU2C8reZ6ZgqePYSaswBQMqXd6VWJY8A+O/fmCn2e2t29BO9Lh9RTBQN6v5FTwVniYH7huKz1l/BIJy8zbT9+S187kJw4xoqZz3jMN8K3jDhFrYfYB06G3Qro2nBdaE3oz7Km+R4x/UbQXQSyEMGao0jpqMftZ8uOVD4ANgAnsBH63WFHqDkhBnbDtO+u+UvLO6/bIg8zI8QOoQ4B5CczXiegmentm33f2VEbge2tUEUQbWgbkQ2Wg4EsueO+xxtGa0lqnqeCco1tPrZ3rZcVZixWYg6PRoY/if0tX9uRGxpp2QoyjNfB6JucZaJTa0THdSOnPlAzrvlHSjhPDq8dHFEaG2y0SQF5eOrvSdWSZ6Y1LEqcFZx399pIllxvGPo64g3VbuV42/OFALYmSKzEINs7YUxhk2gxGLNL7uP9F6HlHrWOZJ2R25C0TAmytMYWG2BPLcuC6PnP+6htSXhEMqtBroxpoTXh+3lBNiDFM08y+X0DBqANR1Loxz1sbVhOt32A7bkR9lDIOS26mIsY5ZhdovpJbhT5iCh4OC2tO2BQwWXHOYpdB9nx3OQOW4+OC9ZbaG0bAdOXpsqJiCX7mGz76mC/tB/wmY016+Mo3/tyf6Vvkrrvuuuuuu35W6HNTqA16yO2Iug8gwpah1NEapUZxdkLFUVXAGmpfuZaEGsO7feW6XjmlhSV6ugo5dUbMtFLKlVqEwZ8z1G3lkq50BLGVTCZtnawJqzcHSARnIwYDKePVYdpI4m62sesYkrfdUorB+WUEbgdlvTwxhwlxoE0o2vHBkC9jtqPsiT7NSG+ktBNjADHMhwc0JZDRCtbYEQc2OkpWjArddkQLTgyKotrZtkrLo/Uwb4m6VOIcmQ7T2PTmSkkXkNHmdDguaJeRY5ULSienjd0Z3DwhrnGYDjjnOR3m961gU4w4x8igUjs2sdIxzrD4SF4Tc5hZ9ysCPD4+sHiPVXh+escyu5FtppVihIdlwZoxv5RzRoKgvbJtwyEBZV8zOSe8U+bDiVaVVhsqY8aolo4IrNcN5wXfJ6oIpRs2ZKyXL4hEwIUBmNj2W9ZzFMyA8Y1PREblVnnvpiHACWYV1hHbRVdhT41SBemjtddbi6mNQ1kwRwOnQX9sbRRe8+mIe/sW7z3tut0yxByHx0FDxSraK7RKlYyfJ4wZa7hLxxilYTHzmNdqXTFWyHnnnCs8PGBwHKPgrAyYRU2gnhANTcccVi1mrM3eSa3irSO3nefLhmLw3uLjQq2Vpy0zx0icZpzz1FZJ56cP+dkieDdaKXPvvD2fEfPIbB3Xc6WlnRAsdjVU7eSU2fPG3gouzqQt0bpjns2IEBFQFPYOXnAxQh/XoOSNECLBwBQ9Nk74WSj1xHXdaXSaVg7xQu8HztvGtm/sCFOY6bbTjLJdK8YaUr2OuI5UUaOE6Am3eTOjgmlKK5UQLdF7Dl/6iKenlWtPt9wBRaiUvjMtE6Y0yp6JwTFNke6EQ0nU2tBuCDhMDPDg2bcVJ45SC/u2EZwhVk8I8+hG0M75cmVfH3DXMCIWZnCL/yt+39x111133XXXXw19bgo17RZu7URqoZnRnZUU9rRjb+G7hhHUuq1PVCq5Z1Ju5FopJfM27WzOIGZwyp0qi1+Qw4FXy5E1XQb1sVU8lrXvWHGj3VAF8YFOxznHHD3WCq00Ws/Mk2Pyjq6wrhvGO6Y409rK+bJxuVzH6XhvSIhUI3jrMaZgWyPnzmE50GljTKhnckqkLTNPnuUwKHsnv6BiMRTWy5XaC8EH3BSpKdO0Et2MaqPVgnMd44UpLvTeuaxXGo6PHh9w1hLEYayh1c4hzpxOR7I2rvvO5fxMnCOiwlY2ogl4NzHFidoyr4+vCHEa7YzSMaYTXSStG00y2gstCqfDhItHXp0CYgd1sWofwIcueOdZDgeUQFfY9yshOozxvJpO1PqWZTnAnukoqQ0CYRcotfCwHOkUHIbD4kYcgY106XgHl8sTeV9ZDhN7VUQsuVWerhf2vX2BEq9vnWwZSh4tdXEZTgkHBvkx3N6/EPY6H6h7MwSFdm2s205qhZwSziiI4+m6giq9K4ccsc3Tm3K9rJSckTqc3WgcD8cjb5/POC84HCHGcaiQKqqOaT6gdFBo2gji4QC1CyIWbwzBC94avI5WTsmFbg1rL7TWMSbj4oJ3wjUVZhGs9eSSWfeG9SMzMadEbhYxAaWO1knVkSOIkGsl3F5fug6C7HBiZQBqjCPnyl4yVhsYw6F1tvU6gEXej/lU1TEnWZVex+HDYQp4N4qenjoEQZxAt6gB2mjndXHB6HAVxU/YeYBbcBA2P4rl6zOz87w6LaTa6JcLMOY59yoYPJftQmmd4BwqUFJly/toHTaGXDaMdh6WA2JgWWaCdxhjKDWjFg7+gLhA2jdy2sFAN45e2vvXRuc9C0JdjtTUhnOaEyoGsWPm1FhDb0IvQnxcxut771g7oCq1dJ4uG/ODx+Ux50fnrrvuuuuuu74Q+twUal37qMrc2GQ+N3hWITVl33eMdpLNPDdFpZHzmb1lLpdnWoY9r6h0rDHse8baEZ675kytBrdM9ADeL7jeaKVQa8OZmXUvt9woGXAB0whzIPpI643zesELzNMABWwpk43gjcU2yClT8j42ftbRaTTtTNOEc5FQG7V05smPTCkF6wx72bhuK3EOpD3j/UwpnTADtozN4GkibTLm6nrDueERop1eB0lummaW5YBRQyqJ2kfuk/UWHxyn0wFRIcSJ0kfQbj4/UbYL0YURVK0w94nT6YA1ZuQjh0iIjqoF4ywWwamgW8IEj5jKw3EhxEj0jikEtlyotaJ0VCtg2Cm46JHix2auF7COmjvBC/SKtYY4BfwUKF2o52dCV4reKAM6fvcujVyVbV/pwMPDkUqnaRtY82siRoNqxXhBTR/wiy+QrBOcDhKmcUouMMWB4ueBsfl/KdQ6/z/2/iZGtrVN04Ou5/1da0VEZu5zvqqiq8F4YGjJZoJkIYbIMGBgC4EEggFCwsgTS0gINzYSkj2x1GKAJ5aQPECGAT+WaGQQEkj8qSULg2AIo5bctMpdrvrOOXtnRqyf9/dh8EbuPIVd7qbq66o+veOWQpkZOzJyrRWxYq/7fZ7nuj9CofMooogHYxRrDTVlrrcrIXpenKM05cttZdt2znvkqVxADCkdpJQppeCtxTuLq4bgHdxba4O1lFoQo0xLHBl4peGsJbpIKw3pnegF6ydEFW+EaC2TH+Hu8xSw1owsQFFQQYGqwyjcto0jO4K1bMeGqjIFz/l0wlrDviVqa1gjY0ZSlafLhcs8E3zAy6jWh+DprdG7cPRCLoVcRoB67Y3r7cbn11esNZznwFoqs7fkUrhuO856vLfkOqIRY7CkbafcNpZjYonLOPi10/qgJdba6dYQvadow2awTdDcwHh8DIQ6YY4BFDpZT7k88ePtjVpkhMNXpavnKDdKrYRpprZOboroWGxxOHrb2fadl+XMvAyKq6D0O4nTWocxIN6y11E5Nwqn0xlvQUShN4IzPC8LBiXXwnrs7KWP55jtQPDLWCXpXYk2jFncUjjWxG15Y7sttPKEKwxC58OoPfTQQw899I3oF2PUvqq+I8bH9V27Bz+XnDhuX8b8CR0xhev6xn4kROy9hfE+5G8dtRd6SygNoqHZTjVg1YzHZx1DOWWnK6TjGFlExuKiUHLCO0/0gWwS87IQ5pluDG1zOGvBeFQtxijRe1ruHGVj3280Kj4OQmFDEO/o1nKaZ/a00+nQDPkoiDVUMUgw2BDZbjdqTyxPJ07zmSKVruZOoxsXSb0NE7TMM9CxxnG+nLnoaKGap5l3Qp2zDlTxauilgihNR7ug9Y4YLdY4tDv2LeGcMF1GDlo6MmE5jYstGbNP5IIxljvbHYDSOsf1inOjQqE943yklMbrfmX2E7Ud1NJgr8TgCDGgvdN7H+a2t9FSWRreMDKxWqM1uK4/cppOA2xgDdM0jQv0pkwxkFIhl7Gv9bYjbpAM6d9Yiq6MWbRoICwO5+4kyMCoqJ0YAJGJr3lfZMbF8T1rTBSkdsq+00pGGWYCRsueIjTgbV+pvWKtpXbQ2mg1czmdQButVXSeSKaAFYy39CaYuymRapjcdG/Fq7SckdrGTJS1hBjxBuYYcCrj6ztl0Qwz0ZvQWgYC1g3UfW0H9R7OPFlL8J7TdB6LKF3GPgi0Wkh7wqAYY3HOEq3lNC93cE3ldd3Ja6OWg1or3jhEHOUY5i1OkewH8CSVTGtlmB5rcWpHpSuPCmQQkC6IgWAnjBeMs1AVp4pqoaaKEUbLqAh2DtSS6NoIc8QaS7CW4C2X8wmcp/QO204uB8ZYvA045yklUfeD0gq9dVqr1F6JalFteGdJrVPXHe8A6QR/ulfWElTBIcwxUnrBG3haZk5LxIhSSqbViophiRNv60qvDaWgzpFLHZ/L76ffe1W7d3opbPuN8zZaJMtRiFsceXTfUPX7oYceeuihb1u/GKNmxEAUqOPaOu2Q9gJNOKqiWJoKad1JZVAMWzeUZshpZ/YRQ2fvBbGCqsVbeDq/3Oe/HKlUAoJkaHW0PpU93fHciriBrJc8spK6DlT4PJ2w1nHkRqIj3hFtoNfOOXqq95TqEGNwDlQLfppRb8jHCI1t1o42JFGMn1EatsP50sitoFjEOVpKrNcVHzz16Fz7Sqod0c7TdOJlPrHeVlrveBuY4kyYPLUVrJiRvXu+MIUZMQ0XLLU11Bhij5Rr5TjGxbebAsZ6OoYpetLeQDqtKXupOO14F+naaOhoGa2FpxBJvWG08fr2hrcH8zLjRKndoGYAKVotHCVx7IXJBfCOOU73YF3BOsu23xAzYBLRRdZ9pdVGT5k9Z0SF40jMi0NERgC5NMpxYEMcJjvnMbPGwISnlOhbZZr8oAZ+Sxd+ZkAgBDDvoz4BZPj2j7k0zwdIpI/HIMAVNI3XTvuIjjjHgA8RZxxNG2LscH9iWFPCGDtaTWvBiuC8p4ZImdIAjTiPGqEA1TU23ZBaRqaYGZViVPFmbLw1hil4rBEmP0AWwRlqKhgXiHFg+dUGmh0LDlOMhMmz3YTt9kZDCdMgP56XEy9PzzQY759aUbEcHMgk+GDx3hPtMBynKeJPFjWRsAzAzo8//MiX1xu1JRRH752cM6lUSleCL3StX+M4yp74Uq7Y3gnzAtNC0copeJpW3rZXlnlhniMWB9o5X07ko4I0/DIjCqVkio6WRNsdLgZimHhaGtYWJDgIFuOu7IdlS5XmBkhJVWk0tClqFKtKK42snegcxlpqvweKtzFvi9kJdh7GuxWmKRDiTK6O8zTxcpqZ5+WeybaTU8FYCLVDh5QO5tMJCYFf//SZfb/hxWIuM9YMaqtIY91XlMbTZWY7drZbZlo9bjIPo/bQQw899NA3o1+MURPTwIy8o1SgdOjigErrAyhxbDu5bFy3G1ULwVq029GS1De8WPa88/mnV2LwzMHigqNSsclymjylKrY5ci683W50MZwuEbYDFcvl/IwXP2iSaSOcHMt55vPrF4x1YHSgpmvBGocLntlM5DICrBcfwBuOclDaoFKq9ntZA3ozwxSKMMUZzQNbL0Gx3iDq8cuJ7Sjs18wcHdYMxveRKpsUnp9eWLeVVBrICMj9i7/z2+y3jQYEG1hOjpyU4B3W+wHTLIUwBYp2bLZ4o8QQmaYFYeDCuxNU4XoczN7TcuVoV7qxoJ1p8twqTE4gVyg7MZ4I04QYIZXE63VkNS1Pz3gX8M/PaKsE33HGYawQ6NScyVvDeBA60xw5SqI2EOvI6cpyOnGSiThPGD8qq5PvnOeZY3TU0UqmaUGjw2CJzrFeb9y2HVSo5dvqpVId7Xa13/khmYHTz4yKxTtYBMZM0HvgcALWgeh/erpQdUQ6qDZijDSF0DvW+5GiUQq1G0QV6GDsPZC64owQTWB5WcB6Gp0vtxvald6eqH3Mle4p46PDyASt8LTMCEI3ghfFiVBTgqxItcRPAT8Zop+4nJ4Qa0kpDUS9QjNCcXZktokwTQuXyzOn04n9OPAGTPQY60GVEITJT7hWeX4+McdAeLHISVALl8lhbSRvE6Kdbd/5/PrG220nTB5TDft+I84jU205z6QjkUvCdKUB1ldqKyCNrQozgaNW9DjwwWGdhbPFFpiDRVNH7MifS1VJOaPGjbblOuYt57Dgpo7ZE8YNOMgXATE77HA5n1lTJqWMOgHTkAbOWYwYtiPhgaZgnKGrQuusxwETODeDEURG3EgwwnKaiDGyRMuRd4w4jOk4a1DtnE+CMb/Nl/2NoxQ0HzgDYiJJK0c6xmfIHEdrcs/se2bfMm9vrzw/R9zJP4zaQw899NBD34x+MUZNrQM/5k2yhWbBmk5qB00bX26vyH2+iy5oF0pXjHS27UatZaCo88Hy/ROtVNacmfeMt4Y4zzhxLJOl54ZK4JP/jqw7YixF7hQTyahWog9EP2a7SqmcljOprCCWuMwYNTjg+fKJvL+SaiIEw0rnu+8+8WX/wroftFYwvXEKE00Cr+uGc54gE9oO8l6JYcJaixxjJRytiBFsMIg1OCfMIVDaxnrdaOXM6flMXQspf2Euz0SF08sZweCCGyS5rESxhGVmS2Nbni4XbDdIh5QqwVmcNr683bCTJ7qJz7dXWi2Y04zEE4LFiqH1yrbvdBSvlqdlxgeLiuW6FbA6Lkb3g7f1StgLfr4gdsNoxyrQPzMvgedp5tgzR0lMMnE+L1zTjp89zQrRKqdyovdh2uIy4URYc8IaO0h8UahpRa3STefYOhWDd5Y1Z3oec1Gi39CQmoJx96p0GT8Twe8Mc2YZ7Y/vwdUV2IAro0M0gBRhOhuW7KEGrLV0A8HN1Doojjghl8L+OiiOysC6pyMPSIxzPL9ceL48Y6zlx7cb+b4o8emTpVbl7boBYNzEMgUmN2bPWqt0Ks465rBQcyKtGy8vF1wwWOM4xZnn8wUfRnB675239ZWUO0/nCzGOYHUR7qHOnXkyKCdy6hTtLHPAmRlvDFMwzMETLgF5Ergw2nyNMKXAf+C3vuMtRv7gDzM/amU5BYwP5Jaxcq/clsrb6238TR0LKK1WrHOjUnjvNS0qGBRtIxrDhXtpM4B6kPtQ5bElPr9uYMF74e22YhFqScQY0D7CuifvmMME31lO+UK8XpnSxKlVcikc6aDkTG91nNfG8PLdd4QQKDlTSyK3yr5d8c5iumBsHl+Dxc8nvnv+xCkEggUj4FTojAWnYfwFUOIcmGpkXTeCcai/vw9RVJVaGtZ1QFj3Ri6JdT94u22k1AjdP2bUHnrooYce+mb0izFqFQV0zG94CAFuXmm2k9qNVDboSvRmrF6ngHOOdX+jlkw6DmqpTJcF7tlkdU+0aYbmiCI8Wc8yR4otzChHOrgeQpdBOWsdgvfQKiknpjCNioQVagPnF7RVLjGACs4Hem3klHHeIs4Q5wvX60ro4P2JY3a4bgjLzJ7LIMOVgswBZ2emcyXXG2qUlDZMtJyfn3BHpjJm5uYYECrBeUqr7HVl5sSvfvu3sdpxovzw0x/wq1/9FsFHxFu6WOanM1o28nZDVFl8oKhBvEdXoXdlXQ9UYS+JbX2jGSVMC8s046PFiB0RBc7gJyjHxm2rpNYouXKaI0YK+csbHeHp6YSPZ2w1vK43JrWcnp4prWF6wyFoMVTbMSJE66Er+ciE4DnFTu+K0cD0/XesW+KoDR880RicnGmtc7tuqLOUdnB+OlOLklrHxMBRGw0z/t1Yav+GjNq9UqYMs1ab0lund4NrMry0MiiPnlFJW+8/N+7tkEpLDavwcjojoqTScM6OGTGg98ZiLDJP6D3IvSSLWSJiDHEOOOC7l6cxz2gGl15EuO0bRka1dz06UhOtQ8pKMJZy7EzLmTkEnLG4ecbIyOI61oPn58ASPfMciMswZKoDZ//p+cJ+FGppNAXtldYPavN451jiRHCw7zviBgBnngPPzzMS7pTFd9jKAryA/SQsXyLTDw7vwIaZ25boTtj2g1oLIJSSMV0x1uDdSL/urXK7vnHRM10VDZ7t1kfb5/lEbY3eGnIVxBskglaltUZpoyQavP9qRlvXe8ab4JzhsszsJROKUI4GwfJ0OeO8Q7aNOQYMyrU3SjrulNhRTQ9W8FPkMEq5ZawxOOtwVnBqxjnvHFP0zLNnjnHMte0HNrjRsmqEUju1KbkUmiqny4nbdmNfwarQ2/js9mLpVkfkQu9Ib9zWG1Ocyd9Brh19X1x46KGHHnrooW9Avxij9rUfS8E5cBYEofVGqxWDEkJAdBDF5J6TtW4HOeVBGS+VsiWqE3rt+DhRipL2ClHZtmPAAqbIUQqbdFrpGCNM3lIFlM51XZGuGGOw1pD3cfHlrEOtUGpDFGqr1HxweW/Lq5UjF8p+ZW7C5eWZvDTewkLREcIdtFBRWr6hJmKjx7oF0xsqDXqja8EwMPjBz3Tpgxnex6xeMIZ5WjA2Qu/EyeF6Y45nxAq1Ks51RBvRWnptbKlAsLytVxCDc5Yn/0TKmSNnyAUbLFOwTOcLrVWOtNKdIMahvWOkk/KO1goESgts+4GRMX+nzrIdDUwi50LrgjLarpBOV8VYixqDCZFeCud5wXuLtsbaMsYI1hiwo4XvsjhCL1iglIbgmCaPwbPmHe8GFSPlg1wr+chog9IycYrgDNV8W1d+2qEO1gytdPY9se2jAjnvjjlZzO2O688Mk6aMOTXLAIp0WGZ/r14qC9CNQWU8r9zBMv7V0G4HwUcmZ8mtUVqj0ZFeCdFzns8YE7Bi8dYSr4HbtpNCIfoIgFOLlTE3Gp0nGENw98pwNyzTBR8N0ioOg7WC0DBdscHRemeaA64atI8uznCvdKVcOfZMuHjO5xkcvJjlDk0xhFmQRYYxm/iIMbgwTNsFmMF4y3fhE85PrKnyuiVq+QHVglFFrIzIANU7Y0fHMXIy2nNbo5SDXiPWeuI8sW47RpT5tIwKZwOkowwjOy8TqqNy5ayltfEZIcKYqxMI0eOdYY6BH69XsI7TNI3FK23M00TKO80atEErlSoJiiABrCineRrVdWuZfCA6zxQj53nhaZ5YwoTDkLeD3DtaG12E275S6jCbuTWC97SjgAjWW0gVQYjRUnJn3xIiULAYZ/i8XlnOT+wlk3Kl7/owag899NBDD30z+uUYtX6/jcIapkHbM/VIRONZ5oAXS05AA8WACq2CxdHyQesdYyymGYwIRpTWlNwrn28bBsU6UFFSKUgfiP11L/S9UeiogNxnM45jQ6h4F8nZEicFKseRiG4iOkezA0fviJRSqfvOJYwcsX19xfqZGAyale+fTqTb9R4VZEmtcKQdRDAevI2INmotWCeoYcy39RHY64KDYrDBYtWR1xXoBFkI04wLE3GZKHUjHftouwwBIwPJv6U88PrGMM8L0XvebrDnzHyeefIL+HExnpty2zL+PNF6o6uS9ivXty/0qggB5ybW3FEZFL24nOgTWKPsW8I6jzFCzZ1aKtoKtrsButgc8xKQ6Aje36sKB5SC6wPZjlimOZByItfO9dhoXXAhMp/O2BBJmhE7ogCCd6y3N/accXMkiFDrnU7zrUhByzC5vQ3aoCrsW2LbG7u1LFdPXBxYO6ooIlgnmAuDqAgEsWDd+GEGIth3emRkGLoMl9OM3iJShHgOqCglj/dLTgfBe/wU+G7xeD9e+1IyXRjkUSMc6aC3ARTpKK0NcAZM97h6w3w6YaTj55lTHBuz7iuicLIXVDvHkVi3nfV6A2dZTg7nPc5Enl9OnD9FrBMkyvhkVIajq4yfZ4ZZezdq8b6/3H/+fnw2POmMf+vU1kmnBTEnJue43W7klr+27jlrEVlQVZxztNJIx0YTRbWR9oNwOY8FDStfCZzi7QDubAMIYq3lOBKCJQQ75l7bMMshBoIXpiXib4kQPLc18+vPnzFAcIMCWcOJKI7WBq7fWEMpnZZGpXQKE07cWAjr4L3jNJ24LAvnOWLun4n93gpejR2vXc6s+0pvigKtt1E8tYNoqUmJLlBRUk+oKNYIzts7odSRWuG2rqy3g3yaHq2PDz300EMPfTP62xo1EfkfAf848Ieq+h+73/cd8L8A/kHgbwD/JVX9fP+3/y7wTzLWfv+bqvq//41sqSj4Ac2wAq0pvSiT92h0rKuSSx5ktV7oHboKSwy4stAQmoFUC3FegPsshXNQITzPVD9gA6nV0WrYEnaekWJoLeG8pUpHcDhRtFpKMfQqKJ2edrwb8QBHBmtOPF0W9mNFakf7yB6bnp643a7otuOCB6dse2K9bVgnxDBzlLEfyxwpuWGUMZTfEsGNq0MbZ1QNtY2w6l7AhUhrwh/8+AXnhWWeSA2iGq77RiczTY5moWRFrOPIG7UVejWUUoh+PP9RM0Uz1gpzPAEjM2qaJyYWDrVIbTTNWCcc1xv7thPnE8dR0XJA1xE90DL1gFwLz8sFGzzHuhOjpbaCMw0fI1XHvE3qBdsEUyqTs/RW6NIRazG2DcqdC3QHrSi5N0rv1A5HbRijqFUMht6Hw8/5IAbP27oSlgWMUFsjm/cVgD9f/Vmda8aAtwMmAkqplVbHhfRWEm+3lfM84eOENQMXP/nAXC3GDL8g76QJYZxIC3BmXERPfM1fkyjIecxYudWgm+KePDSYUwQBORlEIawR7q2T+SiIGk7TgjHK60+viBGmOGFE0Aq1dJypGMcdWmEppVPDaFeuqSBtpXelYii1sW4Ht30jlcZ1L5wvZ37r+0/4GMbM58T4VPTc+0MZO+z4MAj2fp/87DGWj7DwWZiq4aXN41e9xxvhV7/6xNv1lVaGwRIj5GMsEnTtiIx5NWMNpR40FboITYRaxiYhoHl0E1ix1JY4jhEf0HsBsaMyGR2CwcwWWQTbLS/Ocs6Bye1stze+ULESCSFiLhdy8aR8sKVC0xGJUfMIHA8+cDqdabkQrSEGj7OClfvKGaO9tKmQSiNT2Erh7e0KRnHG452l9oS2Qbvd14Nyb4fEOroOsFIpCVUlTJFUG1/eXvl0eeLtdmM9R74tTOtDDz300EPfsv5OKmr/KvAvA/+Tn933zwH/R1X9KyLyz91//mdF5B8G/svAPwL8LvB/EJH/qKr+qUsWIvq1mhYsPHv4KVjW1871yyv5baM7wBhaG6ZIVWjpoNSd3gtOPI7Ol9fPTHEiek+3HomG1CsOxy0lsIaWD8QFjlQgCm1lzFpIpuzbMDRuBkZ2lDEGZyymOZybwAwq3Ou+0taVT5++xzmHdQ6VzunliW4dpY5WzZeXT+z7NmAZ3YJpfPf8zOcvr/gQUO1s+5U970ze3wf3xxyYljTQ6LYPHLnpxDBxns9MtqO9jEMnbRi7WsjrijeOnFbs5HExYA/BqvDldiOlfD/yihillB1rI+U4MK0TfORyOmG9JzpPzm9ozrgO1EwrjWPr+GUmTgEU1vWNp+nCD28r1jusE95+Oni6TGSB8zSPjKwYKT1TFJ7nTxTtiIUYAwZDnCb2Ukg9ceSDjqdLRryhlcreM66A2IaNQsppVP0aOBdZ4ol926mtEYzBVPjAHP656l/l7/a5dmfiGAGKUkrhdrtBN3Rt5HKANkrJLCEhxqAiLNNE7yeCM3gj+Flg0mFYLgyTZn92u7dAEhmVKMsAkfT7cX4Gg4E2qiu6Kn42KIqzjtM8YW1iK4n9rVK007swiXC6PGHtyDWb5onjSHz5/MrlfMGFiXU96B2iE4wVTGt0FY5SSaWwlsqedlyuuODYtp3+vAw6yHsMwc/BKvqz/XkPAH83aYF7OyJjnk9BXoAgXELg8hxoBdIGqa5Ea0eBzrmRu3Yy9Aq5jJet3UPFvJuorfP6ZSWnwpEzp+lEnBytdlodAdL7MTILpxBGBEUteDsiCvzskVm+vgYyC/ZvWWyH58szt32ndIFWeD5NpGJIU0RvN15f1xFubjqoQRq0XBARYowE66HXMUOnyut6pTM+e7cj0YOl3jMQBUOpSqud3Ao1JWq3dFUEQyo7tjfykbHIoEw6yLmQWkUWIdXM2/XGfnl6VNQeeuihhx76ZvS3NWqq+tdE5B/8/7n7Pwf8p+7f/4+B/wvwz97v/5+ragL+LRH568B/Avi//qk3tCkkkHur0RSEyQhGDJOfyC5xtDwuXnJCq8V7RzWdrWW2/YoYwxQnQgxYH1BtGG8ApR4bt9rppxnVRimV8+mEBE/fCs0K23Fw5I1931imC+d5whpDzsfI9iqNPnv2WghmtHHtR8YJbOUgSKC3wn6MYXvrDF5H1QcX+O5Xv8NP11fyXrg8v2CA5YjcbjeaAt1wmp8RP9oTU6qQ+5ilccKyzFRxbG8rRi0snWYc0+xHOHVOnGZP3jMyhvwIyxNqLdoK4i2f952UGxiPMaA9k7aD2+2GcQbrZm5vV5ZpoZXCSYRcFWsGEbIcBWmWIJZbvVGPitr0MVNYEl0Vy5inm09nwhKZ4oSdPCJC6wcWGWS+4OmlkbZ1zMFZR9FOqYVWGyUrIXiitRQZrZFvtxvPTxfmKaC5cVomggu8Xlfevnzhdmz349kIlxPi/96oqP2ZnGsKOSu1Qq0dbRXtyrq9jSo1hVoOgvWsAnGaCT5yHJljy5znmafnCdfsMAHvc1vvgA1lmLb3lsiDj2qUA36br55YmozWwn206VlreDldeHu7Eb0f1TZr2M8J7Y0QZ+bgkDshsLdO2nZ6q/g4U2W01SqGt9v1Dkbp+HljOp/IufH5y5UjDRCPdx0jjqfTzDRbJDLMmOfDXHbGNiaGERM+Wjvff363xub+e+lOhPx+EA9dBbvBtC6c94CaEfpOh5RHjqDL5d4WWrltG9IqiB0kxNZovZNrZv1xx3mL94bjKAMONNCVBB9prdDaQU8OOfvx+jyNfRI72jqd7UQnfPr0zNt1xcdI9IHelVwqc/DMfqKr8Pb6E7f1Sksg1nKepxEAzliY0l74/NboRjB2QJ+Ms5RUaA2Mmzm2Dev6fXZ1dD6oGpw1uGnBJMt2XYlzJKdxUI2OAHQxDmuE623lS/zM7dMT+ud/qj700EMPPfTQn4n+pDNqv6Oqvw+gqr8vIr99v/8vAv/mzx73e/f7/l0SkX8K+Kfu3//t/6IaxMjXqpo1MHnLaZ6ox0R+yphsaduNXhN0T0qF3JXUlawGLR0xhclGasnUVriZjpczaiGo4pIj2THsnnKmNeFIiVwz/V6lW28H1kSOnJnijHWRXN7oxZDqFYvBXS6U0ilN6DaQtkYoCWeE1+uVY994OZ349PQ9MUQkOKoxNGsRt4Eq1nqs9yCKt8L5fKE2wVjPclnY3z6T2oYTNy6O9hH07Yyht8y+rshyohkZM1luojVBRRDjqSKsKLbDnipH2oeJlJEHl8pOAC7LTFp3ehOsVRYfCUYw5wXrPTV19i1TKqh4aJZcDswdHlF7R1WY7YKxQozgo2cvidw6Jwy5VHJbmaaAjYFOwwG3I+FRxDhEOrkPPPniA9eSafUgni9YAtdyI+030lG4GQFdmCaLdEOvdcAlvKVtfVAmjVKy/6jy/L2p3+i59g989w+QUud2zbReOY6DVhq1Na7XldYy0ymwpYNeKy9i8eJwXrEGjHSO2w3vTvjJf2D8YZiCdxPz7n3fjc57Beq9UvVOlrybIK2jjdJaxxSn0bYYPdPljIrBG48gTM6ivdJLJXqHixbrzoChqR0VQwbN8sgHuWTy6yvTPNNV7tleBocQnMXQWJaAe7ajMrjwAU2BYcYyo4p23Le5MkzpzNcqGv1njyt8BIcH4DwCxe3ZYN/C12OhB/g4E2ygtYZxwn4kjnSQShszlK3Sj4aK8LbueBs5mYne6ui+lPERrlURp/cPdIubI5xkbMP7PgmYXwlTmrntI8fNW4d3nlOcMaKIWJ7mEzFcyXWET2sfJSznBHc3yt5bnp6eSblwHJnaG04crSpHSmxp58gFdR61o7qWU8KJ4PyJ0gvSGxZDUINdFqooV7PROlgXaKKgDZWZrlDaILfq3wOLKg899NBDDz30Z6HfNEzk3+uK99/zf1VV/VeAfwXAWvu3/Z9XDPccLsCDC3CaLH9YCzBmKIKbQA37evD2tqLOUFtBxWBcQBSMsdy2L5huicZiBVa/c54X6lFwvpFqIYTAum/krOxHoTMgHd55ltNMromcN3JKtNoxtpPzgQKzn2h1Yq2DcNe1Y51l3RuXacJ3He1mYSI4xxQiOEtfBIkOXCDngjHCopnazlixxDmybwmMIXhLePme3UdKzpSWSXtmmgem3jtLsA5pnZ4bPVSMsdSmxBhRUYx1iLc0hFtKlD0RjWWeLbeU8WKhVXrPxGChW0KYx/4EhzhLLYXrvqO5UErjyGkEZPuIk9HqibuTGrtFvMd6i58jGgPWCbl0gncEN7bXAal2fvrhB+blicuyEIwhl0Hxm4yn1o5sBS+WYzs4UqJ1xYnFSqXsiWQMdEOIE9fblVwyrWRqPTDiaK3ScsWqwctE0u1P+Lb/c9Gf6Fz7R//D/6g6YcBZ+qhy1lpHhap3Uqp0bUzRE6wb1BEtBDPjDXgH3rpRiS58tDc6hlGJ9z/a71vo4E7HGXr/HeXDBO1Qt0aqDRGDETMeLpCPHSvC5TSBCpOxWBnwjbHNw1yIsRjvSbWiOgKhu/E0HXNSR0p3sMbEspy4PD1zXhYuU8RHQZ6AXzHMV+bDfBXgy/iq9xvb2AeZQd6hIzAqa+W+z++vzrthnX+233k8ViYwCUKwiLeYIMibcjkvOCeoCjkVehc4oItBnKE7i7EGa4eb9N4RrKXVgmKwbsKe3suWP9s+B1jBLm6YXDM2yHdhCoHTHOmt40VQFrY90/JEv5xBFe/us4baBsLFGk6XC26GL9cvNG3kmjlyIeVMLqNiK2OiDmsDmBEpUnPBWcs8T5wmTy6NXAuKcpROQzBmxDy02ilNya2z5/awaQ899NBDD30z+pMatT8Qkb9wX+H/C8Af3u//PeA/9LPH/QeBv/Wn2cB3lZ7RK/AEWqFVUAfxnqXkjUdcIDYlxgVxBzEO6Ec9Es4Geq1Y40YeT6pIjHh13NaMt5HgLLkW5hZJuZHXTMoHx1HwcWY/CmIaoiPX66pvlDQCYq0POGewxo/tbWDNGPj3RjhSRUWppSKtcV5OBB9RVZSxcm0t2G7G/IcDRLk8nXDWo7lQaxu4/TlijGGJMxbDrd8QHGbxX6uTVjtOGw5PL/1+3dhpVWhOEAdxmgDYciFOCxOGXQrGz5R7Lpz0g217Y/KOp+V7uoNSG7lW0rqTyk5tnVwbiFD7mLfZk4IXlvMJsR69Y8O3/UDcgulCiDOmV0prlLShp4j6MFb7vaWURLm+YY0lSyfliu2KnSHvx5hHK6PisB2ZIycA4hSY5plSK+ttHVlWrVJLpaSKaY2K0tVSSuYf+gv/MP/x/T/Jv/nj/+k38Vb9Tes3fq4FZzjNkX3dSXtGtWPEDtQ+ijbFicEZjwjkdODE8Hw+j9kxDDYLvCqc5ev82VdT8t4C+V5heodv6P2rZZiaBhwDjrEemXW90u/EwTBFtn3HW0dcPDWNAbE5RqYQiVMcc4a103rnqBVtDdPNyA4wgqLU2nDW0Wunm47YURk8Lyd+59PzaJH9zsN3jIoafBibfL8VYB+fOds6ssoApmAGTKM1/OTRCj1V7GKQ3zEfVbnMx9xb48MIyh0KcrkfMw/ReD7VF/QnZT0y1ke0dZo6/HAupJRQ77CmE1wkWIOzghHLtmWQCjaOv//edlr4Wukzalimmctc6Dqq05d55jxHWknMbsEbQ2+NYA3eGQQh2EicPEb7+Ny1lhAnjOms1rHuiVoT+ThQAecNtXS6NKBjrUWM4bbtWGnj85nGFAOX2bPlRCmV0gu1KtpG6+h72/ZtXfn89krrjyG1hx566KGHvg39SY3a/xr4rwF/5f71X//Z/f9TEfkfMAAH/xHg//6n3UiAf/vH3+e/+t/4r/O/+6v/G6y6AWMLcHlZsNL5W//O7/P608btyBy5Mk0ewaDWjou3UojLTNfEbD1H2VCbqIfBR8v6usI5Eqxl3RI5X9n3dWCuVUe2EB01nbpnMJ18NEpO40KwNS6fvgcMtcL6NloSl8miVlhiBKPUktGcmb0SL81KAADcNUlEQVSntEzOK61n5ssJby2mNsp6RZ3FGDfy0NTwdowZrTh5Jj8x+xkRwzyfEWOpx87TeRlIdaC3OvgHNtBM5/n5QlelasdjWVykHBsgRJkQKsVY6AfHfsNhMVRi8ETzREqJy5OnG8/rbaUlxVlhOyolHaTcMN7B5NiOndot0oS6HxhfsM5TWkG9kkoC7aR9tLKeJ8NpXpjiQumZNSdO7sKRGuV4IzhP8B5nwFnl7XqD2mhiiNHzWjrX4+BIBWMbyzliveXt+hlVhaJY46jIiFe4zy45F0CE8/TES/juN/E2/buh3+y5psNwjC5iJefMUQrrdqO2TkcwXXDhxDkGjO2YXgnBEIzFitByxohDnP/I9nqvpjVGeyB8VJXsz37OwBt386NoguuW+PWPP0LLIAJiWU4z1rkxK7qcqHlFUJ5OTyPIfltZlhnvPdueMPvOeozhMC9jhtM54ely4ul8ojWovTLNkcv5mdMUOU0nzkvALjKMpv84Rl/z4zbQXdk3ONII9h6gSyEdbxh1LFPAWMWKkFtltvey4vtc3vvx4f6c+/1+y5jne2G0J1Yws+EkAeUFvryxpszRD9zdsEzTRPB+ZKsFh7TGfruyzCfiKXIciaZ1/M33eIF3o7yOm2TGnFuYOPc+WrXFIX1EBhg1BOs4Rc8ePFdRjAsYLMtyYpkC2jvalOvbl7HwVQumdbSBM5ZyVKoZUScKpLqDjOd1HoyOv0fjXnHrtJ7RrqR0kNoI9e4YqldqylAKU4z0B/XxoYceeuihb0R/J3j+/xkDZvArEfk94J9nXDT+ayLyTwJ/E/gvAqjq/0tE/jXg/81YS/+nfxPERxj46tcffxoXVCdwB0wNWhJKnnn+9FsYlzDXN/btijIG8dPtRk4r+cj42VFKxljh/OmE1AbmvuIbJ1QcTYW9HogY4vTEbb1haCiN0jLtULSP23I2eBfZj4K7wyosI2xb5wk3eW5b5nKOdyjDyCzrJdHTCn3kDjVVbM5M08RliRjzPbUzWoTo5NvG9y/PCIGG4P0MYkh7QRkGKTVHK53J+fsqtEeNcHo6YY1nmgOlN5wqwVmCCCVbxHWMh6oOzY5rSvTeiXYm14K0USl8fnrh+Vef+PzTK9EHzAL5utLyPozmNFMZmWvNgZ/8QIvbUWWoa8IAqWaKt+gSmXwkiCH4J86nE8sp0LIlV4sXz/P5ic2slLTRiyCipJwBw+RPVDGkWgfaPFjansklIbZRauHoSmkZ2y2NMlqy0j6ywMSCCL131ttOa/bf/w34Z6A/i3NN77M+3KtNPk5wHPTeKTnTmhLnMFp7PSw+MsVIvMNxbm9XWh1Y+6BhGJCNYQzekfbCMB6eYd7e57oqw7w0RX8CDiUflevbjXSMmUYjlmk6gXSmqZJzQqTj/YUlBM4x0s1ogb6ttzHbJSPsPoTI5+sNVVjCzOIjvTUMHjWd0sEGx+k0Y41gTBsm7Xzfzp/j9jfGTFqHI8HrOuawUs4jz61kWm68XC7sueDCaEuc5jhM0SsfoJV3ImQB6sgUJN/BSPP977+bRBnUyHOPtHZm3X4NTXFTY4kXlnnC2kFLnKcZrRlfhekUIQrnpwmKMIY57cd+vbehesAKNTVK2qmlYENEGURYIwrSmCI89YVyyVjvyBVKGQOAwoCX5GOn6jCttez3zoCO84IpZlTRndBUaE1Gbp+pWBRvwHmHc6DSSdq43la6HXOKPR0DN6SGljK5V3oIBGMerY8PPfTQQw99M/o7oT7+V/6Yf/pP/zGP/xeBf/FPs1F/nIwVuICsYI9BUuuAauU4rrTWB6xistjsBi0NoZuOcYZjW6ktYyzM05neMyqNXDd069h6Yplf0CbkumKwuOg5thGqXYuy5ZXaGp9enumM7B8vDpqh9ca0RM7nCSuOXitvx0o4WWZVSlFy3kfmE57n52c6SikVaxrew9PTQu9jLq6kSlMlSCC6MR+nKmw5s5dMb4L2RHQB5plUGl+2neAs5/nM+TJjxNIZbYdeLDFOOOmU48AZzxQnuoF9L5RyUEuh1M4yT0ynhWka82yCI+eO84GTFWQK5HRljwFjJrq3pD1RusMHRz6UKRgm49jayrElTmHM99VWWfzMeV7oreCcUnOleUtvjXJvtavpQFtmy4097agK2j1xurDnA+cEMZ3r9ZXbtpNy5dg29mPQJK2zaLdUI7SmhDjj/ULTTNoPam60Nlbsh3n589Wfxbk2QBudlMuovnqH8wHrIuIb0Vuw78weQZuSewKrzLVwWU7YZcYG+2Fs3sEgx/2PvLc5+vst8TGjdq+o6VsdJMmuWO94fn7hul6ptdJ7x/lx/ogGjOlMLhDcAIF0GtYZYoyklGitjYptyvQ+zplTjIg4UmvYIBg/E0WYpsgyRRYXmKc4ctPeYRvmvg/Hffvvs2ajQg1HLdTWRkRFV87LiXme8N5jLBxHpVfhbMZnAVkw3tzDp8dz6aH0o2CcHTkJmyIn+aiwNZAg4BVnLdFHjIF5mnm6POGD/Tq3ZwPYlwhbAG8ggpMwnufCRyB35KO61kH7gK2UUjHeo85y2zPa+2iZdoIzE96veOtxttPpIKNM10onWEs3EzE4jBWsc7zdrtSutN6ZzpG2JXCWlivaYFkWJm+xaglOiNGgZlQKS84YY5E7REnbINOGOYC00UI+R7oZC3APPfTQQw899C3oNw0T+buqKnVcbCyAg9xgb7DWTrGW5jpp3VAavVdSSlhnWS4XOAt539HcRoZUbaONq1aadFKrBB/48vqGNUpJKypCaYqxQtHOmga6fvKB1i1OAsZCCYB44iIYLLU0ChVj3Ady+ziwNuMs46LEBXLruBCYpgnnDX5e+PJ6paaDWgYgpXfBzDMqgjpDKY2mHWcMhTbaz4LHqyfvO/m6cT49cV4mvDHMk6d1hxih185khFbG8ZmfzxjrWI+NhlK64sJCKRu5FS72RLAWse4eKF0oWgjRj1kZbRylot2Q9kwtDfpAAMbFEsJYzg8+4s6GKIGcD1z0VAPXtGFVcCmRjoMjebwXrCqvb+OiXSwYC9569qNgvaG2hrMBMZ6Ub+ytYqzBTxYfnii1Y4yh9DKABApH7YRoEQslKbV1tCshKEucEWf++Dfe30fqCseeqL1jnWCrwVmHc4YJjxiDiBkmFwCDMXZAYRDEgpumYSaUUUmzDAP2juJ39+/L/Y++Z5C9SwFr7jNkgzyprRF8INdyn3s0GCvDBCHDmIghlQw6zjMjZsQ5KLQjsR8V1GCNjqB1w4Bs9I5zFtWOaoPWCCdDcPZje9/hJu9tgoZRAczj28kbareo6aPLM0ZOy4L3HufAWjAni1RoVUlHwRWPn6B1cHYYkmNr9FqwvWO6wRnB3j/Pvs7uJdAdam5Yo3g/czk/EYNBBJx1mPv+4QUu8jH/V/owbVb+6Fzg12om9NpIKSHG0hXW9YY1Am0iGoshYp1y7AXtiojB3bP3RDvBKUYE7w1iwBjhfDkR5xl/vfLl7TPtODhdLuxHQnsm+sBpPjE5EJVxLjIq2sYYmlWsi2jd6XRcsCNfrzesONwUwFiM+fOvfD/00EMPPfTQn5V+UUbtb/3wb/Mv/ZV/ib/83/7LGHvP1W0wh0iaz7T6E10zNY2BdmFcwJxOZ7QLTtyY3VKl1IL3jmk6kXKhpXHBWHOm1B3vDNY6codelKZj1T7OEVMNJSlvZceHgLOB8/MFK8r6+TNlUxqV+XxiCmEYt5QgBKZpYY4T6dj58e2N73/1ieADmA6lsK/rPbQ2Qs3U1FCjWB/oI7V6VByso4lSSic6jzUWfZ/F84FoHfM0M89+XGABX65XttsrU/RMc8RPgW2vfPnyhhgzqilzxDtLxFFrG+1tfcAAjlzILVNzo+YGNhLiiet25UgHpYDBjhgE5yhHZV4mpujYekWlk3Olq5K146zl++cXMI7r6xf6vPDsz4iFyXqKLSADqa+aaVrp3dBVCX5CrKXpmJ2x3oEdlTKlI+LH9XYfuHAjnl4buWe6KiYGSAWriqPjWvn3e+v9faPWGtuRcM5TeqXUQtfCNHlCt1/byrxxnOIAjBjjcSGgMnK/wnmit07bK3a6EyDfKzYwjMHPg6JhmIT3mxXEG1wMOAXXHNrrmHuzoGZsRXCeVkbAfU07qVu6GAyG2oUjZ2rroxVRDDY4Zm8H7GIKI6y7NbqMSApktM86K7h79uDXKIHtvq39Z9ucxz4JwtPJUVVQVSREzqdxbnkLxoGZRyVMLfQNovcY7Og4vD+fKpTSKK1D7XSBE5HT231GbuIjBqCCsZbgx9yslkxD7zN8MqAe74sL79AQCxTz0WaZGLTJ93m1Bhil54ZYIUyR/TiGUbOCt4YwLdTWaVTWfWerhd7BOY/xgkHprYJRggsD2tIrx/WGDTOnaWJbIysZJ55gFY2K9sqE4MSSy063jo6QUsY5Ryqdo2QqAGP/WmkUrYh1g1HjR5D339NhGg899NBDDz30G9Qvyqjdjht/7a/9n/nL/52/DBHmCT6dwBZDdY69GvotwXFAK9hpJup8b6VzdCMszg3iuHNjhdY7JIMPghVP14FkO46dnjt+Xgba34L3C5P3tD1Taia3zIRSTce+CUZk4MJbprfKvnamcILoybXjAuRUKMDr9cAYw1NrdK2YDuLsaH3MjeACb+uVdf1CB5bLM7UYjpywxo4LrgpdhJwL3lei7ZzPZ2I8sUyR3gvr68p3n77DO8/mdvaSyd0Qg2PdD15fbxgsUTxYxc2FGCb2fSVpxTbPLPYew9S57hvWOKwMuAf3WZOoMzYI+5FprZNqBR1wgDBFipXRsjb7O1tCmZeRq5Z7AevoYlC1eOewxtBLpXZhPyr7fuB9RO1o37RO2dY39u3GUdrIojORSqKpQgCnnm3f6aLUY8c7YZ48xSrp2NBaaQjUGanfxkp97529JHwvlNo4Uh6kRTFgoNRMzQm1jtmfR/5z8HTVEYF2r2hoU6iCqHxAM64MwzMxjMc7sv8dW3+vuGlRtHS4F34u84SfFr7ctkE/dRE10FoF6XRRVBq39aADIUaqGkpt9K4oQm2NI3XO50gw4EIAoKEYoLfClgo2OHpYRstf63BYuN233TIMpvCRlXYBU4E0qnqzj3x3WZgvBmvvsSHxHnBtBnLfehll4HQn1BbIubDlnVLGGOF+JCrCUSbEXViC+Zo3NxIRxrCcEcN+3OdGY2CZIg1DkY7tBpPvtqVzrwTeTd/7MU98VDMFdFNaKTjn6dqQ7Llcnii1oJ2RfyaGpo1bqlQUZxwxhJFfpoqREdsgDENaqiH4Sq0NQ0d7wdKo9RgeUnREDWw7xRhUGjFO5LSx7xm/CLl31v2gtBFY3mtHjDC7SGtgUYwZB+fR+vjQQw899NC3ol+UUYMxS3X8cDC5iXCC+QqHB+2VVAsv33/P5RT49Y+/JlXD5A1LfMEqXD8Xzp9+G7tYSh7mKO8HeGVPEJ3BEZHgRwvW1FAxaAdnPMFZWiljxs0GqnIHDFS0deZpYrGO83QmlZ1rTpSuTOJI+xv7/kYwjuVyYXYenKX2RmuVaZ5Y4jSgedsb1+sPpN54en6mtoR3lkn8uHARBdM5xQnjIqkUnHRSvkGDEAyXy0zKCfEWawzWdibv8PEygAUiaB3I7HKMbKLT5czTHHl7faXUQc/s0ukm4LTj7UR4nth7ZTsSKTe0gapBnKW1QgXSlkCE+XImLpFWC4tzlDZiAMw03nZGDXs5yHvFWcvz7DCukmtFFXIpqBFSGhWgXitPl0hpnXLsiO1YOnKfc5qDRQRut5X1ehBCJFiPrQbkIEQBq7R9Y317wzvHaXnBXZ5o9tswasoIR17TjVogtzKqyzbQe6fXQi8NxKBNmKYJEcWKIlhq6qMd8MlgLma0QL63Cr6HPr+3Qr4HP98x/LR7sLWOx7Q1I63hjcc7y68+nWn9zNEqXZSeM26x5KNQpdNMIfXOcRQsY66p1c52JMRZTqcZj+DjMGlGO10q6ai4YMf+pYPjODhSHMTHaoe5tHwANwJ/ZMZOHJgC310MBDMqceFu0ibGDNg7cv+9FfQ8jkfblf12Y9921nrQ7q6pdyHXSj8O3ui4fsEHC2Yco3wUtHa2fbtXvNyoBKPgPK1VvF+QZqBkMAbsaHFG9F4ZlEF6fA8ZXwEvxNOM7oltPWitM00LUTu9VlSE3CutgQmCq4ILltYrIoJzgdYKoobaK3m/Ef3Ey/MzW6rsx8r3T8+clhPbvnFNZaQSmEbrbcR4mD4qenHCxok1ZfaaURfIaQNT6VqwJmCNZZo8qg0xgugjR+2hhx566KFvR784o/b//Ov/D/6Zf/6/xb/83/8fIgaWBV6/gEjgaTkjreBfznhruW7jItSZSG2VVirr8Ua7CZ++/44vn39iTxsG4enpRM0VPzk8o8pVu+GoBWsmuna22xUB5snz9N13pGPndtuhNapmCnCrDZ0KnYozQgyO1+uPI1/NjLBg2xzTshC8wfZK3QpYoaVjzNDdezrP0RGWhXw4goucn85UFa63FetBU8Z7i3pFOnR3Zr++sYgipfM0T3gfiSHytt6I84zS6VoRf2LbdtKx0VpF4sReMmc/aJFdwJjxvKa/w/oUEcF3i+nK8/nEse8jqskIWgxiBTcFvJvuEQlKq4kv6xvOWoqpRHPGR0cpB/QRnAvKtu3kdSVvV6YQMCEwzefRTrXvaCpwWfCmY1C8ONzTE6V36pZIa8U4z3k+cdtu3K5fiGEhOMskkXqsuMlg6JzOEypmtE/mQq9/jm/qP0Np6xypkGun9sK9O5hSE602jnXAdhQobQSphxCZnceIgLSRu2btmBV9n+kKfMxYFf5oCPQ7ZESBNyUd+4iKqOPiX6nYMI32uxNMeyTnSkLQe2ZWU+VIje22M18uhDix7wdryvQ+IifuSEJiiFiBbb1xeztwzlDv5P9cRkXx9XXFO8v3y9MwNwvj9m5q3vvrLmP7RRgtm+8mLgJPfIRbt/tx+HnbpAHZwbiJ02XC1Y2ud0gL0BT27YaIpVeDGqWlQqVj/URNhXQctNpopY/sQ/F4BFW4XbdB5FwC0jtaKkzunptWkOghyce2NZA4BgZ7MaQyzs1iJrRn9v2G84Hz+YLt4/VJelBSwvoRXt97o7U2yLc6Zkgnb4mTxQDncIHvv+N27Px//ubvIX3FOY80QURGSPe9F9QYS+2VlHe0j6xHEegVvD8xTQErSlNFq3Jcb7yGMEqODz300EMPPfQN6Bdn1IDRL7UA5zGjdnoWpm1CgsMp9LIj6jjXwrbf2NaNcmsYY1CRQR7UMQTvg8d2S2990MdaJ5xOWAR7vOKcxxuDt47UEmXPJFV++vGH0YZjDPEUETW0Dt0J17Qyecf59Ak7eY5iRlXCROblNMAGCMF5ohUoKz1liB0XIqoddxzM08zl9MSVRJwjU5zJdM52zMqYGJltJJWdlg/m5cTLacZYy+k8Y9xAWdc+KnLOOVIrfHk70HIQQ+B8XnjblIxguuGHty/kY6D0e2+8rlfq3PDi6b2DNlJtbGkbBL2wYDD3le5x1b8LBC+YNhDgrR8EgV4K9XpFs2LljFXF9M75csKKpddK044/z4QpsO87++sXYghE73Enh+kDI977aIXy1uGN0GsD7fSSERmB31oKpd6w0/I1zBlRzs9nKgajhlYajYa33wZMBBGMGTNl25ro0hFrsb2TU6K9m/NSoSfmOOPtgrcWGeEQtF4H1OHd1JwY1ad3Q/AOE0k/u8Xxb1UbpXeMCiGMeSMf/CAfyqjOddPR1rA6MrhUlWNPrOtKb0othWoMrSveWvAORGi1UMVQcqJaS0eIIY59dndcvAyYhYsOLZ2SGqG7j9Du97Du96ADzzCe02hr/AroeCcqev7ojNh7NXEdzyFXwVeHFpBwoeaCkY6Ko0tlmT4RY2Q6mVGBqxa6ofQ+2k3F0hizdT03cs5UMwyu5f6ehnvOWsc7OxZ9csPdLCwGqnyYSAFUcM4xzwNi1FulVsMUZgRD2RK5FtbbDWsNNhgExTnHbb9xfb1hRFjmSDQBtCMqTN4wLWeM9/QfEqfJsCbPmjOIw/pAqYXoBnkVVWpq9DQquU5gmRdSOtBBPUEwGIEpBuYpjNm+R47aQw899NBD34h+cUZNgap9XCCdgQzTAi4IHY8XpfsF4xysX0ACKW2IqRipnPxE8DO9K8s0M/mANQ5tStoTtRwc+4ZzSoyenuqoCpVKwNBMp2rCVHBGGJP2CtYg3XM+PVPWnSlG3OQpPVN75fnywnl55hRP+BDoTfHBsXiLC5ZlnvHOcxz7QKcj3C9TebpEKpYqnRgjKo1j37DGY5xlNhETDadpxoUR3CRmENlqH0SHMLKd0dTxztPuK/9hiuTXV6CP8OBjZ91W5smNYOHbyuvrj/zFX/02IQ74wOvtdUAfxPL0fGbRidwa19uOZcdox4kFCp2Otw6h042llEJtK9U7rHf3Wb43vn/5HnEnWkugmZQT0QesEaw1TN7xabmgpXOrZQSNh8gcI1OYRhh5M+xpp5aEiOV0fqbmnXo3FsaOt7vFQbBoM5Rcsb2g0v9d77W/HyXC/X1Rya2QaqeSMa2D9DFjVBslwxQL38vLMLkyTHiYAu4pDEiFZZyHJ4YRuFeRgI9K2nt+2h3UUXS8J0vOzDLANXj5Sl/UovTeURkX4x0QY0aboIKbInnfOdKGYBEjoy14ilgZVRt/N2e9dyIjOFnF4Iyl3XEVvRuOUjiXCs19ZL+d7tv/nqeW7vt45aN6xn0/LeM4BD4qisLX/DUOMJ/ANaHdFNNH5piIw0wWNzno9xm/u9kzONqtcruuHGn/WoUfCPvK7cuNMLkBS5FKykouBe8CcRoESrFgreXYEiYb3BIwk/nYdh2zhlMM9N4GBTSnezD1AU2pvVFKwXZDvM/ojgMnHMeBMZbgAtFBcMIcItYKbo6INV/PS28PQpxIDXKtbPtBxeBsR/uozk5hwlgh5cwcHVYLtRS0V0odIJNpDjgzXoCu38a5+tBDDz300EO/OKPWeuXf+L/9G/zV/+X/iv/CP/GfhwL+CqcTWAfSBe0WFyNVn+h0XvQJB0zW0XVc3G37Cm4ag/pisN5xWhZqqbR+QK+U4qBdaZlRZfIW44QmgyrnrKfkg3yPAZiXmRgmrDZssBQSe0o4Gwl+InqPlU5OO1OcOJ1nFqM4VZZlHgP3OdG146wnuBnEDtOlQogLzgIucH4OWO1Yb2nFIuqIpxPGOsQMSkPXju39viotSAdxjtw6tyMDkGuj6MjVOl5f8dJ5fb2SZs9yuiBiyXnjdX3liRPX65Vtv2KsJ6cGtjOdJl7OF87TwnfnyuvtjXXdabXTG7TuWJYz2it7WqkdWqmIDagKbz9+wYvl+fIdwU+0YohTxDqh1YZ05RwctisNxRnFu4EMVzp+mjg7y5YTr/sbqWSc8VyWM8G7UagRQynKXjO1HIiMFqroHbYpyLdBfey9sx43jnSAWNQJx7pybNvI3zst+GhxIog1dDqlZoIJeOMJs4dnxiKJ3L++w0Maw6xlvhoWLZ2yZkzwY3zLWKw13FrD1tF66TvDDM1AARstphjqj8J2XSldwVjiNOO8H7OTtVN0kF2ncCGGgDGG2XuMD1+DqcUYvMCRK6WO6qGIIDpCo73zX6EhvGeqvbcyFu5sfsYnZeGDXAkfWWvveXE/R/u//76AaWCKoEWwLoy5t3s3wFfSJHyFq7S3wvV2A8BZT6LQeqd15bavnPoMQAiW1hsihlw7xhtCAdvH3GhuDa2VxVhMkPHk9/2wFiwjsiOVQf9MqYAZCyvGW6QG9ryDc3jp1G1HFXyYsEbGeaWdGDwxeCT4gejscH4687v9d6nW88NtQ0pl/fzjvaW8UfOBFUvwDjsZpA5zae6kTvUesYaUMxaDcwYj9kF8fOihhx566JvSL86oAfz6x1/zN3/vb4yLqivIE/z278L1C+xXOK5CLgq9MVvP5Xzm2Xmu/ko9Rp1qwXI7bqiBVAreCJ5OjJZSAznD657vWV4RdUoXZTpNvO0b1zVxPllqF0Ts/WLLsK5vaK70WvCzZZ4XLJ7TcsaL5bjtTDHwFD3PcQS7Gt7R3ZncCtO8cA6newCsoFWYoqceO0crYybEebCOKU4jPy7tox1wsl9X6I21AzZwJ8JJB1uFYCw9ZaoRXr/s9G5AlOv1lfPlxHI5Qa1sa6J1wXqHOFjzjdftB1qB55eFJp5uxnxgbQ0xhuAtl/lEa4WUI5Mx1NroGLrzBPeErZ1aK2oMvTtULeuesHZnOZ1xYUJMI+0ruWw8zQsxhpH3hTCxMKeEn2e68Ui/ctNxxRviidxhP3Z+NTm0DkS/Mx7HyOWqVimlcUtXFrcwhxPyzcBEFKrinGdxBq+MeU4Z1WHvPZfTCa064hoa1NpQA/EckHlUaoHx6fHeUvcO0fD3+zdGe+BF8BpoGeox5skahimMj56uitY+5htf7mHPDWQX/BSRo1DSlRhnmux45+mzp6+dpIo3YxHC0pndMGvWWayZmZxFe2fLGUei0sAI1np6Sxgf0F7A2w8zxn0/uO9T58OQNeB9lnG/35f4MHHw0foZGZ9PyphlSyBf7s/n7yAS97PHp/GcmhTbwVrl2DPWBboq27GTc0ZV0R20K9PkuTyfiX4m5YPrttI6UAvee3IZG9VRtN/n7KqOEa8OplVa3qnHzpbTCLbvOroExJBaIeVKLm9Mc2SaJrZtA2OwwZJ7Y8/KfmS8W8d55C1Uwc0z30kgiyP1f4e635jmGR/Gznc3Y3ofMKZ0fK38CzDHCXTM7EU/gY6FltFuKw/q40MPPfTQQ9+MfpFGTUQQuWc36T1PNw8y9fN5LMxvV2jmhPhIkE6xV+ba+YPt8zBqzmKnGSuCkY3r60/cKjw/X3DejfbKrgiDdOb9RMsFFCbXUQz7fiAos48EKxhpaB3tVQWHJXC9JSyNc1yYLxMTBulQU+bzTz9yioHzywtTjNiLHSh0EjEM0uSRCzkf5LpjrWWaAk4MqGUKHjAYC8tpQczdpOndmZmx/aoKdZAxe5P7qrjlD7/8xLqvHGoo+aCVxPXHwnKeWdeVUhtYjzOjxyuI8rsv31Fqp6lQbRsVMHSYU4TWDarC3cHhXCBRsMZS6+iNE4HRwqTMpycEIbrRmngcB0+fngnGUtOOxRC8w1gzqpV24Pufnp4YL5Hh7acv5H3DB8/FzLTWCdZTDsX1TpxH5lUInuPoFGlsacdrpSrsZae2P+bN9veZjDEjFiEVmioWJbiZlg9qLXhnSPtK8B5vDXHyxOg5zwt+9vfWxjugwvPRIlj4Oof2R4KuZWSV1ZrJaWffD7KOFsDzPDHFgJ3vH0MrH22UAkwwB8/VOHK7kWvmOBIlF5DRItn6iLzYnWWJ85hl1AGoMdOZUisqA9HYSHSF0zTRW6KrkmrBM30QKt/n095N2Tu18j3Q+33f3v/txEdr5/uc2vsM23smmvB1/k3S+PoVwPLz32lQ35QqOgLuDWz5Ru6FPR0cOSEYeh8k1FM7od3w9OLADEKnMYY176z7FTEjC/JoDa8e0t3gVKWWRm59RAQcO2taKVVx1tPbTiuZvSSmOBN8YN8bR75RSmEvmTA5pHU2MxY/rHVM59OoEhqFNlo1j9tGzw3Thck7uvEockftd2o+6LnQpWBkwIcEM5ysgo2enHeOciCtcTotD6P20EMPPfTQN6NfpFErrfBv/fW/wY+//oHv46+GJwkwZShlgM/iYtm3jhXLHCe6c1BHi1BpQsoH260Mstl6sN92jLUj0Bah5cJiPfa8cJTG0Rt7OWilYZzHOEdOO1bGvEszjt4Hbt9Yex8G8jQSxihb65h9B+3MwWPEMjtLiB5nDN4BqpznmaYRNUJtlVwTJgScMURvcNaMCpg1vN124rzg7aAE9K6YyDCxKGTodSylS1N6l0FrQ7ldV7S0UUlKo5XMmgnn7zS5eeZymVARrLfknlhTGvyIbpBeOc+fxjHjDmhQw7Gt5JKwxuFlQD6cUUrayCXTRYkhYqzhuq2k0rj4E85COTLTZcEYw35sTKcLYVk4T4HLcqa3zvPTmVYyTYXURuDxsixcbKUag14rs3VU4zBiiS6Qy8btHvTtw0KIE98/v7AdkXRkwuQx9tu4+DNimJcJ55QjFVy3lFqZo8NEjwC5FnLvdBdG5SZMuMkPYqCXYdCEYV7e9W42DMOg5JHZxQbl6JTSKa2TauFIiXGWjbZZBCigqyJNvholrUrOmZy3MdtYK/1+nxGYwzza77zBWIcKLFPEGXA+gDV0JtxcibvD2p3WOqqd4AJGHNb6UR278gEHeZ+32/iAotzGNt0DBb/GDXz9GT6AKvzsWLzPsnng5X5sfh4FMDGMboX21tnSQc6VVke4+H5sw7pYg7UGVCgt4awj18reEiEVvDeDlNkK23ZwWzcQeHl5Iqadehv0Vhs9EhxoQ0UIwSNm0Bidd3A/rxSlts5+HGAtpaYx+2mVkkdwXutK94Fff/lCmE74eWMRN0xYq6R1I203ttsrrXd6zjQdBhsRxIxUgcvLhVgK235AM/csOR1zxggWz2QtXe7dC/pogHzooYceeujb0C/SqKWa+Nf/t3+V/8x/9h/jH//H/olxsRTBFwgOJA8E9hws0ke2VvOWlzbReCKpkMtENY1OprczR1asszi/sN5e2fcVh8FEQ9pWUquosXgXqOWg1szkA712mlbiFLBeiNNMKQP2ceQ3nLeId1RNXFMmOEf0M1mgW4MLkRAEI5l5vpCrkFIm98Y1HTTtzE7AGUorNDU4F9lrR0xkT5nsDd6OXKMgDiuCNQatlZIKxgZscKz7fs9JahjrcF7Jr2+odvo9PNjYmTBZSmn4YHDBMS+R2gxzn9HW8HfzCwYfA7kVREfjUi6JLpVyKGnfyD3hjMV6T153UtrQpSA+oN3SDuXQhHMTdCXviRYjxljmaeblfOIULL86X7Da8V6ozXKkgnEze66cjOP6442aMpor0iFIwArsxw16xVhBjMdFPyqNxjBNM96MC0D3bfg0jBGCt1iZEBy5ZmI8My2Rlio1ZbwRrMDz84nLch6AByd/lGr4DtoIfFSZnu5f1/vtFcq1knMm5cy2p0EwdAFtnVRhve5YGRTGtlfMPhYc6ErOlTUlruvK9Xaj1M48z3jvMDqopKc4MS0nwrSgzpJ6xRk/MIizwVRYJo93o9K7rhtHOjDOY92ExQ9DdvnZ/rT7958ZJq4yjNx7C2TkoxVy56OK+F6NG1184/t7ZfBrxtz7sXufY7t93J9LJ9XGH/74E0dJtJa/Ui/Hfvt7c+B76+PE+Txj7GA/bnui5kzOBev8aJNUGYZrTcQQsHYYbYvHV8i3V7J2OoLoaEluqlQVugxTrNZiBWoZeZHgEeOIMSDWUK3l8/UNGxzxSFgxiML69sq67ah2WuvjMOVKzoVmwSA4B9McCS5QzL1VU/swdLUixuKip9ZCS5m0QuvfSPn7oYceeuihb16/SKMGfCCxJ+A0zJntfJ0rEcvHfMkMdrYsdtAg31Lmy95Gm6FAWCa+9wERQ9dOyY1eG02UfhScdRhVeh/zPK108rFR0oGzkWgDvVX82eOs5XbsHKVg7SDppQz7tmKt8P13vxrmysB0WI4Y6IvDiUecEBntfPVoGAx28uTemNSyl06rmSmAjaM6Yp1SSidXxThGlQxoKeEEamtYZyjHwevtSml1IL8VtuMYPxvBGMVHT0mZ1grWDoMrKNTM8+XCZCJGBINijaG0hvGOxQacQD4KuQR++PyZroI1Qrzjtasqs4v0Btt2gIPoL5jZkkvmtnemEJinGWMsaVuRyxkbRjB4cJHZG7wVxHZyg+vWsCHTbjemEDiOA1oj+IDgyTmRtRHDMGcaDHiLYsc1tDH4aWKeZpz95Z4K///IWDvabKeJNlcaSmtCzZVdbjRRXvyC9wHvLKcYcX5c9EuQDyz9z43JvYL2tfqUQQ+lrJV9OzhSYt131nXDBoc4g8GPsPVaeP38NubKvMFZx3oc5JRprXNdN9brOsLUW2PfFS+G2jq1NaZpIpUCLmOLJ3vPEkYwNYbR7ueUkgu9V5wTQrNY67Hu/pifVwi3+229788K+qaw6ZjzjGY8PtwPqL9/fZ9dS3zEFhQ+Wh+nn70I75EFffytvitHrWxH5cu68vs//pqaEkYEZx1xjhiE0zwhWJQOveGdJVhDLYmqoCKkWqiitFLwYSZX2I+CDcJi7R35CVrHYtLb7cq271zXFVC8D4j19PcgPNFhjAwY56itktKO9QaVe1xGV5xp/PB6YwmGfByYuxFtwogx0RGNATCdJlRGq7ozghFh3Q56GXOudMXeD6mq0lQobcBU6O0Ro/bQQw899NA3o1/s1WlrSq/6tZrGzFjdfl+tfl/Rfp8DKXez1uNAUqdGcEqcIrVnovXkmklboguU2rimd7hFIGBHtU4aznhSG/hvd3J451FtbLcD4xtaGzF6XLTDQJRCtx3nPIoh10aQjtZOLYXWOqU3zNEo7cAQMNqGnejvS+8gdI7joKjyPHn2smE0UnK+B+gmTvMFK5V8HAMMoB0k8Xpb6XYQH9HG6+dX3rZ15JD5iLEVCUrJCa0R7xynebSRBQt93ejREKcwWtAk8PT0grWNnK6IDjCB1gPnhSMnnANwlNbY18RaDtQFerZo7chZ0KKIKMaAcbCcF07zMw1lz4nresVfnsmivCwTwY9yhW2NUgt7OVDgyBupHIht1JRx/oQPBswM0jjaWK2396w13wLLcqH1Ri6CfhssEQzCeZ7xwYIqpRVyKmQjWA1oMCxTxBpHrZVp8qOV972SFhnm5H1R5N62yA361tlvg8TYWh8B2sfB221jTwOGsbgTpgu1JKw1RBsRI5ScMESOkjm2nc+vb6TSyemgtD7affUdQqPjvDBCKhkxhugDxDErpU3RrIgZc17lltFa6SXjEGwInE5n5iXiTuZjZqzc97HwMae2Qf7xoKSCi57Y4jBrlfHZ8sYf+Ywh3o/Jz82f42P+7b2qtt+jCNbOjz984S0ltpz5/PbG588/or2zxBPxNGHU0GnkPROmhctpxhtDDI7ghB6FVCqIxVnH67GyHRnKyBa0ZqJYQVtl+1JRGfEM6UhYNXx6eQYZ1UZVRWuhlPF6GWPHgssU0A55/UKnk2ulpBWlsJwWDufYPq+cphnKCE0PbuJohYKS20Etnd4UNwW88xiB4B21dXwcYJnWKsYZSqugltQqtI6iWDdm8R4zag899NBDD30r+sUatS/bF/6F/96/wF/6R/4Sf+l3/tK40DozWok2xs9PDAP3c0jAIiw9cjpO3OLBy7NFXOWHH37Ntq1stxWjQlGwTuldkdZprSC1ob0TreKeX/BxGrNms6dr4Xp9Q6syzQu5V441YaxhiYFWG3RLyYXL6cSTd/SaKIfj9e0N+/xC7QeLHxlQkx8Eu7f1YE07qhvaB8e7dst1axztIB8/0XonuEgXWPfM5TTTqkLL9DaW+tVYjmPnbd1oYln3dcznlY04ncm1c9TMdDrTbSV4j8gAeTiBIA1LIZqINSMAd1lmvFE+5523z6+8vd14XY8BivCRrI392Hl9feP1dmOeTyiWy6dnVEFzhQ4xWIw0nMDx5Uq67SiKdMuqBdsbT1Mg95nghsnrRyI6IXhPKx2rijNAmEg9c3v7DF5opeLniPeReXlmPi3UUrAqWBMJXjmfZuw34tREwDvDPMtAtrdIz5GcOqs31JyI84K9V0KcKEYUsebj0+J9zgrgOgxHO2BdN77cVlqrgzHShZI2tn3ntm1E79nWlThNWBfJaWN2njDPaDFU7dSS6R32PfG2rhzpYM8ZHxd8sBjp0A3hXuWrtSDTxBQmRAY5tRiLSWByG9TUXjnKgXalY0ActzVxOs1j3um470/nA/xxn1PTrOxb4pZ25n7BB8EU7tWyQTKSICOy4D0s+8aAjEQ+2ij3+/e7ovdKmybl89vKUSr7sfMHP3zmx88/sm0byxSorfLl+ooFltPEMp05nQIxWH7rV98zzZGyblhjuG0H2MCsne33d7yDddtpMdC1knalLkqrndYLxhgMnU/nMxVhmReu+871+sa27vc5vmlAW1qlFjMMUje4KdJaox6F1ho4x1G/4EVopWNavi8Q3WgY1mNl28eCiguRk/MsU/hquAb0xII48J39SOxHwjpHE0sqwzDGEOi9PnLUHnrooYce+mb0izVqirLvG722jxyjn7diHfzRIFrG/XIPlb2kia2d2Mobre0IUHOmtoS0AfzoXVj3nfp6RcKYy7KzYIxjccvI8PIR65VyjJbDshckNjyKMR72ROkdZzy5VLImjrgzXRxWDHut6OHp7Lw8XxDbmGOktTxgGaJUbbx+uWJtwNnAfvuRpB0/OXpXgncc+/WecxU59gKmIeJoqpSSuK07614oJZNa4TgSLVdaa7zeDtw0M5/P5JaJISAiuGAxziPaOZ9OTBbcFHBmAixzcKR9JYoQg+P7pyeCm1nLjSbCD7/+ket65bYPsIFGQ8l9tI/mxpFWLucn3OwROrk2nFVM3lEqzZ1ZW2WOE6UpXQbsQHpDaezHRquK1TrymIxSqXhryH0nXzvTPJOy0nTn6I2XDs9PZ2iV2hLPTy88v3yHhP8ve/8ac+3a7vVBv+PcXtc1xrifZ871rg0tXfGD7QfRxgBRbKIh0biJmrZgwCbdJBrQ2soHiib2i0bERhTa2EYENyHdUEqpmKooGy2bll1Ig6SAlWIXsGCtd73vO5/nvscY13XuDz+cY873BRHIWqz37Zpz/Gee3Nv5PGNc47xGzuM8jv/vb/5/F9mXUrNrUZInqiB2UlSdN7y8v9DyCqMjIljjcFbgIn/lvfSgrdJBM7Q6yG1m89Ux2Evl7e2N1itLmMWQGMtRZhTFcRycTmfitlFHQ0Vpo8wuiwvsuXzHo4WaCzlnrDGMMTi9nFCdwJDoHEtYwHRUDTkXrArdNrQ3Si1YO0d9VWXeDyMjIqRjIRKxCNIekJSFWYQdwCuMW8cbjyfPMeYx8Gpm2L1CKY8pyOvj/xNlXAdEwVwMEuffo7fpu5MGDGUAX//WBz77+Bm1dVIu5HxwvV0nh8QFhoBBQQa11xnBUSPnl/c4YxAnhE9PUOESIvvbnXwk3p1XOgXjPAjk/SAuM8k7xvlm2fvghNL9oMtcAzN8e04MGO/JJdFyopaGjoYYN9cFY0I/l4AdysdvvRIWz/lyQvMNIxOEZHVw3wu3dEcGnC5nlhgZLdOKIy7z3xm9k49Ep1DyQKxjO3la7ZihhLCi1qB8DjJ56qmnnnrqqa+GfsYWagDXfOeP/oE/yn/47/o78Zv/K4NmX/j2htIyT7g70zRhlLh4LucXvnnbWaJjCZ5xOiE6/VejVa5v1xlY+9ig1lGgW6wJDDKtVnK5EuKCw+CwDBWcCs5HGoN7OvBNkQW0tRk4fey8YanRMcTSsYix2Jyx3pNqZ0+NpopxM0XXOEtqHRnTq1N752gHp+2CYmi9zM1oUlquOA/O2jnehNKS0krnqIXSG2Itp/PKke6MVGAo9+sV4w3SGzjDYsE6y7vzRnDCaQ0scSH67QEqmBh0G1bWT8Ica/r4irvDPR0YEYJ3nM7rJFimnTEs+d7xi+Pdp58iAm0MrGZaTzgdbGvAOlBNYPzkMPTOcb+yyIJ3FnfaWBCOnoCBGkNcT6RUGX5g1oXRb6gxOOfY90IbmctLQ0Yj5wwD7red4Gbw9ldFtXRULa0JcTE4MwOQU2o4N6l6ZijWGtTwRfYXn9eyHfSYlMJ8DG574uP1RumT6Nha5TgS+7FzdweiYJ1DULQ3FueJS+C0RN6dN7ZlBRs48j5HF0fHGFhCpAGbOFI+pk+uVcZQcmu0MfBmfYQ1m1lwOosiHD1jdJpUW95RHM6ttNFRnZ3YlBLWWkY3eOemr/XzbuHjwEcxiBdWd6EMnetrOOzJYpzgVSmpQxHkqrTcSNcb6gzr+9M87Kgw6vSNiTX0MThq5Xa98c1vfUapFWMX1FhcXLi9Xfn4euVyOeGsJcQFMY6qg3tq7CWx1YBPMr14XZAxMKqIzKiL03LCULAGjBlIsBSF1RjEyrTmSWSUBDpYoiVXx3nbQAe5dNRO4qugzCnqRlwWUm0MTcCEmrhgHuOrndwH1gtGoLZBUcXaiHMG5zwOOMWVbduw3lFrox0Ho03apZiJyRTnCA68AYybMQtDMWaGYj/11FNPPfXUV0E/owu11+Mjv/7X/dP8ol/6i/EX/22ymuPbnjWYm6/Pg3gLiBFYLO6YWT6jDBbnkOWMtYGad673OyqDZVmpY1BaZYgSQsSJp2sFmTAE0watV/KeQJVjTyzLRmmJ3jurF3rtoIIVi1jDZx9fuZw2xERsFFY3vVz3WunHnVQaQxSxnoxQnOOed4I3GG8YpfD62ZXdH1zev4DCu3PkcnmhloRjUI+D/bbTxUwzPkJpSheDN4YuQogrR+2UlmmlYnUga0TWQPUOcz4zPBhruJwvOOcwBmrtrN5CV+5pJ7VMa3P0bDB9YtNvYvEaMMHRSiHdM9aB2EBOid4LSwxszkwIiDFYF/C+MdRQu9IxtNa43ndEK+8uZzCGOgQRwS+O+zd2PqaDe4HUoQ1PM5Z9FCRV7BKxxtJ75X69wVCCW+bX951evxq+FyNCPC20Muh9hh/Lo+Pso8FaMMPRU5vd19YI1REIyCbfHhGskFPnds9848NHrsfB2/2NlBLeWkoqHCmT8keMWs7vTsQQCMZyerngrOO0RNYQcE4QcZRmKb2hKCEEKsJiALH0VmklgzE46wnOTUp+ztT2Ge7mQYQYHS+XM2tYaKUyRn+g54UuMuMmbEAV+pg+UysGms5DnMQcoT7N52gxcwQwDbR3xujs94OgK2Yx9DK47QfOz1G+fL9x5MRQ+Hg9QOaBiZ3VKns5aKXR++Dt7Y3XtysNZUijiT7w85bSlNePV2II9DoIwbOuJ/roHMdOXVecgkmKPELnnZtd0iMfGAbeCcZ4vHek1vC1zNiCqrQy6Z4zBHsgCJdtoQ/P6I395gjRI3Hldr2ixjKcQ5yjjju9z/w6YywhRtYlEvw2YSM1z/dFLM4q3s1um3cW6bDEhZfTeXrSGoyhOONYQySVSut5wjXjwuoNpSpd54FOdAFrvhpjyk899dRTTz31M7pQA/jxtx/nV/+Tv5pf+5t+LbIIvMLnwDLMd3z+eactAUXRMmDIvACtfwFM8HZBDfhc0Vzx/jRPdVtCR2GIpfTKEAE1GBcmOa8OhhrEKVWFthdMDMR1wZjZpbDWEEOklYIZlqpKN0IdhZwqfTSuJePEkHonlfLYAMK9dlIdDO2YUXm9v7HfE85bEOXl5R2CpeRMb539fme/XxnCzHhzkS5KWDaMQB+JXjK1DIwYojMEDEYVZ2fno5RZbOnwVBRxnlQrXStKR0ykjcH4HN2tirdzXGtZF3xakSPN0a2cMQ9qW+ud/T5PyO1w5F5ZXi5E6xDDjApwQs6N2ipp23h9E2gR9AUXV3o/SHnntic+u97m2J0K93Kw585e6gSFXO9IE9598jV8dFAr1/tB9JE1rJxOG+uyMvpXo1BToPZBHRUnMPqEcogT/Mk+kPFKa7MgSKUzRsDcDG44JMqEUSToQ2m9Ulqnj05rStozReF+v/Hxwxt+sTNE+SoEnzlvCylnzuv6xYZbrIAVYo+Q4bSsKA61B33cMWQYGR2zMBAaBk8umVIyo0HcFpwTel9BocbGGPoYkQQ3Kl4Fv0ScOHSUSTRVxTkzofedb4OIHoc90sAicAycs4ze0fbwrqaOMv2kGENOB61V9pRQhNo7+5EYDHpvIIbUKiUnZAj3tFNqfVBIZ6FmFOIW0WEoxx20UEtl2xaWEMnp4KqD1XuqD8Tg2dYTeIcTw2IcfQxMyUQPuQya6ZTa+PD6NruS8njj1zl+PS//fB51dD7ZNuTdpyCC6hxVTlWx68p1fyU4R3Bnqm3UWlm2MGNJep95eH3QW0Nldu+285ltO2NE6bkQnMUZ4UiZmnaim0X67fWNIxWGNEbvvJw2TmFBtNBam+dtwX0RUfDUU0899dRTX3b9jC/UjnrwB//NPzi7Z/Hx52Ce/H+OxH4gwz/PN9IF2m1wfb0T/MK7lxfe9kR/bAGbKm7bMPsNFQhhwfVKJ6BquR2JECytFsIaKE1xPhJdwKkwMHQE44TzeqIdVwCGdlSVGBdUBzoGrx9f6UXRASezoY3pu7KeUiCVg9TzpDEqlKLU3HFuYbs4+qg0LPtRQXduDjZn2Pc7qVWsj6BwvyeMF4LzGDMozfDZ7UotiZftPdu6UErCjElhBGW0TiuZkQ2yLJSWKLVQasUGj2rhuL0xgLBtDDVoKYzbztEqNjhMhv12Yy+FLgMdBnpnSCWEiHFzZK0NQ02Z1VuOnMBspJxQBrfbzmKEzRn6Oii1IF4ZBlKvvOWd9bSw3w7GsPTRGTrQB3FyCSeCM3iFxTtGHzgjBC+scZIt/V+9sL6k6kO53ncQYfXmi27aF8h5Be46R+OcAzOjDFLtuLdBjIHB4PV1536k2fnVQRvCaI2ug+vblVIzR9mxpzNqDbU1Wu9478m90hGwnqMNem5sq8cYofREroXaygMwoYh0rIDa6ZvsA17f3qjl4WVTg+0DFUM7EqkUvD++CEZ+eXnBjc52WbmcN0qrmO6wTDQ8CnoDqQrfP78mM4sOVRgQgqOUihNHXBxGJpjFBgvGkG4TgPF6v3M7Hh0l52ekQEq8pdu8/sD1wyuqhlIrXRUUhgitV3Q0lrA9xoY9Ojo5HXij3F+FHiN9yWwxYE5K750QJgXSIJjaECDawNEK0DjKHEmNLvLZ62d4F/nk5YWwbkQrtFpoD2DHGiLeCM573t5u3PcbMUaqdlJO9KZobWAs3nt8MPNwpVcYgzIqrdf5nBgYLK017vudNQZEIafMm75Ra0VQgjV46+mjs2wLVgRjDE4MTmYkXrCCNR4vn5skn3rqqaeeeurLr5/xhRrAn/nLf4Zf/F/6+/jn/4V/ifPlPDtnlkl/7MwiDabnJClalfRWOWqZ/pq3K3VYujjEGvLoDDW8/76v8dk3P/L69uGRKWYYRmERXvc7W9xw8Uy0jpJeaUdF/YK1nuDm1j/3gV8nvr/WTpPOaMqREppAJDH6AB3c0yvb+TKBG/6M9s7b9VsMFBccxy1huiGuG6Up6xZJySDGYXwk5cxmHKl11tMJWxeOmjl6Zt1WSh58/PgtnBOGNtJx53i7sphJr0Th9LLhrUHETGy/OugKqfD68TOwjtwabih7zxhrkeEIznOkg+t+5+N+Ry2P0N3Bvt8QY4luw6wWFx3H7U6rO+k2wQ7aMjaeOC3vMNZy5MpswCkwwDvutXCqO+mAF07cU+Z6uzK0M2S+bns9SK1gnSeeLni/4IwgmNmt8I5aGi+XjU/fn9kWi1GDXb8ikAIFF1ZqOcA6+oBRFGME6XwbFiLgrKOOSs2FfU/EMF/Pjx/e+HC7TyS8MbRSuL6+8vHjB67XG/SBCZ5Pv/Y1amuPrhFs2zYR76XSpXMfDcPg47deWVwkRDf9VkaI3qGl4WnstbOEhSIN7yOld/oY3FPCGkMIgZI75E4fk1p5ltmdXS9nXHRsy4o3ARkdq4qoIcQACNp1+ufEQHoAP+ocg2wJ6lFAFS9z7ZZapz9TZXbxO9N3VhJlKLU13m53XIj4daGVhLGW2z7HHlsX8IILK6/f+gwdA28NwTrEBEZrpJyxZrAtCz/0/V+bBzzOwxi03mh9drB7f3Q+04wp6L1TWqNpoatSemNPmfv9xtgqXizZZ5wTnLf0bqHWWQiPTiudmiv72xu36yuvtztd7BxjbQXM7D4Kg94GQxvBB3wIM3NSC13nmOlAOY6DVBur88hYOW3vsNFTaiUuczz1rdwRgfdfe0+vysvpjLceK4rRzikGvDX0oXTRZz/tqaeeeuqpr4y+FIXa0MEf+JP/Fv/U/+zX8Gt+3T81Udmft0h2Zpct80WAbTkqR81YMwuMqoOqcEs3VB0yhBAXSpsVnogQgkPNDAxOHw6GdkpNtA+VZfGMPma+0H5lO13mWNVQcrqTTWUJJ9ZlofWMN3EeEwPbckJV+PD6EWstr29XTIiclo5g0CFz3FEdi10ZBm73G6MOLBu9HEi3dCOgjZIcW3QMZhDukQoIWDdYnce/+4RaC7d9R5tlu3wf63bmdFo50oEw85W2sBKCJ+c7QRbiy4kYTwwrDDsQNTjjWZeF2+02gQ6tcrTKct74xre+xWAa/9+/fDJHwEZDh6GjuHXB9UAvn+G9IwRP18Z9f5uepRCpveKsofVMSonVv2NPHfTK7e0Db0fm7Xqwt8SHt9uMHqgVbW2OdDJztaL3LDZgdLDfM/SG0cEaLE6UGBbCVwQmokDLhTGUIx1YKujKMqZ3U4xM2IS1vL7e2HOe2VXWs1el3zPX/eD69kpn3ifX65Xr2ytvH9+Q4HBhovO9c3g38erDgLMGEcUHT2md436nlTQfVFBKFsQYRNykgKbjQZ+0jDEQA4iigF+2mbyRMtbYGZs4MqiSj0lxfTmfGbnRbKO6xnW/0bsn+oDV6Y0S78mjweiM3HHJYb3FBDPR+11opTBUacbgtNNaw1mHXQIyZgdcFNYQqa1xmPn/3tINSTsqyp4zNU/KaqOhTeh1Bsvn/c5QoTtPiDNU3oV5DWJYZ8FnDSIdjMG6SFNDqpN2WocyRqHkWRCGuIJ69v3K275zPXZazow+2LZASw0jBmssQSwhWGSAt0JthQ+vb7xebw9fmKFpR5xH+0w5HxjMgwzq3AIOOkJnZqZJcCzWc7Q+0f5lR0dgOa3YYOk47OqwfqNyoCWBdowYunaMdWzbRjAGHx0jZ2pvlJJJtSPyhIk89dRTTz311dCXolADJhbb6oSIGCZABOYzFNDPA2wdpNaxYSWKR44b52j4iY8H92MHHM4aRm1Y53Bi4TGCZIwh553eGvkoNFvmCfe2cjpvlFInThtwygyBlk6qCTGW1SwEH8FYFrNO6py3jN7ovSB4Su6MPWMuDu8XjAq3a0Kb4K1FMJyWlUN3rOlI8KQjU+wdFxyld0YqiELtyl529n3n5fKOGE4Y47jmzOuRuOWDbVtpo1Cyxarl9vGG2s56vtCc0nXQveDXFXGR1SqtJPoodGf5cLtyv1/ZjxuKwThHy5neK20UrHFzJK3rwx/Tub9WrLOc3618Er4PHaC9z7wkB9ZvE9YZAzUlUi0ctXJSGH3wjR/7BvSK85HM4MPtzjFgW84YW7HH8ehSVmpTGp3uA8YEsMoa/ET8p8q2nlmcmT6kr4BUlZwfxdEQsnZ6vtMtSIfoPdYZ9j0zeifVjLF+jrDRuO+JY7/PTGdjyCmRS55F3+JZtoXRlf3tlXQteOuw3rHGE2vwGDuovfP6+kYvhWAdFkPRAyNgrJv/bk6U1vF24bQK1/0+Dx+GUmojriuhLwjz3tahhBgRVcYYM36hZJy1DO0c9x1ZIhoctEk/zbmwLooYpWtnv99QHZy2lXfb+Yu0D2cMHVBmsHQwFitCLRWnDmOEbVtovXF9RFHEuJD3xnEcDMYkJ9JItU6QiShlVGrOdAajd0TmaLMRxQTPZVmJW8TaOSbpncMaS+2V17c3hBdWDKp3YB7oWGOQMbtq9+PO/X5Mz5oxDFX8I39uPxJG7gTnsPcBmNlpR3lNmb3l2W21lloGbXQqMMZAtTFqxYrHr8LiVlId3I/M6A1jDF0Mzli27d08TGK+LqWWOepcodRXckrUWibkxniGVUbvGB2EGIne4hePNuW+33GpYL4at+pTTz311FNPfXkKtdobf/iP/VH+0O/7I/w9/5lfMIu178CJM/OmkQCESE0VtQ3vlDYaJjhOXEhHoRw76X7DOs9piQzx3POd1gc8sspEDDKEQSMuK0epDJmYb9BJmwNq6xgci1+x1tN1UGql1Q5qud5uOAQXPM646QHpjWPfaabPTKJS+dZ+JfrAGk8zkNgJrQ+WGPDGIMagDOIpYIcn50yuaeYjifDxegPuiJ10PAC3nGax02D0gvROrwfn9xvWyDxRV0GXiFnX6T0pjXK/0xjYZZ0jhwKvKVFLZYkriHyBWcc5EEsejT7m+JupFezshBoBJ8IQi19XXHBY50HMTGsSoZTK/X7Died8OZPVsawLGEvZd3q33I9EiCutzWubjgMXoKvD6IqehLCeuGwBT2WJlsunn3C+vMeJxXyFTumNKrk0aq5kGQTjsecFM8Bbi8XQ+5gxFj5S+qDWioogKizLxvg8/+p+kI/0xd+to9PaIB2ZXjPdOOIInM5nJi4SeisMMbx9fCM4h5+oSYxAjBtGLLU2rLWPzvTMdOtDKa1SUsJ5D9oZrWEwLNGzbgvR2UlWNTyC4B1rCAxVaq300smmkx7dukmZNHRV0n5/4POV6BesmddhP/Y5ThsiwQfUAVbw1tFrgwdyv9RCr5XRMjo6wRqyKLUUamugTChGa3QeBxfoF/+54PHRE9w8kPHe42NgiKEJBBfYTiu9dRR4u8/x03fvzzgRfIhUVV7frhzH8UX2HCL01gCdOPyuHLc7OTeCt8hQ4hIwziICqTVuKZN7xeI40kHtg9IbuRasE7QNggOqxdlOznNcc/GWl8vl4VEzlDow3s3pg9K43W+UXL54X9r3neDm2KcPlvO2YZxQtZKLwZg4X3ttDGOwy8yGe+qpp5566qmvgr40hdrQwb/77/27/Kk/8af5e/7Tv2COPj4Q21gQPz+/3wVxBokO3S0uzC7X2Q6CUxZn2K8N2wL7reDPEeM8vVeSZgTDElec9+TUWMyCWzzHa8MuAaMWYQbs7ilh1IMq1jiWEEl1etJk2BnoakGdMMYsNgUhmEi+3/iYPsCwGG2on2NEOTVCKTjXCGFhiYG4LMAEMSwu0lTRrCDCGMoSl+nnuh/UXLicN0QclyWi8sB5r2eWLXJZIqMOVAOC56hX3htLypVcDkypkwYJpOsrcbtwpETpSh9KroV8JLbzhXQ0bmmfI2kMtm1jUIhbJJVEKglbM5rmczHWMFAIk5LpjMdKYIzB7Z4xJnGMjHWOMQyMQe4du2wEZpHbaqfkMk/21dFqoRuHamfdPMu6EWi8nMPspoUV7y3vLxc2t7K346+zyn7mS8eg1zIL2l5xRljWQC2D0xpxPmKsYV0Hfa8EL+RysKcdVHl5eQ84xujcjzs5f5zkRZ2F1XHdwRi204YZEWME7z1xcZ+fD1BKweBgKLUl+LygWgJmtegY2Ef3SIDWlUXmBj21SlwizjiMn8X1tiy8P51YlzC9lcagIrODFAIxnicIoxe8DZzWgHmUSAM4cua2H9RSMNaivQOfEbyllE5KO52G84Ht9ILKgujAWpAxu1NdZxEpIrycLkiaUBRVJaVCHQ3nHL23x2FCRcfAhYB3ATWd5Xzisl0IntkBtDPgu2tHVMkp4cSzboFoLGNUjmNnO0UkRujw4e2Vjx8/o/X+qGc8pU5qIs6RncPHiJFGa53x6La1/ZhQoHX6x+oweL8hY4CRCRYaPHLVHNb2WfSNAxRitMgSCM6z+QkGybViRDAWvAkYFYw11Frx3lNbm89NhJQPjnvDrSvLNqcTpCvOG1ofc+pA+wQUPXPUnnrqqaee+oroS1OoAdzKjf/lP/vP8B/7eT+HX/Bz/5NwBTzoeEABGkicXpzFW3QsuH7MnCUGVdoXp8uMjeBXwrJxP670WliXBXEB0p3aLaUUmih1r9g4T/8LlXxPmCGcThs13cAoR9rhVWgo+1ExqtN/Yj1H3hFpuO+Y6VGxlJJmXpSLhMUDE4phDYjMrtPb/cbL+YXoAv1Qkm3kWh8Qh0KuGf8Am1g/N8tDG9Z08nFlGIdxgaqVOCzGbhhnudbMZV1Yl42WKy00Umkct7eHn0Q5jozJjao6w2rFcL1lWh2T/jgauRWMOJz3tNFYtzNDGmIa+63wLp6RsFDaDmVwthvpeGXo4N3la1TtGOuhwWff+kBpO24JxHVubsOy0RKko1JyY4zOy6ffz/H6kVQOVAzeLYwxuN/urNbz7rLhzESqV5QteP77//B/j/ivO37jH/lN3Mr9e7OAv0vSMeit0MfAiUOwuCXSdFB1MOocPWwKt5xI5eDY71hr+ebHD5y2MyUXai/4GPExcHEW1cE1JXqtbNvGsr1DmL7OEAJtVMqRUQaiFmMmETB4xxjKGFDK9I4u68qyRpzK9IoJ1NpYnCM6hwth+u1i4LQ4orectxUjszszzBz99SGyuYUQLDk71mXltE3/5XEc7Md8billci2EsPATH3f825Vo3fTEqRJjQDWxM7P7MPP5ikIrnaGCmEBcBikljFicMRhrMDZwWRdS7qzrhvY7YQkYK18Ur6iw2EloTfeMEcu6LhgjWCaYp9ZKyTfW9T3LaUGbZfXLHP0Ecq3cjn16a4clBEernWjtvG6LJ1fFo/joZtf9mMVkrQUMxOBpJZNbZzstGCzaG8YZnA6auhlKLR07ZtFFjGhRzsuGF6BWRq0EH4jOzjxImdettUrWRmuCtZZt3TDaqVrIffBiA+koJOokQQKLD6gOMAac4dsX7amnnnrqqae+3PpSFWowT7draXPs0TE/enDLzFMq1wfQrSi5dY6irMuJ++0Dzkdqz9RbpwjENdB1MFQxxrI4y7J5rD1xHIXhO3lUhkCuGasWb4RRB2V0Nj2xvZyhg/ZMOhL3VjHiiZtn0MilktMdEWUYD04wYjHDsizhATJZicFizOBIhVwrcXiQ6f8xzJPu7bKRSuG4vnGURBfB+4D4QBgW1QO1Hmct+/6KC2ES2lojHwfa50ZdkXnZguX9unDyhtf7Z9TSWNY5XtZqpna4p4QaN71gpfF2XLndb8QQWKPnfrxyu33E+UDqjeN2JV4i2hRKp5pCXDzRn7FGKXUHFaLfyEdF1GLF0HXgnOO4Qyv5AZqAI3SMj1xfP2IQlvOZUWCoY11e6C3hVTlbR9QxA4mD47xtiLUYO4Oz3n/fe37VP/Kr+Nr3vePX/+5/lm/cv/W9XMg/bVKUOoTcO7k2jHVUHDYsyGiPvC8Q52nHHJ1dt21CL3KZ1M80x9+iXQghYrHs5eDIB9ZYWq3EdcVaS3t0mQBGM6QjUUpBsShKPjIhBl62bVIWe+N8uoBRai+AYY0B7Z0SAssSKbVRdADCad24bBEnsDgzC8T1xBIW2hDMnESm5E47nzhvC94Zyuugl0KpeXaUxmCM6eFrrdNpaAQRS6+ZXCqXl41RCu3tAzGuyGGR0SilYp1DrGO/37gdc+w4t0ofg5kA4IkxzMLrMiipY6On54Yzil8Xau4cbx9A4NP3L1hjMQpWDN4aTiFy3s4TZy8Wt85sBWMMtQu1N9AJ+4jeIkYI0c33ELdgveDj9JlZA2IGuWX6mHRGxsC8nKefrCXKXZEQ6Sr4YIknT0p5ji6qcn6MszpviMbio58Zdn36ywTBbyvGLgw6Ke9Ir5TUMBaW0xwFv6fMGLCdX3A+ko7EGAKjcn27008GnFJqYhx5juU+9dRTTz311FdAX7JCDfZy5//5b/8Jfv5/6ueyLiscIBtgYLxB63DLynVv3G43aEpTPwNmS0HV4oxn9MQ9JeJyQgZYDEEc0UTUG0SFlHdojtwqwQWCnxvG1O6M2qg1IziMNahaMJ4tzE2LtxOEcM930l4QYNjB+v4dzs+xsNlJMHQGqXWid4QlzC7EsnB5WVnjhheHMEOyo1+In1rs9Y1SG2Ln+NYYA20TFrDXGWTsB7RRETGTv1KFqhaVSbose6ZY8AZ6rex7pvpMXzeCW6hl574fM3agD1KrfPj4kV475TjIcYJVjIXb25UyGoIFe+a0bQQ/CXTWhEmHax1Vi6ZG7sfsiLgVzJjhyGJow9JGYvER7w21VI77ThTDejpj/ULODfosHI2xMDpWG6MoXRuqLzjnieHEGgPrKmCE8/mFX/4P/KOs7wL/k9/+P+ebtw/fw5X806MxlHu+U1pHRekqNDqpNhZv5vVBsM5jrcc18MFwWk7k0rkeb7QyiD7ivZsHFJeVpXnuKbK7G3tKX3ixQgzUVin36d8qpUwf1D1R6TgjWGOw1tLHYHERFzyCIVrLeTtR0gSbGCPUPhDJlJSwFpyZOPfLurEtnu1lw1wCWIiGLzIU1/fz+fc0OO6J+9tt+qZqIeVMKglRM7thRnDOIkZJ+WAMnV7Rtx3vPHFZKDXRx6DnQteBUaEwKK0Bnft+5+PrGyqCimOoomYgRnDOIat8UcSGsGJdoI8EWcAOonNc1pUtela/4MWyrhsxWJb4qD5VGdYxBrRSZrGFsvpAzoVo/CRvGoe1ghVLGw23BJCIyJi+sVxoveOsnWH1y0JwbnbpSsPw8Nqq0nIBHThr8OHhL5SBldnvDz5wOUXEzLFNjEWcY6hgZKWIpZ0G9UFvFAUjljIaeSi9JHrNoAPjhOE6b/ePqHUMkQkx6v17c/M89dRTTz311HdZX7pC7Zbf+I3/3P+av++X/L387Pc/+9s/UNDGHK/KkFLnOCr0QaqdOgJiF7Qmcukc+84SIzE4HBHHoPSKpjtNLe04OK8nrvcbRysY6yit0I1QxqQ45iSk1Lmc3xHiSggWhmKsw0ZPuqd56hwcjMEwoDScX6i10rTP8SqnOGagrRXLsqxAo+SOSMZEwWHwDqDOYG3TsU4ntCMXauvklik50+vcpNeciOvC5XQh+DCz1PrEnKsZGCK9Ne4PVHc+dvbr4KO54awjHQfXtLPfrvP5M8BZrAx6KuytYIzDmAXvDeV+o47CcdvpTQHzRZHpnMUYz3GfkIORC8Y2Quj00lmWE9Y5mlGGwJ527rcO4lm3E30oqjxGpJhhyMaw+YW4LCiWGBc+ef/CZT1P+p0o0DD4B2RmBnf/l3/hf4Hf/Pv+pS9loaZAbpYxGoKhdiWXwv2409LMrQohYk2gtcEQGFicEYxRei6zkLFK9AZtggaPjkZwjl0VbQ16x3rP6FBSZd+vmEcknlqh6qCPQfRh+pV6Z7UOg8AYaB8Y8WgfLD6SfKG1gYhSSkV7I4YL23JmWzfWGDldzsgPyPSmxvlvMYGIX/yxN0N0nvf6jg8fIIrgyozCuKeEdcISpp/qyJk9JYYqEGYwuh+TaOiEMYTWJ5ik9U6qFWPmmN9x39nvx4SOrCu5VIwRgjVo74hCOnZamZ3BRczsQn8aCc7yycs7LueV87pwihtLcCxhAe0sy4ZhkEtCreN+ZFT7hPd0neHXcXr8LtvKsqyIKto7btlmB250Rq+00iltsK4rwXuMFZzzvHt5Ry4Z7neOVDAKLR+MNmgl45eF3ipmNGpvROuQIGB1xoOo0HFs2wlxjlILKVXsMPQ4aKGjCKX2SfNUZaSEtUI67ni12PNKz40ugg7Bek9u9fF6PPXUU0899dSXX1+6Qg3m+JReFX6QGeA72dqYR3ZSK40+OqMPSim83a6oWmof5NFJtRDiwul8whlDbok68gyUFTNN8EzSm0FYxHFPmSN11vPG4qf/aWglH5W7eUWHgi7E6DFqyLnM4N+e8NFijCMsJ0JcECeUvdIGqEKwjpYL+6hYY1jjBR8NaT+ofce4F6I9Mxlyjev9yj3vWBswDUbpD19Soh/TP6MGOsoWz5zjAjIpc+U45kgkHR2QS6ekY3b5RGhdJhyhpxm2mzPHkRGTMTbivMculmEhpcHoBlWDcxEXKjV1eh2kOgEj3XmiNWDmeGl7hCXX3lCjpH5M/0/N0AvVgHGeYD3lflBSxS+KGEsqZfp5jGd7f8HomOADH8BaTucz67YSoyeEWSD2MQv4z0OeWz74rb/3t/Pnvv7nv4cr+KdTgjEeRmP0SskHxQg7oN5hR6XmBjbNvCqZI4htACqEJUJXTsvCFgOjJo79eNA7IRhLtQ67rjjnue2F4C12PVFrpY5GZY4YIlBLo4aKfxQPqsqR7lijjD67Oq/HznW/k0uBIbNTg7CEhXcv7wkhPCiCwAa8Z8Z06OPrRywHABHc4rHB0hTSx4bzHjGOUjM0+SLCQEXJuaLiaCOzeI+4wS3t0GfYd+99xmP0Qq2KtYqqobeOWEG8x/tAOXZGh3bPtFpY48I5rtz6we16nd5Ke+JyufDu5cK705l3l43zGolxZVtXvDdIF4w39KOwH3fag6boDHxyOdG3jdYnPMQMQ/SB07JMAK7AaT2RW+Jt3+fItDUIwrauWGMm+t44FCGEhTMCeqUBIgNtdXpGHwRLcXO+3DhHbQ0rmaEb2oUxOkv4FKxBjFBzppSD4CzBB257wljFqeOynWdXfp+0SgkLKgGk0xlYJxgb8GK+GKV96qmnnnrqqS+7vpSF2o9ff5xf8Y/9Cn7b7/xt+OC/KNbqgNsd8tEppZFH5e32ynE9sG4DL8gwxCXiWdjWhXTcyLkgCDGu5Krcj4NgPdoLxkAIGyl3pGZGyZh1xRpPH4p9CfRW2fc3tBesXpAl0ksB7aT9IETL5XQi2oBop6TG6Ip3k+YoKtOXUzOn05mujXZrxOBYlpWhjVJv+LhSkuG6H+z7AVJYXCTXjHORJUZaTogZ9NRxNrL4BTGQ006vHh88rRRq3inisZcTIZ4o9xmmezptpA8fuO83xrCkCn55IZUrdd8xFrbTCYwgPkw6ZG6IN0R/QhaPQTHDgGbondvHz1i2E0MNxhnEOkZfud/fUB1zo6sVq2FS9Eqf41SPuAVFGAx6HTQ9cL4TtxU7ZnjxYBDWbY5YNkvXOTrlHnEK4ub6wIBxyp//+l/gety+dwv4p1GqMwdLjKekjDGDlBMMQdrgvAWsM5TWZ3dLLKoNVRCFZVlwog/aaGSrK9I71q+U3nFmQjDa4DEGuOOcxyK0UWg906oQon88nk5JiWjg9O48u8BMuMXtbWatJVVELGLtg1Jo2eLCEKX1TO/u4apkFmsWCMDy+FOY9NfG7LY1IAreR6xEnCtE7zAPDHwqGe8c521FMdxT5yjpQVHseB+hd3K+02qlts69ZI6c8dbjg6XVib63wVFGxzlPvu54EU5xJYaVuAaWuHC9HXg3gR/b4ohukh2XEDidNpZlJawBMSC5AQOJFh889V7wZhJQrXVMmodDlW+HWnuPlVmEjTFAB9YYBsJACIvj7XanloJ3gVELBmVdV9ZlwVvLXjLcOgSDiQ+6yxjz9bAOMZF1MZP1oRBjIKVGzjsxbpNSGVfMZXC976RUsGIJfkW0UXqi5TrzE13Ah4hfIs0MTC+PLq9jtMGTz//UU0899dRXRV/KQq2Nxl/80b+IGp0bNpgm9wq9D4adJ/pLcIxTpNZK2g+irtQ0vR5mWaitkkrldNowrTF0YOlze+OFkiqjV+Li2JqjJJABojpx/rWwnk6s50DNB9orJWdCmEWTBM/LcmK0itKoKXHkgriOdIMaR1zPlL7TR8UYxxhCaQWrA8RjjWXxC6UlWj6Iy8LL+YJ2QdsMLE71TkRZTCC6BbTRWua8nhlUctaZPfW4VEfaqeXOtgbKPmEbKPTeSKUzFHQIe83UnLjX/CBWKqNW7tcGQyhGaQji/OxGGjAmIPkgpx1pg3frhSIHx+0VvGcJZ2QYPB0zGn674OOCN5788K6MnrhXsGIBQ64VNYPSM6YNyMrtavnaD/xtiMLlfOZ8PmP8QowLXi1rXLAOvGW2giKoV37sJ/4Sf/kbf/l7sWy/K1LVGbLcZ6dU6YQQUBSsMoxhWIExx2MZ30ah11YZn4+W9spiI3GNGHH0NlCxrKcFY4XjODhuCWfAWuFtz+RUEechdVD9ojPSWwWNGAzWCEYctTa0VQRYzi90D5ItmcaiQlOZ6/E4+GQ746ODVUDnWsUwPwZm4bYwxyALcyzyDqWm2cm1ijFw2s58vF1xZuCsw9vI8I6vf+MvkHKBUwVWSp3jnyrK9Xrlvh+Ic4hx3NMBx8TJh+AJY47tGjFczhfqceN8OrGdZrc+2sDL6UzvyuXlxNfevee0nQjBYY0SfCCsHonzsesjf+y4XemtE+NCSrOI1EdPXUQwZgZRi3bKMSMt1lXoQ2hjXifVaYXNqTHGYIzOaJncoA1BxLMuk2YrwHa+YMuM6ai54rxnOZ/JqZBrIviFy/bCtq4YG8CkGZo9BnTFmlnoN7H02x1jhJET9/TG9ZapreE8IAaRGdDdxdLwsyAcGbryHHx86qmnnnrqq6IvZaEGcM03/uwf/7P8nL/758zxpxtsK+R3hr063AOGUGpjlFeCWxjW4pfAS3jH5v0MQV4EoUOvqHTy2413l3fTVN8TvVTwE2Edl8hxdG5jx1llW7bZFdOOUYdzlmADIJzcwm3fETMYMigK9+PG6J2oC06g1RuYTljOjCgTa27myX94oPwFwRkLZuHDx88IsbKeNq63O0cp1HYganDG09SANViJXL7vgrGW+9sVQYnriW0700qmt4RznqNWit5QzNzUjcHHb34EI3QG63Jh5Aou0lpi9DbhC9o5vTuDOLQ1Sm90VawRvHFo6Rg1DBWOllFtNBl4EWiDqge3tysmzCq7lkpmdi89gA0MBrVlehscveJjYFn8LFhLZQ2RUjKncIIKba/0xcL6jrCd0BEZ6hjKvAsClL7zr/xffiu/80/8G9+TNfvdkDKhNaMWjMCynSbtUxIpW+LqCcbPrCqVmX0lDiPKCIGubXoFhyVXoTflyAlRxzAdRBGj9N5ndpfOzlqtbSL4xeIXodbOtgacNzgrbNtKjI6uY/oyLYAQQ5w09jbHjLcYqEZIR2FdF7z33NNOjA5XFa4gcRbewHxtHZCYnTTlizHXlBK5ZO7HQR8NHzzeCn0M9n1nv91pKGMIopbgIqPP/LAQPCVVbvc7VTtWoZXKfJSzy9u64kUYOlhtZN0sxYGzlug9IsLpfMa5MAvS4Hi5XFjjvBYW8A9qY781ep+V1SiNVgetzWw2EcFZy5ESqWSsDZzWheE76CBEPzPcRqf2xv1IlNLYU+Z6v5JaoeTZRdPHWKk+Rl7HbnBmEJxnWVb2dMzxx8WhqjMTzwnGzNHx2itd11k0iuFyuYDqI2uvst9uHPeCOvNYI5kxOioNNQMVB6p0UUpttCG4EKgq9MHsnD4bak899dRTT31F9Dcs1ETkfw/8V4CfUNX/6ON7/yPglwHfePzaP6mqv/Pxs/8B8N9kDpP9ClX9XT8Nj/tvqL/8+pf4lb/yV/K7/u+/a27aHiNQaqH3eWIrIlgTcUsg3SvaCmpmd0kVeuuMoVhj5gl+G8RloaaMakXUIOqhWeK60kZjOw14BLM2YJTKEgPWD7z1qA6GDm7Hwe3tlbgY/LrixWNz5NhfcdZg/fR1lNpQKdQ2cE6IMSKiM++qdW73xH0/cMaQjmNSDvfpa+vGI07oKKVmrF2xMdJTYrTMdjljthUzKnGZOVdGFRfCpEW2SU+EScu03iHOABYv4EV5iY4PbzfSfkMFunSGHbSm0CujVVI5qL2xLJHz+08ZBKxUilS6dBDz8Ik9MqpUEWvQ0Wj1Tu9Cp+O9w7pAjIGSCkMsZvFIH6gK1kUWZymasM7hACsTRT4bRmZuLlOBi7JYiF4QD7oof+lH/wK//0//oe/FcgW+O/eas5b3p09p/mCMjMHhndBHxRmD04l+D9FxHAVk0Ful1I5xDusso3XEGl4/vNJrIeU7RgWJC6PPKsh7h/eOVvMX/3ZpHeuFIQb8I5R6KGHZCMEzuiIG6ij44OfhiVq0Kjnn2dG2DnRmcIlxqChHPvhwFYxzbLp8u5u28W2wSGYWau3x+TLH8+pnHziuiaY6vVrbxuvrR3JKtDY4cp3Fp1hSKrPL0zv328Hn87LBeoYIrSXUgHeWy/mMNYYQA5fLiZO/sHiLnBT/AJbQO+9fzojxNFW8MywhYkXRVtlOJ7wKZS/c053SBe1KywmjA2dkEhBFaKPjQ0SNpdYyO5KjzSy3sNC1c+SDPuBIif0oXK93Ui6o9JmFmMscl7SGZQj77RXvPKdtY3EO6cp5nQjd+7GTS6Hkisog2IAJjtw6oWY254nb9ogHAOcM+w7OFZoctD5z0WodHHlmuXlrEGMeHTND66AyIUH9ARBZ/JwieOqpp5566qmvgv5mOmq/GfjngH/+r/r+P62q/4vv/IaI/EeA/zrwc4C/Dfi9IvJ3qer3hKf873/9R/ht/+K/wi/5xb90btYC+CiIU8qh5JTmhqsLY5Q5blMbyqACow56a4Q10D73dZTMUQ9SyagxrFskOEMrjRAXSq04u9BGZfSMGKE1ZY0rPnhGa1gntFRwfna4hoHSO+OxRdGhSO84HybhzHSsMxOEUgcqHUVxIoyUGTXhjBL8grROUaWVgYjDmoefxEBvSquVsh9z1FE3TBC0enT0CR8Rg/Ubx3HnaBnrPNu2YZrSByzvXmaBeHul3R++naGs24aOQWVMP48KS4wUJ9RRMCKsbqXfOz567BowrlBLwxqDUGi90rufRVYQShn0UhFjMWMCUe73jIseaxzeCEY81VXaUHptrKeNEDZWtxBjwPZBrYVsHCFY2si0AU47iw24CLJAc40//if/EP+PP/lvfi+W6uf6zfw032vWOs5rJMug1UfMoHcY42fHN1iczHXorEFVONKdkibB03o7YTSSHyS/NDMAR8fVCiLUNj1tf9XjRayjG8hHppZKjZ5TDGSb+Na3Ci/vPpkhy85iXERcIPdKzxMoY8zsdiGwbHH6GcWAEVKr5K7EprhD5jtbYRZlG9/2qX0Ebp1+DG63GyXn2UUyQhuDlCutDXLp1D7oIrMzSH94PS1WLMfrK800gp1rEZhgDYUYFl7evae1SrCW98uJH/i+rxG9Q0dHVFmCJ7rA+RxAPLkWaq1EbzFGMFboqtz3meH24f5G09kVy/uVIMIaFqyb9/cQgQHWOEwUtMPojf3IpFRmBEPONIVSCrk07vlgTztNITel9obBEMWjAkMNcdlY1nW+b+TEtp7Ylkjrndr6hKro9K0ZK9z2xLZsbOtGWD2g87DLOYIP6OnCEMPbfmdvMwrCGPsI9Q4PyMw8DMo14dXPg5/eEeuwa8DaZ6H21FNPPfXUV0N/w0JNVf+AiPyH/ib/vr8X+K2qmoF/X0T+PeA/Afzhn/xD/MnrJz5+nf/b7/m9/JL/2i+FBeQKaiBugtkNqVVKHQw1BGepvRHiHIe83+60MrAycGvEG0dOd94+vpFrnrlCNrK3yi01WgcY1DqzkQQhWMfoBYMgo9PLHF201qAWWqvgV7RNT4vRafTP5cC7FSNgTae3jLMrKsqe3jDOY7GENTyKO0trg9NpI9eDXoTaCq03Wh8MH6mlo73Qa2LQZmfOgzWWa3mlFsNpfUGtcDveyGXGCCjKh48fEHHEZcMqjMd/e7liCPjFY0QYA3rZMX1i940RvAmsSyClTC+VNiq9eeJqGQbiKaKtMdQjHZZ1odZCb42JeJxFJgJ9zM2+kQUXHHH1jNqpubG4SFw3nASCD5xPK0tY2F+v01NHIy4rPljO24YXgzEPGElUfuJH/j/8T//Vf+Z7sUy/0HfjXjMiRCMTh44Sg2dZIt57Wj0woxNtoDNY1kC0kxBZcqNrxQxL6QWMMLRTWwGgtgNnHOu6MXolPdD+qkoux/R12TnuKk5p94P+IImWUilmsI131A7Wz9HI0fLEv9eCtZa4RATLaJWwLAQXQJVcZ2ZbzpnX3jnVQLhaJBpkE4iPwi1D/1h5+3Dnvmc+e/vIcSSMGGot7Dlxv88A6CGd0iu1K9oVlcGoCTGGGBaIjnrPDAsnvyECMjrbcuLd6YxVWNaVd6eNH/rkU772csIa88gf81hnscawrMvMHNOBMvPaqEptHTFwv+/sKZPr4OPtM2qtaK84DP3FYZugMuFDM4/Nzjc5O7Mf70ehpJk91uikXknHI66jZkqr9K4PT5lMiId15FqI1mB9QMXgvMNaJo21Tn9g7x1rIG4b1jhqzzhAjWD8fH7eu5mp1wcxRnofeO/po1NKfXQCHVrnTKqxntYbooPWZw6i9jJb+jLfCIwxf50V/tRTTz311FNfHv1UPGr/uIj8w8AfB/4JVf0A/O3AH/mO3/nRx/e+J+ra+b1/5Hfzv/qNv4H/zj/yj4IH7+G8Qjl5hAuf9YKWO+vpE95eX1EDIQraF+xqHpsGnafmaglhjt1t8URR5Z7zI7cMFEupBaxyPm0sfjLCRTNOhKaNGB30yj3dSL3hcmGVCK3gZPCyLnz81ivNeha/4t30UV1vHxE7N0xaFbcEXDAzl00sZlhqzpOAOCYEQkRQbdS004ciRTFaOW0OF6C2G7c05sbHGoYZqML9XmbG1aNoKkdl8QbvDe2eqO2glQMVMM7MQorB6J2SCyKDfb+y6EatlVwaDPsoKpVcMmoCcV0e5MyAcRVrI71XGBXTlCZtjscd4Jyd1EinOO84v5xxZlBapaL0fpA+wuXF4LxHq5JqQtrsDK1mYw0eo4p3jrgYrGdi3CP8sT/5h/lzP/Yj36ul+jfS37J7zQiEZaUrmOJhzIOFQcWK4O3M3wo2kHsDaWxrJJeF/TjIPU/0u5nry3sP0sF4gtvoY9BGI5fKUBiqHI+RQVGhtIwOIW5xjqQK9KGghj0X8qgEH7DG44ybHT8B7z0+rMRlo7ZKzYnR+3ytx0DH4Hq/ct5O6GvhvG7IAWYP2MVMGE7u5JyoaY7k9g5ldFJpHMfO6/UNrOeWd479eDx+8A9K63iQFGst814TYdm2GSavs2tkjMV7z6fvLnz6yTt+6Gtf44fefx+LNZPa6ASWR6Fhpp9O4ueoSuZ49mczmqPrII/BNz++cdTEcRTuOc1CzVmwHlpjWR0hBHp/HBIZYdQO3iLOMJrFnhZGLZTbzHu7vr0xmN622hQrgjDvFWMMPR+0GLntN4x5IXqHOIt3wpEOasn0NjvZajJGCtaAWz21FXLNc6S2zzVi7aBPkj9JG07sjElpM+i+lopqoZuEcYFSGzIEGwYyBO9XjDVspwUxT5PaU0899dRTXw39ZAu13wD8aqYT5FcDvw74b/DXtnn/NSFdIvLLgV/++Pwn+TD+xsolc8v3uSH3EFcoSTitg/1WcAbO7z5FgJdPIeVEypnltIKCJJm5bENZ4oR8OLNw32+TKLhdMBZazbRUePn0zFDBG8EHS22N0qCMxmgZxeKsY+BBBmICtc7AtNUvjADfFyOCm5vbBq1lou0s5/dgPb0XQLm+3hAZuDG9XV0KgpveOVGchU4lOAPd0H3B2BXjLXlkRubh1TNcX18pS2E7vSdeTlyvB0mV0gZdlJNfEe+oeydrw9iAk3mKrgRSOhhFCT4iVklHIu07Y0A6pj9uPZ1pxxW3WZx3CJM8l+sNFfvoWiacEU4vgSCG1Ad57yiBoo2gHgF6zeR6MNTQxTJ00vtUDCqGjoGWidbz7t0Ll3dnjLO8vH/HJ+/OuOBmyLWHb/75H+GX/YZf9dO2Bn+K+lt6r/0dn/ww2zkiRlE6YizL6YRpGTGDl20lXBbaXghquedMw9D6IA+otdFqZVkWrLE0GZTSWOMyfZy1zsJsKNZHTJ9jkAMoPc/AbBc5bREG5FTmqK81jNsVay2GxOV8wZqOtfD+3ZmB0HV26ESEsCxEF9BWH7TJE7VXSi6oGEZ/wwTLooPezGzKjtl1u+03WusIMHTQJzKEdXvh9e2VUeZjTkfFefv5NcR5Ty0FEYjripjpqdrixrqudBlE6/nBH/iUTy4nfuj7v8bP+tu/RvhZDhxIZV4I+4CdNB50nMcrV5mHHi8O8xOdIxVaaVhnkWa4p0KnI85yPXbuKeMMrLvlZXvBOM+2zTFpEcHgMeIROq1WPt52brcrrTeyViiNrgJG0d5ovXEcN/x2wTmHE8UbqPnAmQ3nLDnnBxikM7RPWEzKKMriDMMIxQfSvuOs410IGFUG4Kzg1hO3/c7Ly4WjZoYouUzQjD46sKpKR2dovQhjNZziwvbuzMu7y4Q8PfXUU0899dRXQD+pQk1Vv/755yLyvwH+z48vfxT4O77jV3828NdknavqbwJ+E4C19qeNuNx65c//2T/H13/s6/zgyw9iDvAHhGiI20Ioje4b6TqBFxNVPvOmWqocvZByZq+TLBe8xz3M74yBjQHVjjRl8QaRSsqZ1IReNwbTO3K6bGhwHMfO7V65Xw/W83tUBoggw88RL++JNmKcnVlmbY4pdVFsG9A6YwhqCq3stFxBIcQzJi4oFWMF6ZXFGYyZuPLaK245E5aAMZZ8v9HaHWcswwyMtZTcMCTEKFYUgxDsQh0DvwTqniZFTizXkqh0jJ3USmscLhq0CoMJg2AINiwY52m1MEpCHEQ/s7qMgVIVRviOoF1mAaEPdp44MB0xgpe5q+2jUwsIFiOdy8tG756wrSzGEYyf3bNlIajw6fuXubGPkcsS8M4So2AeRMA+jukF/A+g/lbfaz/vh3++yqNDdTqfUJmjZNYFZAzUzQwuBY5WGaq0oRgfaftBfxRd9/3+AMVkjLGk7NChjFK+IOT3kuh9YvvRgRFYt3UWbr1jjEENM6ewGfy6TUT8qIizLItnMSt9QKbR7jdq2lm3M9u6cFkCYzhqhy4wUO77jegEExf8cDCUGCLj8VhyyQjQagVhwncAFEbLMNrs3kog50LKCRPmWuutE2Jg9OmX9DFidIZGxyXiXWRdLO/PF37oB7+fH/jB98Sf7eGH+Hae23i8KINZmNnH54nJJhEQD25xM2ZwdEZrs0A0irXuQXxUejtwCrIsxFiJ3tPGfJyjKu6lY4xMD2GviI5JfxRw1nOvB8dxx/nIsq3ER/i1qtLHoD+6+a0Veg+APqiuSs0V+owDmKOMg7AEtvWEEWh1zDHOh4wIHaGPRtzOHLVjXKCPnaaN0gbDGjoNg2AExAtVBvTBvRX8kFn822dH7amnnnrqqa+GflKFmoj8LFX9sceXfz/w7zw+/9eB3yIiv54JOPg7gT/2U36UPwWVXvg//f7fyX/2v/if5xf95/5+iOAjhJMQdoc6z5F2JAiWQH94zEqbgdh1dIwJ7PlOH4MxFOP8zAPKiXTcsc7QegLTiWaZ/hMM0RtGh+4cuVZC9CzbiZQ/UBlsAs5OAIHSp/OrZaIVZAijN2or3O4HiEMk4yKMMYs0B7jgKWWQSsWLRaIll4zVzv3IWOZIlppA9AveB2oviBWcXYHpI3HO0/LgfnulA24JLOuKAqVVxICJFk2DxgQ6MDpmGMROfLkOwUWhNkNvHecszhq6F1qHUev04wzFKejo5D2jfdIIbZwdmdwLLipNobuAGosPCx7/KOQqo3W8EWz0bOczzp3mdewd5y1r8GwhYr0Bozjn2LYVay22DxZrMRHyfud/+zv/Bfpo38tl+v9Xf8vvNQFEab3PkUOZXrLeK7SOK5ahUEcjP8YC6xi83u/cU8IaixHhfhykY2e/3zHW8v79+zkyx6D3gRFDKoWSM6dtBV3nBttYSs2UnBljYBHcZXosRTq1NHJtDEA5IYtwuwvnJbJ4R/SOYMFbYV3iXP+1UXpHkoUxWOwkFxoD2iu0TDp2ai20VB9jfoo1gxA8R8mMDm8fPrKng/PLe0QMwQmKJZf+iNgQonV4b7ESCDHAmF05wXA5n1kcfN+n7/jaJ+/Zvj/A9wOfMDv6n0cDABx8u3Dr3/GxMg9unJl+1f3Ovt+mZ7Z3RB2t1+kVG4MYAnUM3q47723A2I5zSsk79t6oqZJTImunl8J+u1EHtNxw1nFeT6i1c8YTECOodtbT9J0J81qWkqenLWVsiOikCE1ojDBjAhSMFc6n0yM2AHJtGKCNThuD0ubzG2NgQ8CGAGIwwTOYBzAeCKvHO08pjcaYnlLvCIvnyRJ56qmnnnrqq6K/GTz/vwz8QuBrIvKjwP8Q+IUi8h9nbjt+BPhvAajqnxKR3wb8aeZgzz/2vSI+fqdu6cpv/Vf/ZX7+3/3z+OHzD+N2kNfpTffOssUz9MKRO6UVcqvkWrgdd0ZVlhCJZ0NJB0cqeGsRb6EIITrOpxM5CP1IGBMJIcyTZmexDqoObnum1sy6RS4vL9SqOL9grcd5izY7xx1bpbVEb3PzPPmOoGPMgu3IxCj0kmjScTHi44LgqL2TXq+ExeOjwYpB1CF4nF+QPkgfr1z3K2oFZ5c54mQdQw1HeaPWAjrHHSWuAEidXcKSEkJj0LBuIN1BB2882EYdjdaVXsfDOzSR3+gMzHXrzEVrtVNrQXWSJrE6PUOtEYIwkpDzQKwlrhs+2tk9M5HWC5qUwcBeIufLCW9nN6925by9Z/MeZwen1WG9RxSiswQriA6MNZhHZMOP/sUf4bf8wd8xaYLfY31X7jUB56ePSdssjIpAbQmPIElIDUrpXI+D46gUOkfaud/3WaQo8xpaizE610ZOhDjhINbY6dkSmR3oELB+ZrPVWjFUvEZKKajxiJ/UwxmP3gnO0HshHzOHzxuHhkn7W5bIaYm8O51ZloC9RPxQltSJYVDDguij4pFJdq3HAc4SjMGukY6Se6PV9EXws3dCDI6jKrncEbH4EKla2fcdlcHqV0TMhP5Q6bkT4jqLVwPBKd46LiGyncKkTS7MIu3Mw8v50Ockyp1vRwd0ZgEnirY5rqgysxKNs9Qj0Wum1EqridEGxVismZllb/c7i0J0hpIeo8Gl0ceYuWhlUlprmqTL4DziV+pojwmBgrOGuCy4dUVLZ8+VdQkMraScKKnMQxZmhlrvM6phCRFnLGIsYj1DlLf7jWCXSZDsc1RSrKf1TiqFDvgQWU4nqkmYAaUeoIbeFLEWtzkwgU8++ZQf+P6v8cn7jSed/6mnnnrqqa+K/maoj//AX+Pb/7u/zu//GuDX/FQe1N9q1V75t//kn+DD1z/yw5/+8Bw3ErDOcD6vZPHsO3SuNBTjHRYhWo+/BMQEwrJwOIeh4ujsdWCtIN5zOi+cY+BD/YxUIcSNGB0jTQy+GQ2NltYb/Z7oCqf1TO8db0GHEHxkpI4VuO6JNgYES0mV0ho+nrHO0muGatHWuJcDkwfnS8QKHPedLoXLZcM6ZVTBGo/3G+WeKK6T09sM6w6R8GLwPtB1UFtjmMF2iTgG9z3z9s0fR6zn9PIOdZbX6zcAZQsRg0U2T62VQcZag3cLw8G437hdrxhjvwhLVtMxXoAJOihHxgWDs/O5iAdxHTGOGAMRkBAoo9LrQe+WohkjgraCXwLn0ztCjJxO5wdRELwBsYPzuuL9xJmHsCLGgsBqF06rgQWu5QO/9l/79fzYx6//9RfQd0nfjXtNALFgnIVqKLUyxsCIUlSp9Y4YKKVyy4VUEvc9TXpjKqTUEVEmUF3xy4aNs4pstU/voRham1TAEAI+xtkw6rOONGpZTssMnO990jib48OHz3AhMMbMumuaifEF6z0dodSCauS8bpzercjqIIDJwqiDzTrG5mg6OzO1FjAG7zxLXGcoc8u0MagdUv/2z9sSiaczJ5jdK23gJ6Qj0um1E08Low1UIMY4Yy8GxMXjzOzSnS8Lzsg8CHh4IGeL6PFxXrb50TA7aI0v3pPmCwsyhC1u1Bfhbd8p10YfldoH3jnER6qZxzjaOrdcp2cMpQeHaKN36KPx9vZGbY24noBpkTPW4x4wlzqYIdNt4DyINeRa0TEYbdDyQGvFB4fzgM4w8zYG+Sjzng0L67qxbBuNQU0z7iREyDlNgExcabqjqtRWcdbinSf6SNX5muTcEJn5aV0HViLLsnC5vOeT9+/59J17FmpPPfXUU099ZfRToT7+jNJPvP44/+1/4pfxf/3Xfhfv4nucB+ME74R7r1zTjaMrIcbprRiN6grWGKwKai0SHbU2fuJb38CIn5lpVSgyjfMmLOiRUDEYHwjG0ctBHzPzrPVOl46xs/PgTKCWMn0f20IMjpoLSRu5HEjxDBWwEW8XXPAMZwnGsq0L5ce/jrEy84mAy8uZanUCAkqnYzlK5/jsW0gufPLuAsNMbHpJfPxQOJ/esZ4vBL8QNmWMnTF0+nUkoNaQekHVYZ1hWQPtmNCSMQq1VbwPaFfySDgfcadAaIXRzPT8aWb0wWiJVpXWBrV2EItd50hUcAuDhjoh+AlyqQbsgFIzvXaC88QQIXrC5ikCUgacJo1v3++E8wuXdxsvlzNS+wM1PoCCZ+W8OOL2yE7LmR//8OO0/h/MscefDinQmqA6oyRKKeScJ3zCGnLJOOtYYmSMORJYUqKUTOtw3K/TbzYEv3jiumAMGO9nmHhuiMyCbNsmoTHXR1RE7cQYeXe+sMRAyonrfccYwRnDtm1QO137pFJqxxlDH4ZcG95Zqhr8ckIWh5weZrg0YyaoO9adgBmq3a0neMsSFqyPEIWYBVcHct9pCJiOWqH1gQ0rZxHUOG77jYHgg+eTZWF/+4jmjBqHsY7RG9YHMINBp2tDDDgTiXGZhdd3vrt2ZqH2eRj35wXbd74wj59pAhBscHDIBORYg1g3/XcP4qZSQZXX25XgAl42PIJpyjBKK5UPHz5QHlCOdR0Ts18Szk4/6Bid1Tu6GLoMauuko/DyfsH4mfdYS8I5B0aIlxOpVHK5Utocgx6fzz8aN/PvRGitcJQ7+3FnT502Gsa9crm8Y9tWonNQEhBnN7srb+MgRjuD1odwip7oItt6xnvHtlhOJ/krO5NPPfXUU0899SXWV6ZQU5RvvH7gz/07f46f+3N/LutVWO9w3EF8JLgV4izcWskTd50itTTEQjrulLyzX18BpbaEMQbvIxhD07l5cmJQOi1njOn4NVB6xorFm4AMOz1wpXK73yiP3KqSC9VAPW6P3z1N346V6YGj4HAYYzBhhkIt68a6nTkvL1Q6rw+im8S5+Tn2AzELD3oEqTRoBWvm6Jt0uKc7y3ZGW6O3jHfTK/L+k08ZEujGgnfUmllOF0QUTGUNgWYgp0qtlfX0QrCWvRz0Jnh3wkQhBMsogt472DbhC8bgtog1ll4aLs6sJXQgRegcdC2MJmyXE7IGCpV37yO1zdFF65VSd4I7k+8Js1g2b3m3Rc5hxanBnwLeBi4qOODkIHowDjqd/9eP/Bm+/tmPf49X5ndXqtC6ksrglgrXXOll4KyjHTuNjpVOTpUhfcYr1EptDcz0Z+bbHYwymuCGEsIyPZatcb/dqL3z7nLBhzBzv5zg3fRIbkvkFALeeYwR1nUht8peMz07wvsLNWcAxPnZ6RmDamT6nYyj0snXTNQ40fYeZLOQA1hwahGzEMRgH76wUSsyHKMr3/z4kW++fYsPb1c6hq46sfp24EwE46itUmomOKX3xrIspONAtePDxhLj7Ap5PwFAcWWLC+9f3k3vmvBF/h+Db482fl5kfO5Xa4+ff/57Zf65X++8Hjtve8KYwGm7MLpy7InSCzHOa9il8fLO44NQeyeOMYvjXrlf79TREWsZQ7nnzhoD2+k9tWb8w3vWegeB07bRxxy5vL1eCWtAmjJ0cKRMvyvGZy7nMzpk1pvOzVBwhNQbscxcuvvtRmlK185REikX4rpRxitDZqEvFrz1GMkYCycWBmb6ZRXEGEyIvLx/z/d9+o7zZllO/LV5p0899dRTTz31JdRXplAD+Pr1x/jv/o//cf6t/+Mfwl5g+QjLATos2l5ocQYzt1QYahkixGWh1zYpZArnS6R3y8ePN3wMOB9oAs5btrASfKD0gY5OWFeEgV8iwS1IHQQDPgR+/Me+gdBZQ5hjj6PRS0IBGWbSGN1gOZ85UkasTrrkY3NlUbZ3k2ZY6ORcQQUXPMFZWs04HL0PlrDSykEdfSL71WDF0umMPHj9cCNaizGTSln7jrUL6+lEiCegEZdA7x4M5GGprc6xMb+xnTeM89RR2YgcuWC8J66BEDxFMkYHw3RejxsihrgFRJS9VEZppJJmXtYpEmxENVLsoI6GcRZ3EhqwnhdC8FhxEz3+GBtd/Mp59Ww2EFG8Co5AsJHgHJsIJ++IQSDAXt/47f/G/4E/9Rf/39/bRfld1hjwtnf2lLmlxF4aMjoihtIHKe2A4kMgp0RqiaYNcYZWK0c6wBq6doKbneFcZrZez212b4xMPoa1xO2EeWzIX05nthjxKKqWy2mjlMxedpyAv8yuTMYwxgRTDDW0WjASsKuZo3zXO+Z0wtExzSIRZBWw4QHo0OmVEqava0CvhcEgt871fuezD1eOXniEARLCJDjWXohReHk5c3sTDMJyCqQ9McbMChQriBVGU2pTLnElPorPJTq8m/fJF4Va5tsdNPf43ufgEPh28fY5VKQouSSOdKBYrJ1zkcbGCUKSTsqVrh10kiDn4YsBZ9BaqbnSBFoDY3WGWveZ9yhMCqRbTlhreX39SG2DsESW6BgO+qi0fNDqLLactYgRrtdXSj6QBqqCdREfA41GqYnb22OcWYTaKseYIKRhDLnMgj9awxZXznGhK2xboPVOu+0s3jOsJ/fGMPN9cFtWtnVhXQWz8CzUnnrqqaee+sroK1WoAfzlb/0Y/9Jv+Rf5B3/RP0RcYV1hVDCj0UvGitJ15qZt64YM5VZndtLl5YToyv32xmntOB+xPiDWIgZGq3hrsM48jECGmhrWGtTqzIsawrHfCcGACaAGUaUPZYiAWIxrOAEhELcFnMM5cMYwxiDdrwyUeHmPImjvGBHWZZlFjRNkdO6tknvDkhjS8cBAGKNRVDE+MGrj2Heq84xeYPT5nIzBicH0Qqp5huhSscYR44lmKmINYjpxWcAabLO4EPD9Sqfi/cyCM94iw9EzxNM7jAtgFHQwNNNrgw7GObwP2CCMLix+o3XoveHDwrJ41hjx/kGjw0N7RAWrwhBkKKNmXIxscdIsnQ1YA3FxmFWQIOQjcUtv3+PV+N2XAqVWcikMzBx/A2pvtN5RIIaABMfIBuMCLRdaqdOfpTOb0EWHC5acE8dxwKgTqmHniJyqYD4vyIFtWfjkcsZ0iMZgvUdRgjOczxtDldfrQcqJEDvLaWMGNHT6sIzRMWaGpueSyUtEsxKqwR8We/IzTPoRs2AEdECulY8fX7HeM7RzPXb2XDDWc7IOY4VaBzkX6BWjk4gZnaOEyJ4T+bojgLUO5wJDlDbazCwMFuM9WEOuhVorsgAXJjAk8O1xx8a3i7PPvWmff++LjDUmop/pncu5YYyd2PyHx6+Wyn57o6kiwoxX8O+IPtAUmhriFsm3ztEajBkfsCwLzllqqY9YAoOPjrBGyl6wFpa4oEOow+CMo9hCqYXRAQQnjv3YkSEI0xdqSydEgzEBFUNu0zvnlkiowtCB7QMd8z1QRYjrMoOwxXCyltYtuTV667ResHaOTYclYJzBeSGuzELtOfr41FNPPfXUV0RfuULts9tn/I7f8zv4B/+r/xD+BOcMpkO6WkxztDHoS0RDwBnH6/VbuOhRhGANlk53jnh5QVygDkER6qizaNI+/Wre0obSjbL4gIhFzZiQEO0YKkHBWIcET94LMjrWedwSJzodgw1mFizHwbJFaj5IKDqEUhvOzo6DdwsxRLR19vuN+/1GKx1RQ2fi9bGWXitDZreilTGjm8ZA2yxOQ7SctsDqF5Zgaa2R7zf66FzevyDi6a3SuhKtwzoht4GWxBo3tIMOxQlorYgPqHOMFhAjhMUwxKEitHInuggOtM/wrjEEcQFxjlo7znic9WzbwhoD1lissQTvQIW4RoKLXE5nNmdZg2NQH3/XmJ0GBSsOHz1EoZrM7/vjv5vf8yd+//d4NX4PJNAQylBqbQ+f0uCeD4yCtw6GxYzZeRGml/JeEqP2GUy+eJxztD4oKXMcmS04Lu/ezTppCDoGOe/oCBPsYg3eOmKwM/uLQdgWVAPGWXQY1uXEh9eP1K703rEhUGoh50Qpk2JacoVa0N7wPhCs5bJtnIzBXCwSYNyUMTq1Knuu5NZnsHVr7KmQ2/+3vT8Pk2y7yjvh39rTGSIis+peSSCQMIMBgzENNI1NGzD4ARsPjP7axrgBTx/+urHddHsAjLHFLNsCjxh/2NgGM1gMEshMQkII0AiS0MAgIUBCEpqublVlZsSZ9rD6jx15qyQ0IS6quqrzu08+mRUZmbEj4uy85z1rrfetok8ENm1AOkuMkf3ekLSw5FijLRzMFxOlqhSsdZyenBIaQ45LzaATw7JEsg8YW+f85ArVkn9DdXz03BRqC7VylrkZcj0f/83xNi8E1+KKwhxJKWK0oESshZzqTN2SFhQDAlO+RnPcF23fV9MdhVQUcsb6zDTP1VlVLN54rDnmpBXwwZJLYV4iXdPhQ4uooZRUZxpF6/NEKcVQVCk5Y3OdUbPWov2WRCSXiHEO6zyNbesMJIWLwwVNCKTYgWZi8cfMRocLARcseV6qSA0e7xt80xC6gPNgL2f8VlZWVlZW7hLuOqGmKM9+6XP4xm//Br78i/8R7QxSQB7huSYtw2FGQlerC6p0vqv28y3VYGQ81BkUAGPxpmGaI9MSKbHQbLtaOXMOi0IcSSnhgkWcwzuQCdqdqzNkzqICrfUcpgP9pgfxWBc5jAfSJBhpEMaaRUam3XR431EiqC5ozlirxHHk/PyNRLUUaWj7BkXY7y8oCXzjCb4npYVpWcAKoQ8s+xEtggCbfoPIQpHqvua942SzwXvPUhYgIlZZhpm5KP3uhFgmXLi03j9ASrWtkho2TBE0a7Xx7huSOpY0M49zrdohOCvEdMypE1dNXLBY72mP8zhdCHUO0Dk0W/qm53S3xYvndNNhHVVc5kTjLS4nJGdsaGlai90AjTItAy942c9z3/n9t+kovN04rPUcS1aoKkVhGWe6tiUzs6RSWxtTogkNfddwFve15VEaqowD3wdETO1GU2Hbd/imZR4HchxwocEYxaLkdBlkHfAGnG/xJx0kIU3V0bNsd4xxYZpmjDU0vqdxUDpbTTVSJMXMcBhoQiR5f4xesDTS1osmKXFxGNAiXIwTF/sZsYXiLHPKN90oTa0eBmfJTaBrG4pkhjEh9jpjirTBPSCixDmCN1CUEgvOW6z1zNPEACzNMVuto1bTLgXapWnI5ZxaPN4288BMGolqzW8AB+1Jy9n9E1ah8UJuPe3sOB8Gcik436LWkU2pJi5LRqXGXozTBKagBbC1nLcsCStCZx1tY7DO0baeYV7YbjuKwjhHljlis+H0yvbY7pw5HEbmJdZjRqu5iXUemLGmHj9GhFIyWjJZI0EsOkUmHclJWaaRNC548ZSUuTg70ISF0LUY3yAoKQlFFfGu/g30DSenO5rQIiI3xe2dmU2/srKysrLyoHPXCTWAKU68+nWvYZgO9LsNvQpmAT1pMcWzuEjOM8N+oBFP6wPOObIu3MiRODd4EylZMbogWk+WwmaDGKXrAsYU9ocDS1xICp0YrK1tYCKFaYxcvXovpSjDYWQbPJvmvVCUyExchK7dIqKIRDYnVxiHKvqCWO7tTxARrt+4jvN1LuT8/AbTlFFR2l1D2zYghZQMOdVTa+stpVTXP00LuRiarsFZxQoMFzcQEWQHiwy0oaMPbT0RzzDNB8R7+l2PiBACmGQYxxlnFvI8cXqyAyCSyUDrLbbrGNNA33QUPDfOJho8rgjtpmFZZow3bE625CWSE9jGsbENthRMLHRdg7qqL6wxtE5pxdAFsCbhKUgykDNiWnyAxgqNL3QbkK2gJ4VnPuUn+HdP/m+37wC8jYhAvxVS9nSbnlQu0FxP3JtdneezlAda6sRCEcP1UIXdYZwQZ0lzJJRA27ZkM2EUQmhwx7y0EAJJBDWFeU40vtCLYqhmMG3jEe8wnQMDvuvxS8Nm13F2/ZwpOBRhWBJtU23lc84c5pGcM13f45sWa6gRGEcDC1WIKGfDOTFBnBfO54GkC84FVJWmsbSdxeOgKBdnA0aEdusRY4lzpnUtwezxRqqTIRbXOJZlZJoWclE2bAjBkkuiDTXQez5cwGEDB+CY1feAwCjcFBkzMFEF2v54e67/llaQg9QLPRxz1Kwc3RQTF4eRXISMrWYc1hBCQY9zg/PhQBojTd/Qn9bXzojQBM+m6WibgOaFeRpqV+aSSKngjWPJC8ZlTrY7jKvtlkuekcGiJmBMi4tL1UvJIbkgKSICaVno+i2OQNKZw3CDWUG0zs+FLtB6D3DMVKvxGcty4Pr+gv1wICPkVBCNGAkUqZl89XWoc8IrKysrKyt3C3elUIs58gM//QNc6a/wD/5//4ArJ1cJi9AvEBeLXSxxspQgdUYnRTQlUOiansY3pHHBGCHnTMoHrC4YKWipLnJFq432bnuKEzDWkpZIjIWM4/TqPTTeYQw0ztVQWFWmMTIsQttDTgulKNYaGtcQ3cw4LhhpGS4O7K6csD09qQG408zJ6RbXKtMwYUVxBlSE7WbDYRxBM+N0gLTgJFGwBDFsTntMWdCUWGLESIN1lmKEOSe8WBxgjKBoFYuuoQ0dXddBaZASIWbCdksfOoZxoOQEJlTzEw++OFLOzPGAs4Wu9TixxFSrgq5xBOMxfW39tOJw4igpY7ylCAQsxlaDgV3b0TcWj2AlVYGpQmMDjREasTQWGp+xLUiA+97wOp72wp994OTvbsMY2G4tRVtySeQlckiF1lg2TUfjDOY4O9aE6sw5xxlnpLaS2omzi/urS2cDJcdqZiGhOqAiaEoE62l9tWq3xmCNRxDa0LHdnWAM0AlsBdoaPk9ymOvCji2bpTocShopRupsGkrXelL2hKYh+AYlMi4jITisc1zsJ4ZU2x3TnMgl4byB5NBSSCnV4Oe8EPotjbMQCnL8r6gyjiPzNOIEOu8Z5wE9uoDkkhCUxjfsTk5RMkLBWcUYw7Bkyrli91JbHyNVYVzOoqVbPi7FmaGKtnzLfe1R0wnkUhiGkRhrm2HMmZgSucA4U+dfM4hmvK0Vy9B1BBe4sjupFdOcaIJnu21pfeBwMUOKtF1X37/QkmNmNkK7qQJYc0EU+tATI8xZSSlWRxrAorRdQwgdXhzBBawUxDpKMiSEeZhYpljzJrstRgxZywOdoAZYijJMkVxKfTXFQMnVcXJejjl/1Pw0YTUTWVlZWVm5a7grhRrAGEce/7TH82l/8tP4lI/9FEwPzQHaIFiFOTvYBHSqV6NjBt80bLqe4bBnzhbj69X0XgxYh6qiUvDBEHN1SnTGUpaMNYZ8HLpXMbimYdt3kAvODLUTKhZcb6rzGsr+/LwaNziBOGMzbEJPXJRhnOm3iU3b4Y2wTyNpSWzaDcE3iAaKCCmN9D7Qec9+HBjnGdsYOtmiCDZYrBqk1BPxrt9grLDtN3WeaVlQNSQyLgROvCcBru3oQuDkpMeJZdtYhsOIMQJiMCWgIxQ1eFczuTSD+DoTlVLGYClZsdbThpaoVSh639I1G4wzlBgx4mtbVcqEvqMJDV1o2fQNG++wpqDZYp3FuY4mOIIrdJ3HN0rbe6Q1vOp1L+dx3/8v+C8//b23+/C7bRgDTQvmYGiaDukLeUm01nH19ITGW4IpdL2j6T3GGcaLGXl9fc9ivs68dJQ01rmlVE10tltXZzKHmu3VBIcPHmstOSdUCxZLCC3S1VlBtsAp1XADqqGMt4TTHs4U3lSFgJXAvExcjAdmaxiXBTAUk0kxE3Om7M+xtmGKiSUuxKV+HqeZOY3MU8Q6j3UWoZCWiOmgbVuapiHGSCwwzwvzMjNMA7lUh0djPGJ9zWoTiEVZNHP94hoiSuOrS2E29e/EYb+we2OD2BqIjb/5/B4QaJHa6ng5s7YcbzvOeC5TYomZOc7sx4n9YeRs3DOlTFIh50KMC+I8ReFif47JSt8FyJGrp1c42Z7ikFrtb+oe2212iBbMdlej3hrPxraomNrMutsAipUqWpd5rjN6RsgpVdFXCtZY+k3Htm2J84KUgogSfEPoW9JB0PHAHKugtApjjOAbGgxzioyHBLKQVBnGgWkpRAPeexrfUUTBKNY5xAoq3HTNXFlZWVlZuQu4a4UawNlwxnf84HfwEe/3ETxs83BsC5sdjBbQmhmlGFLO1UVOFWMUFwLiWrxzjNNAK9XlMeeZrBlNC3GcyaXQN00djreevhOKKE3T1Faz1iEl411LLsKmt5ydn5NjZpknJBdO+g2+9Swl0SGEpESNtcVrmqrF/7bF+yvcf+0+UoqICN5U63SSIR72uMbhnVCKBWcwWHIsmGpXiWoNnrbWggjWudpnpIHGB9BCVnDi2XYdNli6rmMYLgiuGhP0Tcs0zcxlrjEDBpxxqIFhHDDGHnN96+OnpDShw7eO0ARMXurJMNX+3xZH128eyNUy1lbbdrFYqRU+EYtai297VA04j2kdoTF0G4cNgmw9Z8MbeOz3fiPf+8wn3MYj7g7AgA/QNpCjJbChsYIXx72nPZte8DswJ1LdCw2EswZj7kWN4cb5Gd61bDaWlBfOL84pKYM1OBdog0dzzV/D1nbb4B3Be3zTVDtGC5xQnRE3cLQjre2Al3+RtkJrN7BAmQvz0S0xpYRx1ftej4YWuSTSlNE8MU0LSUx1SFTwwZNL5MZ8QW8Np90OKYmSIktWYikYY8jANM8M456lRJSEt0LXbaq7q/Msc0KjknJC1ZAvxUsuXOwvcE6xCn3v8e4qnQswHJ+Te/P3gEL93p76elxmrRUYLyLXzs44DBeM00SMS/Uf0XqRBy0sy4xSsOLJR0dF3zSUosQpIqfQNwFNEWsN276j7zq8s1jjaL2jbSwlQwgt+eiSKaXGgBSFnJSmaUnLTG8cWSfGeTi6qBoaF2iaHotF8kQIhqYJINVcaYkZFaHbbRGErBB1YV4EpSElmPNCysp+mrAScNbjfKjZdKGps4RWMRbEcVP0rqysrKys3AXc1UJtTjNPesaTuDg753u/5r8T7g00AawDaw1xhlQsLteTzTiPpBJpNzu8rwIstA1+HMHsWUaDxoHDWJiXzH5/ju46dtsrQKBr68DKtuvo+oC1FmuFeTlgxZFSvbKclhmnNfPJtZaTfst+GhjSAgKhDZxuTpjzgpBZhhHrHbttNSIZ9gNxqVbXIso8TzRtjy0RWwp5MTSbLTSCloQ1ymGYSEum7YVgWnIsNczXOmJeQDLONVixhFBt+ffn11liZNFI01pC06CpUEZwxtI6S7LVwj1OGWdNDad2FhcMxtf5p+wCYgKNccRSzR5KETbbQNt4fLAYha4PlKQ4lM57vBHEJlQcOI8zDd4LPtSqpHOCbCz0hte9+pU89+XPI5X8Do6K93AMtKdwrxG2jaVESxocrYduY7BXuSmiLBDBqLB7ROC9871cDAeyGC6GPfP5TEoZa4XpMDAaR3flKj44RAImVTOXpm2OhjCOuCwQN7WqZKlzXIabc1xQT8a3QBD0TUpZMloKAoS2oxghzso4TXWGap6w1pCLZ0yJQm3RC96SC4h1nJxsaJvmmHPWMB6qkc+SI2ThcDjwpms3SDlRkBpRIILMGSOGYgSkXtjw1pG11LbnVE139oc9KY7EqbYYGoQr+QQrtSpogvkdjoVaoMxgBVIuzEuilMLF+Z7DOBILLDExjROSwaolTwMlRawVjhnxGAu73ZbOO5wKVgWdFyQlNk1ATGHTdWw2/QMZbtuTLd7uapwAQsawJFiWyDQdatUbBWPQAt4YrBa8reLPoGQtHIY9fWg5PX0E1kLJtSqexuEBoae5zsFqUWI5cH5xzmZ7gmsaCplUAK3RC4pWcek9iOCM4L3B2VtaH1dWVlZWVu4S7mqhBnVe7akv+ik+5x9+Nk/450+kOW1wAhsnxHoOxzIp8wLFO2wS5pIQre04RQxzmhiHAykbSoTGt6DC5DMqHSU7MJbGeaxNbNuGXduSjILJdG0d+J+mwns94irn1zznpqHtcg3tjQtlmOjEMeWFtm/o+4ZNcbzh2hsxbYcz1dgBX7DGc3bjjHEayNNMwNL6Do2wLCNdH/DW1eDprq8D/T6xLBdQHL3dUhLEspBywrpqLKFiSGXiUBJXT0+ZZUG1gMv0m5OabBYTqSh923O4GKvBhw9ovyPOE23TVMtwlKLVNl20ME+RbBSk1Fw0o2AN3je4krCNZThe2TdSc5WCFbyxRBzOGQyJxnh2jaVtAFtQZ3nVq1/CP/3ur+HX3/DK23eg3Sk4MKcQLARHbbm7x0AD0lHNLzbUlsSGOjtl69txJVn+gL4fC5Z8H+z3AyEEpmXCGc+UZobhwG7XV7MPhBhnQtvRNw3WVKWikyKz3HRArJFeVaBdOiLeIt5igiWX6t4psKSFfTpnnifSNGLUoN2G/WFP1gKmxgrEnKHUoSZrHWg1JDGAiDBNMzkL0zRxcTiQDGAsZcosS6FIoVArTufDHjGmRkw0gTnGGoBdagZbyZkUDcPwBurEm2WeEyll5Gihb02tposYRCxtH5Bj9Ns8RvbjQCyJEieGYWGZJ8Y4s1/qOg+HPcsyANA2HTQQU8K2DbvuBGegCw5vhLJMdXbOO7o2sNn0tG2DFcO2a9j2G4wPtQp5SAxLtZ+s7Z6Ow3DBYZ5RNUSE/cWemAsiNcsREVKKFAWJkU3XIs4xz4kxjsxLxttQ93SVdRQDoi2hLeRS0BRZkpJUML6tRkpxwRaL7YUuuKOZUqFvwV86aa5ibWVlZWXlLuGuF2oARQvPeNkz+SuP+St861f+ex5+z8MxW8GfQVtqFlFeMohWFzKEWEZSKcw54votW+M4P7sgLyDi8SFw5aRhjgtIi/UNLjh6H9AyM1ws9LuWnCImBDLKnCfGOWJ8YHdiGOJESYqmxG67BVV2my2IoHV4jt3pKaZpySrkkmldw8muIcVEyQW/7fBWMOo4LCOb3Sm+bXDBoMZSSiHmTNNs6botbWi4uj2pwd0GLg4HpmXi6pWrlFwYhwvcMaz46u4qnNSMJesdOSXEQEoL919POFOdAnOccZoRZwltj9HMPJ7XWILQ0wRPSYqUgneCE8GIpW1b9Ggfn2PCGkuxwsTMjUFR2XDatQQJuAJtgI2HpjEQQE4tgznjO5/6X/mxF//c7T7M7ggKCvfWPPYHWvAcNx0KL63ld8evL4UUIIvQnVu6tqUYjjNM1eoeqsPiZEe6ztf3zEg1/LDKUhIlZlw4VnUsVQTCzVBof/x6PH5vPn67tQyTZR4WrLcE16DZYApQHNMc0ekG6WhU4YNDUUoucIxGD75hmQ8cYqIJbb1A4DzD+ciwDMSjKQoI07KQcqbkjHMdeLClXrRx1lKK42I5ME0TPtT5yTjMOB9ou45r1y+w9j4af515HilahY0RQ9f1bJquznO1njY0IMI8Lxz2+2MVXFiW+TgLmxjjghgLoqR5oelbvKsh840qcZ4wOdO1O7rWEwAXGoKpGYmbzZau6xDAOVfNXPqARAU6nBuR5cAyTkzLwjQuxALDNBOLMsaFmLVa52uNu9AcMeIABecpqgzDzBwTSy7E6jdC329IKdWLPDEezS8NZGFJC6MmUvUZBQHnPSJC07R0mw27zZbWuXpRQVhz1FZWVlZW7ipWoXakaOGnX/Q0/t4//7/4vE/9K3z8//y/cuX0HrYCKRmSWuIMmgSr9UTPxKVeWadgncMaYa8LEg3WNpe/mDRPNNttzQ9aDlw96bFimaYZEYWyHFv+LDEaSIUcIUiguPq78xIpKeFxiDM0m4asSpojKnqsvEGaEsY5GucZvcWK0PqGw3CB9baG9BpDLoBRUs4Ilq53kJWaagamJDrvMbuevnTV8bGAMQ6xgabd0rfVtn9OI8s8gyjBee659yrXz84psZBiZFkmSioMw4FTI5SmOvQZLIKiMaFLpPUOj6PkWAOv5xGrUErGiUGMoes6nAfnDTbYavvdOjoPvXV0rcU0BnaG3GR++aUv4hd+/UW38ci6s9ifD7W1Uam7P1JPfgNVoG2ogm13vG053na0m1dA1WDEY0JD07XksoAoWszRCGNhciONc5jgaMOGUrQGrRtTZ42OIoxEPQG//Et0KR733DTeKOBEQCfmSUhSGIbaIkyB/TAxzQNqYHd6CkUYp5GYImIsu83mGL8liPMsKeOb6kgp3sMizHMh5emBcTGRWrZRzcxzqntGS53bNPpAdTAliLEgInRtg21azqaBeO112AJaMqoGF+rFm4thpuQ3AZngHV3bYa1hHmfGGIklYsVhyIzjCFQzDWc8oYGrD7sXAB8acilMhxGhEOOEN1s2wZPmiSXN+K7DtT1iPU4C1hQ2XYs1HhRSnMnjyMVhZomFcV44O1ywnyfOx8jFOBFTwViLGCHHjGrGuwbjArEolIwinI9zfeVEWVKiqKIUhv2hViLFVDMaIs45rLFENRR1BB/q3yNR2q7jZHfCye6Evq/tqv3G4uroW40IGS8V/srKysrKyns2q1C7hSVHnvjcH+Enf/Fp/NVP/at82V//Kq6EDbsTwVvH/mCJI8yzEGMhaSE4z7TfczEciLGeoFhRjBGscaT5gLQtS5wREpu+R00HzmAlEayCKk4CcVLazhDLhFEBSSw5siyJpgm0mx6TtAYNB8+UEtYI3jdY70gxctgfQJSub4/tRRkfWlyKtNaypMSN/Z6CZ3PlCs5b8lItx5dlJqmwBEfShGaDcw5nLDFltm1P8J5CNV5QKWzbDlFF55F5zhTnMW1Du9uSlsx0Y6RoZkkL1juiRkSFNvQUUfK8MKUFo4VArbA537Ef6/yRoQ7hKIpvA23bEYKhbRpCGwitpWuELljaxmK2AXxhTuc87xefz1f/t6/m2S9/4e09sO4gbuyv8bpXX+OR73NP3f0L9bOH173htfzM/3g6Z8sNPveTP5OHffz7VsFij/cJYAKoVJt4MZYihmVJGFFccKgo3lscShsaNn1PcC1KNc0Jbc88LRi1+M4hXa2kPJAxtqGKtcvWxwLzMIIqosJ4dC692J8TYzXKMI0h2BYoBO9oGo9qJC61yuWcw3uDNZZlWgihirRSSrW8L45lXhjnCVFqe6IxxBiZpol+s8G3LfMwVOOSOvhGygWjWp0kjaDWsZTIHBeWs4VN14AK8zxQBujaDqwwT2Pdc1rouy2YKmARS9LMNE80xuIMtE0ghIBzFutbnFg0F1SqJX/2gncdjfdIycR5IniLikW8x/hAViWWjDU1vqKgyALjMHP9xhnDsJCKcjYOXLs452zYM82FRH3NYo7kFGvQt2ZcqE6TWqCkTNTCcr4Q2gZnHClX+/2YlJxnfAiUkkk5M857fNdjnaNgqzMmIM7gReg3O67ccw/bzYaTvqfrPSc9hPZ4DBq4dt/dGlS/srKysnK3sQq1t8JhGfj2n/zP7KeBf/NP/jWuCCEamgSalXEqaFJSjGS0toFRMI2l1y3LtADgXEO3u0LWmWE54J2jUUEJWN9gJJGIeKkzNBtrMC6x2ECJM2lZkFhbAntv8RayKmItacmE4HFdzalKqrjQ4k4saoQlTjgjjPNSZ9ccnF2cYQyUmFBbT0TFGLwzpBRZ0kLJBb2e8A7MyQ7jhZIWckxIEzCurblyVGv0G8tU28iwLGVmmEfypLimJZFJkinW4VtH7z0YYeLYkiaG4jxeLOUYohucJ5VMSZlFpQZZO0fXBXZ9z7bp8Y2nDZ5tZ9l1wqY1hMZgtx465fkvfgb/+ke/lV99zct56Wt//bYeS3ca1y+u8fe/+v/mU/7on+IvfMZncvURO2KJ/Kd/9Z959kufyXNf9GxuTDe491rL537sX0Wy3DT6MOACJDlWp4yQcuEwTQTjCGZhSZZYlBBaurbFGMM0T1AyjXHMy8y4RIwI276lPW1xzsJSqmW/Pw4gLaAo+4uZG2c3yKUQU2bOhTlVp0bnHIVjNavb0LS2Ogc6oWlbSilkzXVizAo5gWrBUBBxjPNEToVUMvM8Mx3dRVPJWDGYYwac7zowhqiwLJl5GZnmSC5K13mcF5Y4sxyGo/MoiBjUOKAwx8w8TSwxgROGw1Qzz5xn0QMlZ9quJTSBMWWWZcFveqyxeOcIzmFMrXVvN1sMhrRMxHnC9xtCU2fPDFqzzVzgZLsD63HO1fepZKzbIM6TS81iG6NyMSn337jgbH/BmGZyLogJdJ0lm8JwmEnH/a8lk41ikidnYZ5nSs6Etra+bqzDHKuO0xxrtd46DIasmXEeyDGBn3GhpW0a8lGcdqGl32y4es+9bPot221H3wU2PThXMxDpgS3ku90QaGVlZWXlrmEVam+DKU38/Eufi2ZFTsFmCAVyFPreULKlIbAgNKUwupmyRIoNVTRgUePxJeLUkUuhpMQWQ1ZD0eqolotjXObqRmccm87RBU9KLZpGhgulO93grWMYD9hQRVUqBmOUdnNCTAvLvJApuFDNNhoLk9TWpHEYUTLOWCQ0NNkxTwuSE/uLc5wXnO+JKhSE6zfu40p/gm86ohZMThgK54cB11qcrdbssSRCqNP9JgTaYDmc3UCMoXjLMIxcjBewKH1/BXVCIVNSIcUDTbdDjMVicMbQyGUkgNC3PcsxCFusxYmHWWlOA8FYTpzlSrCcbBpsb6CxaJd5ycufz1d+99fw7Je/oM4GrbwZuWSe9Iwn8OwXPYvv//Hvom87SlF+5Tdewhsu3kgqCUV57JO+lT/2xz6RR/3pD65tihMwwn6AaYrEJZJjDZAuxrLtejablu22I6thzIktkEqtOjmBcYnE84vadWk9qQycUIPJg/fgQY7B0Loo01QYhpkxJaY5UtLCHDMKtP3RRXCurbXGBhppyAIXFwPWWtqmx2j1EpSkdM7jG6E/6dFSjUX2eUC1kC8tJ1WIKWGcp9ttcU3LPC0cppkpTmSFKebqOKmK2ExOiiZFSWixpKKICDEmrLX1mCejpuBci28yeSmoNaQCxliKWuaYKSZT1DDPSikTXQhs+l2dT4sz3no2m4ZlgslmrOnou57gO9IyVsdY53GhIzQeFYe1BucsahzzkjgMM8U4rp0PjAmStQxzYlwiS5xqO3HTskwzS5rJKR87Ug3LMjPPI5vNprY0ohQxOHGMy0JeFqz1jNOIaqHfXgXAiCeEjq7rEWswxtG2G2zbMc0jzjnabkPoO1wIeG9pGuiC0PRUkRbgB7/z8eyni3f/xllZWVlZWbkNrELt7fDS176Uz/67n8X3PPZ72d67Y9PUwOBcoFWHmy0SE4s6QmiI6gghkeYZVUfKSr/psSUxLjPeBeZU6IpyMS9YlzFeEec5Hya8L3hxUKoTYtu0nDYekeqOWDTjbcO8TEg2NI3Fam0zUtfQh44YEyKKqqO1lpNuxzTPXLvYk6wQKXgEvMUqNMGjWohLwjYOj2fxG4Yx0TYJ1ENWQvB432OtZV4WSslYD2+6/0103ZZ+e8KcMrFYYkr0LTSupfEdc6lrXFK17xYswXU4bei9JacZby1tGxCjtJ1DFFrdkUtGS6pjVK3Fmcyu7TjdWHa9xXaCtJ7SwMt+60X80//2dTzz1553m4+cO5tUEq87ew2vO3sNcrTQ0we88Su/8rpf5ilPfzp/7ZM++IFgZp1hmKqjonMeUaXxAUG4+t4PxytMMaLzgHXCdndCIwYngrialTdNIxfTgjGG090pMswsxrEtYDL4MYCtbXXzMnN2ceCQMyY4mr4nAPvhgpwyZU6I1IqrloVhyDRty263qVb2sbbrIYoxhu22p7WBtmtZ5oVhXvAezs9GrHGExtasrzQylUTaX+BTBJEHrPiXmChFscVQbOLGtQu6YHG+XrCIczXUUKeELlC0tu0asehx3q51xz2RI1kjS64mOdY6limSpkQcZ/pgWUpmXga60PKIex/GrtthrUGNIXrHOC7okmg6Qxd2LGNgiSPOJAxdnQUtUHKsFa1cZ+6SwlIiY8wMU2aIsZqHzAtN55F5YjjbI8EhWt8/65Rt6JiWmaKFrttAEeYyM5WR1nc0210NOJ+g3WzxNmARMGCbQNs2dNsTplJwTYtpAjY4vPU0rcdJdSMNQdhthCtbMJfzkh38+m+/nCWld++GWVlZWVlZuU2sQu3toCg/96vP4G99w9/icX//cbzPPY+kU0FEcBcwGmFJSjCWbX+C9oX5cIFBKDnWkx7bUCThgtTQViOM6UCKA2LqabJIFSkpKiMLXgSJM5YGaz3z4YDKTJwz3ZUtqQi73oHAMh1ImmmbBmMSJidmVVQM1lXnNytKThu8aRinmbB1XDs/q/lqwaEICYNmR8oZ7wLSgARDExoat0GlsCyRIlJzo8YDNvWotBzGhcN8jW5zQtvuGK9d58b91/EuYDB4U8ecVBUVj5ZIY5WTbcdhPDCVSJZImie2bQuxCrvQWnKsVcPdZsO9p6ectJ6Tk4Zt73CnDtkailFe9uqX8pj/8vU89cXPuM1HzZ3NpUnGJW8p0G75BodxqGYjC3CA4TrMY8IGj5j6e5xzxJSZYuJiHikl0YWGaVFu3Djn6pVTjAuIb8lY5lJDq3POGPHkqDibWeaWrmkxQ51lTAJzThhnKfNR4QigSk6Z4WKoLYGqx/mnQr/ruXrlKsZ6cpzIXnAmMI4jTePpfUMXAmIhO8PpbsMyz6gq1lusWA7TAY7W/kuacSkfj3lDQapBR1Gc9Zh5Ys4zc8lYqf6SxYJkECeIsagWFME2dYY0LRHjbHV9bHqWvLCPB+I+0XYtgtAER1xGQtPhQ8CIQXNhmSJ2K7SNJ0vBu46ubxmH6vDadT1tCExzwDeBopcCs5DTjLELu92GpmsoY2SZlZgWomT6zaaa9rgaP0BKGGtJCjYExFhEBGMN3bYFLPMUSWkhLiOu7cjJVuMTb+m3Fi2KNcJut0Ns/dnd7gQJHb2AOIvzATGCtRZjzAOZe22weA/S88B85PWza9x/401v+5hdWVlZWVl5D2MVau+AXDJP/oUnI48T/uwf/bP8uU/6c5zeewWx4B0UHOUCvCvMcULbAE5JM2w24J2Q8xaNsQbxqiKasOKOLVGCM46oIDpTErimo9/tkJI5P1wwHG5gnWPX7VAMxRoktAiFZRyZYsF4xRoYNRGansMwYo05WukDJSGlYKRWxx7+8Hu5fuN+4jyTSr1iXrLS9C2yzDShZpPtp4HBeGwQNGXKeIHzgXEplPFGrRrkghjFhoizgU1XQ26tddjWMbEgKOO8kEqhaQPGOHKJJKp9eBMc1kVaIwRx1V/CKX3f0/UbNt2G4Dxd39EGcL1BtoFXvvFlPPk5P8pTXvhzPPnFP3Obj5aHBs45Simo1hPey89vidjjfNpcP5ap7oeSE6oZ6z2yRFQi126ckXPCGYORQGqF6/sDxlj8lassKVOKMs0z5+d7Nn3HPM0IeoyPqNEBsWREDNY5bpyfceNwQc4REcPBHgCYp5miiVIE6x1d05BiJoSGtutxzpHnghTHmDLbkw1NCGzatub+UXDOHfeCod/2TOfnRE1oEYoaco6kklFr8U3Au4BDWWJiHifUKKoCx/gIzdTkasB1gVwSmnMNjBYLYrCNY9pPEBeMKMUrxgeCbY+B0oqUjEE52Z1y9eoJu35D323Zti2b3RbnHE0IuLZFFJJGnK2ulCE0lFxoxGCMkJISUwJRYimQEs5WS/1pmtkfDpztJzI11Huz3YB21RApKMY4plSYU6x5cCK0ztE2W2JaUObaVioOEY8aSDljjUWsAzLGWYyzbDY92+2OfntCcb7G21mDc4YiNeja+0DrLV1raRyEQI1sOBqJ/OxPPJ2ffNaT3+bxurKysrKy8p7GKtTeCZa08KRnP4mnPv+pvOBlL+Ab/59vpHnfgL+PajGvwn6I5AIlNOSSwCyYFowaCkrneqJmckoYW63057ggxmDtQpkSlIJG8KcWY7RW5fJCtz0lOIs4xxgj4kMVdsf5ELEenGcukYXCOB9omxbNyjDOSCkUhKZp6pxYrDlRzlqiWOIyYrXg245gHdIAJVLiArnggqUPW+xGONtfJ+aFTd9RxBGMZxkjS8ykYSL0ltNNj2pPKYp3Bc17xvmiCtWU8HhiiuyHQhLHrt/gnQUdaNpAcAYpgmt7MND3LZumo2l72q6h2RrsieO+i9fx9d/1WL7/OT+yGgz8LjHmZiBVKXWWT1Xf7CS4aZp6ouzqh23Atw1Nt+H0ylUyQlGYYyLmpbo6BkdWZUoRJ8owjZxPDVdDQHOhqOCdAxEiCZaM2lDntGRCtWb7zWfn3Nifcf/ZdbRkmrajaxtKqaLCSA2yFusxIdAErWuZR1BPcL7Oh00TPjQEH/CNxwVLjJEyLrQ+sOl7Lg4TIczkuV5oyBrRuGCcw3lP2/TknGobZSlYb9BFUQtqFZMtJSviFBMsRZUmtBixFGCMEY1Ku23AGpZpxgJd25NjorEOZy3eCd4EGmfou45t29B3HU1bj31nPNYGvG8I3hJjwRRo21qN8i4QY6wVy6R1Vs45jBE8NTpBi5BSFcibrsU6z5QTKoWcCzlmvDME55jHyLDMHJaJaV5w1tO0gaZtaYrHYFliYmsd2SrznMhacG1HiQXTKV3b059s2W63dO2Gvt9AMCQMxhnEQJSCCgRr6LywaWDbQduCtEALr/rt3+Kpz/hJXn+2Oj6urKysrNw9rELtd8GwDHzHU76D/bzn//9l/xbbBzYWUFPd1IZAHjOBhoRBtLAMdcbFBU8pliywxIX9xYHQNUwxkQ4DokqMC41v2GipLoglspSC8XX4fp4XvA90vmVeBmKKWO/pnKdo5ny+oJTCpjuh8fWK+/78gqSZaGtAsfEBKQmLwYghacJYqaYg1mDF4EQRsYgULI7ttiN4S8qRYC04iwsWEYdTgxVPvtijKeGBxipFPdk5MJHNdlvzoVhovMVaS1ZBvQFjOKRq6983PU3f0LpAMAHbd6gRWmcIwRLa+tl1njFf8KLffAHP/LVfWEXa75FL0faWlYoffv4P8yk//2l80Id9IJzAZoJ2FNqxpW06TnfV+EVVuX7tfgQliCf0jhgXlmmGrPSbbfX5LNVAR47REs44cioMZWabI13X4l1gigvDdCCmjG87DoeRYOyxPTdhna1Cr5Q6K+dcbcsDiliKQizCkqslfHc0vci54GmwVrEuYY1DrK2VHR/QaWYuEesdgS2ZhGJQrcYjMSVyXpiXhXmI4C2+6fHGYg2EJnAYR9I8IiFgrK+v67RQUoFYcNYRrQVNpKU6nYoxBN9gMITg2LYdXeuwtl4EimmhaEdBUGuJBVLMSIEmNCRTBaYRU/Pecq1e2mMQdSkFEcUYPRqgeKwtbBpLSJmuVKGUcmZaJkrM7DY7rM2EvNCXwnAY0KIUq+QUabue0PYIhpiVG8MNxjniXEPOSuhatm1P2wfEe8Q1+K7Fb2pLZh3pExbq35q2gT7AJgidg64/tj32QAOvfuOrec4Lf55hHt+NO2NlZWVlZeX2sgq13yVzmnn80x/PT//i0/iiP/VFfPnf/Aq23mLuF1zfM++V6ZA4mIFxjoStJy0F3zjQQjxkxqRk55hyIeVc24ecQ5xDjWcuSlkKu65nXs65duM6OWe2vuHq6T3kLIhpKUDUapawxJmUFGcaWr/B4tkfrhFTpmTLNIEP0FhLCoE41Xw1Pd8j1mLssRKSE51tMM7Q9g3eG0SEFCNzPJDShFFPjNA2HWBxCNvtjmLAOkdKmYuza1x5xHsjLlCc4lKPHYSSC75rcNayLDOmGA5ne4y1bLotCUPGIk1LKg7vDCJgrdB0QrOB37r/1/nH3/VPeNov/xzDPNzuQ+I9hrecX3vBK17Ei176Ej7wEz4AsYK18N6AMQHRqzhj0ZzxVmhDYDzsMQIl1yDorIJPpVZaUsE3DfNhzyKC8R5ViJo5u7jBxeg5OT2lCw1JlyrW4oQLgWa3Zc6J8fwcobAJimt71EBMmZgyuUTapqNrOpZYKKVa7QcXUOPIKTJPA+IdqCdpYoh7zs4HDuOIiOKCpz86I4qhujaqZcoz5Whdf9hPDIeBYg33nFxFLZAKcR7Jh5m4zNRatxxbHpW2aShOWcYF33j6rkMM9E2LSHW47LoOEMTUUPm233J1d4ITwzgvTGnCxjqXGlPGWkvXWNp2wzKPLHHGG4M3tc3wcBiIWk1UpmkkxoXLGmpGq0mPKt436LJnWiJN42lDg2stbehpAkzLyDAu2K5wWCaGswHfB6wxdJsNItUxso0TB6kVcWcCoW/xTUNOCyU0uNDj2x4XBN9INRcq4BFaC9bCpoNNgMaD24FsqSHrQUkaiTmu02krKysrK3cVq1B7F8gl87rrr+ff/dC3sN1s+eLP/1v0f6CjP4flOlwExy6cMCVlTnA2TJQ0wQKHw8A0J5yzCILmBSMe4xzGFFKeGBZofWC+fkZZInZjCdLSNltMt2HJiYuLC8ZpxDYW2xjmeUIy3Lh2P9Nw4KQ/QVPCaOEwjIgI4pQ5LSzLTMmQEUzfoLmA8/Shr6HdrtD2PSUmUsn40NAEz2bbc35xnXlZSJopqoSmQVVxOSMGco6oKtvTHeN4gXiDSiIxs5SID4F8DApnKgyHaxjf40QI1lFi5hBHUiyc7rY0boN3QgiOzguveO1LecwPfh0/8uKn3O7D4D2e/XTBf3jCt/ABH/rBfOQn/CGsM1grPLJXrp4E3vjGq+yubRinmbOzc27cdx/DNBBzwu62eGdwOFzTI9YypZmshWVaMNZQvGGMI+OyUCykw0iYRnKODIeattdsBBWhpESMmbLMLEtmK5ZcCvtywIkQlxnrA8sS2W17yBkB4lQt8pumIZnCjbPzapZjHSlRq3K+QZfMrutIOTGGhftvXMfbgJpCXOp6lnlAtdrcGx9IklnmhTgu1TBEEjFFUDBzJMUECEUsSr1Yo0Kd2Wo3NI3Be09eZgwWHxx96NjttmyOIg5gu9k+ENI9zwltYBwmpsnQ+I6m72m0JS2RnDIi4L0nWM/FOJJzrTgnqS2uacnshxHnG5yrrp1OoGs61DqKwKIZLYVhmpjmGe88fbvFqCUfL8gY41FVWm/ZtD3zNKEozgptEzDWIK6tOW+twzcCTrA1lg6TqxOsKsjx/0Qi4DYgHdXpsYXXvva3+ZZ/+a94zY1Xv5t3wMrKysrKyu1lFWq/B/bznsf9928iSeZjPuRj+OQ/8ck0W8F2wnQBYYZ5VkLTMU4OHzLTsiBloOkCN87uB5QC5JTAJObDTAmZ5DMSM84KaW9wvcf6npJhHA5MUySr4IpHUyEvCVTI3jMu0DSKdwG0ujfmXI1KNEempTDlhbN5D6Gl8wHNWu3155HOdyQtZDE4K3jn8X0LJHZXrtJMAzkVDG1tYyyRkgr+OGuTihJzwViPdYAxbLe7WvGzHaVklmmhbQMWTwGmi5HZB0xj6HctwTqMVbyrdv3breH+w2/zZd/5lfzUb6zOju8Oiiq/8PKf5+v/3WP4qs1X8xEf+6FYa8AKXQuPuuK4+ibH/fc17LYtXRt44/1v4jAMtVoTLKGpQmLKdeZxTgslzRgTqJqmtsWdn43YRgnOsKRIyVAkMQ+KsY441dBs7wyxwP5wIKaEaKb1AQX252dkFeaYaYPDoGzajikuuKZFrGWeFqb5gKIsOaEqD4R3iyqbTU8eDcE1LHEmRyEeA6LVWASw4lBVLs72RF2wYum7DaUEWtMgOYERci4UIJVISROuCwTXYZ3QdIHOWmJMONOw7bd0m5bgPaYoItC0fd3DCFbKA22YaUksy4w6z439nqtXT6sZS1bk2MaaUmGZB+a5VvgwHmszORXGOLMcTUuWlPDeoyJgA857ijEcxgPLNJMQkiptE9i0HSE0qLEYb0HBWgdWuefKKbtNTy6FlJWwaet8nDNsNjtOrrS0vcGHWj27xPo6+ucNGMA46oxsB2wgt5lf+dVf5jfveyVzXFucV1ZWVlbuLlah9nvkxnCDx3z7Y7h3ey/fcONr+fzP/gKcVMfHMEGZhXEQblxzlAL9ZgPiMWLZbZUlz8Qcj0HDAjZhji5q4hxZq4vaxX7AO8umCVhn6DcdxlpimlhyYrvbscTM1W7HEqca1msd+8PAPk31ZMhZEMecE9du3GABrjzshGWO1eZ/jqgKfbgHtQY1iVSUWRMSJ3abFknQtIYcC1ogpoj3Dg21ZctYhyUxx7nOxRRbM6SWhW13Ui+ZC+Q5ktNCaGqloGv7Ktx8IXSBxjh842gaU0NvnfKkFz+Np/3mM2/3W35XkUrmab/4VOzjPP/kyx7Dh/2vfxCzETgHu4eTHbT3WqazltDeixqhuTjHitD2Lc5ZyFpdR0UINtBsHZoLkyay1tZFrJBLYZwTKkoqiTkWdBgRtXjvsU7QVDASmUrGqqHEQiYRU2aeJqJeMMwj282GTd9jcq4B2tOMlgw5U0phSYmUlYyQc20fFlPX4L0nNIFUIpRCzAscA5vF1osqgiHljCxK32/ouo6cC8s8UVLGGUfbOLCWYRwpRmlDw8l2h3UOHwLLPAPVwr5rW7b9lqZt0FLog8eoo2Axhpp/GCwYR0oLpdRQauc8KPVCSQgUrfEHoeko84SRzJwWohZaZ8iAWghdh/WeLAKltmlOMRKMxViLCy0Yy3zYg7eoGJxvOL3SgHPVmEQhhAZjhKKFXHI1SBJBXINrPb61NF2g3xpCB8aCdUdfFgvOwFH7s3UQWupc2qa2PD7lR57M4/7NN/KKN73ytu6DlZWVlZWV28Eq1B4k7t/fzz/+lq/iJ5/7U3zun/hcPvOTPpNwFXQEfw4mGyQ5YrRY9TVTSjtULc6AAjlP+BDQOZOyglYb8aK52otvGpxVDB7TOBTFZqGVltAGUoyoEUR3oFXcTWkha6YLWzCJcdmjWjA4TndbvHUUpwxaUGvo+g3JlHrC7XpcqfMsKSllAWMEOWYfKYXlMBDzTSe+GBPOWtrQEFNBJOCdY9tDUcswHxAV+r4jpbGeHDYtm+2OprWImTEU2saz3XV0vWfbeH711b/Idz7ze1dr7ttAzJGnPO/HmL524MM+6sP50i/4+7z3R16tQdhXIBzA3xDCPZ57H34v+7PTauufDUuGkpQUMyVlKJEUZw7TwLw/pxghbDrmoWaXqWbSksg5Maca9O6kttqVVHDeoqY6R2oWlriQ08w4LdU50grDkrAh06gwp4LKxBIT1uSa5yfKNKd6/KZEVsXUREOsMVBqlY6iOLeAgYvDgCp4ExBnMFqqgYkIbdsiItU2X4Ww7XDSYKxByXRNiz8GWjvrcd5grcVbB6p4a+m3LZtNh7cNzltsEciF0LX4EDhMB1LK9FuD2FopVwHVwrwkcpxxvjnGBQgRBR9oXMNyGFiWgRvDTF4SJgT6vsMbS44FCpQs5KKQFV+UogrGEkJb73vMPHOmtqIaY3ChwRiDFsjLgneebtNXcdZawkYoIphwtNqv3kFYR53FO+aRO1PnZ9sAcgJsqBW1Fn7w8T/AC175YmIut+34X1lZWVlZuV2sQu1B5L7z+3nC057A05/3dL7lv38L//6r/j0f+OgPxLyvsDOCU0OwW8asLIC76DmkyJRnoBDCFfI8UebaoiRyzFhbRram0IRA0wQWVbqwofOecRwRU3DW430g5YWSFpaoTPOCWSx9s8V3jpyVIop4y+mVq/i2JQk1MLgIWBjSzHA+Y13gyunDEeNQLQieZYoYX0+SnXOoEXo1lGM47jxPCL62kuHAKNiGLIa2DSiZHNPRStyjomzans3JlqsnJ7Qm00jDpg/0p1foOs9u2yIm8Uuv+zVeft8rbvdbfNcSc+JnXvQ0nvlLz+B5z3kuV6/cyyd/1KfxBV/y+ew+oINzaB8hNO/luXrDwwI6gC5QBmUcIE0wL5ExBZq4xTQBPTvDx4TzHcs4MM0Tc0zgPFYFa2rAeiRTcgFj6UODFWVKmaJSs8/Eki0U68glcTHua5iyCMs04oMlx0wIFmssS1wYp4VSlKZpaNtAXCLLvGCLsm0bNk3DkhIhDKDKNC44Z3FisVoQFCx415BTxlvF73bsugbrAuM4sOTI1dN7aduWnBaMhaY5hnsbw7LMWFMdGuu8WI1LuLrdsmmrWQdGEG8pWth0DTlG5nmh5IzxllIUFcswjzUo3je4tqvtnLnQkJnzhFNHu2vBOqw1pCRY3yBCDQ7XKobEWuZxYFkWQghsuy1d19WWRakXSqy1NMFzTEmgJEuxsNkI2xNBfI1zUAsS6hzakuuPK1XHh2O7oyh4S81LO7o84oENxDyvIm1lZWVl5a5F7oQKhbVW+76/3ct40Aku8FHv9+H80H/7Mbb9Dl4PegOGESZRzg9wcYDzMbPEGYvB+0DOhbQk2jbUq+oeiDO9g13XgrM0fVXZBo6zZ8eTngLDnDnMB/aHOp8yRcNhHpniBRf7C6ZxISVovOf+/Z4YI/vDBWI4BgkXygL95oSrJ1eraQiFTetovWd72rHtTyiaybG2b8UlcbEfMdZhrAFvmIuSCrQhEELDsL/BcljYbXqQTMwZ2wRO77mXk23gpDX0JrLdtAQf6HaB5Ao/+qwf4au++5/wW/e/6ja+m++Y/X7/fFX92Nu9jrfHg7XXBOGk3/E+97wPj/kb38j/+tf+F3b9DjsbuEGttu2BuR7z3A8kQKrBzvVzOB9GbuzPGKeZaZw4jBMX5yPjWKu04hRRAyIPOFJqSjXigcISC9ZarHWkmJmWCEaJKRKsp3UecwxjP72yY9P1+GCZDiPjNCMi9KcndG2HE1cDpFMEAWsM1lgSyrVrZxyGC86HgaJC2zUEX91IjTH40DBNE2hh0/ScnOxwznHjxjXGeeb0yj1c2fRYPG0bCJczYYCVXAWV8xgbGOaFOI/0jefKZoeI4FuLsTAuUGJGVCkIbTB0G6EUSLG6bVJqlWoG4lI7jXNemMeJ3ekWpLZ37i/2DIcJ4wJ9vyUqHIYLVIWmcSzTTNNYuqbDGkvb1nnTWRXvhM5D0wrOg3dVkLmOByphl9l7YuuaVKktmguMcz0WLOBc/cABzdHpcQP0oBvlr//5L+IHnvvENzv2hmEg5/zmFqUrKysrKyvvgaxC7fcZQfjED/8Evub/+Voe/fBH84iHPaKevE4wHWCe4DDBfoCUIZY6sxFsPQEyAnGuQ/YbB52vbURG4OgVQp6hlDrnURIskzItiXHOTHNiP87MsdRB/6JklHFeeN1rX0fJhaKJcZooBVwwnF87J2dQtbRty+70lHuubOmbgKbEdtOy7VooStalVjxiZpwiGEPXOooIF9NcKxahRXPClUJJhcYHjFMKmd3VU66cnrLpDF1Qukbpdi0EYZGBn37uz/BV3/FPeelrX3q738p3yN0k1G7l6vYK73v1UfzTv/O1fPinfijv817vg8PCgSrWLoABWOqHjpDO63E/zYWLw8zZ2YAWuHE+8qZr9zGOA01TZx41V0EkAtNcc8qcETbtjlIS0zTjfCDmzDhHDsOenCMWrW6hoWfTt3T9Ds0RzQkBnHd0XU+76bEqBHE4V90XjRVyzoyHhbPhnMO01IqegmrGGqWYOlu53W5raLgqFkPXdbXynSZSLpxsduz6hu2mrZmFbd3PSB3fswI4iAmWCZalVpn6AOZovmF93ePTDJrqbT5Ut0TjqyDTVKuWKUPMVCMh6gUcBEJT2w6nA1zsMxfDTCkOVSGLIWtGcyEYS/AOa2ursw0QuqMgM/X3OAeuBdNSxZmtz4Ht8cMdbytU1XgUZxqhzBDH4490R8dHd/w9R6dHNvCG17+e//Ov/X/5yRc//c2Ot1WoraysrKzcLaxC7d1E61o++098Fn/6j386f+Yz/gybuKn9Pw7SCNMF5BFyrnMcl1ehramfXTVXwwD2KNTEc/OESKv401h/Nk0wDXA4ZK6dDQxJmZeJWECpuVL7YWKZFrLAMFyQl4V5nri4vqdrN8yxWpt3m457rm5p2x7vHF3wbDqPxIizFhcMcywsS2acJrquWnMfhgPWBVrX1tmWVK3QLak6OjaW7TZwerVnc0XwG1NP1Lzyay99Cf/jZ3+IJz3nybzglS++fW/c74K7VahBvSBxdXuFj/2Qj+Nz/8Ln8Imf9Ek86kPeFxMNTNSPhSrYJuAciJBmWAaY97AMyv03Fq6fX2e/P2AEsJa4TPWiQIZhvyeXyKbpaJuGeR6qLXyBInX/DDEyLzNIbRfu2hZvDd41KIUYZ0Th5OSEYB0hePrQcOXkhJPdFjEwz5GL/Z55jEwlkmIhThFrhZJr2yGA8Zbd7grOO/qmVstOTzt8Yyi5KqXQG3x33K+XQiRQ2/sK9e/A5ecRylT/bZrj/eR4X6VWJfV4f8tNJXYpW+T4/Xj8tzn+jDl+HL+XxnqRaJmUQy0GYqzgHZQIKSrGwGYn+La2Mfrj3xvpb3FmvFxjOH69pbYvXq4pH9/vw/H9j8djIB/XH45rcsfnaHjATORf/L3H8q9+4F9yPrx5VuIq1FZWVlZW7hZWofZu5qTZ8ec/7TPY+R0f/eEfzV/5S3+lXm3uqZ+n41xPrNUxK7V9SLS2F+GOGUNKPdFpuDlpeMuVaw5QzmAe4fy8sB+UcVnI8WgZnpQ5FcRYLoaJ84vriGbGYeT82p6m6escmihCous8bdux2e7ovOPqpqcxhqKFIgVrGkpR4rwQrMGoMC0zzhuaJuDFkqaM9RYxhbYTmp0lnBr8DkyXQWfoDa/4rZfxpY/9cp724oeWw+PdLNQucdaxCT1/8mM+lY/8Y3+Ev/Y5X8y9H35ST8wT9WT9wANC7VLE6QJ5D8P1wuFG4jAWYlRSysQ0kWMiLZksikUIxmAE9DiDFueZcZpYMiyqjNOIiuCcwztb71sU7y1IdUBtfMem9bQhcLrbcu9Jh9tYpAjTkBnGBKLEAtOUGA970IwxSrChzoIFwXmP94au9bhg8A2YS7FiqILmUtR0VEFyWYmS42tw3Pscjp/T8T6Xezwcv7bH710KtHJ8HY9VORw3h8AuxdDln/jCTbE315/TCPGs/q0ROd5dj66MGcIGzK1Vr3DLc9kdP47rvH7tOj/+xJ/gNW/6bRQwxvL5n/XXed+POL0p0iZqlVVveU4c13r5N20Dz3vW8/iar/tKnv7iZ/8OA6FVqK2srKys3C2sQu028rArD+OD3/+DedjmYXzdP/46PvCRH1hPZi5P7C5Pbi5PZi5PluyxevZ6MBtuXjW3wMnx50bgUNvM8gx5gOl4pV5VGSflMClahBuHmWv7C6wNOCeM+4lxGnHOE7yvl961YK3hZLvl3tMtu85hVVCFXArOGoyvFQ1NtUUzz4pxWoOPL88ArUAAewrihUM8YDvle37iO3j8038QrHBxcYNfeeXLq/PcQ4hVqN3EWUfjGj7hIz+Re9/7Xj7hI/8Ef+GvfQ79w9ubx2c6fr6sth3bIssB8hmUAeahoKk6E86TsqRavQuuugU2QUixcLFfuDiMXLvYc7Y/cHHY04SG0Ha1TdgAqmy3O7YnW5ZxwhnLIx62Y7ezhJ3F9YI0xzWMN8VLWZTzC2UcZowRvDN4MThjaTtBQq2CiwUuK2ctNwXWLblgtNSq0+UcFzxQSWPPzfm+mSroGupFnFNuCrzLipoeX7fCTaF2WVFzx9/BWzxOpv5NubyoE4+PG2/5veWW3xG4Kf7aWz66m89DjfI9j3s8P/GsH+EFL3o+951dA0DE8Kc/4bP4Z1/zWB75R67UNRRu/l27FJTmuBYDWPjFn38B3/gvvp6fedHPMMyXT+Imq1BbWVlZWblbeIdCTUQeDXwn8N7U/81+m6r+axG5B3g88P7AK4G/qKrXjz/zFcDfoP5v+O+q6pPf3mPcrULtEiOG05NTnHUEE/j8P/N5fPmX/aPaIhS5eWX8ljanH/qhH+QrvvUfo3Lz/XvU7n34kf/4Y/RXetwVd/Pq/HJsiZzq/fJUT0SnWFsozwfl+llG1WCDsOTCMA4YNQTr8N4RtM639EE43QiNEaRQnR090NV8NBZgPnZiHQ0C6pCMIqZWBeM0kJaBJz/vqXzV47+ew3xgmA4M8/jueLl/3/i9CLV3xz6Dd/9eM2IQEe7d3cP7P/L98dbxTf/3v+FDPueD6on6scJjS61kySJVOJwDA+hly9xYC65wdBI8VmTk2M6ns3Jxn/Kmawfuv/+cGxd7rBHasKFpbdUAImz7DmkbhosDV65uePjDAuEeQU6pQqrUx+Vw/Joq3HRSSrxsRxZIR0Hmj5+pX+OooqrnpqC5rD5tQJ2Syfzwv/lB/tsPfTdtCHzbP/tP7P7nU2SS+rhnxzXI8eevHD8MKErO+WaV6dY/328pXfQtbldABGcskuWmSL6scF1W5y6/vnQrOj7PB9wYW9BGyZp54rf+CN/zhO/kV1/1Yl5//5soJb/Zkhrf8CGP+hD63VX+98/4Yv4/f+tP0WzczfUomGwxKlAga+ZHvv9/8BVf/eW85sZr39ohtQq1lZWVlZW7hndGqD0SeKSqvkBEdsDzgc8G/ipwTVUfKyJfDlxV1S8TkQ8Hvhf4OOB9gKcCH6Kq+W09xt0u1N4aly53b4u39b5ZY/nU/+lT+Bdf/s3YaHnE+z2C9qSt1YtCHei//HoCjhWweFDmCXIWUGUYIWmdS/EeuiBYC+3lwL8F0QJOwN+yFiNVNiBHe/5623TjwOtf+Xqu7+/nX3//N/GEF/w4yts/9h5q/B6F2u/7PoM7Y6+915VHcKW7ipbqVopkvuGL/zl/5PM/HFTp2XDanGLUVBFxOdd26dL+lvNNE1XI7ZVyDa5fUw5zhhxxPrDZWNKkzMuCtbbuHYV+4zl5lCBXuVmxstysNs3Hx071MS9FoyioA4757RhummE4quDbUIXNZRXtBHLOPO8nnsO//IbH8bxXvJD7DvcDwqd9zJ/k2775P3H1I+9BZqlCbeTmvNZJ/R1FCy97/q/xz/7xP+eXXvFiUqqCzarDhHf8upcF7j29l3/1tf+KKx91wsnmhO1mixS52ZZYjo8LN+dfL2fkjv/OmnnuU57HN33d43jhK17Im/ZvfMDa/+2x7U+5d/deOHMcvC0JgL/55/4P/vwXfzqHcc83/r3H8rxXPps3XrypBqG/FVahtrKysrJyt/C7bn0UkR8G/t3x45NV9XXHk8ynq+qHHq/yo6rfeLz/k4HHqOqz39bvvBNOHt8TOWlO+If/+z/kQz/gQ7nn4ffwcR//cTevls9aT3gvBeHRlU+n6kRXFFxTXedw1BO5y6vqFi6uX+d5z/l55rjUfkekirTmeBn+VnMDgV958bP42if8G1J5uzriIc2D2fr4+7HP4M7da1c2p5y0p2gufPwf/nj+4hd9Hpv37vnI9/6fOHnk7ma73GXFB262/O65aVgyQLkf4nQsPh8DlnPN2oYEqdQ2xXbHTZF2FEMPtAwexR8DN+c+L40xLuerjnuhVpSpVbNLs5DLSloPr/rN3+I1b3wNN954g//4Td/Kz7z0WcRy6fZR20Q/5xM/m8d85VfzqI9+NOb8WFnj+DtPaiXupc/7Nb7hK7+eH3/ejzDHmz//u8GIcO/2Hjq35TM/4bP5U5//qYStp7Etf/gD/gjdw0N9Phyf76UQPYq333jJK3jpy17Kf3jcf+RZL/0Zlry8S+u4lV1zhZNuA6pcG24wxuHt3n8VaisrKysrdwu/K6EmIu8P/CzwEcCrVPXKLd+7rqpXReTfAc9R1e863v7twI+r6g+8rd97p548vifxBx7+/nzRZ39h/cexxem9rjyCL/iLX1jboJKiqVBiwViHBLnZuhjgVS//TR7/oz9YT0QNvOE1r+Z7nvZ9XEyHt/2gdxkPllD7/dpn8NDYa8F5du0JFsMXfPoX8v5/9P159D2P4hM/6RMJV5t6p0uXxGOr7aVI45waB3Crk2K+eV9Nxw7A7uhceDn/dUKduTLcjBK4bLu8fJxLoQg358E8D7gU0vNms2iv/a3f5jnPeQ7/43ufxDNe8kxKLtwYb7CU3ymyvHV8xV/+R3zJ13wJveurSCzH33cKz33aL/LN/+Kf8VPPf3INBH8QaH3Drt0hYriyuYe/9JlfyMM+6JSP/4g/zof80Q/A2ppI/ZrfeC3PfuZzOIx7fuzxP8kvvPTZnI83HhSR9q6wCrWVlZWVlbsF947vUhGRLfCDwJeq6vnbac17a9/4HWpQRL4Y+OLj1+/sMlbeRX7rvlfyNf/xa97sttPulKe+8KduMSdQihaMtQ9Uwi4H/O97w+t5xi+93WLNyoPAg73Pjr/zIbXXlhS5f38/AN/yw99C+NHA+977SD7hj34i3dUqMjd+y9/5gv+T3Yed3jTHuKWK9UAFbObNxJbEYxH50kHx1srvZdufP97/ssJ2Oa+V3+L+l5byl7b0J3UN4zTwhH/9fTzt2T/Ds17wbO47fxNz/p2mGLcSc+L1b3o9c5zpm/7m/js+3hO/84f5qec/5UETaQBTnJliXdd95/fxTf/lG7DG8bEf8rH8oY/+MKyph9NrX/16nvP857Ifz5nixPIOnsvKysrKysrKg8M7JdRExFNPHr9bVZ9wvPkNIvLIW1qy3ni8/TXAo2/58UcBv2MqXFW/Dfg2qFf538X1r/weOBvPeOLPPvF2L2PlyO/HPoOH9l6b4sQUJy5++4Lf+KHfRKT24Hnredazfo4//yc+gy/8P76I7r06aEE6qaLpshXy0tnwMhrgso3xUpBd5pldXqy4zCmD43wlN23j4eY82mU74KW74xa0Vb7v6x/PD/3cE3nhr7yQN1zcRyrxnZ/EVAMqN8XhLZpsiBcs6cETab/joVGGZQ/Az77kaTzzV36OyxdCi5JKeo+bKV1ZWVlZWbnTeYdCTeol+G8HflVVv/mWbz0J+CLgscfPP3zL7d8jIt9MNTn4YODnH8xFr6y8p7Hus7ePqrLkmy2Dc5r52Rc9gxe+/EX8lx/6rzTW861f+i283+d+IM462pMW2chNcSa8eUZZ5GZF7FKwXRpyZKr4urSOv9U98dZKnIHSFCadyCnzlG/6Ub7+P30dv3X9Ve9StETWRIkFRWvr8bGavcwLS373zXZmLeS0Vs1WVlZWVlZuN++M6+MnAD8HvISbvmv/CHgu8H3A+wGvAv43Vb12/JmvBP469ZToS1X1x9/eYzwU5mZWVt4Rv0fXx9/3fQbv2XvtYbt7OA338JEf9BH87S/5O5x80AmPvudR9Ceb6mx46eR4WW2DmwJtw00TjcsAabiZS3ZpGnJsebzvtfdx/8X93Pf6N/Jv/8m/5eX3/Tpnyxt50/6cdzX+b9v0fPUX/jP+8t/9S2zvaREVzi8u+A+P+w7+w/f9W+67eOt29Xcb64zaysrKysrdwhp4vbLyILEGXt8ZeOO50t5D8I6/+Wf+Oh/2p/8wp+0JH/vR/wvt1famULsUYJfzZg03Z9Uu5zMBpfCCp7+A1128/mglKTz5u36Cpz7/KcSUuTFeY36QjDU2bsc/+Lyv4kM/5dFghRc/+5f5ru//Ll5z7ZVr6+GRVaitrKysrNwtrEJtZeVBYhVqdx5d6Ohdz8OuPIzP+LTP4PSRV/j0j/sMPuSPfwDGyAMVs+f/1C/y3Bc+pzoZ3trqKLXt8se+73/wa/e9vN6uwhhHxvT7E9Deuw1NCAhCzJHDcnincsruFlahtrKysrJyt7AKtZWVB4lVqN25iAiNa7Bi+ag/+DH8wT/0gVDMA9//jV97Ob/0il8i5reeTzbHifT2s8RX3k2sQm1lZWVl5W5hFWorKw8Sq1B7aGBEMMa+WZhB0bJWrR4irEJtZWVlZeVu4Y4QaiJyH9WT7U23ey3vBA9jXeeDyUNlnfCO1/oHVPXh767FvCuIyAXwstu9jneC96Tj4k7hPWWdd/w+W1lZWVlZeTC4I4QagIg8706vRsC6zgebh8o64aG11rfFQ+U5PFTWCQ+dta7rXFlZWVlZeWhh3vFdVlZWVlZWVlZWVlZWVt6drEJtZWVlZWVlZWVlZWXlDuNOEmrfdrsX8E6yrvPB5aGyTnhorfVt8VB5Dg+VdcJDZ63rOldWVlZWVh5C3DEzaisrKysrKysrKysrKyuVO6mitrKysrKysrKysrKyssIdINRE5NNF5GUi8usi8uW3ez23IiKvFJGXiMgLReR5x9vuEZGniMjLj5+v3qa1/WcReaOI/NItt73NtYnIVxxf45eJyJ++zet8jIj89vF1faGI/Nk7YJ2PFpGfFpFfFZFfFpH/63j7Hfeavquse+1dWte6zx7cdb7H77OVlZWVlZUHi9sq1ETEAt8C/Bngw4G/LCIffjvX9Fb4FFX9qFvsor8c+ClV/WDgp47/vh38V+DT3+K2t7q242v6ecAfPv7Mvz++9rdrnQD/8vi6fpSq/tgdsM4E/D1V/TDgjwFfclzPnfia/q5Z99q7zH9l3WcPJu/R+2xlZWVlZeXB5HZX1D4O+HVV/U1VXYD/DnzWbV7TO+KzgO84fv0dwGffjkWo6s8C197i5re1ts8C/ruqzqr6CuDXqa/97Vrn2+J2rvN1qvqC49cXwK8C78sd+Jq+i6x77V1g3WcPLnfBPltZWVlZWXnQuN1C7X2BV9/y79ccb7tTUOAnReT5IvLFx9veS1VfB/WkA3jEbVvd7+Rtre1OfJ3/toi8+NiyddnmdEesU0TeH/ho4Lk8tF7Tt8edvt6H0l57KB0T6z5bWVlZWVl5iHK7hZq8ldvuJBvKP66qH0NtF/sSEfmk272gd5E77XX+VuCDgI8CXgd80/H2275OEdkCPwh8qaqev727vpXb7qRj9y2509f7nrDX7rTXeN1nKysrKysrD2Fut1B7DfDoW/79KOC1t2ktvwNVfe3x8xuBJ1Jbbt4gIo8EOH5+4+1b4e/gba3tjnqdVfUNqppVtQD/kZutTLd1nSLiqSeP362qTzje/JB4Td8J7uj1PsT22kPimFj32crKysrKykOb2y3UfgH4YBH5ABEJ1KHxJ93mNQEgIhsR2V1+Dfwp4Jeo6/ui492+CPjh27PCt8rbWtuTgM8TkUZEPgD4YODnb8P6gAdOxC75HOrrCrdxnSIiwLcDv6qq33zLtx4Sr+k7wbrXHjweEsfEus9WVlZWVlYe2rjb+eCqmkTkbwNPBizwn1X1l2/nmm7hvYAn1vMKHPA9qvoTIvILwPeJyN8AXgX8b7djcSLyvcAnAw8TkdcA/xR47Ftbm6r+soh8H/ArVNe1L1HVfBvX+cki8lHUFqZXAn/rdq8T+OPAFwAvEZEXHm/7R9yBr+m7wrrX3jXWffag8x69z1ZWVlZWVh5MRHVt919ZWVlZWVlZWVlZWbmTuN2tjysrKysrKysrKysrKytvwSrUVlZWVlZWVlZWVlZW7jBWobaysrKysrKysrKysnKHsQq1lZWVlZWVlZWVlZWVO4xVqK2srKysrKysrKysrNxhrEJtZWVlZWVlZWVlZWXlDmMVaisrKysrKysrKysrK3cYq1BbWVlZWVlZWVlZWVm5w/h/AVCQ7DjqAACtAAAAAElFTkSuQmCC",
245
      "text/plain": [
246
       "<Figure size 1080x1080 with 10 Axes>"
247
      ]
248
     },
249
     "metadata": {
250
      "needs_background": "light"
251
     },
252
     "output_type": "display_data"
253
    }
254
   ],
255
   "source": [
256
    "\n",
257
    "train_crops\n",
258
    "x , y = next(train_crops)\n",
259
    "plt.figure(figsize=(15,15))\n",
260
    "i=0\n",
261
    "for img in x:\n",
262
    "    plt.subplot(r,c,i+1)\n",
263
    "    plt.imshow(img)\n",
264
    "    i+=1\n"
265
   ]
266
  },
267
  {
268
   "cell_type": "code",
269
   "execution_count": 13,
270
   "id": "59ab297c",
271
   "metadata": {},
272
   "outputs": [
273
    {
274
     "name": "stdout",
275
     "output_type": "stream",
276
     "text": [
277
      "255 8\n"
278
     ]
279
    },
280
    {
281
     "data": {
282
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR4AAAEYCAYAAACKkJnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABoJklEQVR4nO39fbCsyV3fCX6evHmzs7OzHz1dlA5Hl0u7JVs2RiyWZS3L2h5eZlhbqyEAe22PxuE1E2ZG9o69tsM7iwFP2AzDeBkHZrwOj0zImDAsg7ECvylY2RgLAcFiIYTMmwAJGcnN9dWhKJceHqWyU9nZ+ewfv6y6V6K71ah1z+2+nZ+IE6dOnTrnPE+den6V+Xv5fod1Xel0Op3LRN3tA+h0Oi88euDpdDqXTg88nU7n0umBp9PpXDo98HQ6nUunB55Op3Pp3LHAMwzDa4ZheM8wDO8bhuFr7tTf6XQ6zz+GO9HHMwzDFeC9wP8JuAH8BPBfruv685/yP9bpdJ533KkVz+cB71vX9ZfXdc3A9wBffof+VqfTeZ6h79Dv/QzgV277+gbwf7j9AcMwvB54ffvy9yjV002dzr1ErXW/ruuLn+x7dyrwDE9y38fs6dZ1fSPwRoArV66szrk7dCidTuduEEL490/1vTu1zLgBfOZtX18Hbt6hv9XpdJ5n3KnA8xPAy4dheOkwDAZ4HfDmO/S3Op3O84w7stVa17UMw/DngO8HrgDfvq7ru+/E3+p0Os8/7lSOh3Vd3wK85U79/k6n8/yll5I6nc6l0wNPp9O5dHrg6XQ6l04PPJ1O59LpgafT6Vw6PfB0Op1LpweeTqdz6fTA0+l0Lp0eeDqdzqXTA0+n07l0euDpdDqXTg88nU7n0umBp9PpXDo98HQ6nUunB55Op3Pp9MDT6XQunR54Op3OpdMDT6fTuXSelfTpMAwfAD4MPAGUdV1fPQzDBvhHwCPAB4A/tq7rh57dYXY6nXuJT8WK54vXdX3luq6vbl9/DfDWdV1fDry1fd3pdDon7sRW68uB72i3vwP4ijvwNzqdzvOYZxt4VuBfDcPwk82SGODT13X9IED7fPYs/0an07nHeLb2Nr9vXdebwzCcAT8wDMMvPtMfvN07fRiezPG40+ncqzyrFc+6rjfb5x3wT4HPA351GIaXALTPu6f42Teu6/rqlpB+NofR6XSeZ3zSgWcYhgeGYXjweBv4A8DPIVbFX9ke9pXAP3+2B9npdO4tns1W69OBf9pWKxr47nVd/+UwDD8BvGkYhq8CHgX+6LM/zE6ncy/xSQeedV1/GfhdT3L/fwT+s2dzUJ1O596mdy53Op1LpweeTqdz6fTA0+l0Lp0eeDqdzqXTA0+n07l0euDpdDqXTg88nU7n0umBp9PpXDo98HQ6nUunB55Op3Pp9MDT6XQunR54Op3OpdMDT6fTuXR64Ol0OpdODzydTufS6YGn0+lcOj3wdDqdS6cHnk6nc+n0wNPpdC6dTxh4hmH49mEYdsMw/Nxt922GYfiBYRh+qX1+6Lbvfe0wDO8bhuE9wzD8wTt14J1O5/nLM1nx/APgNR9335P6ow/D8NnA64BXtJ95wzAMVz5lR9vpdO4JPmHgWdf1R4DDx939VP7oXw58z7quH13X9f3A+xCTv06n0znxyeZ4nsof/TOAX7ntcTfafb+BYRhePwzDO4dheOe6rp/kYXQ6necjz9Y7/eN5Mi/iJ40q67q+EXgjwJUrV3rk6XReQHyyK56n8ke/AXzmbY+7Dtz85A+v0+nci3yygeep/NHfDLxuGIb7hmF4KfBy4B3P7hA7nc69xifcag3D8A+BLwK2wzDcAP4a8E08iT/6uq7vHobhTcDPAwX4s+u6PnGHjr3T6TxPGZ4Lid0rV66szrm7fRidTudTSAjhJ9d1ffWTfa93Lnc6nUunB55Op3Pp9MDT6XQunR54Op3OpdMDT6fTuXR64Ol0OpdODzydTufS6YGn0+lcOj3wdDqdS6cHnk6nc+n0wNPpdC6dHng6l8q1zTkPb1+G6q+8FzSfaiGwTudjuLY5R1fDu9/4o7BpngAFeeXl9iAHVORtUMMrvvQV3Fgepda7ccSdy6BPp3c+5ZyCzb9+NwQgIsEmPgG5QM5gDKcFd8mgjdxWGuwAG8DCf/K6/yOHGHl0/8t35Vw6nzxPN53eA0/nU8LHBJuIrGYyMD8OKbJmWGKEUlFKE3OkFCgotNKUWgCYxgkAZzRXNw/IyugcWQm95hU8Oj96d06w85vm6QJP32p1njWPnL2Mn/3enwaDBJ3YvrE8ATHxRIJYErVWckqgFRe7GW0VGgdkSs1UJUFJAWpyqFlxxWmYr8II737Lu3nFl/2uvvq5B+grns4nxSnYbIEZWJBtVfqoPKAU1lRYlkAphYJif7gg50qtihgXjHaEkqEqqqqEWJi8ZztarPV476jANI44Zxj8VZgAiwQ5Ba947e/i5vIoJZe78TR0noa+1ep8ynjk7GX87I/8NCRuBZz8BMTCmhIhJpQqlAwpBKqqzCFijOGwD1QF82FHrRVtHCllqgJtLAApJc42Z+Sc0cZitebatTMUsNlsUEpx3+a+UyIaC3hOyelXfMXvOh1rD0h3l2cVeIZh+HbgS4Hduq6f0+77euC/AX6tPezr1nV9S/ve1wJfBTwB/Pl1Xb//Ex1gDzzPXa5tzjFa/jc/+5aflrzNxQo589EQmQ+yrwohQM2kBEplqBqjLSEuhBhIuaCrJJMzEgxu3rxAGcM4enKWEpfRloIi54wzGmU0oxuxVlOrwXnP2dkGhcFZMPYB7nNIAKJ9TkggMvLxxf/1F/POG++8rKes03i2gecLkEX0d35c4Anrun7zxz32s4F/iLiHXgP+NfDbP5Hgew88zz0e3r6Md7+5rWwKEnAiPL58hBQCS0zslz0Uw2E+kNrKoubIdrOl5ERtVasYZmKqTN6SSyaWzP5ixnoJONPmDE1lt9/L7wCssRgjlS5tVbtfsXFb0AZjDJvJM/oJYzTT9CA1PYHSoJRCMXDVIIFIAxM89KUP9RXQJfKsksvruv7IMAyPPMO/dbIwBt4/DMPRwvjfPNOD7dw9Hp4e5l1v+Ffct/0MiCv84n8EpXk8V2KM5FQIKRNTYbffkRKENFNRzEtAt5XMMQgpKsYYvLHEspBLQgElRTbbiTkEtLEc9rtTG08qCWMMS07onLFGo3Esy4wfJ9473+B8u6WGSogzzi6MfmS/F5dtay3OaFLSaANOW6y9jwcDfOiffYiHvqIHn+cCz6aq9eeGYfiTwDuB/8e6rh9C7IrffttjntbCGHh9u/0sDqPzqeDh7ct493f9NOTHYXmMJw4LS8gopcipUGvlEAJhjoSc2M8ScJYlUKvmEGec9lgDS1gAGP1IKolcElQF1UiAMZb9/kBBUWPAWH1rq2WMbMuMoVLJORNTxhjHvCxoYwlhoRaF0ZaYErXAOHpULRgFMRtSSigD2WRUUlQmXjRe4VXnr+Idj3art7vNJxt4/i7wPyL2xP8j8DeBP0W3MH7e8fD2Zbz7W98JOcLu13kiF2rJ7PYLMUUJPBFiypRa2O0PLDESUiWVjAJiXghzggmWkNmMIwDxMGONpqbIdrslVskHHfYzMWe0cVRV2wpJtlMhLBhjKTkTc4Cq0MZSVAU0JSdCSvjRE8OC0oalLlQKVitKliCZisJZh1GFSoVcqXXird/8Vr74L/Wcz93mkwo867r+6vH2MAx/D/i+9mW3MH6e8PDZdX7sG9/Mi8Zz1iUwzzMKRY4SYEpKxJgopXJjd8BqTSqFeZm5uZvJVbGEgB89VEVRVYKPKhwWWfEoKtM44awlp8QSZ6ialBOgSDmgKmhzK783h4AfZYtUi7w85zmiCIyTh6rJQAmBWuXveDuiqDhjsNYSU0FrQ60VpZRMZ7RVW80Tb/vGt8EZfPHrv5if2v1U33rdBT6pwDMMw0vWdf1g+/IPAT/Xbr8Z+O5hGL4FSS53C+PnGNc257z9m/4Zo5HS9Ef2C/v9TM6F0VlSqczzTK2KlDK7w4FcKvt5RinHfokoZ6ix4Kxl3u9lRUJFV0BV5sMO6yZICWcMORWice0CLzjtyArIiawqpUTCEjBGY7WWoINimkaWZWY7OQqwzBJ8aq3sDwc20xm6Qi6ZlCwpBoxNGG2ptUKt1AKVivMTeb+QciEEw7X5xbzt694GE3zxV/cAdNk8k6rWycIY+FXEwviLgFci26gPAH/6GIiGYfgryLarAH9xXdd/8YkOole1LocPfNs7+TSz4fEoq5JSCssSyRlyzpSSKVlWCSHMVKUJKbI/BJQ2pCIX5n6/kHKk1lsj5kuYsdpgrKEkydeM40gpkWvn1yg5AhXTVjcxZ1QtzCGgtNTCnTU4Y6goYg6nAJRywra8EEajqsKPDlW15IJqZXQTRmmM1aSY8aNjPiRJRFMJKTNa25oRHd5avPUYq3nxtfvBw4te92AfTP0U0hsIO7zvDT/GaM5IsbDbHQhLQCnFIQRUkcY9bSC3d/2QEkrBbr9QlMYoK1slrdjvDtSqME7K3fvdjtGNp79VckJb+V5JmWm0pBKZ3Iht989LJKaEHydSzBirqSVxNp2RSyTGgrYabSy5BbKSEqEUrDaMfkRbxbw7sJm2OO/RVGqVXiC0gmJAa0ZvOBwWRu+x2qMMbKeJWivn05bt2cgD2yswwYNf9uDl/VPucbqF8QuY65tHuL69xqf7c8K8cJgl6IQYZLWTEnOcoWZKyuRcCClRkaCTcyYsgSXOVAVxlgRxyYkSM5qKswbrNFoVtM4fE3TcKG8ok/dYa04rHgBrDSVHtmcbAFn5qIoxtuWBYGn5ImMcpWqssrKqKZGSKs5NaOvQVHIuKJUpLfeTcqDkzGFepEJWEoVEzRAWOY9YIjFmHl8ARdcJuiT6kOg9yLXNOT/0Dd/L+XhOSJkUC7/y6AUXhwhVSfI3V2nma5WroDLkSiwZZyzzPHN8X7JWQYWUZDVUUgZV0aqgqsEbg7et98ZaSizknDCq4qwlLDN+3GKMIeeIM5ZFL1htZDodcE4TloDGcVgWzrYbKuq09VJktht7CorS2WxQTlNSJBmDNtK7U3KGGkBr8nE4tWRS1qRUmcYKOZMOkZol52St5eo88Ov/6sO8/A+/lItlf7f+fS8IeuC5h7i2Oedf//ffy/m0JcTCzRt75hCppVCyIsyBlBJLzuQmQ6FKodSMcxZtDKTIUgNLCLJyUUAukuMJCxXYTA5tDMscZZVjDZqKpmKNpqSMsUbyJe37YVnQo8dozy4cMC3oOKNRFZxyZJ2JOePdRM6R2FZgijYBoQ3ej6CkgnWYA6MfqSpRYsQrT1GjTLrnTC2VJSw469BaXuoxF+oyM/kRozUhyorPBc+D8SrM8Etvej8vem3P99xJeuC5B7i2Oedfft338PD2GjFkLi72LCFTcyHlQsqJsCRygXkJxCTbjO3Gg1WY6iWxrAohy9WmrZEGvRjQRlNKwlhDTglrNMYYxocnNPL43f4mzhoUFT86DhczBQVzQGuHdoaQE2UJpCzJX6cNUFmCdB07K0lmrQqhJEquGG2Iceba+cNt65QoqmKNZfSjTLYDpShiLKQa0EqOox0a2igUliUFtE6kZLjIO7y1PHJtJKXEHA/Y+dN50AMRXnn+Kt51812X+W98QdGTy/cAh+98L2luASZIYImxUkphv1+gJlIuVKQrWGaZ5Ko8LIusUkqiYkBnciwY4yQnUjKT9yxLxPmRXBLWOFKOuJbLiSlTi4wrLOHAvCRyzLhxIqQoWymrSTmDKljt0Fa2SOM4crGbsdYweU9Kicl7kdGYdwBsp7MWYKQKVytoZzBKAlWtstIy2pJyxGqLMRqpqFdq1eRa0VpjtZXPVmOUwY0eqwxnmzM2m5Ht2QNc9Yj8hoMXfUlf+XyydCGwe5gPfNvbyUEa+47l8ZgyOWViDKQo+ZhSCspoKol5TiilsObYoDfjvSWGBedHycWUhNOGahxQ2GwnaipYY1BGYTAcu15ySwSnhCSAjSHGwrIsaFVAW5Y5gCnSyOc15IBTnpwKY0tAzyFI340KLUdkyTWRc0JpS8qZVORvEcF4+zHPhVIFZw21yO9CVTZuyxIXSlForVnSzGgdhwU244jNlaILc5hRRqOtw9aBBxWg4Nf/5Yfll2tkYBZk6r3A7/zj/zsuwo3e//NJ0HP4z2Oubc75NH9GKYVcIWXFkmTlE2MgJrn4qrr1/qK1wbWAcxzm1EYTYpAAoKV0fZSwSDmiW58NSh5/XOksy0xspe7DHEk1g4IY5XHWakqVv1VQkLXkdmJGaw/IbJY7afFkrDWoCjnKbVEolIS2bY9zfpQZrrCcjinlQkqyNDkGp1q0DJ1qdwqyo/WUKvNnMWRyroQoAQ8gl0o+akRnOCWYjrfhFIB+4bt+ls/dfi7XN4+gTX8P/83Qn63nMe/522/nw3Niv8wsS5BxgpKZ54DRoqluvSWEiEGzLDMlFTKKXCtWa2JacFZ6cOYQmHxT1bKKmDOpSJ4ohgVrDNevbzgc9qBg4yf5m8aJhk7MLHPAOIPTmpgSWklCFwXaaahKptCXQHEwKnvaatWqOMwRZzUZxbxEjDbsdwecH1EKYkrkqjBWU6iyMtKWsASq99TYEuKqolRlCRFrNDFnjPXEnKQPyMltEyNKazCKECPGirjPR+IVHmj5nlPwod1umtJPJPjhv/7DchWN8IV/5gv5mf3P9BXQM6DneJ6nvPdvvx2nR/b7mRgSYYkUFCEshHlhyRFjFClmSiqn62aJEaVhXhJ+dIQlYo3BWiWrkXbROKdR2nPz5k3GUVYnihZs1K0Lq6CYl0W2VcaiVEGZY+5Fgp1s9TQpLnjvccYwjlakT8NCoRLnSNGFWloJ31jpdq4K50e01acVTW1JF41o9RhtMdqcen9OFaxY0ECpCjfKKkkrg6oFP21aGX9E1YofJzbThoevX0drzfas6fkoxH7HcmvlU4EFPhKlT1FrqBWubgEDX/j6L+yJaXoD4T3Ftc05v/yGd+D0SFwCJWVijOznmXk+sITAYVkw2nA4JNmS1ExBYazFWlH4g8LhsJctRyzMS+Kwl+AhZXRJIE+jJ5ckZWzg0YtH28+DMlJGn0bHOHnG0UnieQktoIle8ug3pLhgW3ezMlYaE+MMSoKImxw51pMIWFGVXA3OjxzCzG43o6nEnBgnzzQ5FJWabtP+0QajjdzXtooFQGvCcsBqQ44JZSxLjCwpE8KMdw7jPFpbUilUBpYF1gJrRmTwZiTgtKDzeIZa4Ob+ceYAc4AP34DHb8IPf+sP8+Ef/DCvuvaqS3lNPB/pK57nEdc257znW9/OmgoXu5kQEruLPTFFbu4P0nW8yLu+UopSE6MVlb99K1mDjEWUonHWUBTklPB+IoaFXCJOOcaNIyX5XfY4XxUWpu2WUTtQRSbTkVxPrRrTptBDbpWvFIkly/eLwTgt4w+1yqQ5kFPmcIhYp5m8R9uWf0pVVkvICsf7rfytcODh84fRSjR+cpXy+zwnnHcSeKikJVK1OVW3tNIo1ebAUsIo00TKPH4cmSbPZrPFjxPeWcbxPqw0UqMM3H/UdTbwkZ3YgKUE8/IEWl3BKogFNh6sgysb5G3dwkNf9sIUH+srnnuA69trvOfvvIMnQuWwD4SlEkNif5i52M1yEeaCsQ7V+v5L1VzMC6lm0S3WDmXsKV+SciZHSQ6HOVCLolZNUbA/RGrVzEs6rUqm7RZdbyWXQfRzrHEYa0Szp72klnA4aTVb7XBWoyuYKqMSOUkuShvHOI4ik1oV867Jn9ZKbknqcZxYwoGUI6oqwrwwz4m5jT0o5Ri9OyUsc86kXHDOU5FcFkjiuNZKyaCslN+rqlRVTzKrStdWHfwoh8MT7PYr+/0T/PoFfGQBEhgNKUOK4O0VVIVUodTHQcPSHDfWvXz+0Js/dCdeEs9reuB5HnB9e41f+Na383jMzPNMKpWUI0tYUEcBrRjFqUEVmehuk+TxJLaeThWo45xSbTIWIBccSHewtgalbk2LAyLOlbLcN3r86NvqRZFyPE2kpxy5HdMuet/EwYyxeC9B0GhHivl04RclM1mhzYONk8e38r5qiWTvvSSO7W11EVVRRp9yT3FJ+GmkZinf51LIJaONOuW6AApS0QKIqeKck+R7EeXD3PqOFFdIRXJKj7XTywlKBaMkEFGfwCgFGZwDFAzH+FzpVa+Poz8bz3FufttP4Y3nwxcLKVZiLNLYlwolV1KuxFLJpVAolCQX0uEgg5LT6JhDIDXD8rCPbWYqt3d5hRsdcVkoZIwy5CWhjGZugS0fO43tCEjQS7nITJSqaO3ISQZGdVVoa/HGcvNizzg5nDVoCtZock3EkKjoNiuWsdZKwoSCN46UEzVnGeEAdvs9KRZsm4YvQFwCzlhyjlg9Ss63apb5gNKynXTOQroVbHLIpCKJc10V2oiBoDEGVOVw2GOsJ7dgNI0bak1YrZmcZdfK6M5epZSVUitLuoIz4N0VShJnZg23en7aW/vWTlzkPv91pAee5yjXNue8/a9/H15PhDmzO0RyCsxzpurKfrdHKyWzUFRUVaQYSaVgtax8qJqCwruJ+XCAWjHOSB7HWOwo7/BiUaVw3hNTRRkYxw3LsrDdTqRSOOxnrm0kzxLCQozSrHccOi254N2ENpplOTD6Dda11Y6b2C83Gd3IxoxoI6MXj964IFWFquBHGb+IMePHUfJNKZFyYvRbqDOlKhEIGy0EyfRqPRJzZgmRUpR0XOeMsZXDPGMM5CxCYMuSOLYkFVWpTY6j5ARWWgJKzigqKVVKmfFOfmCOrTeoVsICFbHwmTYjpVyBsrIdBwbHKQm9Fhi03P6lf/Z+HnrNCzPX82T0rdZziGubcx6eHubD33OT93zz23FM7G8u7HZ7lnlhtxOJ0v1uT4iRVDLzYSGFyBKjaAtzq4EOJEiE2OyCrbTcGquJbYVSWgm6oNBWqlMaxRLl3Xm/X9BVGvj2S2irk6M/lpbSeVU4P8nfi7P84bZ9msYRowqTG/HGYo1mf7hAVYXbeM7PN6ASmkpKGaUqSksTpLH21DRojJVJ9RKhakbvT1vHGKTsXkoTINvIsdQST2qEior3GufG0wrIWI3FtSSzEplUJTY61js0GoUhhMDFhYyCKDSxFiqWqkXHaF4+TC0wSLGQtriUIJSQUnyRVU9H6FWt5wg3/s67eJHd8OEQiUsmpUQsiZw0cwqULHYuS4ikuJxM70rJKG05zBIojBHVvpoTJYk2TioRqx1FQc3ptr+qZfVQ5aIrilOy2TiDbrmJY7J61I6YI7kUJu84hCiT4laSw6pCjDPb7ZbDMkt/DRU/jYR5wRhZge33e5wf5fxiJsyLbM+mW8noMC8op9hdLCIWliNWWaaNBKIwS7DJKkuXdatSLSGitWb0llrB22PgMsxLZPSi/YOSld/GT2zGkXGzFWH7KnkuVcF6x/6wB21RReLJceNWa+VsO2G0whiDrorNdD8PHfXQRmS0AmQF5IAJXv6aF47kRp/Veo5zbXPOi8ZzPnIIhCB5nBAjuVRCSsxhphQotciFABjrxM8qBCBg2sqg5IyyIglqjUZpSLP8m63VxCyJ3pIjo9s0iQlNzIVSCilnWp4ZOzp867lRqjCnA0bZU5UIOK1+FBUUp5WINTKmUOKt35dzEfM978ntZ40zbM2GZYmEOTYdHtiME4mCc1FkM7RjCTO+mfv50bPMC7oqWWS0nJPWBqsNS0gYrVDWUnJhyQlnN61DulJrYRw3UCvaatle1YLGopQi5khNFq1F41m1VnA3euIS2J5tSDGijAMyWltyXvloGbjvaK0MsuIZad3Ud+LV8/zkEwaeYRg+E/hO4ByJ3W9c1/X/PQzDBvhHwCOI7vIfa95an5SN8QuV937LO3jJ5mE+so9cXOxIRXNzvyflwhKkNyeWSogL1nhQWnSKk+QiStFiERPECsZZTW5VofNr5zKkWdWpeuW3W3JOOD9hLOgqYwyljTUAFCUSFRUlOaLRE8MsKwEKtbatmtHUo1RqWNj4Nn9FxRhNSglrxQ8L5MUTU0ZVJSMUSGJ6d9gx+ZGiKksIYuKnDaVERquppqKLxvpR3C5SQrc+oloV+/1BWmycBAljFbZ6vLUoYzC6YmvFeWk1SLmynTbEnPBO1AuXGHBuQy65Jd9B61v5mMN8wHuHqgptmkNqTOjWrKOMIsSEd/dTCjxQkBXPcbvVxi6u+YdfMCuep+OZxOCCGPb9TuDzgT/brIq/Bnjruq4vB97avj7aGL8OeAXwGuANwzBcuRMH/3zn+vQw5+N1Pjon9oeFeSnc3B2Yl8gHLm5ycQgsGZYQiSERU2IOGTDUqkVdsCRKieRUQVUZndCFcSPbFoWsMIw2eDeJHjEyUR7nRE6VkBZKTlhlpAN58uSUUBXmw46cMtvNuZSkrZP8jbs13BnCgoJTU6CzhpozKScO4cD2TFYa2hhc89LSVIx2lBxPncolFUbvMcYyhyDDnW5EZUkCey0rE2scF7tZGgVTFpNAbWXoteS2spLp+2l0jH6Uruq2Uhv98bmplCKT+t57Ckn0f7KU3g+HPfOyY4kBoxQhRGIITNOEUopxslhn5Llsv6dUqWwRONk+k4AF2MEPf/cP8+rrT7r7eEHxTCyMPwh8sN3+8DAMv4C4g3454jYB8B3ADwF/mW5j/Iz5sW98C8thYV7EmfMQIjFVcqlQNCkGwrJQcsZqy253gTH2JEMxjhM5H6Boai3UCpmC1yPebsgl3JpAb01/uSRJ7PoRQ0XpiqsTUWUR2FJati0t76ONxVhLyZXJblhSFNGwpHDGipRErXgj0he29flM44huJf397oC15jTPdeyROfbuWCuOpDklRu9xTlOrxyDX7nazJad8crWoiIZzWgKpGrabjZj4ZQlc3kl5/ihGn2tk4zeUqtFkQhSXUecmvLWEnJkchCXhvNj6GO2YthtKijJisUjwqUpRc2aeI9oq/MaetqOVjC/3QQKrwQQ52FyR7RfAAm/7TrHVeejzX7hVrt/UrrN5qP9u4MeBTz9a2rTPZ+1hnwH8ym0/9pQ2xi9kLt7w85jked8vX/DojR3zIXKYI0sK3NzNhJpBmVPQOaEK4zhJ0GlKghWFabkPY4wkhlVBN33A0XucNqeKk7YGQ2XajNBkKzaTxxoZ2kRVtmcbXMvHzGEh5CjNibmQU6aUxBIXrNNYI71Cx61UWAKHw4KbZHVD8+g6VZOMlVWF9uQgchbj6ET0XVUoCm/F7ng8DZyKNU6bIRXxLz9hqDLaoSrWKmkHquok65FTkbm1EAkpUCqyegyBFAJLiBil20rFsCwB5zylwo2Lm4SQCCFSsvT2KGQcxbbnW2a7RJuolMLF4SPkDDcvHufGjceZZ0gLfHAnoxaP74EDMMOHfvBDL9jVzzNOLg/D4IF/jHhlLU/jd/6MbIxfyN7p16eHUdHyyzcuiCmTMhzmQMiRJaXTjJI2mpQKepQtAYA1/vT9krMkRlU5vYOMk2frnVRl2qzSqQKGQrfq0zFQKCXDo8f3XWccMUW8g5AT3liRQG3zV5N3pAyxFJy3xJA57C/YtB6fWiux9bzkUImpkFs3s2ml91gjznkOYabkxDQ6qcbVimqT5xKoCkZbSg54Y8iAVpZcZMWkKFRVsdZSC6S4YKxnrJZcoaaMKhCjBClnPLUWps2IsR6jLZvJk1KWPiYjE/kxBklAp0jQBWfG07lRq6gZGo9ChPTnfJPz7VaE6EtmH6RPqdbKzQt5ZisFf/Ay+b69jxe3pPPbvu1t4OAL//h/xrtuvHC8L5/RimcYhqtI0Pnf1nX9J+3uXx2G4SXt+y8Bdu3+Z2RjvK7rG9d1ffW6rq9+oQWed3zDvyQGsYcxxlBrohSxlcklYZ2l6EKqCdtGA0qWd/WUEm4cb406tFwJQC1JKkhZoZ0hltiaA+tpe7bMi/xNJPiENkpx7IlRTaz99n4crcqpH+awBKwRM7397tbgqRxbPklTgGyxdKk4fSsXhKoiWarqqdqltSW3YHXMGxltcdphrBZ5Uj+SWlf2kZQL07Q9/X2QruQlSqldSuAF58e2FQsimaEkmBojLqTeeYwWG2arDdbK82mMER3pquQ5VoVcAsuykNNCioWSpK8oJ5HgOMwLYVmIRf6nqMrFYSfPdQjMIXKYn+DDAdYZyQUF+OHvfOsLaqziEwaeQaLC3wd+YV3Xb7ntW28GvrLd/krgn992/+uGYbhvGIaX0m2MP4Zf/uZ38aAaiSmKS+duISZFrEkuiqpZkuRGwhLlnfs03tCSwmHGGMP5diPjCLqwGT2//frL5B+qKmE54PQxiSo5keOFPofAYQkt4JR2UcbTnNW03d4a9lyi6ByXQC0B50eZcUoB76SruSCiYcoYtHEiNIZCGSVbLSWtjbVWyrFUrx3owmazAaooD1IwVpHygnOKWisX+5vMy8LhIO9dqlbmZcZ6j3OjBLsoH+MkuZ5j707KEYMnx4LWMhphjBYHirbGM9qw2U5Y79mMk/TkqGOfzpZaJfCGsJc5uVRZ5oUlHCt1hXFyZOSNQ+nCIcxc7A48uj9wY79nngMxZ/ZLZLc/SDPiDPMentgDe+ACPvQvP8SrH/n8O/TKe27xTELs7wP+r8DPDsPwU+2+rwO+CXjTMAxfBTwK/FGAdV3fPQzDm4CfRypif3Zd1yc+1Qf+fGT/hvdxnxr54KM7QpDGv6oSh8Me5zwh7qklolImVRkdyEk0dcbRUVMWY7pUmMaRAqRYeNn1Y3qt8sj186ZAaEDlUw7nSMmJkhObccT7UTqbw8LZdktMGaNkizU17ZxQZlRV1CrbMG01Gs3kJoqqxH2QgdGYiFqaC1WLLsYYLnYzm5b89X68FYByxFnpJ5KAYFBVZFGdUeQo82Cx9eakqhjdRipiShNCQKp70iFtrIYKoxtPUhjWbk4WOFYbahWJWIxqnc6KwywrOD/K5H6tM8ZYrFK4ScTnS61MbSs5z7NYM9dKCHtGP7K72DNNhsP+AG07GZZFZs6qTL/HnZzHNHpCWNjvHGV8QETyM6DhAQ1ve8MP8Dv++G/l5rzjXqZ3Ll8i7/vGd/Lp08P8hxsXXBxm5hDYzwdKBnQlpsicZAB0N+9Q2mCsJQWx3z1aySxNyNxaQ0oZZ5U03KXMte3mNL9ljSW2KfXDHDlKZhUU29FTUmKavMhTNC2dWDJGW3b7PdMktjeTG0VI7DiSkRNWS+J4HwPLHPDe3+b6qU/6yc47keO4reOXdhy0lVbNGT96kV1VlRILULFetIRiyoRYoOnubLZnHPa7U7eyaQ2Aox0ZR08uyPhI0mRVmkCYYjNtQBsqGa0kQGzPtpQcGCcJ3suyoLVmXiLeW5YlyjDospyOvdbK2dkZKcoKcTN68Q6LEihTSOzmHRSY/IZKOakDbPzUWgYMn/Wyl0lgQqH1FaYNbLcwnMNDr33+V7x65/JzhE/fvownlig9LNQ2zOipSHUFJB9z9L3Sxpxe7LEFH5Aq1RIXNuNIMglrxejO6HRLlrRqtHbUPEsnbjPZyznj/dhyOgptjOSDYkYjuZXQthExNyH3ZZGxCV2wiObDHBecm1ClnqQqrDG40RGWcPJIBwlUWjm0EodRZ6wMWTbpjWpEOfAYrI5Khcsyn+bPjDUss+SBdoebeD8RwoJRGq8N2igJzlpmqyoFg8fbUabiqa3VwBKTwjjpHZpnGWjNObPMC0pbQgso1lpSKoTdBTml1lqgWeblFHSstRzayEdK0hc1LztqqihjmMOBUmlvGopKpVBQOfOL73svxhg206YVABxaX+UhC597/ire9ei9m6HoTdyXSZGxhIJMWQOQEwrVJqIjtYgGjHdyoaqUsUpkG7y3GK9xTnP9/Lx1BssFu9tLN2yMFYpBWWmo01WRQ+Jl18/wxnJtu6GW5eR5XnLGtBp1bIlh78fTmJGmUtRR5lQkK0IRZ9GjER8pMjnRRd7vDmw3snow2sjKqFZyXU7VraMCtDNSFbMtf1VL00tWYteTWsJZup0r2+2WWpGtX5EKnzXSSKm0I8ZEKeK/NY1bpu2IjDNoSq1oHFo7vBulgjjPYsMTF3aHPQVFiuIXn1Phl9/3AVJKKCtqjTlFTBWnjv1eVjTv+8ANYpKkf62VmCVoW++JOUKtJ+E0azSoym6/48Z+z2FZyCWxP+yJ8cDN3QXzDP/xBvzw33krr3r48+7ZhHMPPJeJlhdeTkX0YtqLSnNcbptbWsE5o4ro14h3uQQrq8xJktS7iZxkjuqoiQxw8yAJTaAFJyvKg04xhwNWe1FdTuK4YJxuuRZ3Wu240ZNj5rAsLHNgmReqgkOIUtXJCUULUtaScsBpw+Qn9ocdtYhmTsqydQyHREqVnGRS3GqP0vaksXNc2eUsyoQhJxlqrVqS3zEzLwtGKVQLi9ZaSoXNZoNrKx6jjDyP7dyPHmFe21PlKx+n9+vx+W9iaiGQq1Tfjn1DOWdUFbXCY17oONEfS5Itgyqo2sTDUsIYjwYmL3kwcV81MtnfsNaSaz69AS1NsjbMj5MTkOCHv+2tnNlrz+ol91ylB57LpEh/iNIiaB5DJuVALLlVljKHJJPn2hhiklGEECOj99SSCGGRChW3qkXHC2gJgYxi8l6GIVVFO3OqUGl9S2bCGYuzRn4mx1MZ+2xzRs6JkiVf5Fojn7GWiwuxmTFaGgsnN+KsYXJjC6YZ72WIVOlWxm6ZJe0MRmu8d9g2eJlTxih7W9BJhJgJOYl2kLaU5gRaqMQlgDXkUghLJMbI2HKDR4sbGXqV3ExYpNSNslw7O2P0oiNdC5Q2hZ9rZTcvHA6BUqvY5xTRe568QzXDrZgT0zQyhwOjl+TyfndAW0VMkaUFWSETj28ORjOOI8bq1uMURZf6sMhHS6KDBMqQDszLE3z0AGR4z/e++w69GO8u9+Y67jnItfFhqAZqodREKgtKFbGead29VYG3Umov6dh4JtuclGXgMpXExZyYxhGnlORVjHiQG+85xPkU1FRrezn6j8/pIFPjSlNtxRpFzqJtbK3FAktKInOaM6VqatGYKkqD0+SJKUmTYRafF5cq2homvMhcZHFxMG2lolCiD1QU9syK1CkF17Zgx7yOMYZIEtmOFmxiyi35KoHP1Eqp4gjqm/toWCJWF3KIUl0rAedGjAU/bjgWLbQG7zyjVyxBWhdiLORaTqsqqmIJs+j+UFlaro1aZLtbKlY5bty4IUL3WreZNsXS+qC0MXjnuQiPYtqKCwLaGJa55c5SZjN6nLHMhz1qOpOtr/eEGJjGLbsZzq1Y5mijn/eJ5o+nr3guiR/96n/G4zGT2+rmWKFKNbV35kTORVKPRZFqxtqJqiC1i2qJy2l8wipZyaQkydpptGgq16ZzWcEoKwnltu04xIUY4LBIAIoxEVMhJtlOpZRJKVOyJL9H71nCgWn0Mj7RHEhLyhgLRjuMadPaVIy1rVIksqLKSAL6SFXi3Olbl/Kco5TjSyRmWS1UZOVijaMivUsiPCYi7TFJ6dx7L1bHBZSW5PR2c4bRFo1Fa8O1a9exVjFZg29NgUZLcthodWqYzDmfSvIxBa6fX0Npw/XzczZ+5JGXPSLJcy3SGNZpnHfkmMnh2GpQ0cbIVHzrQ7LtzUJVxbzMLPN8ei5M23KFFE++7xzXhlWxn2dKllGLD9/gntxu9RXPJfHi7W/jQxc7WVZXDU1cy9uRrAr7nMk5SD9KI+XIZpq48cs3TwJdk/fs95k5BDbjyGYcJWmrjjbAYtl7iAthmU8mmGI/o8lJZruOc1WbyaNqoRRQ+lbn8O2i6Eetn93Fns04EpZINUizHwWfZGQhl0RRSnpxRs/182ssc2irjiKSpzkRYsIYx24/MzqHNoZUwWpLzFGm0q0lB1myZaRHx3svpekoOs2jE/VAqiZTGJ00AWpj8NYytrxXqbI1dP4Bbu7+I5uNYTn6vR9kWxSTiJpd7HanZk3IzLOs9mqpFDK5rcBCiXgvk/zzPKOoMlFvZFVrtGf0hlILo9tQisyJiQ+8IaXCOI7N5VTePGKOLMuBa9e92OdU2BjZbj34Bx78VL8k7yo98FwC18aHeTxmUq6EIEFjXqJccDlSakGVIkOOwJKCrCKUSDNMW88SAudnE/v9oc1cSZl7M46UqjG1zVwlqRJVYDw7k7wHiI96FfnT/c2FuCknBwmF6PWI64TkT0a/kd/dbGdyiSjXci5USq1s/CQlZCCV2JLBUrOKOVOi9OfsDztGZ7HakfNCzpWUF1JYJOgtinE0KGPESVSL1o01npgC1h6L0ZKMdcZA64IuKeO9xruRigyieudwVmG1ZbOZSDkTUiEvH6YWUVqUdgON0YWoFoyS7dU4OozWGKNb02ElNwePw/6COaZTcSCWICMpxnCx32MqpCISHrXVLo8iZNbIIK8xI8syo41lv9/hnMfaTGDBGs1mOiPFhcPeS/I8D7zEymvo5vLo5b947xB9q3UJvP0bf0icEWKklILmlkRFqfk0qiDl44p3TiooVJzb4MeR7dkGrS1u9LjJ3ZpNMnI7t+lx7W71z8wXB3IVRUOU5GJyzie5iNMYRnsZzCGcBOKV1ZIsrYqLw4XYAVfpJwKRRj1u84BTAjssEe1EetWPnjgHRnfUAJL5psmLNU5F4dqcVIrlVIHLHJ1AxT6HqlG14IzjbNpirGlWyI5SMtZY6ZCpmiUsJwtjay2Vo6VxPVUDU0qnx8g0vDzWWX2y4ym1YtpzYIyh1Igb/Wl+y7aKZE63VqJu9Fgjs10pJ+YQ0EetIaTLvHK0AUqnpLo1WuQ3tJV8mKrMccGYe3eGsa94LoEYCrVGjFbkagjN5iSlilYGYxS1yMzU0rZUKKnqiJ9UQRnN0qo2OReULpxtzok5Mi8LzmlslJmhZVmk6lMSOjmqkknxSsA68aiKseBH2YY4a8hZenGqKmzPNszzwhwCVstjbavW+9GRYkHVQgiRbCMpZhk3aPnP/S7IFkqVUxLYak1RFaqcp2yxJuBWAKS2cYokc1/GOHQbMItJ5sPmFBmtP8mXeuewShoIJ+NxrclSa1nRSA5HdEedHylJbHZkbCNTvcdojVYG14ZDN5utjEqgTp7sqhYMkjOq1hCUZnc44J2XCpmiDfy2Cl3IjM6RSsSoo7d7JsbSku7yXForx3jt2nWx86nq1FIR4+NYe5UnCrznn7ybB7/k3tlu9RXPJXA+vYR5jsxR5BxKhv08i6d51aRcJe9TVXN0kCs4l9RmkmB/OFCqJmdpv6dodocLCoppHFHan1Yu2lmm8w3Xrl9jmixaySrn7GyDve1ddjkElnBgWVoJ3xmWJUritF0kRcF2uyGVKB/N3TNn2dI5LQZ9x/K005aHr22YJotVYrOjjn01MZ9kQ41VaCUXobXHFYusSvzoMe1rgMPhgNIGpWXFY404hGqruXZ+jhulJH90mVhCkKa+XKhVYYxiGh/EaiNeW0qGakfvuH7tjMnfGteJMbLf705/+1gid3YUZ9JWEl/CgvOeTAskRVZScQnERQKvtdJaYK3YEDmrmFoTp7Q8WNkWV2kqPI1/VOn9mePCsqykBIR7yxTw3jmT5yjn7johfZTaqh8g78ajHTmUIFINylFqxk8jpRZMruQiDYPKKijybwrpgPcjGz+ijchKqFq4Oe+x2lIVJxeF5RDYbBzLHJmayJfRDj06DsuCHyWYhEPg/ExWCSUltNUclqUFg0hK6VQqnibPNMnSx1AJNTaPrNyEyCp2NKfhgGN/tlFZKlItcW6MRtr2MtUojDJYb4g5oY2WSpyRFU1MCTduTsnfWjyqleO3XvRtrNZonHR9H1ccKbGEA5vpTHJK6ddPz70xGqcto/eUotDnhps3b8hK7GjTswRS1KScW8JeNIlCyhjr2GhHLpIIP/p/GaNPM2ulPZ8VsRDy48TUSvspJwyKEAPn05Zk4mm1WAtsz8bWJS7PeylAlOrWzXxv5Hl64LnDvPOb30Xcy1R0aQOb2oj2i2q2LKWKGriCVv7O5KxQSt61rYHJjSw5N2/zSg2FogpzSdjWAZxiZrfbYa1hM3nmZebha9dEK6dESoki3YCkNnSl9eZkGc9AMfmJXdzJlgDJYXg3ycmUQi4SjDbjyGhFwVCTcNqfHBwUIrieovS/xJzaVL3GtoszhANUSQDnsogsqTGoArkmQpChUNETkrzQ0oTD/GQ5m84kUNgRRW7Ge5YltpxMyYSoQS2kkikxMW02TO4BlIUSV0JOjO5+luXoiKpJMbU2hcg0ejH5q7AcLogxst1u2e93+GlER0Ot0pdUqnSbl5Q5204sLWhYYyXQtNxRWAJudBgD1khl0RjHkhcJProwL1GS3jljjCXMD/Aif29tt/pW6xJQSkmuJCV5B43ih5VCaMt/gzaIXKkqGCqbScts1m2yp6MxGAppWbBWSY9L0SzLIs12St5NS6tSTePIIcyA6N+Mrfw+jSNLOIh3eVM8LFVjrZGJ9XEk14BSFT96rFNYpxinkdgkNQ6LOH2WFIlR5ssq+bRlMtqhkKT2ZCdMhZIjhzCfgo53reHPjozO4ZpAGAXG0WJ1E+zSsiUZvWO7nTibznB2ZDtNGBLn0wTIVmfy4hrhnQc0YVmkzL7dspkewhi437fn099PSo8xjmKJExcRKlNkjLUsOZFiJOZMLopx3JCSuJIaZU75JKVkHstqQ1VS0dOA17o9F7LVXOYFbRRzS9BrLUqJciwj6IIxhlRSE5wXidjD/FE+EoF872y3euC548hKJtV6qqQUdZy4VuKMeXyk0pRUTxWTUsXpQXzK02lGSH6HyKX6tvVRRzW/CsscSMckNVLqttbgjCI1VcKUZPWigM0oow+pbanmZWHy0+mCUbriWh4mRxlyVdAKxhptRXPY2ab1rKrkNPxEzolUA9o6tLI4JduNcZTKnVbuY44zpUTKEY30MS3LLLbBYUFrJ8dUCyVHcpZjwWi0EWO9gmrSFxWnNZvNuTzXt1+wWQJ0SitK39J01ua28Y2UTjIftYqgWam35r9C+56MgrS2iLZqis16CEQR0d02o5WTVAfDHAiLtE1oc6sSGZYIRebGbMv55JxkfqvCmd8+/cvtecK9ET6fw9Qint413Wp5DyGwPxyb+9Qp+tfSrFFAErMatMs4JXmEmou8kPEsc8Q6zWF3wTiOTN636epCToWYZLWhFBglIxRzXUTCtIhzQ6kJ4wzzsrBBmgcPYT6taMaNZ7444NyG/W7H2faMafKnzmaooDL+KL2aNc57zHEUI0W0tiK5YRTGa9IiqofkxGY7te2nZllmvB8ZNxtiKpSUxMfKO4wGWzx+9KQSGP0Zuvl7mebw4O1Etm0rq7V0VmvbktkGrSHFj+DtAzyepEM6l0RIicO8nDSn5yXgR5FKrVkTWwAJMRFI6Fp55GXX2QM5RdGVLtIKcDJCbFWzmDMOiFnUGt1RxjYVtFHo1pVdUmQcR+Y5oIwlLtLQWKpi4x3jZsMc4KEMlFtB6vlMDzx3kNslMFKppwQkyDK7lHRqBtTQkqsWZx2lLFgsygBoci1479DacNjvKQriLN3LqSSWKEOX47Qh7XaAJEbPpy0VWSGhrOjbKFlBVBTOGkbvSSlyOL6La/HAyouox+RQMEYm0IFWfSqivWwlH2KMxjqDUYZ5v29SGHLu2mqZ0aoV26xnaKsHpS2jdxh9dMmQ0jZOnybyY8pop1C1iKRFWBidQyna9sZREAkQ1YYxU0psr42oY0+PGRg0fHgW4buCDIjWom5b6QWc96QoSXNTK8pYwiwKjalEqeJZSzCacJsbtNHSvDluN7LiO4qGFU1tTYXzckBbkVa1diIsi8i35sSyb6GvSdEa04TZtGYsmpxWKPdOX08PPHeYWo5ODoq63OrRmEbL4ZBaP4mMEzgn9rm5zBgURRXR9dKFaXRo4wh5BuB8c8ajN29ymCNaFcmHGIuqR1lURVhmDipJQ1+S2adQpCkwthXYvCxszzaUUshNLD7m1mDoYOt+49I+5kyKFW0qpq3XrHLEZcFuJs7PzjnEBVMr85JuzTO1LUeOGdlhydZGVnpGBiVb5eewZAoSTE+BsMBkDL4JhVmDuK0uB6bpHO8tulaunX0m8DgP+Kust81+PJ7AmIGcV1KOhCDuoaOf+MCNR6EWcmsyzCmRUoEUyDlgjcdpyzSKC0eloLSm1nSa9ZJuZanEpSg2zlDEJTVmzlvflbHH85agmko6KQzY0Z1uj96z3Z4R4sLZ2QM8PsN7vu/dPPgFz/8Ec8/x3GG0dWitxa3SOXLJbJozgvVe1PMQrRdvnXTIGo9WGucsk3MoIIaZ3cUNJjcybbfEktieT2zPNs1wbmFeFlkJNVEq6zbMYRZfq5i52B8oRbHMgZKSjChUzc0bNzkcUhtOVSxJVmpFSR4nxnJysjjePj/f4owkVKkV6wzXzq/JVHmRXpYY62m6HEC35kE/jsQgustH94zjsGZcApXK2WaDrgqrZRQkt+XFfr8j5iQSErGgtDTnlRRPncmoJ9DmKkwwbGEYYTBwdZKVjvcDOTXlRJIIsNWKd+MpKOz2O5ZFVm5aO5n4zxGjRWlQAosFnfGTa0lkK9P2xp60d1RThEwlEPOx/SAR5iirs5w5zIGYoiSrq2y9jzIpyzLjtBUpJ0ms3RM8E5eJzxyG4W3DMPzCMAzvHobhL7T7v34Yhv8wDMNPtY/X3vYzXzsMw/uGYXjPMAx/8E6ewHMd3V4pxwY3ayyHw0zI4v+dqpS3S5bBx6n14WhjqKmgrGa0ntGPkhNJCWcNcV7IQbqUa6tkHUWnasqUnIhhoQK7/Z6LWfzFjwFFWXNKVmtj8d4TcyFXeRe+8egFtWisEdXDWGUWK5VErFHU9VSh5II19mQuKCer2UzbJjYWm2WMTMt772U7ZSUJ69og5zHxro1Fa5ljSiVgnCGncAoI1o0cdjsJFigu9nsJrC35brXF6iuSbJ/b8ST49f1H+dCNx4jhw+wPj52GS+FWk+ASZ1KMXOx35KJIqbDb3yDnwMXuAqutOE00W6IP3HiUueWIjiMpwMlTy1qFGz3ofEpah2VpBoSiix1jQqvmm1YVWzditGEaxXbZGLE6imFlPtoi3wM8kxXPU3mnA/wv67q+sn28Bbp3+pFTz47Wp/0+zVzPuuOcz9FjqjTp03RqvDPmVrn29on1Y2PasWqSS5TWfmNaebygrJEendaRa5QElhxlANTcVkWxVpFjEdnTo/phydgmBg+Qg8xO5VAYJ49TUrKWKftykvgAqUxRFbFEUgm41pBntWZqQUbMBBVKO9Jtnl61SjWslEStMLmJ3FYWOQZ0VdSSsKOIwM/hIPmRVp7OSXSFUn6cqxvAIN7lSBl69PejUHh3v/ydFIktEIitjWMO0jyZS2j/Mo8xXqpz7fmo1FNV69ixPU4jNUf86HCjF2dWK1pJR4PD1BoNUbVVwBzTxmG1iKmhqpgo2uMsncW3/6WxA+3lcE/wCQPPuq4fXNf1Xe32h4Gjd/pTcfJOX9f1/cDRO/0FiVIK54wsy5PInBptGd3UEpyJqkBp13RxRHvZGU0MgZqkkc/bsY1TZFKRLmfjNdvtGbpCTaITfKQo+cixEEK4FXxKoBbxRAdZYdhR1A2PNXmrDJuxCa7PC+M0noTArGrBUDvpKSkikxpT5mK/Fx2aEklLYPQea8FaKO1CLk3cS1Gbg6iItec2G6W0pUjumVQRUbGmyzOHA4f5QJwDGC02OlWJG4e+JaFq7VXJXo6Ak89GXyGmFWUeaMdvm02NPgVibVuVLEaMFuH4WkW8/Tj2EVJiGidUe/42Z1tUrahScaOnpMzkJ5yX8QoKnG+30o6gYPIjMSZU1ux3e7SRUZbROzbe441FW83D18/5rJd9Bo888mk8/PCLmSa4z7bzuQf4TeV4Ps47HeDPDcPwM8MwfPswDA+1+56Rd/owDK8fhuGdwzC887lgsXOnMOZK84IqKF1JMciwZ1WyJFeGXDWHNGOcjD1Yf8bN3SKl1VxIITatG/E919qcNHIApvNNe8e+FXi0sbK6OSZ0q8x9GWOJcTmtUkQP2FERHZ3UBlGVqieP9pKkpE9VTQq1olqz4ziOgGYaPePo0LWKLOpmgzOOmgs1a0oV3ZnDMuOMRRXYHy6YQ2DJ6eSoEXMm5nxrkWgM8ywGhs55rPbELG6dBbGsya1LeDNtGUfPFYsEHQAPWJpg/cBDLVdu9BWUvtKMEc8wVpzmbdvyOaPRZFKJotBoPPv5QE6Fn3vveynNJyw0O+lYZHslw7wHrLFMfhSjQivqhSFGDsuMMY5UxIljmRdZxipxHjk/m/icz/psnNOMDpwRy5uHtsAEv+NLX/Epf43eDZ5x4Pl473Tg7wK/FXgl8EHgbx4f+iQ//hsiy71sYXzcZgFcseDtVZTS8i5tDLGV2Y8KfkuIt5K+cLqQrNH40aKViMRLsCrEkuTjEFj2kRgL4zix3ZyfekliyiijW3UmYbRpyVTp4UltyLPpkeHdxPWHzznbbnDGtkHRBSjNg10+cmpbnqqhyJhGTpEYFgwwTXKxaWT1kYt0URd588cYI7NMqqK0kxVcklGQs815m06PaCN9OPM8S0k7JuY5UCjQZFO1kclurTVo0fPJuUiwycAGTkpoRRZBH96tWAPWiffeOHnp6G760DllRj+dtreT9yhjOCw7csrMy56SE/v9nnlZUMbg3IZcIM63FBeXWbrJc4XdhQz4Oj9htRfb6CgjLzlKNdEYx2GZGf1IDHvONg/w4AYe3MB914Fz+Pfvfeye0eR5RuX0J/NOX9f1V2/7/t8Dvq99eYNn4J3+gkG1IT9lKFlmr1KOLHEh54JWMHpHCJlqaAJVhow4iFprSTaRDgWUBBSZ8zIsueJHETbHK0pK5CIT5Vob0hIwTrceoopSMr+eSvvdWsYSiionSYfa5rcAvLHs9he4ccQhwW+7OWOJM1BIbRq8lnoqcYO8qFzTpTEmoazDN8mLGBZREqyVkhLnZ+cyS5YihyBRUBlLDJFiCpXK7uajGGM4O3uYEBNjy12VmKjecFikMXJqYu5+fx9Xtkh+pwIZ7j+Hj16ANgPDBvQB9uFxjL7Kxf7XgMJ2e8a8vLdVARNTC0bWGEKMqGa+F2/z1FoOgQVZJZ5vzlBFrHkAxnGiJhGvt9oTdnsZiVGeosQ5I+WESRqtImdn58R4YLM9RxvAHp9MeOmXvZz9fHEHX6iXyycMPE/lnT4Mw0vWdf1g+/IPAT/Xbr8Z+O5hGL4FuMYL3TvdtHxFk7xUbfZIqUxpMz0pVZSWxEaMgWq0mOsd/aaS6PHEEE7jFsd8TGojDCHO1KpRKEpMYOUizrHgxwnvRkqWrlxnDDdv3GRZFsm1nG1vSau2pGiJkvA+3zYh8tGRlnBqtlPKU6u8w28356JXoxXzvDD6UbZjyAzTxTJjtEFXyS0dxx6qke5hq0RYSyXxii8UrPXEFMkpc35+HSikFKhVNXcHI/NhBbCGJUUevXlT/o7WfNr2AUjAAcmLNOH7+zdAlZXoyNWT/6H3W8LuJg9fuyb6QvpAaiV+0UWWwHyYZ5y1zWBwwTp7qnLNyyzVLURofrlN7GsJh9P2IrR8V21FAe9b9SontNm0QZRGhQ++69fvqaADz847/b8chuGVyDbqA8Cfhu6d/htoTayp1LbiySdDO4B9cxBVSontjTMYNFpBzJGN37CIGijWadIsV0rhZAn4MVWlCmhrWeZFlPpGT8nlJEgeYznlJeTxUtUCmuhYbNY5tMl4K708TUK11NicISox1uZTXsk5oVFiIVwL1hpCbL5R7eJV1nNs9w0h4LyVubRy7PyVgaScM0pV6XVp093SbNeUA5UoISqtCSqzNbLaSlG2bcYYWe0cF2FBmgdTfgLiFe5rRb2UnqCWJldSqqzw5oM8pxWMMm2rVgkl46ylTiM5ZWlsNI4SI9o6jFW3qoAcRyMSFSXT+DkQmyqjrepUway0rXVVKD+eAp0qwAJM8EVf/6pP/vX3HOUTBp51XX+UJ8/bvOVpfuZ/Av6nZ3Fc9w4FjBa5i6OXlDWeeb6Qak2pxLTg7IQ2bQWUU2vOc+QKWktPiVaW7cZSaqLWVmWJEWdHUj58jA2KsSKcdUvW4pajZUyWs83EsiwYJ64Qpq2QVNFUMqO2+NEzB6lOpSwuGKPzlCp9J0dd4rgcsNqinGWJmZxFX+awLLjmFZ5jQZOxWvSINxvxetemla6rbTmagNWWJcjckra66TxLT5NW7qSbMy+z6DunyPnmTLR8rBajxMqtDwtXDZi5BR0DT0Sw6gqH9NFmTQw1VBlByYEFGZ6d51l6qdrw5/l0RlgWlhJloHfyLRDRZE4qpg3cih+95NJikyEBqQJqa7DGsG/5HwOULEL9fnTSCqDlWG/5zd879M7lO8BJzxd4LEDIkJu0qczszM2oTny0nR3JNdKUQcWkTjUFvir9Mt5LlUUDVMVuv/uYv2XNRnSMa4Vm3xKaJAZIOdvoNlLRtkLTZMmxYKwIqDtjcFZzNp2xORtRtXI2bZuKn3RYxxTZNC0cyK0T2aPs8WKXhLLRDtu6fA3STGdqlk7sdh1555nnpakwzoQ4k3NmPwec0VgLqmZKksHXkouU6nPi4uaj0tnbHFPncKBk0S0OOcmF24IOVQJNk17m1y+e4GL3EUJamwZyYp5nnBdP91orzo+tSRHOtmLJrKlUVZmDbCfPr51jtWe73Ur7wdGptP0fSsxoozkc9tKOcLYVfeiquH5+jbAEHr5+jrMKrR2lwgduPEoMlWMTNvdezAF64LnjpPwYKT8OtY1PKC3vjFXLkKY2GK3wxp9KudJIZ8XX+yheXkTpjypVJqtlpXK2nQCIJYqmsMh8ce3aNaZRksRVJZl3UgVnDYpMmEV4ffSudSXC2bhhO01UMiFmlLYcDrvTxViV2L3sj0OgKVORhHStYoAXWl7j+C49elmhbJwXlUQKzigUhcPhIP7qRqON1L2tnXBOn34/gGpyqbVWyIp5Pkj/kTJYP7bqkfQA1VpxWnqmEM9BPrR7jCtGVj2/Pj+BMldOW6y4SGXpGFxldMLjvWdzdoY+lvNtEyqrRbaTOTMfdmhDq3DNcoztkipKdHuskZWc8yPWj3g3yVDvErBWsYQ2Da+kadQaQ8gRpWDN3DOdyh9PHxK9wxh1S26zlkgqGecdKmUUGnd0xIwLOVWcrcRcmrgUGDMSQkApJS4T1pNLxjot3uPaoglMdiLEhWtnZywhiO2L9TgvOZxpFBM8qkIbzWbT3CFqYjQjuST2h10ru4/EnNkvbVVV2vtT0RibT/02oxsZR0+I8aQhpJUm1UymiAZREefPlJJoI8+xmdBYtG5Vq/2BzUZGRQ77PdvNJI9Jt2kKJZncjzVhnbiWagVx3nPt7AyrrUhyWMWSAl55iKDVgNGaD88rWg94f4XD/AS65aaM1fhxi2pX+FHondZLtN1umBcZk5BV5MI0bUg54/Wxs9zIFrQkRif3xVxa+0FhmjZtXKbpapszSg5sNlu8HUm5yLxZUVQtQXsJT/CgvwL6loPHvcS9d0bPEY5boIpBa0mRFaAWJX0xzdUypszhsMcZjXOGXGUFZLSS3p6w3OopmcSD2xiNs6M0DNbmUV6CSEYsEast3jm2G9Oa3/TJdQHk3abURKkJqywhLe33b6Tjtq3vtdJYN4IqTWGw4tzYnDHEEWF3OHAsDUmSuUiO5YiqGCPGe2GWcQ3bzAeddyIF2ibSK1US6CWKo6nRlAqjG5uTZ3u5Vi3KjG3EQynJBeUkcrJaG6gDhzkwh49Iz1G99WI3VjH6q6Bk9ZJyEE/1NmVutAPVHCOqOnVFO6PbXJqs1hQQYsC1HierzelvSANixVlFLRlnRCnSWJi8mA1qo5nG8dYIS1N8rEXh7JXTAR/fAO4l+ornDvOOn387X/Dbfh9GIa31Soz7tHIclr3YdwIhJLy3IiBuRDwLCkqLXow0Jcr4QC0wWYfSjiVEtuNIMOIBVXPLp1i5CEavTnNdGvCTlya7cvSVykzjJMewLKf5sFpF4Mq3qevDsidXLQmrI0ZB1tSiZOg0iV5NrZkYIrXCPC+tXCxl7mNeq6LI5ZagTYwHjBlJrUImfU9SLo/6ODMmM16lZFHtU0fNGxFkry6jtGxXSpEc0rIEYl0YvSfmii5X0Wag5CeYvGzNrp1/GlqKb9zY/RrGKjZ4LnbSnJian7vz8vtqlYrU/nBgM014Y9lsJ+KyiN1NTYRcRNo1FXTz/fJeur/H0bcgnW9NrLfSfYgV65Acj+GeXRr0wHOH+dK/8SU89l2PiRuCtZRSRM+lViY3cohtGNFJ2TrloySpaPVWrWTY8KhIWBNYg1aW3HpnQslsJ888F/z2OEmo0FVkQWu95b6QYkZrGezUWlOKvMsf5gMag0WRU5SLm9aZXBRGTxikiqaNdC7fyuVIeXjjRMtZK4txFkOb1C6QayS3MYOapE9FK43zUrWyxt9SfFAye1WqnEdcAlpLlriiZLXWprlHv0FpI9uW1sSo1ECtK8sSTts8zBV0VaT8GJO/H2uuUCpornBVS09ILdLBnVondq2VkCNLkJL37vAo1niomWtnZxQUOUuDoG+T89poVAbvQCtzMlh01jIvQYTgaiGkIooERnShjytIZxVGazYbQMPL/8RL7/yL9C7QA88l8P6b/wGtRGXPWksKEa0dIR9EJjMbYuvn0RhKzSgFqZRTjwumiGSmAusdOSYeuXZOyonDHFmy2BnnJnkKnLYixsr2oJSA95aaClFFXMtHSE+Jxo+OGKT7WVYozWKn5T8qCutMMx3MOG0prfBmtPQhjdOErrJFpFnuVFWkz0fppmOsTvbA/rYV1u5wQGvLEmdUCzy1jZcorZiXGWMlSQ3gTLPlybeaEEV9cCVXyBSM8TIbVleUGdj6+xkcYOBKS6o/nmWFcXHxa+L2qcSmOaXEfknUEokpYpVUvZQy7A8LznmpBHqPKrDdTi0QRWrRZEQGJGfJD9X2xnIaSjXioR5LQSvD2dnYWg0e5L4J3v/or92T+R3ogeeOIisKyXmM1hGSx5lEKdKRa7Oj6EDRoJVr5Vt5V7ejp+RKTSLfsGTFdjPim9vleC7qdttpEpXDmCkoliqeU7Gkk6pfzKLxa2ybcVKmJacNpUTpOjYiVua8xWHFo6qxBPEKN94xHySgpBjYeI9TI9bAZhrxutkfVxkHkJWMJjfP9lqUqATSnBZqZVmWVtWyaGUotVDamIHSGqUVJS0Y/OmCLTWhlWxf7OiYjsJqbkQb8ONAijC3ypUxV1AGSn6Caq5w5biFade0UhDC45I8ThIkd4cdIdKEwNoWUUnbQa2aTRsrGTdj69FqqoRG5sZGY09yH/G2JDlVEZqltDOapVaubzft+C2TG/EWKPC5/93L7thr827TA88l8GO/+HZe+7lfjneGRMVrT1ABu9HEqKHKRb/PhVKPXkoZbY/BoXXN1kopBW8NVhlKSex2B0kut0VObha5m3EkxdCCTWzvnKbZ6JWme6xQaCbvOYQ9JbeyNQpnHSnJVsU5i2lyDDJpX7HOyd9U+da2q8017edAoWKdmO9Nxp60bJZlaT5TEkRG79jvd6jWIV2RhG6pEVUtbnSoACrlNikfqVmDEo3njduK5c3ZOZvtxNnmavOngs3mRQCk9DjOXcW5KwwV6Wo+NugpyAnm5syRkgzgplRkfKUovLNsxulWh3GTNjm6Q0j7g2GZZ3meq2LOC1qZ01zXHBIlZ6bNKOJwVXJQzopIvzWW0Vr86HjRBD/7gdsFHu497s113HOMP/6tr0OpNhahZFtinTpNoUvVSDNOG4z1eCtCW0crY9u2PUbb0zZqWSK1akKzYcmUk51uJUtVqG3trHVspg2baXMKJFZJMli37Zhvq6GcE9Qi0hnK3NomVMhFN51hsFqRSyQfxxhKJTQrGmsclNryF+EUdFLMeDeilcN6L9PnSyQjPU1Gi8OCsR7VKl9xiWID7MXdYrs9Y7OdGEeHKpXRO1SVqpsxisHBlVHcOryHWleMucqyPCGB0gMK1tT6ZIB5eQyAUiWXM+9D8xkbpeKmj2JcI1prvDcordFaNf8ucegoVYuffBYnDRkIlnyOc7fpBRnN6B0pS3+V0YbJiSnj6KSa9WV/44vu8Kvy7tJXPHeY43YLBZM1HFJh8poSlFjo1sDotyyhYDGEMJNzxTiDTorRifaO0ZX9Yc/ZZiOSGDVxWCRHclgWEeNaAuNmknmrKu+iKSacsRilWOLMtfMtYQlUK6I1S4wtEWzJ8wFnJnJpdsEUsfjVSmbMcsJbi8VSFBgK2mh0bdPt2NM4iB8dqla8nY6FO5w3TYMoE5baup4dZYFaC7lG0JJklcEKhXPu1CNUK9QcmbwXITKtOdtYNpsNZ2fXpG2hTXVfUVBm0Veelydw/gq1QtyBMpBjy7criFGGPw9LpFZZ7TmjqMegCmgtetkpcnIF1VpyVt575iUQowSspcjALiSmzUjNiYzFGEgxkLQ0kY6bCecso5Nz2UxXedd7f4I/+Vdfd0+W0G+nB55LYjd/kK2Z2EyOsBS2qhKWgDIbDoeZyR8b8LaULJ2vSQcZsEyB6izXttdASQ+J9x7jlFjSqErY79DGknZ7pmmStazWeC3VopQi59PIYRYRLT+1OS7rKaXKTJLWzctdrHfEn6qQ0WIuZ2S1VVCoVKi6thWUbP3M5Mg5taa4SIyirliTbJ/mENhsJsY6MkdJMscoKzWnLDUnNFXcNbWMcNjWD6O0kZWWlc9+dDjrOD87x3mPM4OMRCik27d5lOUKWknQudiJDEaOq/TUaEfJgXk5ALpV60RETdWC2UwsS8C3IdCUJJhvx1v+6EuRbnLvLCjNbi+T+JGCt/7UwW2VAuNBV1GQdJ7R+mY3fT9ag3PwJ//BvR90oAeeS0FrzW/76pfx2Lc+hi6PE0NidFtoti+bcUQpGUG3WklFpkSUP2uT2tKXAzDPM7koDnNEaRkwtXZqIwaRzbhlWRbOt1tSim2LAhgnlZPJstmM5FTBNsmOlNFtdXFs+a/Fg8rSX2RuNcaNoyMugWIsxihKymjl0M6wPxxwWnqNvHE4Z5lDJCcJLlobSlVgLCrlVhKXLU4omRQD1oy40XCYRUsIpIqXYmnNfDJEKSuEkXG0vPjaQzDRlMY4jRkMGu6roDzsZqneBUQYTc41S3B2I8oY0q4SUxD5UWPR2uCt6B1prbFai7Wwhs1GSvfTKFvCwxxlcFaL66itTfkxV6yxeOtlO2h1K/vLau9sex/awFUFL/2Lv/UFEXSgB55LQ2vNvz/8O37L9mV4Z0k5spmcWBNrJ/09JTG1SfCCJxcxsdPOcDgsot9jLOO0OVkf51YKn/wGay273YHNOKK1YtQO7wwhpDYwaZqERiXVJBISVpT7xs0kSeLmuGBtRaNRXrpytTUigeqcJERzJuWA34w4bcmpMjrbVhHy91p7X8s71dacWJnnwDRZ5hlCWFBWY71rWjqKXIoEuCzJXtXm21TTvNFa40fNZtrgrL81DJqRxPFRdbDCh6V4hrMQgzRxOudEpF0Vzs9eTC4are6nZKh1AlVY2t/ZTCPOecmHbTzXrTq1AISUyEmMGs82Vo7LijFjEaGgkyIAWjH5CVTlbLvBaMXZ9j6Mhpf9pZdwaLIjLxSG54Le8ZUrV9Zj2/y9TCmFf/An38h/8Xv/CI+HhKqJGKQ7tmrxmUoZQoqi3VNFVlS0egwhJVKq5JJQKLHbnUZo8qZ+FFdKazTXthvpgta3nler1UmW9dgfst8fyGjccaJe1VOns/fyLh2WhPee1JLhulWkrG22NlWJKV25zRGj+Y3v9/NJGD2kzP5wYLReepcrbUjSS46n3Bq9QDlCWPDNmULaACrTZoszFu8ND58/zMOPfCZXPbLi0ciqxwE7uf3R1pVYkkynt4ZwluUjeP8Ax9NOCUJ5rJkLasI8A3I+R9F21zzajwnlXLJs2VrnccyZeQmAYllEPN+6EaOkaXDaOJwdcU7jzVXe9YEf57V/60s+Ba+s5yYhhJ9c1/XVT/a9vuK5RLTW/Fff+Xr+i9/7R7hqpJnkwZOERuUxCihFqZmqQFdF0ZplEZF2ozSJhVoUKAkP827P6B1+HNl4zyGAM1JxctoSi8xHyTiVKP8pbajNocE7TypZpDjgVDXTFaiiHVSdwiixWykKSr41glGbWFbNtJVGE9ZqSw6ZfdKENhIwOnGn0MhqzXkR+hq9Jzc3jFTFHdWPsppZgrQMaONYlsD2+gatQGnD1aPm/e2v5IJUrxLoAFecODSsGVIUvWWtH2j5HAjhCbS+gjf3y/OkVoo7zmpJi4DSInrmneSYauv89t7LAKuW4H10o/A+o5UhlYo2CqsMzmuM1lhzlR/6mR/mv/2e/+oOvMqeH/TAc8lorbn/z2z49tf9bT734c/iFY98FqBBKe5XcD+KF42Kx2JCKUNI0lZfm+NWyTIGkUpiO25Z0h5rVbugZQyBmtFqFBnRDIaKcSMpNjHynGXr0mbBrLYiN6p0c6s4zkE5tDHY4xDncewixVOPymnwUulTBW8cpWYdYsJbyEoC2XYzoqri4nDAGYf1RrY0SuarotKM44jJihhzW3lVvJsw2qGMwWuNUnJfzJm1wDBxS5+4IJIYTUTryhmyBbMwZHhRi6/3ZXgiS8CcxissiySjtYWSBrxzTONV7msaPkcB+Y+Glfu2A2u8wnx4nMOyMG02UMEpzUYPlLKSSqsCAsY4rL3KD73r+ymq8t/9kz/F7jB/jG7TC40X7pnfRbTW/Knv+fNP+r13/qU3AfCKz/l8KBUdHAbFfolootjJxEQNFesq3m7FuSHMGD3irGyBDJITUUqcKbzWVKXRVayTc864poWDqqetl6m1SbOqW4OdOWH9eDrG+QC6ad8AWOvQKZJLZnSeXGV1MHkPeA7zgVKV6BAB17fnpwFRYx9Gq8yyRK5tNpSq8OOWRTcnPqWZl4i1Gt2kQYz1GOeZxknGH24POgp+9p3/nv2844tf87/n3/zgzwKIptBR5hT4wi/4PVwpcEX0zHixlW2ZUfL7cm5B5ygoBuDgPntLjDNXpM+nwnZzlZSlMlXrQOU+Sr6Pt/zYvwAqf+Lb/8hveA28kPmEOZ5hGCzwI8B9yL/3e9d1/WvDMGyAfwQ8gmgu/7F1XT/UfuZrga8CngD+/Lqu3/90f+OFkuN5Mm63wrmdb/3Sv8pXvu7PwJx4PCZCqqKXXDIxZJTKhJRa6x1YpUm1EFNm46RBD5CGtpKowLXtNfbzjs0kLfqKSsmF7dmWF3nPR1M8dRQPWotmq9YQD82zu4CdeGxZoIrbQsylld4tKR/LyrKNyyWJ/Icx7A8zsW3RUr51zimXW9PzutnVtJxQbDmlOQScdrhpIrep783Gc+3aOQ9dvwrn8P53/Ht+/9e/+jedpP3eP/MWcs78oS/7g6cA80QQMXhaXvifvvn7gUJJiT/6h/8vkOGxZSXlgZQfw9n7GSepon3Gf/1bOISnrky9kALO0+V4nkngGYAH1nUNzebmR4G/APxh4LCu6zcNw/A1wEPruv7lZmH8DxH30GvAvwZ++9MJvr+QA8+RpwpAj/2DHSjNOi8si7TylyaLarQh5yre6aeO5kUcMlMixMA4baSqRRHJ0iKdtd66U1J0Gi3OOgbnoQTZc1grn2s7rlxlORCLlIli5iNxaZPnyExVER+qUkVbeTAGjGENgZBktRPTchorSCmdktGHQ0CpitYK5yZSSiwpnJQaUUa0iAFnHX7a8OLzASb4lff9Gr/9zz/8Kfk//PXXfguf+1mfSwqR13/PH/8Ngeyvfsk38LV/5v/JE7Ocd87SDvD2n38bf+RbX/uUv/eFFHCOPKvA8zEPHgaHBJ7/G/CdwBet6/rBYRheAvzQuq6/o612WNf1/9V+5vuBr1/X9d881e/tgecWTxaAHvvOA2CkHoyBUnisJAzSVxKCXBy5ZGo1YhesKrpoGaVIt6bAj0ln7y1GS5L3vmmUK8hqqTsbC3qQLczHH058HKqWx8fUxj3a/+64SqKAvXrrZ3T7iO33xY+yFqmWaSrKWHLOPOgsaM0TpRKa9g5NkjSWhPMTD/grUsEC/t373s8XfOPn3ZVS9Bv+2Lej0Gij+eo3v/4pj+GFGHCOPOuq1jAMV4CfBH4b8L+u6/rjwzB8+tFXqwWfs/bwzwDeftuP3+ApLIyB17fbz/Rc7nmOL9TbA9Df/96/zVf9ib8MapRssXLcnw1rFGM+Y4w4hypDyuL7nfMCRmGqAxtBFdH/OUhp3DmZ7r7qzbHM0+wwjn0nnF4dP/uv/78AWON5+e/9QohPyHZK61M3LlpLsHLwkz/0IwBMzXgvF8gx8bu+5IvlF9r7GMp9POgfYA1PMPgr3Hd6AuBKWHmRvf/Wk2LgAR44+aD/7I+9h1QDX/G3X3PX+l/+2zf9qaf9/gs54DwTfrMrngn4p8D/HfjRdV2n2773oXVdHxqG4X8F/s26rt/V7v/7wFvWdf3HT/V7+4rnE1NK4W992dfzeZ/9e/ndn/+fSP4hAYfHWcWqVHpJYsRYEb+quTQ9HSn9UjVU0eG5zznJhJoC41WIK9jhFGx+6Uf/f1QFr/zG39hn8q6v+1f8zlf9J+DhPT/242hn+Jyv+b2/6XN6x9f9INZojpLOr/qrXwDAz33Dj6K0J+aZisxG/YG/8QfYLfGTeu4ugx5ofiOfsq0WwDAMfw34CPDf0Ldad5V3fsOP8Dte+btvVV2OrgThcVm93JbE/WhcuM+NrDkzOAejbKX+7Q+9TbR2jOYr3vAnOaT5LpxJ517k2SaXXww8vq7rPAzD/cC/Av5n4AuB/3hbcnmzrutXD8PwCuC7uZVcfivw8p5cvhy+5Su+iVe97HP4PV/yhXJH69Qlc9KfwcIvvOMneM3f+MM90HTuGM828Hwu8B3AFeRl+6Z1Xb9hGIZPA94EPAw8CvzRdV0P7Wf+CvCnkJf8X1zX9V883d/ogefO8s1f8Y18wau/iM/773//3T6UzguIT+lW607QA0+nc+/xdIGnKxB2Op1LpweeTqdz6fTA0+l0Lp0eeDqdzqXTA0+n07l0euDpdDqXTg88nU7n0umBp9PpXDo98HQ6nUunB55Op3Pp9MDT6XQunR54Op3OpdMDT6fTuXR64Ol0OpdODzydTufS6YGn0+lcOj3wdDqdS6cHnk6nc+l8wsAzDIMdhuEdwzD89DAM7x6G4X9o93/9MAz/YRiGn2ofr73tZ752GIb3DcPwnmEY/uCdPIFOp/P845mYAX0U+E9vtzAehuEo3v6/rOv6zbc/uFkYvw54Bc3CeBiGp7Uw7nQ6Lyw+4YpnFY52jVfbx9MpxH858D3run50Xdf3A+9DrG46nU4HeIY5nmEYrgzD8FPADviBdV1/vH3rzw3D8DPDMHz7MAwPtfs+A/iV2378KS2Mh2F45zAM73wuOF10Op3L4xkFnnVdn1jX9ZXAdeDzhmH4HODvAr8VeCXwQeBvtoc/mRH6b4gs67q+cV3XV6/r+urund7pvLD4TVW11nWdgR8CXrOu66+2gFSBv8et7dQN4DNv+7HrwM1nf6idTude4ZlUtV48DMPUbt8PfAnwi80v/cgfAn6u3X4z8LphGO4bhuGlwMuBd3xKj7rT6TyveSZVrZcA3zEMw+0Wxt83DMP/ZxiGVyLbqA8AfxpgXdd3D8PwJuDnEQvjP9srWp1O53a6hXGn07kjdAvjTqfznKIHnk6nc+n0wNPpdC6dHng6nc6l0wNPp9O5dHrg6XQ6l04PPJ1O59LpgafT6Vw6PfB0Op1LpweeTqdz6fTA0+l0Lp0eeDqdzqXTA0+n07l0euDpdDqXTg88nU7n0umBp9PpXDo98HQ6nUunB55Op3Pp9MDT6XQunWcceJqp378dhuH72tebYRh+YBiGX2qfH7rtsd07vdPpPCW/mRXPXwB+4bavvwZ467quLwfe2r7+eO/01wBvaA4VnU6nAzxzC+PrwH8OfNttd3858B3t9ncAX3Hb/d07vdPpPCXPdMXzt4CvBupt9336uq4fBGifz9r93Tu90+k8Lc/ESfRLgd26rj/5DH9n907vdDpPyzNxEv19wJcNw/BawALjMAzfBfzqMAwvWdf1g83OeNce373TO53O0/IJVzzrun7tuq7X13V9BEka/+C6rn8C8Uj/yvawrwT+ebvdvdM7nc7T8kxWPE/FNwFvGobhq4BHgT8K3Tu90+l8Yrp3eqfTuSN07/ROp/OcogeeTqdz6fTA0+l0Lp0eeDqdzqXTA0+n07l0euDpdDqXTg88nU7n0umBp9PpXDo98HQ6nUunB55Op3Pp9MDT6XQunR54Op3OpdMDT6fTuXR64Ol0OpdODzydTufS6YGn0+lcOj3wdDqdS6cHnk6nc+n0wNPpdC6dHng6nc6l0wNPp9O5dJ4TLhPDMPwa8BFgf7eP5Q6w5d48L7h3z+1ePS+43HP7Leu6vvjJvvGcCDwAzUP9Sa0wns/cq+cF9+653avnBc+dc+tbrU6nc+n0wNPpdC6d51LgeePdPoA7xL16XnDvntu9el7wHDm350yOp9PpvHB4Lq14Op3OC4QeeDqdzqVz1wPPMAyvGYbhPcMwvG8Yhq+528fzm2UYhm8fhmE3DMPP3XbfZhiGHxiG4Zfa54du+97XtnN9zzAMf/DuHPUnZhiGzxyG4W3DMPzCMAzvHobhL7T774Vzs8MwvGMYhp9u5/Y/tPuf9+cGMAzDlWEY/u0wDN/Xvn7unde6rnftA7gC/DvgZYABfhr47Lt5TJ/EOXwB8Crg5267728AX9Nufw3wP7fbn93O8T7gpe3cr9ztc3iK83oJ8Kp2+0Hgve3474VzGwDfbl8Ffhz4/Hvh3Nrx/iXgu4Hve66+Hu/2iufzgPet6/rL67pm4HuAL7/Lx/SbYl3XHwEOH3f3lwPf0W5/B/AVt93/Peu6fnRd1/cD70Oeg+cc67p+cF3Xd7XbHwZ+AfgM7o1zW9d1De3Lq+1j5R44t2EYrgP/OfBtt939nDuvux14PgP4ldu+vtHue77z6eu6fhDkAgbO2v3Py/MdhuER4HcjK4N74tzaduSngB3wA+u63ivn9reArwbqbfc9587rbgee4Unuu5fr+8+78x2GwQP/GPiL67ouT/fQJ7nvOXtu67o+sa7rK4HrwOcNw/A5T/Pw58W5DcPwpcBuXdeffKY/8iT3Xcp53e3AcwP4zNu+vg7cvEvH8qnkV4dheAlA+7xr9z+vzncYhqtI0Pnf1nX9J+3ue+LcjqzrOgM/BLyG5/+5/T7gy4Zh+ACStvhPh2H4Lp6D53W3A89PAC8fhuGlwzAY4HXAm+/yMX0qeDPwle32VwL//Lb7XzcMw33DMLwUeDnwjrtwfJ+QYRgG4O8Dv7Cu67fc9q174dxePAzD1G7fD3wJ8Is8z89tXdevXdf1+rqujyDX0g+u6/oneC6e13MgA/9apGLy74C/creP55M4/n8IfBB4HHkH+Srg04C3Ar/UPm9ue/xfaef6HuD/fLeP/2nO6/cjy+6fAX6qfbz2Hjm3zwX+bTu3nwP+arv/eX9utx3vF3GrqvWcO68+MtHpdC6du73V6nQ6L0B64Ol0OpdODzydTufS6YGn0+lcOj3wdDqdS6cHnk6nc+n0wNPpdC6d/z/+4CM36atQ8AAAAABJRU5ErkJggg==",
283
      "text/plain": [
284
       "<Figure size 432x288 with 1 Axes>"
285
      ]
286
     },
287
     "metadata": {
288
      "needs_background": "light"
289
     },
290
     "output_type": "display_data"
291
    }
292
   ],
293
   "source": [
294
    "import skimage\n",
295
    "from skimage.io import imread, imshow\n",
296
    "import numpy as np\n",
297
    "\n",
298
    "img = imread(r'F:\\Leuk study re-designed\\C-NMC\\Low imbalance\\Test\\enhanched\\hem\\4.bmp')\n",
299
    "imshow(img)\n",
300
    "print(np.max(img), np.min(img))"
301
   ]
302
  },
303
  {
304
   "cell_type": "markdown",
305
   "id": "2e9f7d4e",
306
   "metadata": {},
307
   "source": [
308
    "# All models.\n",
309
    "## One used at a time. so commented out rest of them."
310
   ]
311
  },
312
  {
313
   "cell_type": "code",
314
   "execution_count": 44,
315
   "id": "5e2e1ec8",
316
   "metadata": {},
317
   "outputs": [
318
    {
319
     "name": "stdout",
320
     "output_type": "stream",
321
     "text": [
322
      "Model: \"functional_7\"\n",
323
      "__________________________________________________________________________________________________\n",
324
      "Layer (type)                    Output Shape         Param #     Connected to                     \n",
325
      "==================================================================================================\n",
326
      "input_4 (InputLayer)            [(None, 210, 210, 3) 0                                            \n",
327
      "__________________________________________________________________________________________________\n",
328
      "conv1_pad (ZeroPadding2D)       (None, 216, 216, 3)  0           input_4[0][0]                    \n",
329
      "__________________________________________________________________________________________________\n",
330
      "conv1_conv (Conv2D)             (None, 105, 105, 64) 9472        conv1_pad[0][0]                  \n",
331
      "__________________________________________________________________________________________________\n",
332
      "conv1_bn (BatchNormalization)   (None, 105, 105, 64) 256         conv1_conv[0][0]                 \n",
333
      "__________________________________________________________________________________________________\n",
334
      "conv1_relu (Activation)         (None, 105, 105, 64) 0           conv1_bn[0][0]                   \n",
335
      "__________________________________________________________________________________________________\n",
336
      "pool1_pad (ZeroPadding2D)       (None, 107, 107, 64) 0           conv1_relu[0][0]                 \n",
337
      "__________________________________________________________________________________________________\n",
338
      "pool1_pool (MaxPooling2D)       (None, 53, 53, 64)   0           pool1_pad[0][0]                  \n",
339
      "__________________________________________________________________________________________________\n",
340
      "conv2_block1_1_conv (Conv2D)    (None, 53, 53, 64)   4160        pool1_pool[0][0]                 \n",
341
      "__________________________________________________________________________________________________\n",
342
      "conv2_block1_1_bn (BatchNormali (None, 53, 53, 64)   256         conv2_block1_1_conv[0][0]        \n",
343
      "__________________________________________________________________________________________________\n",
344
      "conv2_block1_1_relu (Activation (None, 53, 53, 64)   0           conv2_block1_1_bn[0][0]          \n",
345
      "__________________________________________________________________________________________________\n",
346
      "conv2_block1_2_conv (Conv2D)    (None, 53, 53, 64)   36928       conv2_block1_1_relu[0][0]        \n",
347
      "__________________________________________________________________________________________________\n",
348
      "conv2_block1_2_bn (BatchNormali (None, 53, 53, 64)   256         conv2_block1_2_conv[0][0]        \n",
349
      "__________________________________________________________________________________________________\n",
350
      "conv2_block1_2_relu (Activation (None, 53, 53, 64)   0           conv2_block1_2_bn[0][0]          \n",
351
      "__________________________________________________________________________________________________\n",
352
      "conv2_block1_0_conv (Conv2D)    (None, 53, 53, 256)  16640       pool1_pool[0][0]                 \n",
353
      "__________________________________________________________________________________________________\n",
354
      "conv2_block1_3_conv (Conv2D)    (None, 53, 53, 256)  16640       conv2_block1_2_relu[0][0]        \n",
355
      "__________________________________________________________________________________________________\n",
356
      "conv2_block1_0_bn (BatchNormali (None, 53, 53, 256)  1024        conv2_block1_0_conv[0][0]        \n",
357
      "__________________________________________________________________________________________________\n",
358
      "conv2_block1_3_bn (BatchNormali (None, 53, 53, 256)  1024        conv2_block1_3_conv[0][0]        \n",
359
      "__________________________________________________________________________________________________\n",
360
      "conv2_block1_add (Add)          (None, 53, 53, 256)  0           conv2_block1_0_bn[0][0]          \n",
361
      "                                                                 conv2_block1_3_bn[0][0]          \n",
362
      "__________________________________________________________________________________________________\n",
363
      "conv2_block1_out (Activation)   (None, 53, 53, 256)  0           conv2_block1_add[0][0]           \n",
364
      "__________________________________________________________________________________________________\n",
365
      "conv2_block2_1_conv (Conv2D)    (None, 53, 53, 64)   16448       conv2_block1_out[0][0]           \n",
366
      "__________________________________________________________________________________________________\n",
367
      "conv2_block2_1_bn (BatchNormali (None, 53, 53, 64)   256         conv2_block2_1_conv[0][0]        \n",
368
      "__________________________________________________________________________________________________\n",
369
      "conv2_block2_1_relu (Activation (None, 53, 53, 64)   0           conv2_block2_1_bn[0][0]          \n",
370
      "__________________________________________________________________________________________________\n",
371
      "conv2_block2_2_conv (Conv2D)    (None, 53, 53, 64)   36928       conv2_block2_1_relu[0][0]        \n",
372
      "__________________________________________________________________________________________________\n",
373
      "conv2_block2_2_bn (BatchNormali (None, 53, 53, 64)   256         conv2_block2_2_conv[0][0]        \n",
374
      "__________________________________________________________________________________________________\n",
375
      "conv2_block2_2_relu (Activation (None, 53, 53, 64)   0           conv2_block2_2_bn[0][0]          \n",
376
      "__________________________________________________________________________________________________\n",
377
      "conv2_block2_3_conv (Conv2D)    (None, 53, 53, 256)  16640       conv2_block2_2_relu[0][0]        \n",
378
      "__________________________________________________________________________________________________\n",
379
      "conv2_block2_3_bn (BatchNormali (None, 53, 53, 256)  1024        conv2_block2_3_conv[0][0]        \n",
380
      "__________________________________________________________________________________________________\n",
381
      "conv2_block2_add (Add)          (None, 53, 53, 256)  0           conv2_block1_out[0][0]           \n",
382
      "                                                                 conv2_block2_3_bn[0][0]          \n",
383
      "__________________________________________________________________________________________________\n",
384
      "conv2_block2_out (Activation)   (None, 53, 53, 256)  0           conv2_block2_add[0][0]           \n",
385
      "__________________________________________________________________________________________________\n",
386
      "conv2_block3_1_conv (Conv2D)    (None, 53, 53, 64)   16448       conv2_block2_out[0][0]           \n",
387
      "__________________________________________________________________________________________________\n",
388
      "conv2_block3_1_bn (BatchNormali (None, 53, 53, 64)   256         conv2_block3_1_conv[0][0]        \n",
389
      "__________________________________________________________________________________________________\n",
390
      "conv2_block3_1_relu (Activation (None, 53, 53, 64)   0           conv2_block3_1_bn[0][0]          \n",
391
      "__________________________________________________________________________________________________\n",
392
      "conv2_block3_2_conv (Conv2D)    (None, 53, 53, 64)   36928       conv2_block3_1_relu[0][0]        \n",
393
      "__________________________________________________________________________________________________\n",
394
      "conv2_block3_2_bn (BatchNormali (None, 53, 53, 64)   256         conv2_block3_2_conv[0][0]        \n",
395
      "__________________________________________________________________________________________________\n",
396
      "conv2_block3_2_relu (Activation (None, 53, 53, 64)   0           conv2_block3_2_bn[0][0]          \n",
397
      "__________________________________________________________________________________________________\n",
398
      "conv2_block3_3_conv (Conv2D)    (None, 53, 53, 256)  16640       conv2_block3_2_relu[0][0]        \n",
399
      "__________________________________________________________________________________________________\n",
400
      "conv2_block3_3_bn (BatchNormali (None, 53, 53, 256)  1024        conv2_block3_3_conv[0][0]        \n",
401
      "__________________________________________________________________________________________________\n",
402
      "conv2_block3_add (Add)          (None, 53, 53, 256)  0           conv2_block2_out[0][0]           \n",
403
      "                                                                 conv2_block3_3_bn[0][0]          \n",
404
      "__________________________________________________________________________________________________\n",
405
      "conv2_block3_out (Activation)   (None, 53, 53, 256)  0           conv2_block3_add[0][0]           \n",
406
      "__________________________________________________________________________________________________\n",
407
      "conv3_block1_1_conv (Conv2D)    (None, 27, 27, 128)  32896       conv2_block3_out[0][0]           \n",
408
      "__________________________________________________________________________________________________\n",
409
      "conv3_block1_1_bn (BatchNormali (None, 27, 27, 128)  512         conv3_block1_1_conv[0][0]        \n",
410
      "__________________________________________________________________________________________________\n",
411
      "conv3_block1_1_relu (Activation (None, 27, 27, 128)  0           conv3_block1_1_bn[0][0]          \n",
412
      "__________________________________________________________________________________________________\n",
413
      "conv3_block1_2_conv (Conv2D)    (None, 27, 27, 128)  147584      conv3_block1_1_relu[0][0]        \n",
414
      "__________________________________________________________________________________________________\n",
415
      "conv3_block1_2_bn (BatchNormali (None, 27, 27, 128)  512         conv3_block1_2_conv[0][0]        \n",
416
      "__________________________________________________________________________________________________\n",
417
      "conv3_block1_2_relu (Activation (None, 27, 27, 128)  0           conv3_block1_2_bn[0][0]          \n",
418
      "__________________________________________________________________________________________________\n",
419
      "conv3_block1_0_conv (Conv2D)    (None, 27, 27, 512)  131584      conv2_block3_out[0][0]           \n",
420
      "__________________________________________________________________________________________________\n",
421
      "conv3_block1_3_conv (Conv2D)    (None, 27, 27, 512)  66048       conv3_block1_2_relu[0][0]        \n",
422
      "__________________________________________________________________________________________________\n",
423
      "conv3_block1_0_bn (BatchNormali (None, 27, 27, 512)  2048        conv3_block1_0_conv[0][0]        \n",
424
      "__________________________________________________________________________________________________\n",
425
      "conv3_block1_3_bn (BatchNormali (None, 27, 27, 512)  2048        conv3_block1_3_conv[0][0]        \n",
426
      "__________________________________________________________________________________________________\n",
427
      "conv3_block1_add (Add)          (None, 27, 27, 512)  0           conv3_block1_0_bn[0][0]          \n",
428
      "                                                                 conv3_block1_3_bn[0][0]          \n",
429
      "__________________________________________________________________________________________________\n",
430
      "conv3_block1_out (Activation)   (None, 27, 27, 512)  0           conv3_block1_add[0][0]           \n",
431
      "__________________________________________________________________________________________________\n",
432
      "conv3_block2_1_conv (Conv2D)    (None, 27, 27, 128)  65664       conv3_block1_out[0][0]           \n",
433
      "__________________________________________________________________________________________________\n",
434
      "conv3_block2_1_bn (BatchNormali (None, 27, 27, 128)  512         conv3_block2_1_conv[0][0]        \n",
435
      "__________________________________________________________________________________________________\n",
436
      "conv3_block2_1_relu (Activation (None, 27, 27, 128)  0           conv3_block2_1_bn[0][0]          \n",
437
      "__________________________________________________________________________________________________\n",
438
      "conv3_block2_2_conv (Conv2D)    (None, 27, 27, 128)  147584      conv3_block2_1_relu[0][0]        \n",
439
      "__________________________________________________________________________________________________\n",
440
      "conv3_block2_2_bn (BatchNormali (None, 27, 27, 128)  512         conv3_block2_2_conv[0][0]        \n",
441
      "__________________________________________________________________________________________________\n",
442
      "conv3_block2_2_relu (Activation (None, 27, 27, 128)  0           conv3_block2_2_bn[0][0]          \n",
443
      "__________________________________________________________________________________________________\n",
444
      "conv3_block2_3_conv (Conv2D)    (None, 27, 27, 512)  66048       conv3_block2_2_relu[0][0]        \n",
445
      "__________________________________________________________________________________________________\n",
446
      "conv3_block2_3_bn (BatchNormali (None, 27, 27, 512)  2048        conv3_block2_3_conv[0][0]        \n",
447
      "__________________________________________________________________________________________________\n",
448
      "conv3_block2_add (Add)          (None, 27, 27, 512)  0           conv3_block1_out[0][0]           \n",
449
      "                                                                 conv3_block2_3_bn[0][0]          \n",
450
      "__________________________________________________________________________________________________\n",
451
      "conv3_block2_out (Activation)   (None, 27, 27, 512)  0           conv3_block2_add[0][0]           \n",
452
      "__________________________________________________________________________________________________\n",
453
      "conv3_block3_1_conv (Conv2D)    (None, 27, 27, 128)  65664       conv3_block2_out[0][0]           \n",
454
      "__________________________________________________________________________________________________\n",
455
      "conv3_block3_1_bn (BatchNormali (None, 27, 27, 128)  512         conv3_block3_1_conv[0][0]        \n",
456
      "__________________________________________________________________________________________________\n",
457
      "conv3_block3_1_relu (Activation (None, 27, 27, 128)  0           conv3_block3_1_bn[0][0]          \n",
458
      "__________________________________________________________________________________________________\n",
459
      "conv3_block3_2_conv (Conv2D)    (None, 27, 27, 128)  147584      conv3_block3_1_relu[0][0]        \n",
460
      "__________________________________________________________________________________________________\n",
461
      "conv3_block3_2_bn (BatchNormali (None, 27, 27, 128)  512         conv3_block3_2_conv[0][0]        \n",
462
      "__________________________________________________________________________________________________\n",
463
      "conv3_block3_2_relu (Activation (None, 27, 27, 128)  0           conv3_block3_2_bn[0][0]          \n",
464
      "__________________________________________________________________________________________________\n",
465
      "conv3_block3_3_conv (Conv2D)    (None, 27, 27, 512)  66048       conv3_block3_2_relu[0][0]        \n",
466
      "__________________________________________________________________________________________________\n",
467
      "conv3_block3_3_bn (BatchNormali (None, 27, 27, 512)  2048        conv3_block3_3_conv[0][0]        \n",
468
      "__________________________________________________________________________________________________\n",
469
      "conv3_block3_add (Add)          (None, 27, 27, 512)  0           conv3_block2_out[0][0]           \n",
470
      "                                                                 conv3_block3_3_bn[0][0]          \n",
471
      "__________________________________________________________________________________________________\n",
472
      "conv3_block3_out (Activation)   (None, 27, 27, 512)  0           conv3_block3_add[0][0]           \n",
473
      "__________________________________________________________________________________________________\n",
474
      "conv3_block4_1_conv (Conv2D)    (None, 27, 27, 128)  65664       conv3_block3_out[0][0]           \n",
475
      "__________________________________________________________________________________________________\n",
476
      "conv3_block4_1_bn (BatchNormali (None, 27, 27, 128)  512         conv3_block4_1_conv[0][0]        \n",
477
      "__________________________________________________________________________________________________\n",
478
      "conv3_block4_1_relu (Activation (None, 27, 27, 128)  0           conv3_block4_1_bn[0][0]          \n",
479
      "__________________________________________________________________________________________________\n",
480
      "conv3_block4_2_conv (Conv2D)    (None, 27, 27, 128)  147584      conv3_block4_1_relu[0][0]        \n",
481
      "__________________________________________________________________________________________________\n",
482
      "conv3_block4_2_bn (BatchNormali (None, 27, 27, 128)  512         conv3_block4_2_conv[0][0]        \n",
483
      "__________________________________________________________________________________________________\n",
484
      "conv3_block4_2_relu (Activation (None, 27, 27, 128)  0           conv3_block4_2_bn[0][0]          \n",
485
      "__________________________________________________________________________________________________\n",
486
      "conv3_block4_3_conv (Conv2D)    (None, 27, 27, 512)  66048       conv3_block4_2_relu[0][0]        \n",
487
      "__________________________________________________________________________________________________\n",
488
      "conv3_block4_3_bn (BatchNormali (None, 27, 27, 512)  2048        conv3_block4_3_conv[0][0]        \n",
489
      "__________________________________________________________________________________________________\n",
490
      "conv3_block4_add (Add)          (None, 27, 27, 512)  0           conv3_block3_out[0][0]           \n",
491
      "                                                                 conv3_block4_3_bn[0][0]          \n",
492
      "__________________________________________________________________________________________________\n",
493
      "conv3_block4_out (Activation)   (None, 27, 27, 512)  0           conv3_block4_add[0][0]           \n",
494
      "__________________________________________________________________________________________________\n",
495
      "conv4_block1_1_conv (Conv2D)    (None, 14, 14, 256)  131328      conv3_block4_out[0][0]           \n",
496
      "__________________________________________________________________________________________________\n",
497
      "conv4_block1_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block1_1_conv[0][0]        \n",
498
      "__________________________________________________________________________________________________\n",
499
      "conv4_block1_1_relu (Activation (None, 14, 14, 256)  0           conv4_block1_1_bn[0][0]          \n",
500
      "__________________________________________________________________________________________________\n",
501
      "conv4_block1_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block1_1_relu[0][0]        \n",
502
      "__________________________________________________________________________________________________\n",
503
      "conv4_block1_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block1_2_conv[0][0]        \n",
504
      "__________________________________________________________________________________________________\n",
505
      "conv4_block1_2_relu (Activation (None, 14, 14, 256)  0           conv4_block1_2_bn[0][0]          \n",
506
      "__________________________________________________________________________________________________\n",
507
      "conv4_block1_0_conv (Conv2D)    (None, 14, 14, 1024) 525312      conv3_block4_out[0][0]           \n",
508
      "__________________________________________________________________________________________________\n",
509
      "conv4_block1_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block1_2_relu[0][0]        \n",
510
      "__________________________________________________________________________________________________\n",
511
      "conv4_block1_0_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block1_0_conv[0][0]        \n",
512
      "__________________________________________________________________________________________________\n",
513
      "conv4_block1_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block1_3_conv[0][0]        \n",
514
      "__________________________________________________________________________________________________\n",
515
      "conv4_block1_add (Add)          (None, 14, 14, 1024) 0           conv4_block1_0_bn[0][0]          \n",
516
      "                                                                 conv4_block1_3_bn[0][0]          \n",
517
      "__________________________________________________________________________________________________\n",
518
      "conv4_block1_out (Activation)   (None, 14, 14, 1024) 0           conv4_block1_add[0][0]           \n",
519
      "__________________________________________________________________________________________________\n",
520
      "conv4_block2_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block1_out[0][0]           \n",
521
      "__________________________________________________________________________________________________\n",
522
      "conv4_block2_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block2_1_conv[0][0]        \n",
523
      "__________________________________________________________________________________________________\n",
524
      "conv4_block2_1_relu (Activation (None, 14, 14, 256)  0           conv4_block2_1_bn[0][0]          \n",
525
      "__________________________________________________________________________________________________\n",
526
      "conv4_block2_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block2_1_relu[0][0]        \n",
527
      "__________________________________________________________________________________________________\n",
528
      "conv4_block2_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block2_2_conv[0][0]        \n",
529
      "__________________________________________________________________________________________________\n",
530
      "conv4_block2_2_relu (Activation (None, 14, 14, 256)  0           conv4_block2_2_bn[0][0]          \n",
531
      "__________________________________________________________________________________________________\n",
532
      "conv4_block2_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block2_2_relu[0][0]        \n",
533
      "__________________________________________________________________________________________________\n",
534
      "conv4_block2_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block2_3_conv[0][0]        \n",
535
      "__________________________________________________________________________________________________\n",
536
      "conv4_block2_add (Add)          (None, 14, 14, 1024) 0           conv4_block1_out[0][0]           \n",
537
      "                                                                 conv4_block2_3_bn[0][0]          \n",
538
      "__________________________________________________________________________________________________\n",
539
      "conv4_block2_out (Activation)   (None, 14, 14, 1024) 0           conv4_block2_add[0][0]           \n",
540
      "__________________________________________________________________________________________________\n",
541
      "conv4_block3_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block2_out[0][0]           \n",
542
      "__________________________________________________________________________________________________\n",
543
      "conv4_block3_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block3_1_conv[0][0]        \n",
544
      "__________________________________________________________________________________________________\n",
545
      "conv4_block3_1_relu (Activation (None, 14, 14, 256)  0           conv4_block3_1_bn[0][0]          \n",
546
      "__________________________________________________________________________________________________\n",
547
      "conv4_block3_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block3_1_relu[0][0]        \n",
548
      "__________________________________________________________________________________________________\n",
549
      "conv4_block3_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block3_2_conv[0][0]        \n",
550
      "__________________________________________________________________________________________________\n",
551
      "conv4_block3_2_relu (Activation (None, 14, 14, 256)  0           conv4_block3_2_bn[0][0]          \n",
552
      "__________________________________________________________________________________________________\n",
553
      "conv4_block3_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block3_2_relu[0][0]        \n",
554
      "__________________________________________________________________________________________________\n",
555
      "conv4_block3_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block3_3_conv[0][0]        \n",
556
      "__________________________________________________________________________________________________\n",
557
      "conv4_block3_add (Add)          (None, 14, 14, 1024) 0           conv4_block2_out[0][0]           \n",
558
      "                                                                 conv4_block3_3_bn[0][0]          \n",
559
      "__________________________________________________________________________________________________\n",
560
      "conv4_block3_out (Activation)   (None, 14, 14, 1024) 0           conv4_block3_add[0][0]           \n",
561
      "__________________________________________________________________________________________________\n",
562
      "conv4_block4_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block3_out[0][0]           \n",
563
      "__________________________________________________________________________________________________\n",
564
      "conv4_block4_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block4_1_conv[0][0]        \n",
565
      "__________________________________________________________________________________________________\n",
566
      "conv4_block4_1_relu (Activation (None, 14, 14, 256)  0           conv4_block4_1_bn[0][0]          \n",
567
      "__________________________________________________________________________________________________\n",
568
      "conv4_block4_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block4_1_relu[0][0]        \n",
569
      "__________________________________________________________________________________________________\n",
570
      "conv4_block4_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block4_2_conv[0][0]        \n",
571
      "__________________________________________________________________________________________________\n",
572
      "conv4_block4_2_relu (Activation (None, 14, 14, 256)  0           conv4_block4_2_bn[0][0]          \n",
573
      "__________________________________________________________________________________________________\n",
574
      "conv4_block4_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block4_2_relu[0][0]        \n",
575
      "__________________________________________________________________________________________________\n",
576
      "conv4_block4_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block4_3_conv[0][0]        \n",
577
      "__________________________________________________________________________________________________\n",
578
      "conv4_block4_add (Add)          (None, 14, 14, 1024) 0           conv4_block3_out[0][0]           \n",
579
      "                                                                 conv4_block4_3_bn[0][0]          \n",
580
      "__________________________________________________________________________________________________\n",
581
      "conv4_block4_out (Activation)   (None, 14, 14, 1024) 0           conv4_block4_add[0][0]           \n",
582
      "__________________________________________________________________________________________________\n",
583
      "conv4_block5_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block4_out[0][0]           \n",
584
      "__________________________________________________________________________________________________\n",
585
      "conv4_block5_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block5_1_conv[0][0]        \n",
586
      "__________________________________________________________________________________________________\n",
587
      "conv4_block5_1_relu (Activation (None, 14, 14, 256)  0           conv4_block5_1_bn[0][0]          \n",
588
      "__________________________________________________________________________________________________\n",
589
      "conv4_block5_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block5_1_relu[0][0]        \n",
590
      "__________________________________________________________________________________________________\n",
591
      "conv4_block5_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block5_2_conv[0][0]        \n",
592
      "__________________________________________________________________________________________________\n",
593
      "conv4_block5_2_relu (Activation (None, 14, 14, 256)  0           conv4_block5_2_bn[0][0]          \n",
594
      "__________________________________________________________________________________________________\n",
595
      "conv4_block5_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block5_2_relu[0][0]        \n",
596
      "__________________________________________________________________________________________________\n",
597
      "conv4_block5_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block5_3_conv[0][0]        \n",
598
      "__________________________________________________________________________________________________\n",
599
      "conv4_block5_add (Add)          (None, 14, 14, 1024) 0           conv4_block4_out[0][0]           \n",
600
      "                                                                 conv4_block5_3_bn[0][0]          \n",
601
      "__________________________________________________________________________________________________\n",
602
      "conv4_block5_out (Activation)   (None, 14, 14, 1024) 0           conv4_block5_add[0][0]           \n",
603
      "__________________________________________________________________________________________________\n",
604
      "conv4_block6_1_conv (Conv2D)    (None, 14, 14, 256)  262400      conv4_block5_out[0][0]           \n",
605
      "__________________________________________________________________________________________________\n",
606
      "conv4_block6_1_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block6_1_conv[0][0]        \n",
607
      "__________________________________________________________________________________________________\n",
608
      "conv4_block6_1_relu (Activation (None, 14, 14, 256)  0           conv4_block6_1_bn[0][0]          \n",
609
      "__________________________________________________________________________________________________\n",
610
      "conv4_block6_2_conv (Conv2D)    (None, 14, 14, 256)  590080      conv4_block6_1_relu[0][0]        \n",
611
      "__________________________________________________________________________________________________\n",
612
      "conv4_block6_2_bn (BatchNormali (None, 14, 14, 256)  1024        conv4_block6_2_conv[0][0]        \n",
613
      "__________________________________________________________________________________________________\n",
614
      "conv4_block6_2_relu (Activation (None, 14, 14, 256)  0           conv4_block6_2_bn[0][0]          \n",
615
      "__________________________________________________________________________________________________\n",
616
      "conv4_block6_3_conv (Conv2D)    (None, 14, 14, 1024) 263168      conv4_block6_2_relu[0][0]        \n",
617
      "__________________________________________________________________________________________________\n",
618
      "conv4_block6_3_bn (BatchNormali (None, 14, 14, 1024) 4096        conv4_block6_3_conv[0][0]        \n",
619
      "__________________________________________________________________________________________________\n",
620
      "conv4_block6_add (Add)          (None, 14, 14, 1024) 0           conv4_block5_out[0][0]           \n",
621
      "                                                                 conv4_block6_3_bn[0][0]          \n",
622
      "__________________________________________________________________________________________________\n",
623
      "conv4_block6_out (Activation)   (None, 14, 14, 1024) 0           conv4_block6_add[0][0]           \n",
624
      "__________________________________________________________________________________________________\n",
625
      "conv5_block1_1_conv (Conv2D)    (None, 7, 7, 512)    524800      conv4_block6_out[0][0]           \n",
626
      "__________________________________________________________________________________________________\n",
627
      "conv5_block1_1_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block1_1_conv[0][0]        \n",
628
      "__________________________________________________________________________________________________\n",
629
      "conv5_block1_1_relu (Activation (None, 7, 7, 512)    0           conv5_block1_1_bn[0][0]          \n",
630
      "__________________________________________________________________________________________________\n",
631
      "conv5_block1_2_conv (Conv2D)    (None, 7, 7, 512)    2359808     conv5_block1_1_relu[0][0]        \n",
632
      "__________________________________________________________________________________________________\n",
633
      "conv5_block1_2_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block1_2_conv[0][0]        \n",
634
      "__________________________________________________________________________________________________\n",
635
      "conv5_block1_2_relu (Activation (None, 7, 7, 512)    0           conv5_block1_2_bn[0][0]          \n",
636
      "__________________________________________________________________________________________________\n",
637
      "conv5_block1_0_conv (Conv2D)    (None, 7, 7, 2048)   2099200     conv4_block6_out[0][0]           \n",
638
      "__________________________________________________________________________________________________\n",
639
      "conv5_block1_3_conv (Conv2D)    (None, 7, 7, 2048)   1050624     conv5_block1_2_relu[0][0]        \n",
640
      "__________________________________________________________________________________________________\n",
641
      "conv5_block1_0_bn (BatchNormali (None, 7, 7, 2048)   8192        conv5_block1_0_conv[0][0]        \n",
642
      "__________________________________________________________________________________________________\n",
643
      "conv5_block1_3_bn (BatchNormali (None, 7, 7, 2048)   8192        conv5_block1_3_conv[0][0]        \n",
644
      "__________________________________________________________________________________________________\n",
645
      "conv5_block1_add (Add)          (None, 7, 7, 2048)   0           conv5_block1_0_bn[0][0]          \n",
646
      "                                                                 conv5_block1_3_bn[0][0]          \n",
647
      "__________________________________________________________________________________________________\n",
648
      "conv5_block1_out (Activation)   (None, 7, 7, 2048)   0           conv5_block1_add[0][0]           \n",
649
      "__________________________________________________________________________________________________\n",
650
      "conv5_block2_1_conv (Conv2D)    (None, 7, 7, 512)    1049088     conv5_block1_out[0][0]           \n",
651
      "__________________________________________________________________________________________________\n",
652
      "conv5_block2_1_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block2_1_conv[0][0]        \n",
653
      "__________________________________________________________________________________________________\n",
654
      "conv5_block2_1_relu (Activation (None, 7, 7, 512)    0           conv5_block2_1_bn[0][0]          \n",
655
      "__________________________________________________________________________________________________\n",
656
      "conv5_block2_2_conv (Conv2D)    (None, 7, 7, 512)    2359808     conv5_block2_1_relu[0][0]        \n",
657
      "__________________________________________________________________________________________________\n",
658
      "conv5_block2_2_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block2_2_conv[0][0]        \n",
659
      "__________________________________________________________________________________________________\n",
660
      "conv5_block2_2_relu (Activation (None, 7, 7, 512)    0           conv5_block2_2_bn[0][0]          \n",
661
      "__________________________________________________________________________________________________\n",
662
      "conv5_block2_3_conv (Conv2D)    (None, 7, 7, 2048)   1050624     conv5_block2_2_relu[0][0]        \n",
663
      "__________________________________________________________________________________________________\n",
664
      "conv5_block2_3_bn (BatchNormali (None, 7, 7, 2048)   8192        conv5_block2_3_conv[0][0]        \n",
665
      "__________________________________________________________________________________________________\n",
666
      "conv5_block2_add (Add)          (None, 7, 7, 2048)   0           conv5_block1_out[0][0]           \n",
667
      "                                                                 conv5_block2_3_bn[0][0]          \n",
668
      "__________________________________________________________________________________________________\n",
669
      "conv5_block2_out (Activation)   (None, 7, 7, 2048)   0           conv5_block2_add[0][0]           \n",
670
      "__________________________________________________________________________________________________\n",
671
      "conv5_block3_1_conv (Conv2D)    (None, 7, 7, 512)    1049088     conv5_block2_out[0][0]           \n",
672
      "__________________________________________________________________________________________________\n",
673
      "conv5_block3_1_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block3_1_conv[0][0]        \n",
674
      "__________________________________________________________________________________________________\n",
675
      "conv5_block3_1_relu (Activation (None, 7, 7, 512)    0           conv5_block3_1_bn[0][0]          \n",
676
      "__________________________________________________________________________________________________\n",
677
      "conv5_block3_2_conv (Conv2D)    (None, 7, 7, 512)    2359808     conv5_block3_1_relu[0][0]        \n",
678
      "__________________________________________________________________________________________________\n",
679
      "conv5_block3_2_bn (BatchNormali (None, 7, 7, 512)    2048        conv5_block3_2_conv[0][0]        \n",
680
      "__________________________________________________________________________________________________\n",
681
      "conv5_block3_2_relu (Activation (None, 7, 7, 512)    0           conv5_block3_2_bn[0][0]          \n",
682
      "__________________________________________________________________________________________________\n",
683
      "conv5_block3_3_conv (Conv2D)    (None, 7, 7, 2048)   1050624     conv5_block3_2_relu[0][0]        \n",
684
      "__________________________________________________________________________________________________\n",
685
      "conv5_block3_3_bn (BatchNormali (None, 7, 7, 2048)   8192        conv5_block3_3_conv[0][0]        \n",
686
      "__________________________________________________________________________________________________\n",
687
      "conv5_block3_add (Add)          (None, 7, 7, 2048)   0           conv5_block2_out[0][0]           \n",
688
      "                                                                 conv5_block3_3_bn[0][0]          \n",
689
      "__________________________________________________________________________________________________\n",
690
      "conv5_block3_out (Activation)   (None, 7, 7, 2048)   0           conv5_block3_add[0][0]           \n",
691
      "__________________________________________________________________________________________________\n",
692
      "global_average_pooling2d_3 (Glo (None, 2048)         0           conv5_block3_out[0][0]           \n",
693
      "__________________________________________________________________________________________________\n",
694
      "dense_3 (Dense)                 (None, 1)            2049        global_average_pooling2d_3[0][0] \n",
695
      "==================================================================================================\n",
696
      "Total params: 23,589,761\n",
697
      "Trainable params: 23,536,641\n",
698
      "Non-trainable params: 53,120\n",
699
      "__________________________________________________________________________________________________\n"
700
     ]
701
    },
702
    {
703
     "data": {
704
      "text/plain": [
705
       "'\\ndef get_model():\\n    base_model = tf.keras.applications.EfficientNetB0(\\n        include_top=False,\\n        weights=\\'imagenet\\',\\n        input_tensor=None,\\n        input_shape=(height,width,3), \\n        pooling=None,\\n        classes=1,\\n        classifier_activation=\"sigmoid\",\\n    )\\n    x = base_model.output\\n    x = GlobalAveragePooling2D()(x)\\n    x = Dropout(0.5)(x)\\n    prediction = Dense(1, activation=tf.nn.sigmoid)(x)\\n\\n    model = Model(inputs=base_model.input,outputs=prediction)\\n    #model.compile(loss=[mcc_loss], optimizer=\\'adam\\', metrics=[\\'accuracy\\'])\\n    return model\\nmodel = get_model()\\nmodel.summary()\\n'"
706
      ]
707
     },
708
     "execution_count": 44,
709
     "metadata": {},
710
     "output_type": "execute_result"
711
    }
712
   ],
713
   "source": [
714
    "from keras.models import Model, Sequential\n",
715
    "from keras.layers.core import Dense, Dropout, Activation, Flatten\n",
716
    "from keras.layers.convolutional import Conv2D, MaxPooling2D\n",
717
    "#from keras.layers.normalization import BatchNormalization\n",
718
    "from keras.layers import Input, GlobalAveragePooling2D\n",
719
    "\n",
720
    "'''\n",
721
    "import tensorflow as tf\n",
722
    "base_model = tf.keras.applications.VGG16(  \n",
723
    "    include_top=False,\n",
724
    "    weights='imagenet',\n",
725
    "    input_tensor=None,\n",
726
    "    input_shape=(height,width,3),\n",
727
    "    pooling=None,\n",
728
    "    classes=1,\n",
729
    "    classifier_activation=\"sigmoid\",\n",
730
    ")\n",
731
    "x = base_model.output\n",
732
    "x = Flatten()(x)\n",
733
    "x = Dense(4096, activation=tf.nn.sigmoid)(x)\n",
734
    "x = Dense(4096, activation=tf.nn.sigmoid)(x)\n",
735
    "prediction = Dense(1, activation=tf.nn.sigmoid)(x)\n",
736
    "\n",
737
    "model = Model(inputs=base_model.input,outputs=prediction)\n",
738
    "\n",
739
    "model.summary()\n",
740
    "'''\n",
741
    "\n",
742
    "\n",
743
    "#'''\n",
744
    "import tensorflow as tf\n",
745
    "base_model = tf.keras.applications.ResNet50(\n",
746
    "    include_top=False,\n",
747
    "    weights='imagenet',\n",
748
    "    input_tensor=None,\n",
749
    "    input_shape=(height,width,3),\n",
750
    "    pooling=None,\n",
751
    "    classes=1,\n",
752
    "    classifier_activation=\"sigmoid\",\n",
753
    ")\n",
754
    "x = base_model.output\n",
755
    "x = GlobalAveragePooling2D()(x)\n",
756
    "prediction = Dense(1, activation=tf.nn.sigmoid)(x)\n",
757
    "\n",
758
    "model = Model(inputs=base_model.input,outputs=prediction)\n",
759
    "\n",
760
    "model.summary()\n",
761
    "#'''\n",
762
    "\n",
763
    "'''\n",
764
    "from keras.applications import DenseNet121\n",
765
    "\n",
766
    "base_model = DenseNet121(weights=None, \n",
767
    "                         include_top=False, \n",
768
    "                         input_tensor=None,\n",
769
    "                         input_shape=(height,width,3),\n",
770
    "                        )\n",
771
    "x = base_model.output\n",
772
    "x = GlobalAveragePooling2D()(x)\n",
773
    "# x = Dense(1024, kernel_regularizer=l2(0.0001), bias_regularizer=l2(0.0001))(x)\n",
774
    "# x = BatchNormalization()(x)\n",
775
    "# x = Activation(\"relu\")(x)\n",
776
    "# x = Dropout(0.5)(x)\n",
777
    "# x = Dense(512, kernel_regularizer=l2(0.0001), bias_regularizer=l2(0.0001))(x)\n",
778
    "# x = BatchNormalization()(x)\n",
779
    "# x = Activation(\"relu\")(x)\n",
780
    "# x = Dropout(0.5)(x)\n",
781
    "prediction = Dense(1, activation=tf.nn.sigmoid)(x)\n",
782
    "\n",
783
    "model = Model(inputs=base_model.input,outputs=prediction)\n",
784
    "model.summary()\n",
785
    "'''\n",
786
    "\n",
787
    "\n",
788
    "'''\n",
789
    "def get_model():\n",
790
    "    base_model = tf.keras.applications.EfficientNetB0(\n",
791
    "        include_top=False,\n",
792
    "        weights='imagenet',\n",
793
    "        input_tensor=None,\n",
794
    "        input_shape=(height,width,3), \n",
795
    "        pooling=None,\n",
796
    "        classes=1,\n",
797
    "        classifier_activation=\"sigmoid\",\n",
798
    "    )\n",
799
    "    x = base_model.output\n",
800
    "    x = GlobalAveragePooling2D()(x)\n",
801
    "    x = Dropout(0.5)(x)\n",
802
    "    prediction = Dense(1, activation=tf.nn.sigmoid)(x)\n",
803
    "\n",
804
    "    model = Model(inputs=base_model.input,outputs=prediction)\n",
805
    "    #model.compile(loss=[mcc_loss], optimizer='adam', metrics=['accuracy'])\n",
806
    "    return model\n",
807
    "model = get_model()\n",
808
    "model.summary()\n",
809
    "'''"
810
   ]
811
  },
812
  {
813
   "cell_type": "markdown",
814
   "id": "b2dfd497",
815
   "metadata": {},
816
   "source": [
817
    "# F-1 loss"
818
   ]
819
  },
820
  {
821
   "cell_type": "code",
822
   "execution_count": 17,
823
   "id": "290b5242",
824
   "metadata": {},
825
   "outputs": [],
826
   "source": [
827
    "\n",
828
    "def f1_loss(y_true, y_pred):\n",
829
    "    \n",
830
    "    tp = K.sum(K.cast(y_true*y_pred, 'float'), axis=0)\n",
831
    "    tn = K.sum(K.cast((1-y_true)*(1-y_pred), 'float'), axis=0)\n",
832
    "    fp = K.sum(K.cast((1-y_true)*y_pred, 'float'), axis=0)\n",
833
    "    fn = K.sum(K.cast(y_true*(1-y_pred), 'float'), axis=0)\n",
834
    "\n",
835
    "    p = tp / (tp + fp + K.epsilon())\n",
836
    "    r = tp / (tp + fn + K.epsilon())\n",
837
    "\n",
838
    "    f1 = 2*p*r / (p+r+K.epsilon())\n",
839
    "    f1 = tf.where(tf.math.is_nan(f1), tf.zeros_like(f1), f1)\n",
840
    "    return 1 - K.mean(f1)\n"
841
   ]
842
  },
843
  {
844
   "cell_type": "markdown",
845
   "id": "43d25f4b",
846
   "metadata": {},
847
   "source": [
848
    "# MCC loss"
849
   ]
850
  },
851
  {
852
   "cell_type": "code",
853
   "execution_count": 18,
854
   "id": "1069e782",
855
   "metadata": {},
856
   "outputs": [],
857
   "source": [
858
    "\n",
859
    "import tensorflow as tf\n",
860
    "from tensorflow.keras import backend as K\n",
861
    "\n",
862
    "def mcc_loss(y_true, y_pred):\n",
863
    "    \n",
864
    "    tp = K.sum(K.cast(y_true*y_pred, 'float'), axis=0)\n",
865
    "    tn = K.sum(K.cast((1-y_true)*(1-y_pred), 'float'), axis=0)\n",
866
    "    fp = K.sum(K.cast((1-y_true)*y_pred, 'float'), axis=0) * 1e2\n",
867
    "    fn = K.sum(K.cast(y_true*(1-y_pred), 'float'), axis=0) / 1e2\n",
868
    "    \n",
869
    "    up = tp*tn - fp*fn\n",
870
    "    down = K.sqrt((tp+fp) * (tp+fn) * (tn+fp) * (tn+fn))\n",
871
    "    \n",
872
    "    mcc = up / (down + K.epsilon())\n",
873
    "    mcc = tf.where(tf.math.is_nan(mcc), tf.zeros_like(mcc), mcc)\n",
874
    "    \n",
875
    "    return 1 - K.mean(mcc)\n"
876
   ]
877
  },
878
  {
879
   "cell_type": "markdown",
880
   "id": "156d427a",
881
   "metadata": {},
882
   "source": [
883
    "# Compile.\n",
884
    "### Different loss used in this work. At a time commneted out rest of them while keepeing one intact"
885
   ]
886
  },
887
  {
888
   "cell_type": "code",
889
   "execution_count": 20,
890
   "id": "9d862622",
891
   "metadata": {},
892
   "outputs": [],
893
   "source": [
894
    "import tensorflow as tf\n",
895
    "import tensorflow_addons as tfa\n",
896
    "\n",
897
    "adam_opt = tf.keras.optimizers.Adam(learning_rate=1e-3, beta_1=0.0, beta_2=0.0, amsgrad=True)\n",
898
    "\n",
899
    "\n",
900
    "model.compile(optimizer= adam_opt,\n",
901
    "              #loss = 'binary_crossentropy',\n",
902
    "              #loss = [binary_focal_loss(alpha=.25, gamma=2)],\n",
903
    "              #loss = [f1_loss],\n",
904
    "              #loss = [mcc_loss],\n",
905
    "              loss = [mod_mcc_loss],\n",
906
    "              #loss = tfa.losses.SigmoidFocalCrossEntropy(),\n",
907
    "              metrics=['accuracy'])"
908
   ]
909
  },
910
  {
911
   "cell_type": "code",
912
   "execution_count": 21,
913
   "id": "8da0e744",
914
   "metadata": {},
915
   "outputs": [],
916
   "source": [
917
    "#import keras\n",
918
    "import tensorflow.keras as keras\n",
919
    "#from tensorflow.keras.callbacks import ModelCheckpoint\n",
920
    "import tensorflow as tf  \n",
921
    "best_model_name = best_model_name\n",
922
    "callbacks = [\n",
923
    "    tf.keras.callbacks.ModelCheckpoint(best_model_name, monitor='accuracy', save_best_only=True, mode='max'),\n",
924
    "    tf.keras.callbacks.ReduceLROnPlateau(monitor='accuracy', factor=factor, verbose=1, patience=patience, mode='max')]\n",
925
    "    #tf.keras.callbacks.EarlyStopping(patience=5, verbose=1)]\n"
926
   ]
927
  },
928
  {
929
   "cell_type": "markdown",
930
   "id": "d67e9722",
931
   "metadata": {},
932
   "source": [
933
    "# Run"
934
   ]
935
  },
936
  {
937
   "cell_type": "code",
938
   "execution_count": 24,
939
   "id": "57b1c1bd",
940
   "metadata": {
941
    "scrolled": true
942
   },
943
   "outputs": [
944
    {
945
     "name": "stdout",
946
     "output_type": "stream",
947
     "text": [
948
      "Epoch 1/200\n",
949
      "  2/342 [..............................] - ETA: 23s - loss: 0.6329 - accuracy: 0.6500WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0519s vs `on_train_batch_end` time: 0.0868s). Check your callbacks.\n",
950
      "342/342 [==============================] - 51s 148ms/step - loss: 0.7674 - accuracy: 0.6222\n",
951
      "Epoch 2/200\n",
952
      "342/342 [==============================] - 49s 143ms/step - loss: 0.6815 - accuracy: 0.6664\n",
953
      "Epoch 3/200\n",
954
      "342/342 [==============================] - 49s 143ms/step - loss: 0.6903 - accuracy: 0.6978\n",
955
      "Epoch 4/200\n",
956
      "342/342 [==============================] - 49s 142ms/step - loss: 0.6576 - accuracy: 0.7254\n",
957
      "Epoch 5/200\n",
958
      "342/342 [==============================] - 49s 143ms/step - loss: 0.6633 - accuracy: 0.7356\n",
959
      "Epoch 6/200\n",
960
      "342/342 [==============================] - 49s 143ms/step - loss: 0.6417 - accuracy: 0.8013\n",
961
      "Epoch 7/200\n",
962
      "342/342 [==============================] - 48s 142ms/step - loss: 0.6549 - accuracy: 0.8379\n",
963
      "Epoch 8/200\n",
964
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6456 - accuracy: 0.8142\n",
965
      "Epoch 9/200\n",
966
      "342/342 [==============================] - 48s 141ms/step - loss: 0.6334 - accuracy: 0.8417\n",
967
      "Epoch 10/200\n",
968
      "342/342 [==============================] - 49s 142ms/step - loss: 0.6313 - accuracy: 0.8825\n",
969
      "Epoch 11/200\n",
970
      "342/342 [==============================] - 48s 141ms/step - loss: 0.5993 - accuracy: 0.9203\n",
971
      "Epoch 12/200\n",
972
      "342/342 [==============================] - 48s 141ms/step - loss: 0.6228 - accuracy: 0.9285\n",
973
      "Epoch 13/200\n",
974
      "342/342 [==============================] - 48s 141ms/step - loss: 0.5877 - accuracy: 0.9294\n",
975
      "Epoch 14/200\n",
976
      "342/342 [==============================] - 48s 140ms/step - loss: 0.5961 - accuracy: 0.9326\n",
977
      "Epoch 15/200\n",
978
      "342/342 [==============================] - 49s 142ms/step - loss: 0.6311 - accuracy: 0.9431\n",
979
      "Epoch 16/200\n",
980
      "342/342 [==============================] - 47s 136ms/step - loss: 0.5540 - accuracy: 0.9408\n",
981
      "Epoch 17/200\n",
982
      "342/342 [==============================] - 48s 141ms/step - loss: 0.6013 - accuracy: 0.9502\n",
983
      "Epoch 18/200\n",
984
      "342/342 [==============================] - 48s 140ms/step - loss: 0.6180 - accuracy: 0.9631\n",
985
      "Epoch 19/200\n",
986
      "342/342 [==============================] - 48s 141ms/step - loss: 0.5460 - accuracy: 0.9695\n",
987
      "Epoch 20/200\n",
988
      "342/342 [==============================] - 47s 136ms/step - loss: 0.6411 - accuracy: 0.9552\n",
989
      "Epoch 21/200\n",
990
      "342/342 [==============================] - ETA: 0s - loss: 0.5763 - accuracy: 0.9516\n",
991
      "Epoch 00021: ReduceLROnPlateau reducing learning rate to 0.0009300000441726298.\n",
992
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5763 - accuracy: 0.9516\n",
993
      "Epoch 22/200\n",
994
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5753 - accuracy: 0.9519\n",
995
      "Epoch 23/200\n",
996
      "342/342 [==============================] - 48s 140ms/step - loss: 0.6080 - accuracy: 0.9722\n",
997
      "Epoch 24/200\n",
998
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6114 - accuracy: 0.9719\n",
999
      "Epoch 25/200\n",
1000
      "342/342 [==============================] - ETA: 0s - loss: 0.5840 - accuracy: 0.9519\n",
1001
      "Epoch 00025: ReduceLROnPlateau reducing learning rate to 0.0008649000356672332.\n",
1002
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5840 - accuracy: 0.9519\n",
1003
      "Epoch 26/200\n",
1004
      "342/342 [==============================] - 51s 149ms/step - loss: 0.5803 - accuracy: 0.9783\n",
1005
      "Epoch 27/200\n",
1006
      "342/342 [==============================] - 49s 143ms/step - loss: 0.6248 - accuracy: 0.9830\n",
1007
      "Epoch 28/200\n",
1008
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5770 - accuracy: 0.9739\n",
1009
      "Epoch 29/200\n",
1010
      "342/342 [==============================] - ETA: 0s - loss: 0.5838 - accuracy: 0.9760\n",
1011
      "Epoch 00029: ReduceLROnPlateau reducing learning rate to 0.0008043570077279583.\n",
1012
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5838 - accuracy: 0.9760\n",
1013
      "Epoch 30/200\n",
1014
      "342/342 [==============================] - 49s 142ms/step - loss: 0.5849 - accuracy: 0.9862\n",
1015
      "Epoch 31/200\n",
1016
      "342/342 [==============================] - 47s 136ms/step - loss: 0.5952 - accuracy: 0.9751\n",
1017
      "Epoch 32/200\n",
1018
      "342/342 [==============================] - ETA: 0s - loss: 0.6415 - accuracy: 0.9748\n",
1019
      "Epoch 00032: ReduceLROnPlateau reducing learning rate to 0.00074805200798437.\n",
1020
      "342/342 [==============================] - 47s 136ms/step - loss: 0.6415 - accuracy: 0.9748\n",
1021
      "Epoch 33/200\n",
1022
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5303 - accuracy: 0.9859\n",
1023
      "Epoch 34/200\n",
1024
      "342/342 [==============================] - ETA: 0s - loss: 0.5758 - accuracy: 0.9845\n",
1025
      "Epoch 00034: ReduceLROnPlateau reducing learning rate to 0.000695688386913389.\n",
1026
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5758 - accuracy: 0.9845\n",
1027
      "Epoch 35/200\n",
1028
      "342/342 [==============================] - 49s 142ms/step - loss: 0.6066 - accuracy: 0.9900\n",
1029
      "Epoch 36/200\n",
1030
      "342/342 [==============================] - 47s 136ms/step - loss: 0.5631 - accuracy: 0.9889\n",
1031
      "Epoch 37/200\n",
1032
      "342/342 [==============================] - ETA: 0s - loss: 0.5736 - accuracy: 0.9886\n",
1033
      "Epoch 00037: ReduceLROnPlateau reducing learning rate to 0.000646990173845552.\n",
1034
      "342/342 [==============================] - 47s 136ms/step - loss: 0.5736 - accuracy: 0.9886\n",
1035
      "Epoch 38/200\n",
1036
      "342/342 [==============================] - 48s 141ms/step - loss: 0.5873 - accuracy: 0.9912\n",
1037
      "Epoch 39/200\n",
1038
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5699 - accuracy: 0.9906\n",
1039
      "Epoch 40/200\n",
1040
      "342/342 [==============================] - ETA: 0s - loss: 0.6498 - accuracy: 0.9824\n",
1041
      "Epoch 00040: ReduceLROnPlateau reducing learning rate to 0.0006017008860362694.\n",
1042
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6498 - accuracy: 0.9824\n",
1043
      "Epoch 41/200\n",
1044
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5493 - accuracy: 0.9909\n",
1045
      "Epoch 42/200\n",
1046
      "342/342 [==============================] - ETA: 0s - loss: 0.5305 - accuracy: 0.9912\n",
1047
      "Epoch 00042: ReduceLROnPlateau reducing learning rate to 0.0005595818505389616.\n",
1048
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5305 - accuracy: 0.9912\n",
1049
      "Epoch 43/200\n",
1050
      "342/342 [==============================] - 46s 134ms/step - loss: 0.6390 - accuracy: 0.9906\n",
1051
      "Epoch 44/200\n",
1052
      "342/342 [==============================] - 48s 141ms/step - loss: 0.5812 - accuracy: 0.9933\n",
1053
      "Epoch 45/200\n",
1054
      "342/342 [==============================] - 48s 141ms/step - loss: 0.5819 - accuracy: 0.9941\n",
1055
      "Epoch 46/200\n",
1056
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6271 - accuracy: 0.9921\n",
1057
      "Epoch 47/200\n",
1058
      "342/342 [==============================] - ETA: 0s - loss: 0.5801 - accuracy: 0.9921\n",
1059
      "Epoch 00047: ReduceLROnPlateau reducing learning rate to 0.0005204111215425655.\n",
1060
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5801 - accuracy: 0.9921\n",
1061
      "Epoch 48/200\n",
1062
      "342/342 [==============================] - 48s 141ms/step - loss: 0.5415 - accuracy: 0.9947\n",
1063
      "Epoch 49/200\n",
1064
      "342/342 [==============================] - 48s 140ms/step - loss: 0.6375 - accuracy: 0.9950\n",
1065
      "Epoch 50/200\n",
1066
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5692 - accuracy: 0.9921\n",
1067
      "Epoch 51/200\n",
1068
      "342/342 [==============================] - ETA: 0s - loss: 0.5811 - accuracy: 0.9933\n",
1069
      "Epoch 00051: ReduceLROnPlateau reducing learning rate to 0.0004839823435759172.\n",
1070
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5811 - accuracy: 0.9933\n",
1071
      "Epoch 52/200\n",
1072
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5360 - accuracy: 0.9938\n",
1073
      "Epoch 53/200\n",
1074
      "342/342 [==============================] - 49s 143ms/step - loss: 0.6123 - accuracy: 0.9959\n",
1075
      "Epoch 54/200\n",
1076
      "342/342 [==============================] - 47s 137ms/step - loss: 0.5932 - accuracy: 0.9950\n",
1077
      "Epoch 55/200\n",
1078
      "342/342 [==============================] - ETA: 0s - loss: 0.5604 - accuracy: 0.9947\n",
1079
      "Epoch 00055: ReduceLROnPlateau reducing learning rate to 0.0004501035876455717.\n",
1080
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5604 - accuracy: 0.9947\n",
1081
      "Epoch 56/200\n",
1082
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6532 - accuracy: 0.9944\n",
1083
      "Epoch 57/200\n",
1084
      "342/342 [==============================] - ETA: 0s - loss: 0.5657 - accuracy: 0.9950\n",
1085
      "Epoch 00057: ReduceLROnPlateau reducing learning rate to 0.0004185963497729972.\n",
1086
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5657 - accuracy: 0.9950\n"
1087
     ]
1088
    },
1089
    {
1090
     "name": "stdout",
1091
     "output_type": "stream",
1092
     "text": [
1093
      "Epoch 58/200\n",
1094
      "342/342 [==============================] - 48s 141ms/step - loss: 0.5807 - accuracy: 0.9962\n",
1095
      "Epoch 59/200\n",
1096
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5389 - accuracy: 0.9953\n",
1097
      "Epoch 60/200\n",
1098
      "342/342 [==============================] - ETA: 0s - loss: 0.6054 - accuracy: 0.9959\n",
1099
      "Epoch 00060: ReduceLROnPlateau reducing learning rate to 0.00038929460366489367.\n",
1100
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6054 - accuracy: 0.9959\n",
1101
      "Epoch 61/200\n",
1102
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5919 - accuracy: 0.9959\n",
1103
      "Epoch 62/200\n",
1104
      "342/342 [==============================] - ETA: 0s - loss: 0.5593 - accuracy: 0.9950\n",
1105
      "Epoch 00062: ReduceLROnPlateau reducing learning rate to 0.00036204398871632294.\n",
1106
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5593 - accuracy: 0.9950\n",
1107
      "Epoch 63/200\n",
1108
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6148 - accuracy: 0.9947\n",
1109
      "Epoch 64/200\n",
1110
      "342/342 [==============================] - ETA: 0s - loss: 0.6254 - accuracy: 0.9938\n",
1111
      "Epoch 00064: ReduceLROnPlateau reducing learning rate to 0.00033670091681415216.\n",
1112
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6254 - accuracy: 0.9938\n",
1113
      "Epoch 65/200\n",
1114
      "342/342 [==============================] - 49s 142ms/step - loss: 0.5527 - accuracy: 0.9965\n",
1115
      "Epoch 66/200\n",
1116
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5415 - accuracy: 0.9959\n",
1117
      "Epoch 67/200\n",
1118
      "342/342 [==============================] - 48s 142ms/step - loss: 0.6175 - accuracy: 0.9968\n",
1119
      "Epoch 68/200\n",
1120
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5800 - accuracy: 0.9953\n",
1121
      "Epoch 69/200\n",
1122
      "342/342 [==============================] - ETA: 0s - loss: 0.6305 - accuracy: 0.9968\n",
1123
      "Epoch 00069: ReduceLROnPlateau reducing learning rate to 0.00031313184153987096.\n",
1124
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6305 - accuracy: 0.9968\n",
1125
      "Epoch 70/200\n",
1126
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5605 - accuracy: 0.9959\n",
1127
      "Epoch 71/200\n",
1128
      "342/342 [==============================] - ETA: 0s - loss: 0.5719 - accuracy: 0.9962\n",
1129
      "Epoch 00071: ReduceLROnPlateau reducing learning rate to 0.00029121260857209566.\n",
1130
      "342/342 [==============================] - 47s 137ms/step - loss: 0.5719 - accuracy: 0.9962\n",
1131
      "Epoch 72/200\n",
1132
      "342/342 [==============================] - 47s 138ms/step - loss: 0.6055 - accuracy: 0.9965\n",
1133
      "Epoch 73/200\n",
1134
      "342/342 [==============================] - ETA: 0s - loss: 0.6207 - accuracy: 0.9938\n",
1135
      "Epoch 00073: ReduceLROnPlateau reducing learning rate to 0.0002708277248893865.\n",
1136
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6207 - accuracy: 0.9938\n",
1137
      "Epoch 74/200\n",
1138
      "342/342 [==============================] - 46s 135ms/step - loss: 0.4942 - accuracy: 0.9959\n",
1139
      "Epoch 75/200\n",
1140
      "342/342 [==============================] - ETA: 0s - loss: 0.6064 - accuracy: 0.9956\n",
1141
      "Epoch 00075: ReduceLROnPlateau reducing learning rate to 0.0002518697903724387.\n",
1142
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6064 - accuracy: 0.9956\n",
1143
      "Epoch 76/200\n",
1144
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5715 - accuracy: 0.9950\n",
1145
      "Epoch 77/200\n",
1146
      "342/342 [==============================] - 49s 142ms/step - loss: 0.6250 - accuracy: 0.9988\n",
1147
      "Epoch 78/200\n",
1148
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5984 - accuracy: 0.9959\n",
1149
      "Epoch 79/200\n",
1150
      "342/342 [==============================] - ETA: 0s - loss: 0.5333 - accuracy: 0.9944\n",
1151
      "Epoch 00079: ReduceLROnPlateau reducing learning rate to 0.0002342389023397118.\n",
1152
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5333 - accuracy: 0.9944\n",
1153
      "Epoch 80/200\n",
1154
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6062 - accuracy: 0.9956\n",
1155
      "Epoch 81/200\n",
1156
      "342/342 [==============================] - ETA: 0s - loss: 0.5971 - accuracy: 0.9971\n",
1157
      "Epoch 00081: ReduceLROnPlateau reducing learning rate to 0.0002178421818825882.\n",
1158
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5971 - accuracy: 0.9971\n",
1159
      "Epoch 82/200\n",
1160
      "342/342 [==============================] - 46s 135ms/step - loss: 0.4872 - accuracy: 0.9956\n",
1161
      "Epoch 83/200\n",
1162
      "342/342 [==============================] - ETA: 0s - loss: 0.6575 - accuracy: 0.9968\n",
1163
      "Epoch 00083: ReduceLROnPlateau reducing learning rate to 0.00020259323253412733.\n",
1164
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6575 - accuracy: 0.9968\n",
1165
      "Epoch 84/200\n",
1166
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5559 - accuracy: 0.9971\n",
1167
      "Epoch 85/200\n",
1168
      "342/342 [==============================] - ETA: 0s - loss: 0.6099 - accuracy: 0.9988\n",
1169
      "Epoch 00085: ReduceLROnPlateau reducing learning rate to 0.0001884117072040681.\n",
1170
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6099 - accuracy: 0.9988\n",
1171
      "Epoch 86/200\n",
1172
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6109 - accuracy: 0.9971\n",
1173
      "Epoch 87/200\n",
1174
      "342/342 [==============================] - ETA: 0s - loss: 0.5543 - accuracy: 0.9965\n",
1175
      "Epoch 00087: ReduceLROnPlateau reducing learning rate to 0.000175222888647113.\n",
1176
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5543 - accuracy: 0.9965\n",
1177
      "Epoch 88/200\n",
1178
      "342/342 [==============================] - 47s 136ms/step - loss: 0.6213 - accuracy: 0.9950\n",
1179
      "Epoch 89/200\n",
1180
      "342/342 [==============================] - ETA: 0s - loss: 0.5786 - accuracy: 0.9941\n",
1181
      "Epoch 00089: ReduceLROnPlateau reducing learning rate to 0.00016295728346449323.\n",
1182
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5786 - accuracy: 0.9941\n",
1183
      "Epoch 90/200\n",
1184
      "342/342 [==============================] - 46s 135ms/step - loss: 0.4831 - accuracy: 0.9965\n",
1185
      "Epoch 91/200\n",
1186
      "342/342 [==============================] - ETA: 0s - loss: 0.6563 - accuracy: 0.9947\n",
1187
      "Epoch 00091: ReduceLROnPlateau reducing learning rate to 0.00015155027023865843.\n",
1188
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6563 - accuracy: 0.9947\n",
1189
      "Epoch 92/200\n",
1190
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6076 - accuracy: 0.9947\n",
1191
      "Epoch 93/200\n",
1192
      "342/342 [==============================] - ETA: 0s - loss: 0.5848 - accuracy: 0.9944\n",
1193
      "Epoch 00093: ReduceLROnPlateau reducing learning rate to 0.00014094174766796642.\n",
1194
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5848 - accuracy: 0.9944\n",
1195
      "Epoch 94/200\n",
1196
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5464 - accuracy: 0.9956\n",
1197
      "Epoch 95/200\n",
1198
      "342/342 [==============================] - ETA: 0s - loss: 0.5533 - accuracy: 0.9971\n",
1199
      "Epoch 00095: ReduceLROnPlateau reducing learning rate to 0.0001310758233012166.\n",
1200
      "342/342 [==============================] - 47s 136ms/step - loss: 0.5533 - accuracy: 0.9971\n",
1201
      "Epoch 96/200\n",
1202
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5850 - accuracy: 0.9956\n",
1203
      "Epoch 97/200\n",
1204
      "342/342 [==============================] - ETA: 0s - loss: 0.6047 - accuracy: 0.9956\n",
1205
      "Epoch 00097: ReduceLROnPlateau reducing learning rate to 0.00012190051580546424.\n",
1206
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6047 - accuracy: 0.9956\n",
1207
      "Epoch 98/200\n",
1208
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5832 - accuracy: 0.9956\n",
1209
      "Epoch 99/200\n",
1210
      "342/342 [==============================] - ETA: 0s - loss: 0.5785 - accuracy: 0.9959\n",
1211
      "Epoch 00099: ReduceLROnPlateau reducing learning rate to 0.00011336747753375676.\n",
1212
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5785 - accuracy: 0.9959\n",
1213
      "Epoch 100/200\n",
1214
      "342/342 [==============================] - 46s 134ms/step - loss: 0.5855 - accuracy: 0.9956\n",
1215
      "Epoch 101/200\n",
1216
      "342/342 [==============================] - ETA: 0s - loss: 0.5663 - accuracy: 0.9944\n",
1217
      "Epoch 00101: ReduceLROnPlateau reducing learning rate to 0.00010543175092607272.\n",
1218
      "342/342 [==============================] - 46s 134ms/step - loss: 0.5663 - accuracy: 0.9944\n",
1219
      "Epoch 102/200\n",
1220
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5869 - accuracy: 0.9941\n",
1221
      "Epoch 103/200\n",
1222
      "342/342 [==============================] - ETA: 0s - loss: 0.6173 - accuracy: 0.9950\n",
1223
      "Epoch 00103: ReduceLROnPlateau reducing learning rate to 9.805153167690151e-05.\n",
1224
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6173 - accuracy: 0.9950\n",
1225
      "Epoch 104/200\n"
1226
     ]
1227
    },
1228
    {
1229
     "name": "stdout",
1230
     "output_type": "stream",
1231
     "text": [
1232
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5801 - accuracy: 0.9962\n",
1233
      "Epoch 105/200\n",
1234
      "342/342 [==============================] - ETA: 0s - loss: 0.5454 - accuracy: 0.9962\n",
1235
      "Epoch 00105: ReduceLROnPlateau reducing learning rate to 9.118792513618246e-05.\n",
1236
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5454 - accuracy: 0.9962\n",
1237
      "Epoch 106/200\n",
1238
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5975 - accuracy: 0.9953\n",
1239
      "Epoch 107/200\n",
1240
      "342/342 [==============================] - ETA: 0s - loss: 0.5664 - accuracy: 0.9959\n",
1241
      "Epoch 00107: ReduceLROnPlateau reducing learning rate to 8.480477037664969e-05.\n",
1242
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5664 - accuracy: 0.9959\n",
1243
      "Epoch 108/200\n",
1244
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5857 - accuracy: 0.9947\n",
1245
      "Epoch 109/200\n",
1246
      "342/342 [==============================] - ETA: 0s - loss: 0.5626 - accuracy: 0.9965\n",
1247
      "Epoch 00109: ReduceLROnPlateau reducing learning rate to 7.886843719461468e-05.\n",
1248
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5626 - accuracy: 0.9965\n",
1249
      "Epoch 110/200\n",
1250
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6236 - accuracy: 0.9938\n",
1251
      "Epoch 111/200\n",
1252
      "342/342 [==============================] - ETA: 0s - loss: 0.5707 - accuracy: 0.9950\n",
1253
      "Epoch 00111: ReduceLROnPlateau reducing learning rate to 7.334764341067057e-05.\n",
1254
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5707 - accuracy: 0.9950\n",
1255
      "Epoch 112/200\n",
1256
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5782 - accuracy: 0.9950\n",
1257
      "Epoch 113/200\n",
1258
      "342/342 [==============================] - ETA: 0s - loss: 0.5855 - accuracy: 0.9959\n",
1259
      "Epoch 00113: ReduceLROnPlateau reducing learning rate to 6.821330600359943e-05.\n",
1260
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5855 - accuracy: 0.9959\n",
1261
      "Epoch 114/200\n",
1262
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5725 - accuracy: 0.9968\n",
1263
      "Epoch 115/200\n",
1264
      "342/342 [==============================] - ETA: 0s - loss: 0.5336 - accuracy: 0.9965\n",
1265
      "Epoch 00115: ReduceLROnPlateau reducing learning rate to 6.343837194435765e-05.\n",
1266
      "342/342 [==============================] - 46s 134ms/step - loss: 0.5336 - accuracy: 0.9965\n",
1267
      "Epoch 116/200\n",
1268
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6764 - accuracy: 0.9968\n",
1269
      "Epoch 117/200\n",
1270
      "342/342 [==============================] - ETA: 0s - loss: 0.5405 - accuracy: 0.9965\n",
1271
      "Epoch 00117: ReduceLROnPlateau reducing learning rate to 5.8997682863264345e-05.\n",
1272
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5405 - accuracy: 0.9965\n",
1273
      "Epoch 118/200\n",
1274
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5800 - accuracy: 0.9953\n",
1275
      "Epoch 119/200\n",
1276
      "342/342 [==============================] - ETA: 0s - loss: 0.6764 - accuracy: 0.9965\n",
1277
      "Epoch 00119: ReduceLROnPlateau reducing learning rate to 5.4867846483830365e-05.\n",
1278
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6764 - accuracy: 0.9965\n",
1279
      "Epoch 120/200\n",
1280
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5718 - accuracy: 0.9938\n",
1281
      "Epoch 121/200\n",
1282
      "342/342 [==============================] - ETA: 0s - loss: 0.5338 - accuracy: 0.9968\n",
1283
      "Epoch 00121: ReduceLROnPlateau reducing learning rate to 5.10270979066263e-05.\n",
1284
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5338 - accuracy: 0.9968\n",
1285
      "Epoch 122/200\n",
1286
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6051 - accuracy: 0.9956\n",
1287
      "Epoch 123/200\n",
1288
      "342/342 [==============================] - ETA: 0s - loss: 0.5229 - accuracy: 0.9950\n",
1289
      "Epoch 00123: ReduceLROnPlateau reducing learning rate to 4.7455201492994096e-05.\n",
1290
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5229 - accuracy: 0.9950\n",
1291
      "Epoch 124/200\n",
1292
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6954 - accuracy: 0.9968\n",
1293
      "Epoch 125/200\n",
1294
      "342/342 [==============================] - ETA: 0s - loss: 0.5319 - accuracy: 0.9924\n",
1295
      "Epoch 00125: ReduceLROnPlateau reducing learning rate to 4.4133335832157174e-05.\n",
1296
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5319 - accuracy: 0.9924\n",
1297
      "Epoch 126/200\n",
1298
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5411 - accuracy: 0.9959\n",
1299
      "Epoch 127/200\n",
1300
      "342/342 [==============================] - ETA: 0s - loss: 0.6232 - accuracy: 0.9944\n",
1301
      "Epoch 00127: ReduceLROnPlateau reducing learning rate to 4.104400239157258e-05.\n",
1302
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6232 - accuracy: 0.9944\n",
1303
      "Epoch 128/200\n",
1304
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6304 - accuracy: 0.9950\n",
1305
      "Epoch 129/200\n",
1306
      "342/342 [==============================] - ETA: 0s - loss: 0.5195 - accuracy: 0.9968\n",
1307
      "Epoch 00129: ReduceLROnPlateau reducing learning rate to 3.8170920634001964e-05.\n",
1308
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5195 - accuracy: 0.9968\n",
1309
      "Epoch 130/200\n",
1310
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5674 - accuracy: 0.9977\n",
1311
      "Epoch 131/200\n",
1312
      "342/342 [==============================] - ETA: 0s - loss: 0.5650 - accuracy: 0.9971\n",
1313
      "Epoch 00131: ReduceLROnPlateau reducing learning rate to 3.549895696778549e-05.\n",
1314
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5650 - accuracy: 0.9971\n",
1315
      "Epoch 132/200\n",
1316
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5582 - accuracy: 0.9956\n",
1317
      "Epoch 133/200\n",
1318
      "342/342 [==============================] - ETA: 0s - loss: 0.5665 - accuracy: 0.9968\n",
1319
      "Epoch 00133: ReduceLROnPlateau reducing learning rate to 3.301403001387371e-05.\n",
1320
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5665 - accuracy: 0.9968\n",
1321
      "Epoch 134/200\n",
1322
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5742 - accuracy: 0.9930\n",
1323
      "Epoch 135/200\n",
1324
      "342/342 [==============================] - ETA: 0s - loss: 0.5264 - accuracy: 0.9971\n",
1325
      "Epoch 00135: ReduceLROnPlateau reducing learning rate to 3.0703046322742016e-05.\n",
1326
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5264 - accuracy: 0.9971\n",
1327
      "Epoch 136/200\n",
1328
      "342/342 [==============================] - 46s 135ms/step - loss: 0.7154 - accuracy: 0.9944\n",
1329
      "Epoch 137/200\n",
1330
      "342/342 [==============================] - ETA: 0s - loss: 0.5466 - accuracy: 0.9962\n",
1331
      "Epoch 00137: ReduceLROnPlateau reducing learning rate to 2.855383270798484e-05.\n",
1332
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5466 - accuracy: 0.9962\n",
1333
      "Epoch 138/200\n",
1334
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5790 - accuracy: 0.9933\n",
1335
      "Epoch 139/200\n",
1336
      "342/342 [==============================] - ETA: 0s - loss: 0.6184 - accuracy: 0.9950\n",
1337
      "Epoch 00139: ReduceLROnPlateau reducing learning rate to 2.6555065196589568e-05.\n",
1338
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6184 - accuracy: 0.9950\n",
1339
      "Epoch 140/200\n",
1340
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5457 - accuracy: 0.9941\n",
1341
      "Epoch 141/200\n",
1342
      "342/342 [==============================] - ETA: 0s - loss: 0.6246 - accuracy: 0.9962\n",
1343
      "Epoch 00141: ReduceLROnPlateau reducing learning rate to 2.469620982083143e-05.\n",
1344
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6246 - accuracy: 0.9962\n",
1345
      "Epoch 142/200\n",
1346
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5979 - accuracy: 0.9959\n",
1347
      "Epoch 143/200\n",
1348
      "342/342 [==============================] - ETA: 0s - loss: 0.5420 - accuracy: 0.9941\n",
1349
      "Epoch 00143: ReduceLROnPlateau reducing learning rate to 2.296747525178944e-05.\n",
1350
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5420 - accuracy: 0.9941\n",
1351
      "Epoch 144/200\n",
1352
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5778 - accuracy: 0.9953\n",
1353
      "Epoch 145/200\n",
1354
      "342/342 [==============================] - ETA: 0s - loss: 0.5012 - accuracy: 0.9965\n",
1355
      "Epoch 00145: ReduceLROnPlateau reducing learning rate to 2.135975189958117e-05.\n",
1356
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5012 - accuracy: 0.9965\n",
1357
      "Epoch 146/200\n",
1358
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6818 - accuracy: 0.9947\n",
1359
      "Epoch 147/200\n",
1360
      "342/342 [==============================] - ETA: 0s - loss: 0.5655 - accuracy: 0.9953\n",
1361
      "Epoch 00147: ReduceLROnPlateau reducing learning rate to 1.986456962185912e-05.\n",
1362
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5655 - accuracy: 0.9953\n"
1363
     ]
1364
    },
1365
    {
1366
     "name": "stdout",
1367
     "output_type": "stream",
1368
     "text": [
1369
      "Epoch 148/200\n",
1370
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5192 - accuracy: 0.9956\n",
1371
      "Epoch 149/200\n",
1372
      "342/342 [==============================] - ETA: 0s - loss: 0.6334 - accuracy: 0.9950\n",
1373
      "Epoch 00149: ReduceLROnPlateau reducing learning rate to 1.8474050357326632e-05.\n",
1374
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6334 - accuracy: 0.9950\n",
1375
      "Epoch 150/200\n",
1376
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5661 - accuracy: 0.9971\n",
1377
      "Epoch 151/200\n",
1378
      "342/342 [==============================] - ETA: 0s - loss: 0.6057 - accuracy: 0.9988\n",
1379
      "Epoch 00151: ReduceLROnPlateau reducing learning rate to 1.718086752589443e-05.\n",
1380
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6057 - accuracy: 0.9988\n",
1381
      "Epoch 152/200\n",
1382
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5466 - accuracy: 0.9965\n",
1383
      "Epoch 153/200\n",
1384
      "342/342 [==============================] - ETA: 0s - loss: 0.6818 - accuracy: 0.9956\n",
1385
      "Epoch 00153: ReduceLROnPlateau reducing learning rate to 1.5978207120497245e-05.\n",
1386
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6818 - accuracy: 0.9956\n",
1387
      "Epoch 154/200\n",
1388
      "342/342 [==============================] - 46s 136ms/step - loss: 0.4930 - accuracy: 0.9950\n",
1389
      "Epoch 155/200\n",
1390
      "342/342 [==============================] - ETA: 0s - loss: 0.5841 - accuracy: 0.9965\n",
1391
      "Epoch 00155: ReduceLROnPlateau reducing learning rate to 1.48597321822308e-05.\n",
1392
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5841 - accuracy: 0.9965\n",
1393
      "Epoch 156/200\n",
1394
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6556 - accuracy: 0.9959\n",
1395
      "Epoch 157/200\n",
1396
      "342/342 [==============================] - ETA: 0s - loss: 0.5610 - accuracy: 0.9968\n",
1397
      "Epoch 00157: ReduceLROnPlateau reducing learning rate to 1.3819550658809022e-05.\n",
1398
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5610 - accuracy: 0.9968\n",
1399
      "Epoch 158/200\n",
1400
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5789 - accuracy: 0.9974\n",
1401
      "Epoch 159/200\n",
1402
      "342/342 [==============================] - ETA: 0s - loss: 0.5458 - accuracy: 0.9968\n",
1403
      "Epoch 00159: ReduceLROnPlateau reducing learning rate to 1.2852182417191217e-05.\n",
1404
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5458 - accuracy: 0.9968\n",
1405
      "Epoch 160/200\n",
1406
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5780 - accuracy: 0.9962\n",
1407
      "Epoch 161/200\n",
1408
      "342/342 [==============================] - ETA: 0s - loss: 0.5811 - accuracy: 0.9974\n",
1409
      "Epoch 00161: ReduceLROnPlateau reducing learning rate to 1.195252963952953e-05.\n",
1410
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5811 - accuracy: 0.9974\n",
1411
      "Epoch 162/200\n",
1412
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6557 - accuracy: 0.9959\n",
1413
      "Epoch 163/200\n",
1414
      "342/342 [==============================] - ETA: 0s - loss: 0.5329 - accuracy: 0.9968\n",
1415
      "Epoch 00163: ReduceLROnPlateau reducing learning rate to 1.1115852294096841e-05.\n",
1416
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5329 - accuracy: 0.9968\n",
1417
      "Epoch 164/200\n",
1418
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5905 - accuracy: 0.9965\n",
1419
      "Epoch 165/200\n",
1420
      "342/342 [==============================] - ETA: 0s - loss: 0.6566 - accuracy: 0.9956\n",
1421
      "Epoch 00165: ReduceLROnPlateau reducing learning rate to 1.0337742760384573e-05.\n",
1422
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6566 - accuracy: 0.9956\n",
1423
      "Epoch 166/200\n",
1424
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5140 - accuracy: 0.9956\n",
1425
      "Epoch 167/200\n",
1426
      "342/342 [==============================] - ETA: 0s - loss: 0.5643 - accuracy: 0.9953\n",
1427
      "Epoch 00167: ReduceLROnPlateau reducing learning rate to 9.614100454200525e-06.\n",
1428
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5643 - accuracy: 0.9953\n",
1429
      "Epoch 168/200\n",
1430
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5972 - accuracy: 0.9947\n",
1431
      "Epoch 169/200\n",
1432
      "342/342 [==============================] - ETA: 0s - loss: 0.5060 - accuracy: 0.9956\n",
1433
      "Epoch 00169: ReduceLROnPlateau reducing learning rate to 8.941113219407272e-06.\n",
1434
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5060 - accuracy: 0.9956\n",
1435
      "Epoch 170/200\n",
1436
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6754 - accuracy: 0.9965\n",
1437
      "Epoch 171/200\n",
1438
      "342/342 [==============================] - ETA: 0s - loss: 0.5074 - accuracy: 0.9959\n",
1439
      "Epoch 00171: ReduceLROnPlateau reducing learning rate to 8.315235336340267e-06.\n",
1440
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5074 - accuracy: 0.9959\n",
1441
      "Epoch 172/200\n",
1442
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6046 - accuracy: 0.9971\n",
1443
      "Epoch 173/200\n",
1444
      "342/342 [==============================] - ETA: 0s - loss: 0.6498 - accuracy: 0.9962\n",
1445
      "Epoch 00173: ReduceLROnPlateau reducing learning rate to 7.733168913546252e-06.\n",
1446
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6498 - accuracy: 0.9962\n",
1447
      "Epoch 174/200\n",
1448
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5188 - accuracy: 0.9959\n",
1449
      "Epoch 175/200\n",
1450
      "342/342 [==============================] - ETA: 0s - loss: 0.6375 - accuracy: 0.9965\n",
1451
      "Epoch 00175: ReduceLROnPlateau reducing learning rate to 7.1918469711818035e-06.\n",
1452
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6375 - accuracy: 0.9965\n",
1453
      "Epoch 176/200\n",
1454
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5716 - accuracy: 0.9956\n",
1455
      "Epoch 177/200\n",
1456
      "342/342 [==============================] - ETA: 0s - loss: 0.5877 - accuracy: 0.9962\n",
1457
      "Epoch 00177: ReduceLROnPlateau reducing learning rate to 6.688417793156987e-06.\n",
1458
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5877 - accuracy: 0.9962\n",
1459
      "Epoch 178/200\n",
1460
      "342/342 [==============================] - 46s 134ms/step - loss: 0.5918 - accuracy: 0.9979\n",
1461
      "Epoch 179/200\n",
1462
      "342/342 [==============================] - ETA: 0s - loss: 0.5391 - accuracy: 0.9944\n",
1463
      "Epoch 00179: ReduceLROnPlateau reducing learning rate to 6.220228433448938e-06.\n",
1464
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5391 - accuracy: 0.9944\n",
1465
      "Epoch 180/200\n",
1466
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6169 - accuracy: 0.9971\n",
1467
      "Epoch 181/200\n",
1468
      "342/342 [==============================] - ETA: 0s - loss: 0.6039 - accuracy: 0.9959\n",
1469
      "Epoch 00181: ReduceLROnPlateau reducing learning rate to 5.784812451565813e-06.\n",
1470
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6039 - accuracy: 0.9959\n",
1471
      "Epoch 182/200\n",
1472
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5722 - accuracy: 0.9956\n",
1473
      "Epoch 183/200\n",
1474
      "342/342 [==============================] - ETA: 0s - loss: 0.5178 - accuracy: 0.9956\n",
1475
      "Epoch 00183: ReduceLROnPlateau reducing learning rate to 5.379875533435552e-06.\n",
1476
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5178 - accuracy: 0.9956\n",
1477
      "Epoch 184/200\n",
1478
      "342/342 [==============================] - 46s 134ms/step - loss: 0.6071 - accuracy: 0.9953\n",
1479
      "Epoch 185/200\n",
1480
      "342/342 [==============================] - ETA: 0s - loss: 0.6356 - accuracy: 0.9959\n",
1481
      "Epoch 00185: ReduceLROnPlateau reducing learning rate to 5.003284072699899e-06.\n",
1482
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6356 - accuracy: 0.9959\n",
1483
      "Epoch 186/200\n",
1484
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6117 - accuracy: 0.9962\n",
1485
      "Epoch 187/200\n",
1486
      "342/342 [==============================] - ETA: 0s - loss: 0.5587 - accuracy: 0.9979\n",
1487
      "Epoch 00187: ReduceLROnPlateau reducing learning rate to 4.653054174923454e-06.\n",
1488
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5587 - accuracy: 0.9979\n",
1489
      "Epoch 188/200\n",
1490
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6432 - accuracy: 0.9959\n",
1491
      "Epoch 189/200\n",
1492
      "342/342 [==============================] - ETA: 0s - loss: 0.5334 - accuracy: 0.9968\n",
1493
      "Epoch 00189: ReduceLROnPlateau reducing learning rate to 4.3273402388877e-06.\n",
1494
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5334 - accuracy: 0.9968\n",
1495
      "Epoch 190/200\n",
1496
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6047 - accuracy: 0.9977\n",
1497
      "Epoch 191/200\n",
1498
      "342/342 [==============================] - ETA: 0s - loss: 0.5277 - accuracy: 0.9947\n",
1499
      "Epoch 00191: ReduceLROnPlateau reducing learning rate to 4.024426498290268e-06.\n",
1500
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5277 - accuracy: 0.9947\n"
1501
     ]
1502
    },
1503
    {
1504
     "name": "stdout",
1505
     "output_type": "stream",
1506
     "text": [
1507
      "Epoch 192/200\n",
1508
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5984 - accuracy: 0.9944\n",
1509
      "Epoch 193/200\n",
1510
      "342/342 [==============================] - ETA: 0s - loss: 0.5858 - accuracy: 0.9959\n",
1511
      "Epoch 00193: ReduceLROnPlateau reducing learning rate to 3.7427164488690326e-06.\n",
1512
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5858 - accuracy: 0.9959\n",
1513
      "Epoch 194/200\n",
1514
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5913 - accuracy: 0.9965\n",
1515
      "Epoch 195/200\n",
1516
      "342/342 [==============================] - ETA: 0s - loss: 0.5728 - accuracy: 0.9971\n",
1517
      "Epoch 00195: ReduceLROnPlateau reducing learning rate to 3.48072629321905e-06.\n",
1518
      "342/342 [==============================] - 46s 136ms/step - loss: 0.5728 - accuracy: 0.9971\n",
1519
      "Epoch 196/200\n",
1520
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5995 - accuracy: 0.9965\n",
1521
      "Epoch 197/200\n",
1522
      "342/342 [==============================] - ETA: 0s - loss: 0.6047 - accuracy: 0.9941\n",
1523
      "Epoch 00197: ReduceLROnPlateau reducing learning rate to 3.237075425204239e-06.\n",
1524
      "342/342 [==============================] - 46s 135ms/step - loss: 0.6047 - accuracy: 0.9941\n",
1525
      "Epoch 198/200\n",
1526
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5452 - accuracy: 0.9974\n",
1527
      "Epoch 199/200\n",
1528
      "342/342 [==============================] - ETA: 0s - loss: 0.5716 - accuracy: 0.9953\n",
1529
      "Epoch 00199: ReduceLROnPlateau reducing learning rate to 3.0104800862318374e-06.\n",
1530
      "342/342 [==============================] - 46s 135ms/step - loss: 0.5716 - accuracy: 0.9953\n",
1531
      "Epoch 200/200\n",
1532
      "342/342 [==============================] - 46s 136ms/step - loss: 0.6578 - accuracy: 0.9950\n"
1533
     ]
1534
    }
1535
   ],
1536
   "source": [
1537
    "'''history = model.fit(x_train, y_train, validation_split=0.1, shuffle=True, batch_size=10, epochs=100, callbacks = callbacks)'''\n",
1538
    "\n",
1539
    "history  = model.fit(train_crops, \n",
1540
    "         steps_per_epoch=train_batches.n//train_batches.batch_size, \n",
1541
    "         epochs=epoch,   \n",
1542
    "         verbose=1,     \n",
1543
    "         #class_weight={0:5.51331361, 1:0.54986722},   \n",
1544
    "         callbacks = callbacks)    "
1545
   ]
1546
  },
1547
  {
1548
   "cell_type": "code",
1549
   "execution_count": 25,
1550
   "id": "3564e534",
1551
   "metadata": {},
1552
   "outputs": [
1553
    {
1554
     "data": {
1555
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEWCAYAAACT7WsrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAB6YUlEQVR4nO29d7gkR3U2/p4OE27evKtdSatVQlmCRYBIkkkiG2xABIPBNsHwYZsfJtgG4+9zAgwYDCZjgk00yMi2EEEEESShFaxQlnZXYVe72nB3b57YXb8/qk51dU/PTM+9M/fOvVvv89znzvR0qOmprlPvec85RUIIWFhYWFhYpMFZ6gZYWFhYWPQvrJGwsLCwsGgKayQsLCwsLJrCGgkLCwsLi6awRsLCwsLCoimskbCwsLCwaAprJCwsFggi2kpEgoi8DPv+PhH9bKHnsbBYLFgjYXFcgYjuJ6IqEa1NbN+pBuitS9Q0C4u+hDUSFscj7gPwUn5DROcBKC5dcyws+hfWSFgcj/gSgFca718F4IvmDkQ0SkRfJKLDRPQAEf0VETnqM5eI/omIjhDRHgDPTjn2s0R0gIgeIqK/JSK300YS0QlEdBURHSWiXUT0R8ZnFxPRDiKaIqKDRPRBtb1ARP9ORONENEFENxHRhk6vbWHBsEbC4njEDQBGiOgsNXi/BMC/J/b5FwCjALYBeDKkUXm1+uyPADwHwEUAtgP43cSxXwBQB3Ca2ufpAP5wHu38CoB9AE5Q1/h7InqK+uzDAD4shBgBcCqAr6vtr1LtPhHAGgCvB1Cax7UtLABYI2Fx/ILZxNMA3AXgIf7AMBzvFEJMCyHuB/ABAL+ndnkxgH8WQuwVQhwF8A/GsRsAPBPAnwohZoUQhwB8CMAVnTSOiE4E8AQAbxdClIUQOwF8xmhDDcBpRLRWCDEjhLjB2L4GwGlCiEAIcbMQYqqTa1tYmLBGwuJ4xZcAvAzA7yPhagKwFkAOwAPGtgcAbFavTwCwN/EZ42QAPoADyt0zAeCTANZ32L4TABwVQkw3acMfADgDwF3KpfQc43t9F8BXiWg/Eb2PiPwOr21hoWGNhMVxCSHEA5AC9rMAfCvx8RHIGfnJxraTELGNA5DuHPMzxl4AFQBrhRBj6m9ECHFOh03cD2A1EQ2ntUEIca8Q4qWQxue9AP6TiAaFEDUhxN8IIc4GcAmkW+yVsLCYJ6yRsDie8QcAfksIMWtuFEIEkD7+vyOiYSI6GcBbEOkWXwfwZiLaQkSrALzDOPYAgO8B+AARjRCRQ0SnEtGTO2mYEGIvgF8A+AclRp+v2vsfAEBEryCidUKIEMCEOiwgosuI6DzlMpuCNHZBJ9e2sDBhjYTFcQshxG4hxI4mH/8fALMA9gD4GYAvA/ic+uzTkC6dWwD8Co1M5JWQ7qo7ABwD8J8ANs2jiS8FsBWSVVwJ4K+FEN9Xn10O4HYimoEUsa8QQpQBbFTXmwJwJ4CfoFGUt7DIDLKLDllYWFhYNINlEhYWFhYWTWGNhIWFhYVFU1gjYWFhYWHRFNZIWFhYWFg0xYoqSbx27VqxdevWpW6GhYWFxbLCzTfffEQIsS7tsxVlJLZu3YodO5pFNFpYWFhYpIGIHmj2mXU3WVhYWFg0hTUSFhYWFhZNYY2EhYWFhUVTrChNIg21Wg379u1DuVxe6qb0HIVCAVu2bIHv26KfFhYW3cGKNxL79u3D8PAwtm7dCiJa6ub0DEIIjI+PY9++fTjllFOWujkWFhYrBCve3VQul7FmzZoVbSAAgIiwZs2a44IxWVhYLB5WvJEAsOINBON4+Z4WFhaLh+PCSLRDGAo8PFXGbKW+1E2xsLCw6CtYIwFAADg0VcZctftGYnx8HBdeeCEuvPBCbNy4EZs3b9bvq9Vqy2N37NiBN7/5zV1vk4WFhUVWrHjhOgvYS9OLpTXWrFmDnTt3AgDe8573YGhoCG9961v15/V6HZ6X/jNs374d27dv736jLCwsLDLCMgkA7MkPF2n9pd///d/HW97yFlx22WV4+9vfjl/+8pe45JJLcNFFF+GSSy7B3XffDQD48Y9/jOc8R65v/573vAevec1rcOmll2Lbtm34yEc+sjiNtbCwOK5xXDGJv/nv23HH/qnUz2ardfiug5zbmd08+4QR/PVzO13jHrjnnnvwgx/8AK7rYmpqCtdddx08z8MPfvAD/MVf/AW++c1vNhxz11134Uc/+hGmp6dx5pln4g1veIPNibCwsOgpjisj0QoESHFikfCiF70IrusCACYnJ/GqV70K9957L4gItVot9ZhnP/vZyOfzyOfzWL9+PQ4ePIgtW7YsXqMtLCyOOxxXRqLVjP+O/VMYLfrYvKq4KG0ZHBzUr9/1rnfhsssuw5VXXon7778fl156aeox+Xxev3ZdF/W6jcaysLDoLawmoUAks5aXApOTk9i8eTMA4POf//yStMHCwsIiDdZIKBAtqrcphre97W145zvficc//vEIgmCJWmFhYWHRCFqq2XMvsH37dpFcdOjOO+/EWWed1fbYux+eRsF3cPKawbb79jOyfl8LCwsLBhHdLIRIjbfvOZMgosuJ6G4i2kVE70j5/M+JaKf6u42IAiJarT67n4huVZ/1dMk56W7q5RUsLCwslh96KlwTkQvgYwCeBmAfgJuI6CohxB28jxDi/QDer/Z/LoA/E0IcNU5zmRDiSC/bKa+9dO4mCwsLi35Fr5nExQB2CSH2CCGqAL4K4Pkt9n8pgK90uxFZXGoOaMmE625hubffwsKi/9BrI7EZwF7j/T61rQFENADgcgBmFpkA8D0iupmIXtvkuNcS0Q4i2nH48OGGzwuFAsbHx9sOoMvd3cTrSRQKhaVuioWFxQpCr/Mk0mpXNxuKnwvg5wlX0+OFEPuJaD2A7xPRXUKI62InE+JTAD4FSOE6edItW7Zg3759SDMgJo7MVBAKger48h1keWU6CwsLi26h10ZiH4ATjfdbAOxvsu8VSLiahBD71f9DRHQlpPvqupRjm8L3/Uwrtf3RF3dg37ESvvMnF3VyegsLC4sVjV67m24CcDoRnUJEOUhDcFVyJyIaBfBkAN82tg0S0TC/BvB0ALf1qqE510G1bnMULCwsLEz0lEkIIepE9CYA3wXgAvicEOJ2Inq9+vwTatcXAPieEGLWOHwDgCvVamsegC8LIa7pVVtznoNqEPbq9BYWFhbLEj2v3SSEuBrA1Yltn0i8/zyAzye27QFwQY+bp+G7hFp9GSvXFhYWFj2ALcuhYJmEhYWFRSOskVDwXQe1ujUSFhYWFiaskVDIeQ4qlklYWFhYxGCNhELedVALQpu1bGFhYWHAGgkF33UgBFBfrIWuLSwsLJYBrJFQyHnyVlStLmFhYWGhYY2Egu/KW1GzuoSFhYWFhjUSCpZJWFhYWDTCGgmFnGISNlfCwsLCIoI1EgqWSVhYWFg0whoJBTYStcBGN1lYWFgwrJFQYOHaMgkLCwuLCNZIKGh3U2DLhVtYWFgwrJFQ8F25iF7VVoK1sLCw0LBGQiHv2egmCwsLiySskVDQyXRWk7CwsLDQsEZCIWeZhIWFhUUDrJFQyNmyHBYWHWNyroZdh2aWuhkWPYQ1EgrsbqpYd5OFRWZ8/Ce78crP3rjUzbDoIayRUMjbjGsLi44xXa5hulxf6mZY9BDWSCjYKrAWFp0jFAKBXahrRcMaCQVbu8nConMEoUBgF+pa0bBGQsEyCQuLzhGEsEZihcMaCYUo49oaCQuLrLDuppUPayQUiAg5z0HVVoG1sMiMIBQQAggtm1ixsEbCQM51LJOwsOgAzCIsm1i56LmRIKLLiehuItpFRO9I+fzPiWin+ruNiAIiWp3l2G4j5zlWk7Cw6ADMIKwusXLRUyNBRC6AjwF4JoCzAbyUiM429xFCvF8IcaEQ4kIA7wTwEyHE0SzHdhu+S5ZJWFh0ADYOoWUSKxa9ZhIXA9glhNgjhKgC+CqA57fY/6UAvjLPYxcMqUlYI2FhkRVsHOqWSaxY9NpIbAaw13i/T21rABENALgcwDc7OZaIXktEO4hox+HDhxfUWN+1RsLCohNoJmGNxIpFr40EpWxr1pueC+DnQoijnRwrhPiUEGK7EGL7unXr5tlMCStcW1h0Bg4GtJrEykWvjcQ+ACca77cA2N9k3ysQuZo6PbYrsMK1xfGCG/eMY/9EacHnscL1ykevjcRNAE4nolOIKAdpCK5K7kREowCeDODbnR7bTVgmYXG84I1f/hU++7P7FnweNg42BHblIrORIKJzOz25EKIO4E0AvgvgTgBfF0LcTkSvJ6LXG7u+AMD3hBCz7Y7ttA2dwDIJi+MF5VqIci1Y8Hl0noRlEisWXgf7fkLN6D8P4MtCiIksBwkhrgZwdWLbJxLvP6/O2/bYXsJ3HcxWbNlji5WPIBRdCVu17qaVj8xMQgjxBAAvh9QJdhDRl4noaT1r2RIg5zmo1EP84RduwrV3Hlzq5lhY9AyBEKh3oQSNZRIrHx1pEkKIewH8FYC3Q2oIHyGiu4johb1o3GIj5zrYfXgGP7jzEH6xe3ypm2Nh0TMEYXcK84U2mW7FoxNN4nwi+hCkPvBbAJ4rhDhLvf5Qj9q3qJCahOzsk6XaErfGwqJ36NY6EIFNplvx6EST+CiATwP4CyGEjp0TQuwnor/qesuWAFwuHLBGwmLlops6Asd5WHfTykVmIyGEeJISrh9BRALA3apcBoQQX+pVAxcTvDodYI2ExcpFN3UE7W6yQYErFpmNBBE9C8AnAeyGzIY+hYheJ4T4Tq8at9jIuS4AwHMIk3PWSFisTATdZBLa3WStxEpFJ8L1BwFcJoS4VAjxZACXYYVoEQzfk+6mx25bY5mExYpFN43EQoTrB8Zn8aT3/QgHp8pt9/3i9ffjxZ+8vuNrWCwcnWgSh4QQu4z3ewAc6nJ7lhTPOe8EDOY8TJVquPmBY0vdHAuLnqCbCwVFrqvOj91zeBYPHp3DA+Nz2DBSaLnvPQenceeBqfk00WKB6MRI3E5EVwP4OmShvRcBuInDX4UQ3+pB+xYV520ZxXlbRvEv196LUi1ApR4g77lL3SwLi64iCLopXM/f3dTJsUEobKXZJUIn7qYCgIOQ+RGXAjgMYDVk9dbndL1lS4ixAR+AFa8tlg/uPzILYTCD2UodD0+mu3H6RbjmsNksSX31oDt5HRado5Poplf3siH9hJGiNBJTpRrWD7emwRYWS439EyVc9oEf4wuvvhhPOkOWy//4j3fj27c8hJ++7bca9u9qCOwCXFdhB6K3ZBIdX6Jj7D48g3sPzuDyczf2/mLLBJ0k020hoiuJ6BARHSSibxLRll42bqkwWrRMwmL5YLJUgxDAsbmq3jY+W8Gx2fT+200mEeVJzN/dVMvAJGpdyhBvhy9d/wDe8a3f9Pw6ywmduJv+DbJU9wmQK8T9t9q24mCNhMVyQpDitqkFoukqi7xfV8pyLEC41kwig5EIwnBREvZqQdiVmlYrCZ0YiXVCiH8TQtTV3+cBLGwpuD7F2EAOADBhcyUslgHSQlrlYJc+coddZRLzP1cnwjUP3L0Wr4NQ2JyPBDoxEkeI6BVE5Kq/VwBYkVXwLJOwWE7QAnDCSIQiffDuRZ7EgoxEJiaxOIsbLZb2sZzQiZF4DYAXA3gYwAEAv6u2rTiMFKSeb42ExXJANOhHo1u1zv7+xhGvq0xikYTrehcNWysEwkZRJZEpuomIXAB/L4R4Xo/b0xfwXAfDec8aCYtlAR5ka0GcScjPGge8bg64fI75uIHYfmURrvV1FoFJBKGAEAJE1P6A4wCZmIQQIgCwThX4Oy4wUvStkbBYFmimSQBALWXN9m66bsIFlArXdZ8yqN78fXrOJLQx6ulllhU6ybi+H8DPiegqAOZa1B/sdqP6AaNFH5NzNZRrAXKuA8exswqL/kSaJsF+/lqKKyfUYatLzCRasJ3m1+n4Mh3BdMW59pkH0JkmsR/A/6hjhtXfUC8a1Q8YLfo4MlPBUz7wE3zsR7vaH2BhsUSIymwYmkTQ6IJisHtqoUZCCKFn3PNhJdy0LO6m+iIK1+Z/i86YxB1CiG+YG4joRV1uT99gbMDH9Xtk8NZdB6eXuDUWFs3RLLoJSHfldEu4Ng+fj7spiozKlnFt/u8VFiuKajmhEybxzozbVgQ4DBYADmUoZWxhsVRoqUmkzNK7tZqcefy83E0ie8Z1XWsFlkksNtoyCSJ6JoBnAdhMRB8xPhoBUO9Vw5YabCSIgINTlSVujUUvEIYCAlj2vmd2H8WZRPMQ2G4NhOaA3etkuqBLLrK212H32TIzEjfdfxSlaqBrd3UTWZjEfgA7AJQB3Gz8XQXgGV1vUZ9g42gBrkN41rmbcHCqHKuwabEy8E/fuxsv/fQNmfevByF2H57pYYvmhygpzcyTYHdTi2S6BfZpcyCdz6Aa6nZnYBJdKm8ehgJfu+nBVOMpz784xqjb+ORP9uAfv3NXT87d1kgIIW4RQnwBwGlCiC8Yf98SQhzrSav6AC+9+CR890+fhItOGkOlHmKqVMfeo3N2WdMVhH3HSth7dC7z/lff9jCe8aHrcGy22n7nRUQrTSItukknwC2wRlGMScxLuF6Yu+kvrrwVv9h9pOVxH/7Bvfj3Gx7Q73fum8Dbv3krrt+dXixiubqbqkEI3+tEPciOTs56MRF9n4juIaI9RHQfEe3pSav6AAXfxWnrh/SKWQeny3jZZ27Ae/779iVu2fJApR70/YMWCJFpgGJMzlVRD0Ws2mo/IG1g40E1LU8i7BKTMO3PgpjEPITrMBT48o0P4qf3tjYSV996AD+8K1pAc64SAIiYVmOb1PWWmeegVg+Rd5feSHwWcp3rJwB4NIDt6n9LENHlRHQ3Ee0ionc02edSItpJRLcT0U+M7fcT0a3qsx0dtLVrYCNxz8Fp7D1awi92H7Gupwx4zkd+hk9et3upm9ESYSiauh3SwAPvXDXoVZPmhVQmUW+eg9Ct2XKwUE2ig0Q8NiTMJKotkgVNVOpB7PyVetDymvo6fT7BSUIyid5oa52EwE4KIb7TyclVOY+PAXgagH2Qy51eJYS4w9hnDMC/ArhcCPEgEa1PnOYyIUTr6UIPsVEZiZ+pGcvBqQr2HSvhxNUDS9WkZYGHJkrYd6y01M1oiXooMmX7MoI+NRKclGa6j3gQTSsX3q2yHAvVJKKV6TphEvJ9pcbRW+2MRLwabrkWNzYN1xHxti0X1IJQ15zrNjphEj8iovcT0eOI6JH81+aYiwHsEkLsEUJUAXwVwPMT+7wMwLeEEA8CgBDiEPoI60fyABCjtTfdf3SpmtMV3H9kFu/6r9t66g6qBWHbWd5SQzKJ7PeAB5bZan8F9bXOk2j8fjpPYqHuJuP4+YSmdiRcJwwbM4Jqm2Or9bAjJpFW1fZD378Ht+ydaNvGpUS1HsLvA3fTYyBdTH8P4APq75/aHLMZwF7j/T61zcQZAFYR0Y+J6GYieqXxmQDwPbX9tWkXIKLXEtEOItpx+PDhDr5ONhR8F6NFHw9NlDCQczFc8Ja9kfjJPYfxpRsewKHp3uR/COXr78SVsxQIhEAtDDO7D/nrlPqNSSSS0oIwyoROm6Xz/kIszK2SpoF0drz8X8vibuL1JAQbiYUxiWYJfEmBPAgFPnztvfju7Q+3beNSoloPkeuRcN3JGteXzeP8aU6yZI/wADwKwFMAFAFcT0Q3CCHuAfB4IcR+5YL6PhHdJYS4LtGuTwH4FABs3769J1PjDSN5TJZqOH39EFYP5nDT/cs7qKtVeGQ3wLPzZiuj9QtktU/533Pb+3N5YJmt9CeT4MHWHDjTfoOYm0gIOKmPaXssNJkuWpkuS6nweGgqM4J2RqIpk2jS95PshlljvwdhVIMQuaViEkT0z8brP0l89vk2h+8DcKLxfgtk3kVyn2uEELNKe7gOwAUAIITYr/4fAnAlpPtq0cHi9Wnrh7F962rsOjSDo30WBtkJWvmruwF+cHlNg35FkOKmab2//F+q9SmTSEmga5UnkXzdKbqVTNdJqfCgAyYRhnIJV/MeREyimSYRZxIcDdXvGkUvmUSWsz7JeP2qxGfntzn2JgCnE9Epqsz4FZBJeCa+DeCJROQR0QCkW+tOIhokomEAIKJBAE8HcFuG9nYd64elkThjwxAuOnEMAHDH/qmlaEpXUOk5k+itEeoWeKDI2k4eQGYr/WUkkppE2roSJhYalZR27EJKhWep3aTdQGHcSLSaiPDvaobYttMkkpFfM4o1dhLg0Akq9aAr0ZK1YGk1CWryui2EEHUAbwLwXQB3Avi6EOJ2Ino9Eb1e7XMngGsA/AbALwF8RghxG4ANAH5GRLeo7f8rhLimk+t3CxuUeH3GhmGcuXEYAHDngeVrJKoZ/bnzPn/G8MSlRifLZwLRAFXqM+E60iIaf9c0f3+4wMFdn6dbwnWbNoTKLQgY7qYM0U2VlDDgtkwi0aY59Vv3gklU6yEe9w8/xLd3Jp0r8zvXUmoSDhGtgjQo/JqNhdvuYCHE1QCuTmz7ROL9+wG8P7FtD5Tbaalx0uoBEAFnbhzGmqE81g/ncefDCzcSH/z+PXjaWRtw3pbRBZ3nYz/ahVv3TeITv/eoTPuzkejVTL/X5+8WoozfbO3kgWK2z4TrJJMwE8XSZsDmgLcw4Tr9nNmPz3b/zXNH7qb2mkSa9paVSbDRYybRC02iVA1wdLaKfceyZ/03Qy0QS2okRiFrNbFh+JXxWX876rqE375oM87cOIwTxooAgEdsGsFdBxZWPjwMBT5y7b2oB+GCjcSt+yZx60OTmfevBo3i3dHZKjyXMFLwmx2WGa2Ky/UTwpRBteX+Ij677BckwzZjTKJFqXBgYWGwC64Cm5HJme4ifpnFZRqJ1Nmjm5LuJtYkOgmVzopK0J1zCyG1l165m9oaCSHE1p5ceRmh4Lu46KRV+v1ZG4fxb7vHF+QH5Jo63GkXgtlqvaMBOc3d9IZ/vxmbVxXxwRdf2PS4ci1ANQjbGpJIuO5vI9FJxi/Qv8l0rTWJPhaumcm1OTadSbRnq2nuprZMIrHWRhTdJM81Waqh4DvIe22dKG3Bv02WsiRZzpNf6tpNRPR4JSCDiF5BRB8kopN70qo+x1mbRlANQtx3ZLb9zk3AP2y5vvABZ7ZS74jupxmJ8dkqDk+3Lon+vmvuxu999peZz9/v7qZ6h4xHDxx9Jlwnq8C2YxLdMhILPU9a9drU/QxDp4XrWgfuJtNIMJNoEwKb/K35HC/415/j4z/uTrmZboWi83PmZwjjng86MT0fBzBHRBcAeBuABwB8sSet6nM8YtPCxWsWdStdYBJz1aAzJpGyIE09CFFuE9p5cLqMhyfbl9qopQxW/YiwQ02CB45Srb/cTcls5MUKgQ0W6LbKukJePaW91Qx9LHJJZY9uSi6TOpvQJA5PVfDw5PySUL++Yy/ec1VUIDSarC3MSPBYsmR5EgbqQsZqPR/Ah4UQH4Zc5/q4w7a1Q/Bdwl0Pz1+X4M7dFSZRrXc0G0ljErVAtI3/r9VD/eC13I+T6frd3dRBnD7QvyGwgXZbpLibWpQKBxbobuoSkzD74f6JUgNDTyb/AWZ0U/PrpjGJdtFNmkkkkum0zha2n0w1w7V3HsSVv35Iv9elUxbobtJMYqndTQCmieidAF4B4H9V8b6Fq5zLEDnPwTknjOJrN+3F7fuzC8Ym+IetdCExa64SdNTR0hKRakHYttxELQgzMZ9WS2f2E7K6OxhRCGx/GYlWTKKWkkfQrRDYhbubGtvwd1ffiT/72s7YfnHhOqFJtJiIpLGGzJqEDlIIVFsj11CWiVIajs3WMFmq6TZUusQkqn3EJF4CoALgD4QQD0PWYHp/60NWLj70kgtR8By89FM34MhMui//2jsP4jM/3ZP6GXeM+XY4E1K4FpmTctJobj0UbUX0WiAyJf/ojO4uMok7D0zNewbXDDwQZE6mS4iZ/YIgsXyp+X3SJg/m103mNxybreqwz7bXXSAjicpyRMdOl+uYKscX9jI/n18IbPbopqTB1cl0oXy+5HMyv354VK1DMj5Tbdq++YB/76XMuGZMQ7qZfkpEZwC4EMBXetKqZYBT1g7ivb97PqbKddxzMN3t9J8378O//fz+1M+0u2mBA19gDO5ZH9Q0f24tgyZRDUKEov3Mp9Zl4XquWsfzP/pzfGPH3vY7dwAeJ7K66oLlwiTq5u+apkk01yxe+ukb8O5vZytsELYwNlmQxnyCsJGtpmkSWcpy8D6hMBlIZ1Vg53TGtdDHzHdiN6GMBAeIdEu74+P7gUlcByBPRJsBXAvg1QA+34tGLResG5aZ2M2WNJ0q15p2KJ5FLDQE1pzVZnUdpM1g6lk0CXaRtdFRzDyJbpQcmCnXUQ1CTHR56dh6SoZyK2hNou+YRDyUMq1keGz/JpnSuw/P4K6HpzPXJTPPMx+3VZgSgsxsNXYd43O+ZCeahHmNTms3zVQCvX+gz9H5JCEMBY6p/sueB83oF5iox+fph1LhJISYA/BCAP8ihHgBgHN60qplgtGilGQmSk2MRKmOapMBNeuA2w5zhoiadbCLQlTjg0mpFrmSDk6V8Vsf+DEeHI+yQesZXWTcDiG6U86AM5y74ZozoUtVd8gkyrWwr6qCRov3pEU3tXY3mb/PtXcejJ2nHRYqXPN16on2JidOpsuscT2J9pqEeQ7eltZes/wHty0qyxEa7L/zfjhdrkcRUopJ6NpS3WISfeBuIiJ6HICXA/hftW3hGSXLGGPFHACZYJOGyVKtaSfWeRIZOlwYCly/ezx1Vm7OarMOdsnQQPa1ChF9tuvQDPYcnsVdRvmRyLC1brP5nbMarq/88kF84ifp8ef8oHYyg7txz3jboIJOQ2DNWXc/VYJN1hviSUDec9q6m8zB8gd3yPW+Og0JznlOU3fT0dlq098tLZmxHrZmElpHMtxNzdhqpUMmkRbSO2toEtEkqfPf/qixLjoziVYLQ3WCSh8xiT8F8E4AV6oifdsA/KgnrVomKPgOcq7T1A3C7qa0TtyJJnH9nnG89NM34PaUyrMmk8g6I0mGwKYlG7FgZ2YXVzO2ObaeQcbZ/7/9/D78lxEeaKI0Dybx11fdjn/67t0t96nr75/tvObDPLdIa0rMVur4jxsfaOm2a4xukv8Hcm6TZLroNQ/uR2er2PHA0dj52oEH0pzrNB3oXvivP8fHfrQr9bO0lenkYlUiNoin1ZrivsDrgaQhXsOqvSaRVmaEWWw9EAuqkmC68JhJVLrkbuLfe8mZhBDiJ0KI5wH4VyIaUkuSvrknrVomICKMDviYLFXx0EQJl/zDtTrGWwiBqVKtqculEyPBM480YxRjEh0K19Wg8SHlGTLP3uNMRTGJdlFQxsOZRbyerdSx69BMUyMwp41E9hncbLWOIzOtfet8u9LCRNP3N4zEIonX1951CH955W3YdWim6T5ReGbc+A/kvNS+Z34P/u1/ed9RhAJYNeB3HBLcikkcnKo0rUwQleVodI/FXEUtopuA5gw6xiQU42jJJFIMk5lMlxTNO8FEjEl0ObrJYI69QCdlOc4jol9Drulwh1pS9LjWJABgrOhjYq6GO/dPYf9kGXcr98xsNdCDUNpsupMQWB6Q0gRTs9hcp0xCDyrGQ8pGghPGYppHPRvdNh/aLEzitocmEYrmOSNzLZjENbcdwO7DjQMoV9hshXbrSbz4k9fjf36zv2F/YPHEa2YsrcJSeRBNRgs1ZxKNwjUPhuuG8x0nF/ouNZ/NB2HT34GNjMkGdASRMRFplSfB10hD0t0UDw1u7W5K3pd6GC1eNJ/cJr4Hm8eKDdFNCy7L0Ufupk8CeIsQ4mQhxEkA/j8An+5Jq5YRRos+Jks1HFaz/alSXf2PZv1pg5vp328XATSrXT+NA8Vspf2MKomku8mc+bNrh6+ZyiQ60iTat+k3+yYbjjPBZTCSDCYIBd78lZ340vUPNBwzVw0wPtu6FpX2iadctx6E+OV9R7HzwQljf6NNi8QkmGm2ul5ygG3nbkpqAEB07wfzXseahO86TWfmQSiaGglzUE6Gg5p9LC1pz+wLzdqbZCOmmygtTyIpxAshIndTKDL3/zQcU0zijA1DeqyIoptWjnA9KITQGoQQ4scABrveomWGsQHJJHh2wIlAZkJQVftPBT75k93Ye3Qu1rHbdTqeRaaVgzDXW87iW+eywoBZhTJ6OLhMCD8c89EkTPaQZcD5jSpznjQCtz00iVoQNnU37Z8ooRqEDcZFCBnOW66FLct6tyrLwb+JaSSDMASpGmoLXVNislTLFBFUVu1oJZQ3y7gu5tzU72YOhsly6YNNXFRp4Nl2znNiA/4rPnMjvnPrAX3O8WZGIjRfx12fZh+LV4GV/+PupvQ+Fg+BDZu6sJJt4NeVehhrl2lQO43mOjpbQ851cPKaQRyZThiJLrmb+qHA3x4iehcRbVV/fwXgvp60ahlhhJkEGwnFIJhRANGP+PBUGf/wnbvwv8YDBLT38fMgmTabNAerLLQ1LfLI7KTlJJMwjVCHIbBANnfTb/ZNNJx3fKaC5330Z/jvW/Zrl1fyuuzrTlb0lOyMz9Pc5aQH1RTjyoPUjGGYg1BgKC+r6y9kdbpyLcAT3vtDfOtX+9ruW0ox1kmYTEIIOeN1CMh7bnoIbEp+Q9ywZGUS8n/OdfTrSj3Az3Ydwc59E3pQPjZbTWXLsfIgibLZMSaRVgXWnIg00ZSS7qZKjEm0NxJm3w+M6Cb+nkk8NFHCb3/s5zg01VgA8NhsFasGfawbzmO6Uke5FnTP3dRHTOI1ANYB+Jb6WwuZUHdcY6yYixuJcqO7iRf54ZyDSi2MzfDaFfmbSXH9MMwomywPd9osv5VwbQ5OWel2zEi0adPEXBUPjM9hMOfKjG71oE6X6wgFcGi60lSTeGBcGonkzNc0ps1mseYAlTbI8LVmDEYYhtBraSykyN/4bBXT5ToePNp+RTLuG63cTcmMZF6AxnepLZNIirGDObfjPImc52j3zXQ5cg2aBfbMSVPUbqMv6sTGdkwixUg0YdDJ6KZ43kRrTSIQQve7vOdITcJcKztlYnfn/ins3DuBG+472vDZsbkqVg3kdALu4ekKKl3KuO517aYsK9NBFfP7hhDiqT1pxTLG2ICPmUodB9TsQTMJY3BhX+jeY7LMdjWIl/Zu576ZSwlHZcSYRAYKnBYWWE8RrnkGzbOpMDTKErQNgc0uXLPofM7mUfzyvqOoBiEKjquNy3S5ZpRDiF/3viNzDe0HgDmjfUeb6BJxv3xjG7W7yWQSImIScwvIkzimDNdUk/yaWDtq7d1NsTIboUCtLpBzHfiu01aT0OJ9nZmElzkkOBKuHd1PZthIJCoGj89WMDoQrwdqdtdkYl0l4SpKa2/Rd1GqNS+TnzxHWIvcMW2ZRCD05Gy06KMatJ/YcZ+95+HphoWXtZEYUkZippJapXY+6AtNQggRQK4lMdqTVixjcNb1bhWiqDWJGJOQPyLPHCWTaK5JJBOEkgO2ibkUYbkVqimz/Koxk2aDljRM5mytnGjvbQ9NxmLhO0mm40F47ZBMTOR7wYPjdLke5UkkZm/3Z2ESTdxNZshmGtuJ3E3xsifDBWUkFpAnwcmXPOtuhbJmdtmZRC0I4XsOPNfJNGMGoNgHIdeEfaQhEq5JD/h8vyr1IHZf0xidOSgnc3bMCUFa/kKlHmBQGeym7qaayYKTTCLFDZdgLPxsjRZ9BIGIr0uRwiR40E+r5XZ0torVgxGTODJdWZHRTWUAtxLRZ4noI/zXk1YtI4yp2RE/HEyrJ1M0ib1sJOpxsdVkEnPVOi7/5+vwPiMRbLYVk4gl03XGJNLq2ZcSg+Ncop4+0Mgk/vs3+/H+796tB+dYnkQbJsHXGy2ykeByC/L/dLne1N10v9Ikkn5300g0jaxJ+MOFEPjpvYfxlq/txB37p1KF6zAUemBaiHDNkS7JaqdpKOnopvYCPKAyg0M54PsOpd7/MBRa5DSF65yrDEuHGeg5z9V9iA1ftR7Grp1mrINQwKGo3eZ/MxIpPU8i1Aa7mUvT3G4WwvSc9JDdpCbBk7PRoo9aGKYGeMSup77vvSk5Lcfmalg16GONmgyNz1a7JlzXAhlQ4Tm9Ea4zuZsU/hdROQ4LhZFinEKnRTfxgKOZRD2IzX7MB+KD37sHuw/P4l5jNhLpA23yJDK4CdLcTTEanRBK51IG/uRgzbOq/ZMlnLpuqKG6bCuwgWRjy+eKmERNryccj04J9f1MPvClWnsjkSyC9/Gf7Mb7rpGG+dT1Q3jUyXJN86R46buEgZy7IOGakyLT/PRJ6BDYlu6mhCZRF/Ac6W5K6xP1ULqjakEQK+WR8xx4LmVOytRlOVzSFWGnVb+vJIxE2u8QCoGC72KuGiAIJXtO1mZKfr9o+dJQu/6auptihiaKbhrIuW2TDINQaLY4UvSlcB2aE6U0F6U8/wPjsyjXAhR8V7d5Yq6K1QM5DOTUJKNS75q7qaI0KKKlNxL/CaCsXE+sU+R70qplhDHDSORcx4huagyBNZlE3N0kO9ft+yfxuZ/LgDGTnqeVyDA/y7lOg8+0GdKSkMyZY5RMFxfLW7nH+DwHJsrKSAgQySSpaps28ayf76NejElrEnXUc41i5UMTpdSV2IC44cwkXAcCDxyZw9qhnK41pIVrw0iEQsAhaSQWwiQmOmAS2v2XIboJiArR8YCfxi7DUCDnOTLhM2EkfCc7k0jLk4jcTXG2nKYNBaFA3nPU8rsiPlmJJdPFmYQQ0nXUzkhUgxADOWmEzPVShvJeKpNIXsfUJGTtptY6olmafPfhGZxzgvTOT5VrMpt9MIeBnDQcpWrkjlswk6gL5HvkagI6czddC6BovC8C+EF3m7P8MGoYia1rB6LopnINrqJ/1bpc9e0Q12xJaBLceW/YI0sjPG7bGi1uApFLKV2TCDSb4QFBCIG//Z87cHfK8qqxrNO0PAk2EsxeKqxJNA//YyO4f4KF+RCDasaU1d2UZBJ8XMzdZAwc96tIMddwHVxz2wHcum9SfwfPIT2DFULge7c/rPdNJnLN1QIMF3wphlYD7VIr10KjxpOA5xKG8l4mPaEZmEl0okm0i25iV0M9UJqES/DV5CGJQAjtvzZDYNmwhCJuRJshNITresJIVOtB3N3UhEkwS5R5CPGJk1AGIV6QULY5FMBQoQ2TqAd65m7mSQzmvfZ5EkEU3TRa9OWEx/g+SV0OiD9b9x6MXE5cInxswNdRZ6VaoLXABUc3BUHPli4FOjMSBSGE/ubq9UD3m7S8MDaQ069PXTeEmUod9SDEVKmO1YPys2oQYN+xKNyxIVJCDQSTc1UQAadvGIo9VLMp4aj6s0odo8XoQQDkA/mZn92HH6jSzya4oxOl50noENhK3FjE3E0Jqs0zqP2TJX2+wbzbcG4A+Nv/uSNW7bWZJsHnnK7UjAJ/USlzDn89efWAvsb/+5878amf7tH3adNYAeMqu/U3+ybx2i/djO/cdgBAUpOQRrzguyjmZMSMOQiwkQ5DySTWDedxeLoxFh6QxuiHdx1sOcjyoJGNSWRzN3Fkixau1WBkDoYf+9Eu3PbQZHx/9vEHoY6IArJlAfNP67tR7abpWHRTa7dfEArk/eh6cd0rxD9972685FM3xLaHIlo+dDjPE5H0e12tm/0wYhIDTZiE+ZVNJsGTMFOHSIvw42fLcygmXvNvWFTuJ3axRUxetuW2hyabVpQ2UQ9CfP+Og/pZ4Gi2XqGTM88S0SP5DRE9CkCp3UFEdDkR3U1Eu4joHU32uZSIdhLR7UT0k06OXWqMFCKP3bZ1MgF9piKXYFyrwt0qtch/nnMdqUmkUNfJUg3DeQ9rh/KYLtd1lFNaiQzGXDXQbIYfJnZnpNX7MTNr09aiLqs1JWardRBFayekuceic8r3zCSkkUhnEj+6+xD++5aoHlKpGoAouo/JtYslk1BhuCKa+R6ZroAI2DBSiNVgmirV9IC6ZWxAG1u+FzfuOQogGVkjUKrVMZBzUVBhleYgMKOuHwgB15FGgllhEjc/cAyv+fwOXHfv4dTPAWCyFLWp3Yw9i7upHoS6uJusUSSZgmeEwAoh8P7v3o3/vfVA3EgE0f1mw8L3pB0i4Tpic2l5EgXfaW4kuN2J6KFyPcCuQzO4/8hsiuai3EZtmUSomUQQCv2bDuXdJlpNtC0MBUrVAA7J3BEg7gJLYxKVegjPIZyydhD3GExC5zGo7yo1rUA/N5wE+eJPXo8v/OL+1O9i4iu/fBB/9MUdsXI2vQp/BTovFf4NIvopEf0UwNcAvKnVAUq3+BiAZwI4G8BLiejsxD5jAP4VwPOEEOcAeFHWY/sBnutgOO/BdQgnr5ZGYqokjQSHu1UNkXXbukHtbuJgBB4YJ0s1jA74WKUYyLHZKsq1UIcXprkc5qp1zWb4YWF3Rpp7ShuJfFSyIaZJVAN9zTWqHXPVeoxKN2USE3J2XasL7W5KPsCVeojdh2f04FiqBij6rp5RcvvYEJkhsMl7NZz34HuRq6MehJgqR8xjy6qiHpz4fDfeNw4gbiSqikkUfRdF341pEuZ9DEIBlwjrhws6eTKJvYox8r1IAzMJIYDpNqG0WZLp5GDrqtfSPcasgAcg0/gGYTTzZFtQrUtD4zk8aGdhEixcm5oEC9fRPdw0Wmwa3ZTzouslheHpch2lWiSu83X4t2yrSdRDPcDXglAP7AM5D2m2OVYdV02MciqUGIjrEM2YRM5zsHlVEYcMpsntY5YW5XfENZi5atA2d0YIgS+qWmU6kky5F3uFTkqF3wTgEQDeAOCPAZwlhLiZPyeip6UcdjGAXaqseBXAVwE8P7HPywB8SwjxoLrOoQ6O7QuMDvhYM5jTfvWpcg1TpbqO/a/WQ+w7VkLRd7FptKBFPZ5tm0xitOjrwXl8tqrZQ95zmtRuCrToW08YiVQmEaQwCfXEuA6hXAv1ceuGCwCghUVGg3CdcDexYJi2b6UuVx57SLGOUk0ZCS++P58zCAXGZ6uRQVX3aqpcx+iAD9+haNnOQJZnj4zEAOaqAcq1yD9+z8EZHJ2tJsplhyjVQhRz0t1UrsXX+54xjYRiEtPleqp4ycbhYEppBoZZNnq6jcspi7upbrhteHDzPRkCy9vM+xoK0z0Vbc95nTGJVOHaGLiq2kgU0pmEoUnUGtiq7IeVWqjbyCXJeZIy2C66qR5iIG8yCe776UzCPE2oapz5jqP1nnZMgg0tV4bW25NGIudJd5M5EalGbrpWuGHPUR1iy31C/na9W/+tI44ihKgJIW4TQtwqhEj27vemHLIZgLl6/T61zcQZAFYR0Y9V+fFXdnBsX2C0KGuysO9yYq6G6XJNZ1dW6iEmSzWsGvBR8F3lbhK6xIM5Ox4r5rBqIGISPItdP5JHqRY0UO9SLRKu+cHmOPw0JhET78I4kxgueCjVAu3eYSY0W6m3zBA3hWuuHdTsAeZjdxkdvZhztdtB50kkQm7ZpRZjXUUfrhP53WthiKlyHXO1AJ5D2DAi2z8+W409fDfdf7RhXeVStY6i76LgKeHa2J8HPjYS69V9OTTVyCYenpTG4VATzQKQ/YMnEO3CYCN3U+s8CdNtUw1UCKzaVjPCPxuYhPqa1cSsOUs4NRtaz40K/OnoploU3bRRGYlk/aYwjNZACIxS3PJ7B3ptc9NdExgGj5lEswi6Si3QTKIeCJTrgUwY9JyGel/J72wmJXIASikjkxgbyMW0hTR3kzlxAaJntV2gx3/c+ICeMPGzVAtC5PqBSWRAWivTtiV/HQ/AowA8G8AzALyLiM7IeCyI6LVEtIOIdhw+3NwP3Es867xNePb5m/Sgv3+yhFAg0iRUdNNA3kPOc1Cth6jV5WybKOpwmkkYCTf80K1Xs3qzo5oZoUDUybmDpjEP090UrSshbysbieiaeXWdoHWehHpfroWYmKuhFrDrglLdTQBw76FpdYxkEvwA6TyJxDXYcJpGYqTgxyJrTCZRzLk6cODoTDXmIvvlfUcTIbChZjQFJVynuZtCIeAoJgGkG4IDik0dTDEggHQXTJRqOHG1jPlg8Xq2Uscteyca9uffu9lqaLz0bORuEqgpfYFnwLUgmkXXgjDm5uGBXifTGVFS7cBG03UiVjFlCNcmk6gGYYNrLVB5EtzGeHRTtP9MRWoDrkNKuE64m5oMrCZbr4UhKrUQBc+F6zgNEX2TpVpMuOblSn2X9D0xtbi0GT8b2tGij6lyVOVXrxxnuJvmqvGJl44KU9te/pkb8G8qHN7E7funcN6WMQBJJtEfmkQ7pPWqfQBONN5vAbA/ZZ9rhBCzQogjAK6DrHyS5VgIIT4lhNguhNi+bt26hbR/3njjZafhjy89DSMqymifqtE0WvRlDkM9xGy1jkE1Y+Y8iZznIO85mrpOlmoYKfp6cDs2V9WCJbMSsxyEGaIHmMK1GnhSZp9pwjV3zOG8j0otiK5pMgnV4Qu+kxoCy7OthyZKqCnhlA0iIzRER80kqswk3FhbkjMqHSJbjxtUDoHlwZJZW9F3jezous672LZ2EL9+8FhjCKxqR9F3pCbRzN2kNAkAqboEu5uYUSQxXakjCAVOUkaC/cpfu2kvfufjv4ixP/N+NWMSPNYV/IgByL5FUZhrENVRqgQhAmFqAYk8CTdiH+0QCHk/XKIGd1PFCIHlyVLS355kQMmsfj7XdLkGz3H0dTSTaCFch6E8HzOJIJRMIu87DRnX773mLvzeZ2+MLzoURoUSmV2ZE430PIkAOdfRIbPsSmzQJFTuRnwiEmfQOx+cwA/vOoQkxmcq2LKqqO8Rn79XJTmA7hqJNNwE4HQiOoWIcgCuAHBVYp9vA3giEXlENADgMQDuzHhsX4EH6zv2y6iDdcN5PVDOVWTMdt5ztSbhuw4KSigVQuiBjzWG8RmDSYxEs3oGDyijiTyJiVIrd1Pkz23mbmrFJIYLfmoy3Ymq4x6YLBuRMk682J8ZR66MxJwKPdXuploU7mqCDSc/qHyvPFeyFXNmeHCqrCKV2IUV6vNuHC1gthLEZsoy0YqNRHMmUWd30wgziRR301Rrd9OkMuBsJHjgnJiroh7GF+jhNhA1j27i2beZbxCFwPKALxLuJmiBWi8hGki/tudGOkY7hKGA4wCuOlcYCiNPIjJMbOBNNsRMLorKiq/RMFOpx0rEeC6pCUHUB4ZbaBLc1wb0PpJN5T1XuiiNaz04PoeDU+V4PoaQx5jsKi2AInbNujw/f1+erCUL8HFwRDWIJlem4M/nT9aAqtalO3XLWDF2P5cTk7g/uUEIUYeMgPou5MD/dSHE7UT0eiJ6vdrnTgDXAPgNgF8C+IzSPVKP7WJ7u47BnAeHgOvuPQKHgEdtXYWcJ2fes1UZYpn3HFRU5cqc66DguajUQh3tIAc+B2MDPo7NRZoEMwmTHew5LHMFTlw9AKJowDg218LdxMJ13tUDPz8wWpOoJJiEQY2H8l7DLKpSC7B1rYzs4oWAch6p7944+3Idwq5DM2rN4Xh0U1K4Zowl3E1TbCTUrNAc9B+eKivDw6GLQcw41sJQu1lch7QwP8B5Ekrs5oeds6tDZSRWD+TgOdRgCMo1uWRqwXdwZKaaOnixXpR0N7ERMH3ZfL9Gi9Iwp4XLBonBNlAzaDkDZndTGLuvQShDNeWgG7n3pGulAyYRQjIJNYrUDSMRCtlvHAKG8mwkjFIbxoJF8npx4fpoouKA6xAchwVlVV6jhSZhitSyrSHK9QCFFCYxWaqhFojEIkjSJczGCYgizdKeAUDeQ6lJKCNRikqUANGiQJwFXjMCPGaMNVM40uvgVCUW5MB95wRlJEq16Ji+YBLK7/9GIlqV9rkQ4oVNtl8thDhDCHGqEOLv1LZPCCE+YezzfiHE2UKIc4UQ/9zq2H6G4xCGCz6q9RDnbRnDSMFHnpmE0iTyPrubBHyPkPcdlOuBHhyYFaweyGF8ttowYJszyp17J+A6hPM2j8J3oln7ZKvoJsPdlFyhbqTgo1QNI7Gco5sqUeLPUN5LZRKbRovwHMLBqbKeyeYSpar5uNPXD2G6XMeh6YrWAthfy+2rBtEqcACwynA38aA/ogxqLRCx5K+Dk3EmYRqJAbVeAg8SBc/RboGimSdRlwXkfJcid5PKk3AcwtqhfIO7iV1M56pyDGnuqIkEk2B3E5ceN6NieBBYrQxkWoQTG/iG6CZ1/wE54FdjRkJpCUQx4TpvRDdl0SRYo3HUIBoKoVxDpL9bznN0EpnZ/si4MQOKs8EjM9G9m6nUpVFjd5MyAAW/sY8xKmxIcilMwqWY/jFZqqFWjzOZZFIiYBievGtoZwF+eNdBfW+lJpHT55XXVkzCcDeVVHQTGwlTuDYZ910PT2t3KocRrx/Ow3cpLlz3CZO4AsAJAG4ioq8S0TOoVxWlljFYl3j8qWsAyJlSNZAD76DyvbN7w1dMgoUzIKLmqwdzODbb6G4yXUi37JvAmRuGUcy5qk6P7FymuykZUcL6Qd53Ut1NlVqg2UqcSch9h/JeY55ELUTBl77YCfXARYveNDKJMzcOA5AFD0u1AAM5F54ro0jMUuGrjGz2VYa7iV00I5pJxCNjZhM6B4uo7HOvB9GAkPddHWHE7iZpVAIUPKlrsG88DAFHdfm0hDoOAb7wxDEA6WGwPBtcO5THQM7V34VdGfzbmfeL+0Say4mjdGLCtYp2MV1HFcP4hkJOaEwmYVaBlcdkYRLS2LBRYEbGgRczZVlXrJhzGtqfZEDmGtIOxavGzlbqcB0HjkMIjJyPvOfKPpbi+jEHdL5eRTEJU0MB5IzfXJKUmUYtlIyM3WnlegDXIekiVqziwz+4F6/5/A7sOTyjDW3kbpLfoaaZRDxPQuZxRAX/AHaNGkbiwBSe99Gf4R+vuUuzq9WDORmFx8K18kr0Cp3kSewSQvwlZMjqlwF8DsCDRPQ3RLS6Vw1cbuAIp0tOXQtAZVirRJmBnKct/mylrjQJB+VaqGf/zCRWDcpic5G7KcpZAKTrY+feCVygBiTP8LMem5XnMgcHBg8GHNseGg/nYF66m/Q1TU3CNCQJvaBiRHUwdc95jcI1t2XjqPwuk3M1lKohCmo2lfciUbwShBgr+jrcz4xuMlmX5zgN2boAUPQ9HTlTUYN+XhmJWhgxCX5g+XXRl0mGMxUpcg7mPEOTCPWAuH443xACy0ziwpPkb5IW4WROBoYLUQ0oFqZNJsE+Z9Zj0lwc9dTBVsBznZjryBQ5pQAP7eMHzAJ/HeRJKOGaDScPimsGZb+ZLteQ81wUfV7ytdHdpBlQEBn6wbwXi4SaKUdMIjSS6fKeE0umNMGz8YIvIwjrgcx9yXtu7FkB2N0UxlxgHCWW1CRch7SL+OBUWRfknCzVFFNx9DPMv3VyeVGuQlsPBQby7G5q1HIA4Es3PIDb90/hN3snMa6KJK4ZyqGg8nmA/irLASI6H8AHALwfwDcB/C6AKQA/7H7TlidGCj5ynoPtW6VXLu9HmsRgPhJoZyoyEkIK2YH2X3IHW8NGohpFTACRkdhzZBbT5TouUkbCXIVsslTTFDmaoQR6thOLYglDNWMi3Xn5+KG8dLfMqnpUgIwoMQVIIWQETt51MDrgY0rNyiLh2jAS6jh2Y02Wajo/AYCO/OJ9876rwxxNd1PMSLjygU+Wty7mIp2jXJMPHrtT6saAwPsAykgogzU5V0XeczFc8DCjGBnPwAHJ7A7PxI3AAWUkLlAhiqlMQhnwsaKPkYKvNYmSIcgzeLa6Wme+pzAJHXUW+d75/uc8IwS2wd3kxJlEMk8ii7spFJqRmG1fO8xGoo685+h7ahq5SLhW7qYwCoHl35wxrTQJjmTj78L9OK2IIfe1vOdKV2woazcVczIEVgjZBs5XCEV8xi+Fa5mUyIysXA/hO5GL+MPX3qufhZISonOGkYiE6yjpEJDJdIwBP84kqkG85tVupTvunywZTCKvJpcRk/C9PsiTIKKbAXwIMurofCHEm4UQNwohPgBgT68auNzwhNPX4sXbt+iHNuc6mC7XIQR0dBMgoxl8V3W4WtigSawazOHYXBUzlRoG866ecfCMc6eKqedZK5eFrgUyU5XFLRavv3T9A7j8wz/FsblaQ2ZtPQjhOY5u8/hMVftyBzg7lHMp8l6s0B4/oHnfxWjRxxHlJsi5KcK16vwcNTWh6iyxkTCZBz9ww4qZmUyCB1YzBDbJJAZUYpw8JtCRJ8w8kj5xINIkuG0F38Fg3sNsta5DTV3tbpLFA023xYHJEsYGfGwei/SZJI7NVTGc9+C5DkaKhpHQTEImnU2Xa3ptD/7u/NubLsQouikuAOcMEdoMgY2MhGISag0HmWDnGv0io7uJIncTT3S4YkA2TcJsd+TSNCFZt2QsZsZ13lOaRJq7yWAb3Ee4r5luONMoc/t4ze6aei7YCFZqATzDRXzNbQ/jtPVD8lilMTBLH8p72khEK8fJ8/D9AGAwiSj6jH8rvo8518GBiTKOzFTgkJxgsFsUgGI8S5xxTUQOgG8KIZ4ihPiyECI2hWomWh+PeONlp+Fvf/s8/T7nOdoPbTKJci0eAmv62QHZQWqBwMOTFQzmPcN3KUNUv3v7wxjKezh1neyknuOgFkbGZrMyEkxjb98/hWo9xO5DM/Fqnyyiu6QHyCOzVf2gDubcWMb1UMGLFdozF2GXRkJ2jVZMYt1wHkRS2A0F9EyTw4PlvtI9xKuPRZpExCRGCh58hxoqiALynHJgaWQSpv+5kGQS6h4cm5VMYjDvYaYSZbozq183nEcooKvMAnI9jU2jRTgqK5vdTf/4nbvwis/cCECGxq5T+lLc3RQJ19fc9jAu/rtrcVBFT/F350HsTV/+Nf70q78G0DjYVushhIjuPxCfnVbqYSTAK+HaDNHsOE/CEK7ZZcqD20xFMQk2EmnuJi/d3WQiFEgwCTYAboPuxeB+meeFlIKo0i8P+kHCSPCgyzWidJQYaxK1QE/sxmeqODpb1foTl9lglxK7Xvn+54xFgVisNr+ryfj5OXnstjXwHMLLHnMSqkGIux+ewaqBHByli+jopn4QroUQIYDLe9aKFYy85+qQ1IGcF3NveK6jo58mSzU4FMV+s/h354EpDOY8FHwHRDJT+cnv+xG+f8dBvGj7Ft3huSw0+4XZSLAIzRnO9x2ZlQlFhrtJLncZPczjMxXdkQfyXixPgsMZ9WDOD6MSrpkS+8Z3Y/BDOJBzMZz39Ey74DdqEiwCssajY+3rcf2GXQfJkNlizgURIa9mfZVaEC3EEwodAlswmMRAztMGa6pcR8F3MJSXRjIyEvK+rTXqazGOzFR0uY0NowUcmi4jCAW+sWMvbrr/KIQQeHiyjE1Kkxkp+CnCdQ13HJhCqRZg9yHpatDRTdUA0+UavnfHw/jFblmoMIpuis/W/USkkl6nIwh1yXMW/U33zbzyJCjublrDyXNlyVoLSrguxdxNUNeMajc1czcBchIkhWv5WxNBr5mRpp/EvpMyLjIXxsgqNyZVgGEkPAdhyFFDRghsTQV9eC7uU0vnPkIFYZS07iW/z9iAr6v91urxAnwFg0kMpkQ38TPwou1b8NO3X4Ynni71zVsfmtCuRzO/qp/KcnyfiN5KRCcS0Wr+61nLVghynqMH7kEj4gaQLhn+sTnbmmdll56xHqNFHw9NlDCYlwPeYM7D//zmAMZnq/j66x6Hv37uOfpcnlqqkinu5lURkwhDoQecUk1qHDnD3VSry8V0eIA8MFnWM5zBnKvzJIiiWZD2hyaYhC765jUm05lRKaMDvhZ6tSbhO7FFh3JuxCTGilF0E68fPqI0CaBxzeEBXbtfuryYSXiOE8uriDGJnBNzBeQ9F4M5Gd0UiDiTYDeYGWY8Uapp19Apawdxy94JXHfvYV076thcDQ9PlrFhRBmJoqfLWOg8ibmaztrmysGrDE3iZ/ceQS0QODQtY+jNSqzm72JmCtcNQ8CJh1GehPkbdpYnEQrOk0hoEkMRk8ipUFzJ6BqZhJmv0czdJO87wSVpmCrGzLyZJlE1+hqHSbO7KcYkUkKOc+pZSobAlusBPMeJRQY+YuOIPDaFSZjJdOaiQCaTYLdumnA9kPOwabSon+WDU5WYkSjVQlXlF0vPJBReA+CNkGUzblZ/O3rRqJUEWblSvi7m3NiPqaObFJMwV7lbNZjDW59+BoCIkhZzst7SRSeN4eJT4vZZ1kkSumNuWSXj8GcrdeyfLMVmcXnDrVAPQtRC6XvlWfvR2SrO2jSirynzJIRuLwB84se78fLP3BArXma2P+eSdgX8+w0P4Be7j+hBouA7GCvmdHYyPzQ544Gv1EPkfWkkOFLKd0kL14M5N1afqJwQddngsRFmTULHvBuDSHRMnOnlPaVJGEyCI3nYeJlVXCdLNc14Xvm4rZgq1/G2//yN/vyhYyUcmq5gozISwwUf0+UahBBRdFOpqus/sZFYPSjPWaoFuNYo1XDPwRlt7LjdzEh8df8BuSiPmXFtCs4sdPNv2EmeRCDiwjX3PWbBPHgRkV7xj8HCtaNCaM0INe7vw4axiDKuRSyax/fS8yS4ynDBlxFbHN1U8F2DSSTdTdF94Ixr3zUK/FWlu8lknxzOzYsI8fM9NuBrjSYZoho3EopJGFVgTT0FiJLngKjESdGPknKBSBTvBTKvcS2EOKVnrVjByBtGYTCxIpbvORCQfvaJubiRAICXPeZk/NfO/Thjg+yIgzkXhwFcfs7Ghuuw//9Y0t1Uqes6SbzutBnFUlO+YN8lPHbbanz85Y/EmRuHcYrKoB7Medg/WY4yxNVM++pbD+DoXDU22I4Y7ZfRNdKo/eN37sKlZ67TYcF5T4rc3K7I3eQ2MImNo0UtdLNmMVWu6WvpWv/1KJs7CIWhc0gjXKkHGFSCMRAZiWaaBLdruCCF68jdJAeMIW0kOIdCqCq+sl0XnjiGx25bjRv2HMWGEalP3PrQJOqhiLmbeMU0HqAm5moNa6IzO5mt1PGjuw7h0VtX4ab7j+Geg9PaJ879bM5gEr7BJMxkupznaAYQGK66jqvAKuFaG4lSPASWzwlAr/jHMDUeZpwcocYGeKToo6ISAbWGIkRsZp5TE5Hrd4/jpDUD2DxWxP6JEj7wvbtx0Ulj2LZuCK5LmKsFCAWUJhFlp6e5m+Tkhms3ReyqUg+li1j1mTWDOc2a5lQuERuD0WLOEK5FbBCPuZvykdYo77tAqRq5cAHZT1i/ijOJIPbb9QqdhsCeS0QvJqJX8l+vGrZSkE/QzHxGJgHIAekbr3sc3vWcs9XxskM989xNDdfh6Cbu9Fu0uynQgzGHZua8yN1UrQutSXiug2eetwnb1g1pkW244OkQWN8l3f79k2WUVTkRPudowkj4LuHAZBkzlTpmK3U9Q+LEO52fkDPcTVpglf7d//Nbp+Hrr3ucvpfMJPhaUQx7PKfAXCqyojKoTQYVsZr4rK6YM91Njl6ghn3GfL3hhJHgCDbTUL7h0tMASFYBAL968BgAxNxNAHB0rqpn8xNzNR1Ky3oHG4kb9oxjfLaKVzz2ZAzlPdx7cFq7PXRUlhqYZPiykSehBhOubuq6BpPQ7ia3szwJztw2hOucEWwgz+no9pVqAcZnKvi7/71Dt8chUjpRqFfJ4wS4obynf0dfRRlx0UNmPL4rda8/+uIOfFIti/vub9+Geijwzy+5EK5D8B1H/07FFkzC7Mt1FTFnljcB5O/PTOKkNQOaJfF5TCYxVapFmkETdxN/P9NtyezUZLk86TP7N9d/4vvQK3QSAvvXAP5F/V0G4H0Antejdq0YmDRz0AiBlZ/JDheEAg9NlBqMBBDF5QOSxp+7eQQnrWlcWlyW5ZCahEPRQDRbqWP34RmsHszhgi2juk3mLJOTr9IwVPAwXa7JNQpUXocJZi45z9GzaCASrvnBm60EerbMmgQjLU+CZ7yDeU/TbVn3KtT6DYBIk1DX4ciaAW14XJRjGdfx/Qt+3CjENAmjhDnvz7/HsBLwefDhWbS55vmTz1iHK//4ErzuSduQcx1tJDiZkHUNFvDXDuVUJFJ8Fs/94kd3H4brEJ58xjqcvmEIdx+c1nkObLxZ/xouePFS4YZmUw3CWPXWVCaRSZOQAjgL1+OzVYwWfS2i8z0EokHtx3cfxqd/eh/uVsXrZMa2o0qFx6ObhgueZno6uklE5TIA2c8OTlUwU6lro7pz7wSed8EJOHnNoD52xii9wkYtbMIkcp6rq8iaLk1A9jee4W9V5x/Iudo48+8wVvTliodqtm8K18VYdFNcuAaiPmVOKPkZYFdewY9Ke8g294G7CTJx7gIAvxZCvJqINgD4TG+atXIQm0Hk3Vg5Yt91cM4Joyj6Lg5PV7Q/uxn+8XfOT11kAwB8j3S+xUjR1358djedtm5I6xRJd1MtaL78ofSb17X7x/TZAzJUFJAd2hz4zVLVgEyIMn2tpkGM8iTcmFskn+j4eV+5m4z1GDST4DpHBh3na0VMwo25DuQ5o1IJPCvU1zMYFxs4HhC5UBzP+nQmdcLQX3SSTKrcNFbQBRk3aneTfPwOKuawabSo80wYBV9G9XBm+MWnrMbYQA5nrB/GD+48GGkSXpxJyLpTUWJcspQKh64GoYhpElmim+SiTIFmEmw4j81VMabK4zOS9Yo4L4Q1JE9rEo3C9VAhYhIe50mo9mpNwiXsU0vG8sx9slTTYr88NmISBd/RulJTTcKVxoiTEl3TSDhOxCRUHyzmXK0/cJ81E+oamIRvJNMp74CZKDlVjp8LaGQSeeWBSK5V0Qt0cuaSCoWtE9EIgEMAtvWmWSsH5sx7MOfFfkzfdfCE09fiF+/4Lbz7OWfj9y/Z2vJcm8eKMRHLhEwSkzWi9EOWl9nC9x6awWkbhrQLKmcIuNW6dD+YsyUTwwVPVfdUyX8NTCKi2XHh2o1919lKHeWafLgdh+JGQoVIxjKu642x36a7iUV214nP9FdrJiHvQUExCS7LwYMgl6ngB56ZRyHhbtLuqXqcSRCRzsYGosG5maFnHcJzCGuVz57ZEDMJ3geA1oTY2HH7nvKI9QCA0zcMYXy2ioOqfhQPKMzshvJ+LDEuyU6iEFiDSbgOfB3d1NxIvPvbt+EVn70RgYiEZ0Au7iSZhGEkvMjdJNdwlveLjTq7m8yESM4JGspHpVWSTILP67tRYMhkqabrR8VZLcXcTVF0U/MQ2FgNLMeJnYu/38mK0Q/kXEwajBpArFx4NYhXaU1jEiY0kzAmLCekuJuq9TDW5l6hEyaxg4jGAHwaMrJpBrK0t0ULmD+eWRIbgBbfVg3m8JonLCwugMW2mUpdP2SDeRf3HpzBxFwNj9g4rGffje6msKm7iSNMjs5WtQvJBDMJs3QIt8cM+5tRTIK//1jMSMhrsBEIVF2bdCMR6jLhfB0gYgZrkpqE5+CQjm5yGvbn9hQMtwij4Lv6PpWMmS9jyEiGS5ZVSYIf8vXDeW1oNJNQA705AbhgyyjuOzKrjRi37ylnSSPBwQx3PzwFIOpnPOgNFbwYW0zW2/KYSQiztpBRFLCJuykMBX5w50G4DmGsmINLkeGcrtQxNuDH+gi/LvouJuaqmnnxzNl1SNfTqml3k/yu0t3k6vYCnPwnYu4mxmSp1lC5gK/Bxpyj3YCISXD9tJIh+nNSopfQJGTtpriRKPoRk4hCYGU/nChV9foqDN+I1BrINQ7BaUzi9PVDIAK2jA3o7wFEBqUvNAkhxB8LISZUie+nAXiVEOLVPWvZCoFZ1Mtx4jPxbibAeI6M7Z6rBvohG8x5+PVe6Qe/8MQxg0nEM2vrqnZTGoaNsFgzBJYHuKNqBlXwpT9fC4rGNQBpJMqqVDOAVHcTRzeZMe4m8p6LhyfLmK0Gev1qMzwRAE7fMIyc6+jP2UXFzCTpbiomZuqmD5oLyAHxtTD0vcn7kbtJ3YfRJkzihFF57zcabGEkoUnwZznXwZkboxBkbt/JawZ0hj2HQnI5cq6iawrX0brhKUzCiZLpTOE60jHSjcTt+6dwbK6G2UrkbmIXHCDZUczdZBiJUi0walVFzIzdTbI8DOkZtGQSpiaBVOGaMVmqpTI633F0iGnRiG7iQA8uZFmuyVwgz4kCKJKahO862Lp2ECMFD6etG9a/UaRJRAYOkFocL+fLICKdxzOYZiRKddWO6LpPOWs9rn3Lk7Ueyf2Wk1cLfh8YCQAgos1EdAmAkwCMEdGTetOslYO8NhJe7D3QXevP0U2ykGBE1zks7xEbRzBa9LFhJI+1Q7mG2k3N2sKuq2NzNfheJFxv37pabtdMQvr0efDPGazDIakxzFTqujOnaxKODnnk9ybyvqNX6zpHrdngJdxNTzp9HW5+11OxXgn3Bc/R60mYeRJJ4bqYEnFS8N1IkzCicRhmWY2JudZMYtOYbE/MSCTcTcwkNo0VIiOn7sEfPOEUvO0Zj4hFnZnX5aQ0HnzZVcO1w9I0iTThWiaoUUPBRMZ198p15Eu1APUw1G4rxmjRBxHp344NxoAKgWV3kza6RDrZrR7KpM6CHmh9Q5NwtLvJdN/kjMJ2U6WaFu5HEkyCpcBiLjKEHALLBrdcC9R9jOebxDUJwqVnrsctf/10PSEYyHna+JnRXHyfTObD4P5m9jvGdLmGvBeV8QCkYdmmJgjy/CrKUOWDrDY0mG4js7uJiN4L4CUA7gDA3FVAJtdZNAE/LDy775WRkJRdahKcV8DG4qwTRnQ7rnrTEzBc8PQ63LUglJFLTnpbeDA6NlfFtrWD2DhawPMuOAHPOm8TfnjXIT2T0THdqsifmal62voh3HNwBkdnK/r7mw8xb+MyHslkInM/HrvOOUHOtJPCteeSZj+AfFg5GS7vOQ1GxXSH6GNyLqZV3SE2CqlMouDp7OjJUk2FOKcXWmMDwFFnfG3fJZ15foIyIJtGC7pSLg82V1x8Uux8SSMhQz0JVch8GjOfY7pca3A3cX5DPQz1Sm/cR1jf2rl3AvUg1BMCAPipMhKADK9eNeDHIvA4M55/S61J5FyUqqGxEl89arcKga0FIXwnCo4wNQlPZYeHSpPgyYv5DIUiSqLjdgCIuYvM2k3sbuJck1I1kNFaDulJgcm65bnka3MAL/quNkKm50Ces94Q3QTEGWISsnpu64J9fF/4+5q5Kd1GJ5rEbwM4M1ncz6I1dHSH+lF5lpX0Uy4UnLU6GwYxJgEAF6rQVyAapGLupjbRTQBiReM+8tKL9MCmQ2DduNbgu6S3nbt5FPccnMH4TFV3bnYHcPQOEBkaLlXRyCTksZvHijp6JQqBDWPv9TGeo9cmyBnuoyiZrjmTMIXDSqqR8DFdkcxmIiXPxQS7m0xxmogwUvD1uhSrBnPIew5OGC1qF0gzNwL/thx6y0wCiBL9ZBsl2+HlSVmQZiG4UhcNzM1T+/391Xdi54MT+PyrH41LTluL2UodNz9wTGYTz9UwXa5h7VAudk9Gi8yYXUyjHjPCZcPdxJoED8oy41oyCT7GjG4yw1ZrsegmNQnLuZitBjoB0XT7mUzHzJOYrcgBXLub1KJCrBfw+ZNMIgmz7+QSk46SWosllxj0zbBvvh4HmkxXag0TpCS0kVCTvVWDrSMjF4JORqk9AHrXkhUKHmjMypZ5I3yvW2DKPleNC9cA9MJEsf2NGHpJ81szCQDx+jN59okmBTs2Eg7WDueRcx0dBnpkptoQIpislQSYyUSNTAKIWIT8HnFm4CcYUcGY5eW9aFGdZMa12Q5T9ObfqGS4R8x7Y7qbWhmJbesG8buP2oKnnLUhtn2k6GsjNpBz8YZLT8XvPGqLZoNmHocJz5Ua0DGDSfBvaNY+GuY8l3oYY1jmYFhNhFH6rtS3Zsp1VIMQr/3SzXhwfA433jeOWiDwVPUdpst1PcgzeHDm36pBk0i6m1i4DmShSc91cOLqAZy3eRQXnjimnx+9fKmQZTmSwjWXkXlAGQkzMMLs2yaTYBZsupuSGguH6KadizGQiIgDIsNRqoU6c9sEf84FCIHoWZsq1RtCzZMoGkxiuOC1ZR4LQSdMYg7ATiK6FoBmE0KIN3e9VSsIpk+WkfcdTFe67W6SlH2uEjEJ/p9mJKIF6JnmNw+B1ccYHZ0NEfuAk4N/znPwzHM34ZEnrdIZ38fmqjhjg/SrDuU9uA7Foju4TWnJRPK9vIesRwCNyXRJJmHOxPO+G5XxSITAmrNBvVKe7+ooH/bpmwPikFraVMbmV1vmufiug3960QUN2837O+B7+NOnynpdQshggmITI8HHRpqEYzCJqB1SXJdMYijv6YFR124SKUxCzeznqnVsP3kVbn7wGL71632YmJORQE86Yx3+8+Z9mOHFgIxB1XQ3mecs5mTSKF/fjG4ayLk4OluVvntHsqv//j9PkMdpJuEgFCHCkBfZYc1DXvvsE0aw44FjePDoHDx1zujexxPZGo0Er/wXouC7MfcZ6zRsUNOeE/M34u8rNYXI3ZTMYzADJXzX0b8PIIM8mN00A08e9k+UdERfr9CJkbhK/Vl0AH5YzCgGHuy6625yZAZmEOryw+dvGcX5W0ZxisoMNWEmWtVThDWGyYDMfeRavzJ00KFohmUyCdchnDBW1IX8WBcAoEXu2CCeMBJpIbAAcO5mk0nEZ/rJ72HOsGJ5EinJdIyC+aCrbWZtKMZwwVfrlct4+21rI2ExK0ZM/SQXj4DZsmqgpeEZKnh6nW3XjWa8Iwl304NH51CpBzG/tefI5LR6EM+TAKJaSrPVAI/bMASHCNfc9jBqQYjHblujVwkMVMlx856MGJME85w8qHEoaskwEoM5D3uPzsnopsTvx/3DcwhhGAntyegmZpcPjs9hbMCPaQauwS4LXmRMzcWr9L4JIZ7Pz0YiOQkB0FDKBUBU1FAV4WsQrlVCXc7Q7vjemc9JM/B9GZ+t6lDcXqGTAn9f6GVDVip0dFO+sSPlurjkoKyQqkoMq4H9BRdtwQsu2pK6P3d2ZhJpnV+e19GdPdnRh/IeyrVqbDBP5i/wfgzTfTJa9FMfsLTaNUA0oJtMIqr135jHIK8XtU2u4cyaRLRwDZCop2NUkGVXVTmFSZiVYCfmam0z5tPA9Ztchxpmm5991faYwJ+E6T6KaRIxd1PEJEzWwoNhmMYkNCutYyDn4RnnbsT/+587AMiikyb7c534PeF7wG6ipI+eYUY3DeRkol09ZRA2M67roWQ+oVFIj/vT2ZtknxifrWLbuvikiGf/vkuxtb95MmKWUjEzyOUxkZGqIm5wGGbfMVeIi4xEY86PXhTLcBOav087I2HeT16/o1doaySI6OtCiBcT0a2Q0UwxCCHO70nLVghyKUzCzBbtFrzYoNzeP8kPWTUIU2c6JoYLXqqRkINFNTaYP/bUNbj1ocnYQGIOWvmEQTGNSaRJpDOJJ5+xDlOlug4PBaJ7mDaIA3HxWa4tEAndDqUPYqaoyLWRzAxh874AUmhvJ1w3A9eAGlBlQUyYIY/px5qDdTQDTmoSU+Ua6oGIGZWoVLhANYgEW4DLzoeYqwUYyLl4xjkbtJF40ulrYyU7zOOAaJJgRqwBUVY9QwvXDnQ59nogUjUlbpNDUrgORTTovuCRm7F5VRFb10az6WRpFG6fmb0NRJORZOKd6T7j/mku7pVEvN5X1P6iMn5pQSoDRqImGzHz98ka3QSgL9xNf6L+P6eXDVmpyKUxCa5s2WV3EyMtizOJmLspbF6WA4jcGskHhF1R5mB+yalrdUnw5H5AvHO/8bLTYrWokkwiObNOO7fJJHyXGgbaZPavmSdhDqzm4vRmngQnlTULgQXkinTVetg0ka4VmEmkxcu3QwMzYOE64W6aqdRBiLuhmAGw+yZZLsZcl33LKikkH5mp4LT1Q9h7tKT3dYhihrPRSDRmsgNGIIDSD2argRKuE0wwF2kSriOXXjXdo2uH8njWeZsg1FKqQSgajDXfF5OVANFkZFDlTtSNFfvMe2H+TwsVN/uOeR95DY1qyspx29YN6gKE3D7z92knXJvPUS9zJIAMRkIIcUD9f4C3EdFaAOPCXJHdIhVpTCKf6HjdQDP3TjO4DoEoWk+iWXQTEM1wku1l7aMdNW7GJJ52djzShz+b0rVr2t8fc9BPe4CTVV7NjGuOrAHkIi76GHMtCvV5unAt78teHVHT+cPKmkRavHw7mPfV1CTMGelwwYMQ0gUQMyqOkZyWqJPluaR/A46Q++CLL8BsNZDZwsaExzS0vBAU0ChcJ6O0tCZBpNdZmanUGzUJQ0x3yNQk4vvJcGIPx+ZqMfcRH2u2IalJDKiy6vUwkIUEm2gS8n3jZGogJQQWkIZ/ppLOil/7pG143ZNPle1z05hENk0C6L27qe1TSESPJaIfE9G3iOgiIroNwG0ADhKRXfe6DdJ83jz4dbNyo/lwZR1weOnHWtg8TwKI3BoNRiKFSaTBdSg2O2+GKE8inUmkn1vuU6oFqbqKeT0zT6JcC+ASYc1QDqesHdQhlEDc3ZSMnkpjEpyYOB9Ngs9RzMD+Go9N1ySGE5pE2mu96JBaXCdmJBxHr73NrPT0DcM66cyc8JiLDo0WG90lzTSJyN1EerIxWao3MNpiLhrY9XoSTdZ05us3MgmKtYGvwUxiwCgnwyXUGbydj2knXCdrtXEtqTSjpq/hpGkS/eNuyjJKfRTA3wP4CoAfAvhDIcRGAE8C8A/tDiaiy4nobiLaRUTvSPn8UiKaJKKd6u/dxmf3E9GtavuyXCp1KO+BKFo4BohmCX4XhWvz4RrMwCQA6Qut1EKdKNcM3HmT7eVZZpbBnF0grWZISU0i38KgMPTypbV0XSXubnJjeRKOCsH90VsvxWO2rdH7nbiqiI0jBXiuo79bszwJANirSlXPR5MY0fkinU8YhmLMwNAkEu6m9P2h8w6qxnKggPw9ObQ5bcJR8GV4J4DY8qWjKX3cLBVuwryfHGgxVao1Bh54Rp6EEwVnpP3WzYwE71vIxZmErgxrLCvsOATXpYZjPa1NpLibdKJsInEv19xImOBzDxglQ9oxCbOm1JK7mwB4QojvAQAR/V8hxA0AIIS4K+n/TYKIXAAfgywIuA/ATUR0lRDijsSuPxVCNNM8LhNCHMnQzr7EuuE8vvG6x+E8I+u5FyGw5rkyGwnPiaqbtmIShShczwTPKLMM5kN5D4enKy335YHkyEwl9Xpp4HaXakFsQGQUEqIiM65qPQoVTuL3HrcVL370iQBMYTwSWhksOl+/exwAsHVtY6hxO0Tups6ZhOnDjuVJNGUS0XaH4utJ5Ju4m9KMBBeom60GCSbRGJyRxiRGi74ePDkEFpClTU5J3EPuE54rS6SwaO6nDKIjTYwEt6+ow2kj7cuheEl4TtpLfg8+Ji1PYsBwTybLdTAjS2svg/tk3pPGql4NMrlai74sH8MLEfUKWUYpszJYKfFZO03iYgC7hBB7hBBVAF8F8PwO2rcisH3r6oZ4faB30U3NBr8kfNeJ1kRuUrsJiHzvzdxN+SxMIt+eSZy0egA5z8Ed+6fkvhkelHit/zRNIi5cJ8s+p8FM8uNz8gzWvB7PzA9MlnHu5hG9MEwniNxNC9MkHIra1oxJDOY88Ff2XHM9iXjkmuc6uixFswkHz/4dJxKu4+6m5prE2qF4yClrHFKTSA9h5sJ7jLQJBF8/6fbztZFIahIyxNcsSJjM++DZuo78apFxnWxTMedG+lqLZ4RdZ7xQGNDe3QREk7Ne1m0CshmJC4hoioimAZyvXvP789ocuxnAXuP9PrUticcR0S1E9B0iOsfYLgB8j4huJqLXpl2AiF5LRDuIaMfhw4fTduk7JBONuoF5MQmHUFKF1rIwieQ+2t3Uhhqb+7ZiEr7r4KyNw3pAzsQkzAc65TvESrMbeRJAPJy1eZuSmkT0mWv4059x9sa250oDz37nI1wzS/Ac0lnBQCKZLh+f3ScHw3rYKFybs+Vm7eLv7RguFlO413kSiYoDcg3seMipaeySwQexRYdMP35Kn2vmbmIXUSGhSVTrYSzzWV+nSZ6EfN9c90qrz6RrQLVwLfN3lishxoX/VuCw4l7WbQIyGAkhhCuEGBFCDAshPPWa37drXdqdSbKPXwE4WQhxAeT62f9lfPZ4IcQjATwTwBvTSpMLIT4lhNguhNi+bt26dl+nLxAxie5pErHSAxncP4AsKMfZ0K2jm9LdTWnlz5uB2Uihzb7nbI7ccp24m4D04mtxJuG23T8JLp3NeRhJw8Kz9mecu/hGgq8dzXLZ3ZQuVpuDUIMQnHA3MZq5wXi7mXxmhgDrEFjOaFffb6Tgx67lUPMSGoAxsCeijhYiXLtuoxFsZiTMBEP+PIlmz4H5HGbRJPJeVAE3C5MoeG7P6zYBHa4nMQ/sA3Ci8X4LgP3mDkKIKSHEjHp9NQBfhdhCCLFf/T8E4EpI99WyRz5Be7sBno0M5uK1Z1rhhLEiHhiXomurBZC0cJ2ScQ1kYxJDGZgEAJyrsql5mdN2aOtuSpblMM6Z9T75rpMa3QTIQXjb2kGcvr7zkhzyeOVu8rOxv7RjdeRNG+Fa+rzj0UI6BDbhbmI0c10OaCZBemAfSzMSKgOZf4eRohcbTE1NInltwOhjrpOIOurA3aTax8J1XFzm80dGwEm5DrORVu6mpJGIZ2I3f0Z02LAfLfmbxdVa8N2eRzYBndVumg9uAnA6EZ0C4CEAVwB4mbkDEW0EcFAIIYjoYkjDNU5EgwAcIcS0ev10AP+3x+1dFDx662o8OD7XkPi1EPCDMJDR1QTIktsc4dFsPQmgeZ6E6UJoB3aBtWMSXJcp65q9Mf9xmrvJLMvhSmGRE6eyGulWRuLPnnoGhgrevH/LoZwsh716Hi4DdiVxm3ggM903A6qgXRAK5P1oISgdAqvcTQMDRo0u093URpNg/eYjL70IjzMixE5aM4g1gznNIOSqjA5GCvHlTd1E3kVSGN4wUsCHr7gQlz1iPb50/QPRfimD7iM2jWD1YA4bR+PaEN+XpCbB98c8X2PtprgBThOuuZhfss+a66W3FK6NiCY24lnY+bBRSr2X6KmREELUiehNAL4LwAXwOSHE7UT0evX5JwD8LoA3EFEdUhi/QhmMDQCuVA+fB+DLQohretnexcLTzt7QkEi2UJhMIitOGIvWNmilSUQLvFDq9kzuJg6BbdOpz9gwLJewzGgkYppEWjIdx+sbzIQTp9yMA7vvOjopKmkknn3+pkznaAbHIXzzDZdgy+r5iN5Kk0j4zU0jQSR9/pOlWizjPLYyXaK2kDlbbjYIcT/j+/G8C06Iff7c8zfh2edtit2vYk66R2LuJgcYdE0m0fibPP/CzbFrAemTiCefsQ6/etfTGrZrJpGIbgLS3U3NajfJ9jVel4v5NdRn8jtkEl5kxLO4kN71nLPb7tMN9JpJsAvp6sS2TxivPwqZi5E8bg+AxtrKFqnghyuraA1Eq6UB2fIkkg/BQCfuplw2JlHwXZy+YVjH6beDjK6Rq5KlaTyOQ7GlVAF1r2rZ3X2+Gy1Ck9WwdIKzjfUxOkFSk3Bdiq1KxxgusJFI5AM4hFDIYocx4drw4Te7R+yHbyb+ExGSP0fRdzFSiNfrch25XCmRXNiqlTYWC03tIOgjCoGNxPboeygj4UVGIs2t5SUYRRIDOTdFs0tPsksi0iRcI7qp/fczE0B7iV5rEhaLhGiFrvkZiVYi7omrB7BqwMfWRMlxrTNkmPVkZRIAcNmZ63BaBz7+aCad3p1NQRBoLLXQDqYBzapjLAYGc24sgctzKKZHMJhx5I3oJjNDe6pUi2k3fB9biekcrdZJgN6fPfUMvOKxJ8f6C+drDHA9sxb3N22GnwV+IrqJDJfSQC7SPPgaPGg71OjKa8a4izm3QUcoZBWuObrJcAdm0SQWCz1nEhaLA10/J0MFWMbmjExi7VAev3730xu26wesE00iQ+f/82ec2ZGPn8s4N3uApSDYGNWUJQQWiDOULBFRiwV2JfFA9tsXbcb5W8Ya9mPtIu9H0U1mPsCRmWp8jQ6tb7VPfOyEWXGC4tW3HoiuxYN13sNsNWjDJKLXnUQGaiZhGD0O/41WiIsMLfcL85nwtSFOb1/Rb2QS8eim5u3la3fqblosWCOxQsAPVyfC9dqhvBZx55PYZ0aetMP2k1fhCaetxUmr2y+Q0qkIHMWwp7ej4McXs0+6ENqhX5kEIA0Af//LzlyPy85M2UeXRIncGclQz0dvXa1fZ2Gl/Nl87kcyukmez8VhtP5NYvkLGTUrGOc0B23PIVSAiMGkGE+zX7cq8AfIisbmAlJAPHy41TMS5Ul05m5aLFgjsULAnbcT4dp1CBtHC9h3rJR5wDShQ/8ysINt64bw73/4mI6vkQVJ4TYJs+yC3L8zJmEypV5oEguBXB0vbLNPFGAQC4FV32U478X82zpSrkVfGpgHk2Dw/SSKJgQ6w71FlF08T6IDdxPXbvLjTEJeNylcN+admK+buShZXDdhrqGRRZPIdZhMt1jon5ZYLAg6uqkDJgFEusR8EvvGBnJ49vmb8JhT1rTfuYdozyTcuHDttH7gk0gu29pPGCp4bdvEmoQchIzoJnXcI09elShFwZpECyaRnz+T0GzGMDBDiXDeNKTVVMqCpHBtbhvQkXuRruWmuJt07aYOjFNWTSIe3ZQ9rHyxYJnECkHEJDr7SVmXaJUn0QyuQ/jYyx7Z8XHdRqsyzoB8WM2xp3PhOh6N008YK/p6KdZmWDec1xVGzQGav8vFp6yO7d8Rk5iXuynKndDny/OMvgfCtQ6BNY1EXJxn42lWtY0bidbRTWkwjWxrIxG5tzqp3bRYsEZihYBdLp0ziYI6vr8Gv07AZRaaGbqXXXxS7L12HXSQJ6Gv1Wfuprc+40zMqfpbzfD7j9+Kp5y1XhaySyk/kTQSWfqSLsuxAHeTeSxPbrKGwHbCfE9dN4STVg/E1r72EuwialNk+HIp2kmr9iURy5NowQxecNFmbBgpyHBtG91k0SvMJ7oJMN1N/dMpO4WvXQHpA8fvPGpLfP8OmUSuj4XrLLHyIwUf53C5EyNP4omnr8WrH79VLybEiMJDW4TA5hrZQFaY4jmDr9Vqph5Lpuugv568ZhDXve2y1HMlq/3yin1yW6Mm0QmTyJpMd9r6YZy2fhhA49rg/QBrJFYINo4W8IKLNuPxp63t6LinnrUBdx6Yaqjjv5yQJjS2AhuVrEainWi5nGDmSWweG8RfP/echn38LEyCNYR53BIeAM3bOZjQBtIQE64XOIh6CZeaKVxzQIPJTL02eRJpMENuszIf626y6Bl818GHXnJhx8dtGCngb3+7XcX3/ka7ZLrG/ecnXK8II+FGhfmaIS1kNIlkWY5OkE9hEsyAW4bAtinw1wmS0U0Ru4nWHPFT3E2daiGuQxCi9RryJtg4WHeThUUX0arWf+r+Rkx8Fmg/fp/pEfNBmqsnCV9HyrXKuG6vITRtQ6KyKpAtBNa81EKNRDLjOqppFfWLtATMTtxNXNOpFrQOUTbxnPM3wXepIediKWGNhMWyh/YXZxw4OHs26zizsphEexYVuWKaDw+bRgv4uxeci8vP6XwdDZ4lm/efmUkrJuHMU7hOg64Mm1IFNjW6qUO2yijmXFC2MmQAZAmcP3zito6u0WtYI2Gx7NGqjHPq/m2ioZLgVcVWhJHIwCSi6KbmTIKI8PLHnDy/NriNiXgDGZiJKSgvtMx+Upw3heu0vJt2YdbNYK5Ot1zRP44vC4t5IhIVs2oSUYRPFqwkJnHhiavw2G2rW+oN0ZrQvZlDmhFWjEHtbmqfJ9GNSLzmmgRSazd1GhzBSKvptNxgmYTFskfkbsoa3cR5EtnOn+tQw+hnPOH0tXjC6a0j4LIwiYWgtXDdPk+iG9nIrarApoXA8utWmkkaijkXc7XWeSz9juVt4iwsYLqbMrqPUoTTbPvPo3HLELwM6JrBfE/On5ZMZ5Yzb4b5RBi1OpeZgW4uLpR2He4r7jyYxHLOQQKskbBYAWhX6z8Jr8NB35+naLlc8eitq3DlH18y78WQ2iHN3XTRiWP4xxeeh8ed2rwOWBR11AUm4VJqHkMz4fqSU9fghY/crBfPyoqhRVpitJew7iaLZY9WS0umwe8wT0JXjT0+bASICBedtKpn58+nMAnHIVyRKJ+SRLty3Z3AdZxYRrlvGK7IrRVd54ITx/DBEy/s+Dr/39PPwGyldW2tfoc1EhbLHjr5Keug32HG9UrKk+gHZImwSgPPAbrhvvEcSl3vwXNIu5S6cZ1HbFycJUZ7CWskLJY95s0kOlyZrt/qNi1X5N35ZWs7XRSuN4zkY0luuRQmcby4F9vBGgmLZQ82Dtkzrjsb9H2j3pHFwsHJdJ0a3W4K1+953jkw12pKTabz7O8NWCNhsQIQlUzImCfhdOY+8ldQCGw/IHLfdXZcN4XrZAE9U6dKW770eIa9CxbLHh3nSfCAkLUy5wpKpusHOA7p4nedoJcz/Ng6GynJdMcz7F2wWPbw2qwnkYTfoRC9kjKu+wU51+mYmXXT3ZSE+Ru7HU46VjqskbBY9ujY3TTP5Uutkegecp4zf+G6F0bCi1yKgzkXr3vyNjz1rA1dv85yhNUkLJY9Op35dTro+ylx/RYLQ95zF+Bu6r6R2DhSwKsedzKeePpaEBHe+cyzun6N5YqeMwkiupyI7iaiXUT0jpTPLyWiSSLaqf7enfVYCwsAqVU7W+/fobvJmV80jkVz5Lx5uJt6yCRch/A3zz8XJ69Zvis09go9ZRJE5AL4GICnAdgH4CYiukoIcUdi158KIZ4zz2MtjnPoKrAdZ1B3yDwsk+gacp7TcUgxexO7kXFtkR29ZhIXA9glhNgjhKgC+CqA5y/CsRbHETplEjzIZB2kdJ6EHZy6hvM2j+KMjcMdHdNL4dqiOXqtSWwGsNd4vw/AY1L2exwR3QJgP4C3CiFuz3osEb0WwGsB4KSTWtd+sViZ0KuGZU2mm2dZDpsn0T3MZz32bpYKt8iOXt/ttKcquUzTrwCcLIS4AMC/APivDo6FEOJTQojtQojt69atW0hbLZYpOo1u0mU2bAjssoJjk9yWBL2+2/sAnGi83wLJFjSEEFNCiBn1+moAPhGtzXKshQVgFPjrME+i02goyySWFjbJbWnQ67t9E4DTiegUIsoBuALAVeYORLSR1IK1RHSxatN4lmMtLIB5RDd16D4yF6SxWDp0c/lSi+zoqSYhhKgT0ZsAfBeAC+BzQojbiej16vNPAPhdAG8gojqAEoArhBACQOqxvWyvxfLEuZtH8ciTxrB6MJdpf718aVZNYp6lrS26C1t4b2nQ82Q65UK6OrHtE8brjwL4aNZjLSySuOikVfjWHz8+8/7ePMty2DyJpcVgzsVrn7QNT3mEzYReTNiMa4vjDl6HGdd6f2sjlhREhL94ls2EXmxY557FcQd/vivT2UVoLI5D2F5vcdyh84xrNhI9a5KFRd/CdnuL4w6nrB3ECy/ajEdvXZVpf9chOGSFa4vjE1aTsDjuUPBdfLDDjF9/HusfWFisBFgmYWGRATm384J0FhYrAZZJWFhkwNue+Qicv3l0qZthYbHosEbCwiIDfu+xJy91EywslgTW3WRhYWFh0RTWSFhYWFhYNIU1EhYWFhYWTWGNhIWFhYVFU1gjYWFhYWHRFNZIWFhYWFg0hTUSFhYWFhZNYY2EhYWFhUVTkFwEbmWAiA4DeGABp1gL4EiXmtNN2HZ1hn5tF9C/bbPt6gz92i5gfm07WQixLu2DFWUkFgoi2iGE2L7U7UjCtqsz9Gu7gP5tm21XZ+jXdgHdb5t1N1lYWFhYNIU1EhYWFhYWTWGNRByfWuoGNIFtV2fo13YB/ds2267O0K/tArrcNqtJWFhYWFg0hWUSFhYWFhZNYY2EhYWFhUVTWCMBgIguJ6K7iWgXEb1jCdtxIhH9iIjuJKLbiehP1Pb3ENFDRLRT/T1ridp3PxHdqtqwQ21bTUTfJ6J71f9Vi9ymM437spOIpojoT5finhHR54joEBHdZmxren+I6J2qz91NRM9Y5Ha9n4juIqLfENGVRDSmtm8lopJx3z7Rq3a1aFvT326J79nXjDbdT0Q71fZFu2ctxoje9TMhxHH9B8AFsBvANgA5ALcAOHuJ2rIJwCPV62EA9wA4G8B7ALy1D+7V/QDWJra9D8A71Ot3AHjvEv+WDwM4eSnuGYAnAXgkgNva3R/1u94CIA/gFNUH3UVs19MBeOr1e412bTX3W6J7lvrbLfU9S3z+AQDvXux71mKM6Fk/s0wCuBjALiHEHiFEFcBXATx/KRoihDgghPiVej0N4E4Am5eiLR3g+QC+oF5/AcBvL11T8BQAu4UQC8m6nzeEENcBOJrY3Oz+PB/AV4UQFSHEfQB2QfbFRWmXEOJ7Qoi6ensDgC29uHY7NLlnzbCk94xBRATgxQC+0otrt0KLMaJn/cwaCXmD9xrv96EPBmYi2grgIgA3qk1vUq6Bzy22S8eAAPA9IrqZiF6rtm0QQhwAZAcGsH6J2gYAVyD+4PbDPWt2f/qp370GwHeM96cQ0a+J6CdE9MQlalPab9cv9+yJAA4KIe41ti36PUuMET3rZ9ZIAJSybUnjgoloCMA3AfypEGIKwMcBnArgQgAHIKnuUuDxQohHAngmgDcS0ZOWqB0NIKIcgOcB+Iba1C/3rBn6ot8R0V8CqAP4D7XpAICThBAXAXgLgC8T0cgiN6vZb9cX9wzASxGfjCz6PUsZI5rumrKto3tmjYS0rCca77cA2L9EbQER+ZA//n8IIb4FAEKIg0KIQAgRAvg0ekSx20EIsV/9PwTgStWOg0S0SbV9E4BDS9E2SMP1KyHEQdXGvrhnaH5/lrzfEdGrADwHwMuFcmArt8S4en0zpA/7jMVsV4vfrh/umQfghQC+xtsW+56ljRHoYT+zRgK4CcDpRHSKmo1eAeCqpWiI8nV+FsCdQogPGts3Gbu9AMBtyWMXoW2DRDTMryGFz9sg79Wr1G6vAvDtxW6bQmx21w/3TKHZ/bkKwBVElCeiUwCcDuCXi9UoIrocwNsBPE8IMWdsX0dErnq9TbVrz2K1S1232W+3pPdM4akA7hJC7OMNi3nPmo0R6GU/WwxFvt//ADwLMkpgN4C/XMJ2PAGSCv4GwE719ywAXwJwq9p+FYBNS9C2bZBRErcAuJ3vE4A1AK4FcK/6v3oJ2jYAYBzAqLFt0e8ZpJE6AKAGOYP7g1b3B8Bfqj53N4BnLnK7dkH6qrmffULt+zvq970FwK8APHcJ7lnT324p75na/nkAr0/su2j3rMUY0bN+ZstyWFhYWFg0hXU3WVhYWFg0hTUSFhYWFhZNYY2EhYWFhUVTWCNhYWFhYdEU1khYWFhYWDSFNRIWFh2CiAKKV57tWuVgVVF0qXI6LCwa4C11AywsliFKQogLl7oRFhaLAcskLCy6BLXGwHuJ6Jfq7zS1/WQiulYVrLuWiE5S2zeQXMvhFvV3iTqVS0SfVusFfI+Iikv2pSyOe1gjYWHROYoJd9NLjM+mhBAXA/gogH9W2z4K4ItCiPMhC+l9RG3/CICfCCEugFy74Ha1/XQAHxNCnANgAjKj18JiSWAzri0sOgQRzQghhlK23w/gt4QQe1QRtoeFEGuI6AhkaYma2n5ACLGWiA4D2CKEqBjn2Arg+0KI09X7twPwhRB/uwhfzcKiAZZJWFh0F6LJ62b7pKFivA5gtUOLJYQ1EhYW3cVLjP/Xq9e/gKwuDAAvB/Az9fpaAG8AACJyl2DdBguLtrAzFAuLzlEkop3G+2uEEBwGmyeiGyEnYC9V294M4HNE9OcADgN4tdr+JwA+RUR/AMkY3gBZedTCom9gNQkLiy5BaRLbhRBHlrotFhbdgnU3WVhYWFg0hWUSFhYWFhZNYZmEhYWFhUVTWCNhYWFhYdEU1khYWFhYWDSFNRIWFhYWFk1hjYSFhYWFRVP8/1kwhpX3p0tFAAAAAElFTkSuQmCC",
1556
      "text/plain": [
1557
       "<Figure size 432x288 with 1 Axes>"
1558
      ]
1559
     },
1560
     "metadata": {
1561
      "needs_background": "light"
1562
     },
1563
     "output_type": "display_data"
1564
    }
1565
   ],
1566
   "source": [
1567
    "plt.plot(history.history['loss'])                                                                                                                                                                        \n",
1568
    "#plt.plot(history.history['val_loss'])                                                                                                                                                                                                                                                                                                                              \n",
1569
    "plt.title('Model loss')                                                                                                                                     \n",
1570
    "plt.ylabel('Binary_crossEntropy')                                                                                                                                                                     \n",
1571
    "plt.xlabel('Epoch')                                                                                         \n",
1572
    "plt.legend(['Train', 'Validation'], loc='upper left')          \n",
1573
    "plt.show()           "
1574
   ]
1575
  },
1576
  {
1577
   "cell_type": "code",
1578
   "execution_count": 26,
1579
   "id": "c059d837",
1580
   "metadata": {},
1581
   "outputs": [
1582
    {
1583
     "data": {
1584
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAx+klEQVR4nO3deZxcVZn/8c/T1fueTjprJ+kQQkjYoQ0KyiKCgAIuoyw67sPggIiOoziOv2Gc0VFRx1EZEQURB0EcZEAnQgBBFsEkQEJ2EjpbZ+3u9L5VV/fz++Pebiqd6qSyVFen6/t+veqVuufeW/XU7cp96pxz7znm7oiIiAyVle4ARERkdFKCEBGRhJQgREQkISUIERFJSAlCREQSUoIQEZGElCAk45lZtZm5mWUnse3HzOy5kYhLJN2UIOSoYmabzCxqZhOGlC8LT/LVaQpNZMxRgpCj0Ubg6oEFMzsJKEhfOKNDMjUgkYOhBCFHo18CH4lb/ihwT/wGZlZmZveYWb2ZbTazfzKzrHBdxMy+Y2YNZlYLvCvBvnea2Q4z22Zm/2ZmkWQCM7PfmNlOM2sxs2fM7IS4dQVm9t0wnhYze87MCsJ1bzWzP5tZs5ltNbOPheVPm9mn4l5jryausNZ0vZmtB9aHZf8Zvkarmb1kZm+L2z5iZv9oZq+bWVu4frqZ3WZm3x3yWX5nZjcl87llbFKCkKPRi0Cpmc0LT9xXAv89ZJsfAmXAMcC5BAnl4+G6vwHeDZwG1AB/NWTfXwAx4Nhwm4uAT5GcPwBzgInAy8C9ceu+A5wBnAVUAF8E+s1sRrjfD4FK4FRgWZLvB/Ae4Exgfri8JHyNCuBXwG/MLD9c93mC2telQCnwCaCT4DNfHZdEJwAXAPcdRBwy1ri7HnocNQ9gE/AO4J+AfwcuBh4HsgEHqoEI0APMj9vvb4Gnw+d/BK6LW3dRuG82MCnctyBu/dXAU+HzjwHPJRlrefi6ZQQ/xrqAUxJs92XgoWFe42ngU3HLe71/+PpvP0AcTQPvC6wDrhhmuzXAheHzG4CF6f5765Heh9os5Wj1S+AZYBZDmpeACUAusDmubDMwLXw+Fdg6ZN2AmUAOsMPMBsqyhmyfUFib+TrwAYKaQH9cPHlAPvB6gl2nD1OerL1iM7O/J6jxTCVIIKVhDAd6r18AHyZIuB8G/vMwYpIxQE1MclRy980EndWXAr8dsroB6CU42Q+YAWwLn+8gOFHGrxuwlaAGMcHdy8NHqbufwIFdA1xBUMMpI6jNAFgYUzcwO8F+W4cpB+gACuOWJyfYZnBI5rC/4UvAB4Fx7l4OtIQxHOi9/hu4wsxOAeYB/zvMdpIhlCDkaPZJguaVjvhCd+8DHgC+bmYlZjaToO19oJ/iAeBGM6sys3HAzXH77gAWAd81s1IzyzKz2WZ2bhLxlBAkl0aCk/o34l63H7gL+J6ZTQ07i99iZnkE/RTvMLMPmlm2mY03s1PDXZcB7zOzQjM7NvzMB4ohBtQD2Wb2/whqEAN+Bvyrmc2xwMlmNj6MsY6g/+KXwIPu3pXEZ5YxTAlCjlru/rq7Lx1m9WcIfn3XAs8RdNbeFa77KfAYsJygI3loDeQjBE1Uqwna7/8HmJJESPcQNFdtC/d9ccj6LwArCE7Ce4BvAVnuvoWgJvT3Yfky4JRwn/8AosAugiage9m/xwg6vF8LY+lm7yao7xEkyEVAK3Ane18i/AvgJIIkIRnO3DVhkIgEzOwcgppWdVjrkQymGoSIAGBmOcBngZ8pOQgoQYgIYGbzgGaCprTvpzUYGTXUxCQiIgmpBiEiIgmNqRvlJkyY4NXV1ekOQ0TkqPHSSy81uHtlonVjKkFUV1ezdOlwVz2KiMhQZrZ5uHVqYhIRkYSUIEREJCElCBERSWhM9UEk0tvbS11dHd3d3ekOJeXy8/OpqqoiJycn3aGIyBiQsgRhZncRTMqy291PTLDeCIYTvpRgwpKPufvL4bqLw3URgrs6v3mocdTV1VFSUkJ1dTVxwzePOe5OY2MjdXV1zJo1K93hiMgYkMomprsJJnMZziUEM2/NAa4FfgyDY+rfFq6fTzDL1fzhXuRAuru7GT9+/JhODgBmxvjx4zOipiQiIyNlCcLdnyEYmXI4VwD3eOBFoNzMpgALgA3uXuvuUeD+cNtDNtaTw4BM+ZwiMjLS2Uk9jb2HIa4Ly4YrF0nKS5ubeH5DQ9Lbr97eyn+/uJnu3r4URiUHY/nWZv7npTr6+0f3UECHGt9o/1wD0tlJnejnru+nPPGLmF1L0ETFjBkzhtssLRobG7ngggsA2LlzJ5FIhMrK4IbFxYsXk5ubO+y+S5cu5Z577uEHP/jBiMSaKgMn3fycyAG33bC7jbzsCLnZWbxY28hJ08qYUVHIH9fupjg/mzNmjqOlq5fdrT2YwQlTyxK+xl/f+Re6e/v43gdP5T2nBb8t+vqdhSt2sKu1mw/UTGdTQwd/fr2R9bvb+N9XttHvcMcztVxz5gxqZo7jjJnjBmtkW/d0UpAbYUJxXoL3a+f/Xt3B+cdXcnJVedLHxd3Z0dJNvzsTS/LJzd77t9r25i6yI8bEkvx99t26p5MXXm8kLyeLvOwsGtqjFOdlc+zEYk6YWkprV4xdbd0cN6mEPR1Rnl1fz3lzJ1JWkIO788LrjUwqy2d2ZfE+r90V7eNXi7fw+OqdNHf2csLUMq5aMJ25k0t4au1uzplTSXlhDnf/eRNvqq7gxGlldEZj5GdHyMra+79uT6yPrmgfZQU5e9VutzV3ETFjctm+n62tu5dvLFzL/Uu24A6LVu3k39574uBx6IzGWLOjjdmVRWzd08WzG+pZta2VnIhxUlU5J00r4/X6dp7f0MClJ03h+MklLN64h8K8bI6tLGbelJJha9oN7T1sbuzg2MoS/rKxkVfrWnjzMeM5qaqMvOwsXtvVRnlBLjPGF9LcGeX7T6zngaVb+d4HT+Uts8dz53MbeVP1OM6ePWGfYwEQ6+untqGDf1+4hpe3NPMvl5/AzPGFPLFmF89taOTcORP43IXHDcYXjfWzbmcbK7a1sLGhneoJRZx7XCVV4wr59ZItrN3ZxucvPI6S/NRdlJLSwfrMrBr4/TCd1D8hmET+vnB5HXAewTSNt7j7O8PyLwO4+78f6P1qamp86J3Ua9asYd68eYf1OY6EW265heLiYr7whS8MlsViMbKzj2yOPtzP6+57/Qdyd55d38Bru9qoLMnj8lOmDq7v7u3j1sfWsXDFDmqqKzh5WhkTS/OYWJJPY0cPf369kUeWbSfW388pVeXUNXVR395DdpZxxsxxnDmrgqnlBbypuoJHlm/n1sfW7RVLlsHEknx2tibuV7nu3NmU5Gfzs2drKc7Ppnp8EVv2dNLeHWP2xGKWbtrD1QtmcOzEYn754mZq64OJ53IjWUT7gtGsS/Kyec9p0zjnuEq+u2gda3e2AXDajHI+dlY1Pb39fPXhlWRnGZ8+bzbTKwopzM3GgN++UsejK3cy8GNwzsRisiPBib4rGhs8cc+eWMRfnVFFzcwKemL9PLFmFw8s2UptQ8dgDCdMK2VjQweTS/M5qaqMB5bUUZyfzU/++gy2N3fx+u52OqJ9PLu+ntd2tQ/79zumsohtTV1E+/r5wkVzeXjZNl7b1U5+ThZnzZ5Ab18/z65vYGpZPv9349v4wm+Ws6czysfOqqapI8pPn93ItuYujp9cwuSyfF7Z0kxLV+/gMVswq4KLT5jM136/msLcCB+smc6vl2zlLbPHc9s1p7No9c7BY/zVh1fS0B6lJD+b688/lurxRfxq8RaeXV9PdpbxkbdU4w4bG9rZ0xFlekUhy+ua2dbUxSfOnsXE0jy+9eg6+t05cWoZx08u4al1u2loj+71mWdUFNIT62NXa89gWUleNm09sX2Oz6TSPCqK8sjLzmJiSR7HTSohLzuLP67bzbKtzSRzOqwsyaOhPXivyaX5NHf2Mm1cARt2tw++96SyfHIiQQKvKMplU2MHmxo66Hcoyo0wc3wRq3e0AhDJMo6ZUMT63e186MwZXHLiFB5btZMHlm6lJxZ8T7OzjFi/U5Qb4QM107n7z5sAqBpXwNuPn8i08gL+9tzhZpLdPzN7yd1rEq5LY4J4F3ADwVVMZwI/cPcFZpZNMBvWBQQzcy0BrnH3VQd6v6MhQaxcuZKKigpeeeUVTj/9dK688kpuuukmurq6KCgo4Oc//zlz587l6aef5jvf+Q6///3vueWWW9iyZQu1tbVs2bKFm266iRtvvDHh+xzq523p7OXWRWtZtGoXRXnZfPuvTuaMGeP4+sI13PncxsHt/u682cyfWsqiVbtYumkP21u6educCazZ0brPf9z8nCzeddJUSvKzeXlLEzPHFzG1PJ+uaB/PrW8YPEEOuPyUqZx5TAUdPTHOmFnBY6t2snZnG9csCGqGa3a0MqE4l8qSfP702m7uWxy0RJ43t5KyghzW72qnrqmTH3/4DE6bUc43Fq7h10u20tvnnFxVxt+eM5uZ4wu5f8kW5k4q4bJTplJeuHctbk9HlD+s3MF/PfU625qDGTcXzKqgOC+bP67dvde2ZQU5XPWm6Vxz5gx+/+oOlm1tHlyXl53FhOI8OnpiLN60h82NnXvte8bMcVx28hTycyIs29rM6h2tHDMhOGm8tqudy0+ZystbmqhremPWz5yIUTOzggvmTeS8uUFNtLu3nwnFebT3xFi8cQ+/W76dYyqL2NXawxNrdpGfk8XXLj+R5XXNLNm0h8b2KO85bRo/f34jE4rz2N3Ww6TSvMGT6/GTS/iXy0/gzGPGA0GN4t6/bKauqYsJxbl8Z9FrAJx97HiaOnpZvaOVmpnjWLq5iZL8bNq63zgpz5tSyvtPn8afX28cPHZTyvL5YM10tjZ18tuXt5Gfk8XsymIqinKpre+gMDfCN99/EmfMrACCGuEfVuzkuQ0NrN3ZxknTyvjgm6azramLypI8zp9byfiwZre7tZuV21soL8zllKpy/rByB00dUc46dgKxPmd5XTPPb2igM9pHd28fO1q62djQQV9/8P14x7xJHD+5hA317RxbWcxbZo9n8cY9bGzooL0nxnGTStjV2s3yrc0cU1nMBfMmUlmSxxU/ep7Wrl5+dM3ptHb38tLmJurbeoj1O929fTS0R6kaVzCYdN8xbxLji3L57SvbyI1kDX5/v/b71fz8+U1AkBDed3rww+WkaWVMH1dIbUMHX/jNcpZtbeas2eO54e3H8q1H17GpoYOi3Ah//vIFHIq0JAgzu4+gRjCBYLrEfwZyANz99vAy1x8RXOnUCXx8YPpIM7uUYEz6CHCXu389mfc8UIL4l9+tYvX21sP9aHuZP7WUf77swPPZxyeIhoYGHn74YSKRCK2trRQWFpKdnc0TTzzBj3/8Yx588MF9EsSiRYt46qmnaGtrY+7cuezcuTPh/Q6JEsTu1m5+/+oOZlQU8tY5E8jPibBhdzsv1DbS0hllxvgibvvjBmob2rlw/iRWbmtly57OwV+NHzurms9eMIdvP7Z28KQ8sSSPU6eX86E3z+Tc4ypxd9p6Yuxu7WZXaw+l+TkcN7mYvOzhm5a6on1sberkmdfqycuJ8KEFMxJWzRNxd+79yxbKCnJ498lThm022NnSTVt3L3MmlST1ugP6+51ldc1s3dPJpSdNITvL2NbcRU+sn46eGG3dMc6YOS6pprP+fuflLU3UNnTQ3++8dc4EqsYVDvu52npilObnsLu1mzuf28jb5lRy1uzxSR8bCJoz7np+I2fMHDd4so33jYVruOOZWv7uvNl87sLjeHlzE1UVhUwty9/vxQ63PLKKx1fv4n+vP5uivAi19R2cOK2M+xZv4Rd/3sT15x/LtHEFbGns5JKTJg/+/V94vZHu3j7eNmfCYC1rT0eU0vzsweV06O7tozPaR0XR8M29B7K7rZvePmdaecGBNz6AjQ0dbG/uYtaEIqYmeL2eWB9/WLGTd8yfRHHeG60P0Vj/Ps2UyUpbDWKkHS0J4vzzz+ejH/0oAFu3buXGG29k/fr1mBm9vb2sXbt2nwSRk5PDV77yFQDmzZvH448/TlVV1T7vs3r1ar79l3YKcyO897QqSvKz+fsHlg/+Gn73yVP44dWncf53nmZT3K/a4rxs7vjrMzjr2Am098T45QubaenqZe7kYt5z6jTMjP5+51eLt1A1roBz5lQe1AlLRpfevn6WbNrDm2cdXOKBoD8nor/9mLG/BDHm76SOl8yJfCQUFRUNPv/qV7/K+eefz0MPPcSmTZs477zzEu6Tl/dGB2kkEiEW27d9FaAz2sfT6+opzstm4YqgPXh8US4P/O1beOiVOv7npTqeXd/ApsZOvnbFCXzgjOm8tquNyWX5TCoNOgKL87L59Hn7tmdmZRkffvPMQ/3YMorkRII+iUOh5JA5MipBjEYtLS1MmxZcaXP33XcntU9fv7O9uYvqcHngipicSBZt3TFOnV7O/de+meVbm6lv76FmZgWTy/IpzI1w3+Kt3Pzgq+REjCtOmUZBboRTppen4qOJyFFOg/Wl2Re/+EW+/OUvc/bZZ9PXl/g6/L5+J74psK/faenqpTe8Eqcn1k9Dew87WrqI9TtffOdc8nMinHnMeN598tTBywlPmFrK7Moitrd0c86cSsoKNWaTiAwvo/ogjkatXb1sauygenwRpQU59Mb6WbMz6EeZUVFIeWEuDe09bG/uYkZFIRteW0fNqScN+3o/fHI93338Nb5/5Rv3CIhI5lIfxFFqoCkJoLmzl9KCHNp6eoFgWI327hjlhbm0d8fIzc6ivDCXorz9/0n/+i0zifU7F584OeXxi8jRTQliFKtv6yHa109BboTW7l76+5227hg5kSwKcyO098Rwdzp6Ykk3F5UX5vK5C49LceQiMhZkRB/E0dqM1t4Toygvm0ml+fS709rdS3tPjJK8bIryson29dPS1UufO8V52Uft5xSR0WnMJ4j8/HwaGxuPypNnb18/uZEsivOyiZixdU8nff1OeWHO4E0yW/YE9zIU5UZobGwkP3/f8W1ERA7FmG9iqqqqoq6ujvr6+nSHsl/9YVORmZGfnUUky9je3E1Jfjbtu3Jo7YzS3dvPuMIctrYFd6f2RmP09gU3LW1oyx6cUU5E5EgY8wkiJydnVM2w5u509wb9CvEeXraNz/56GQBvPXYCt37gZC695498470ncc3pMwZrQJrzQURGyphvYhpt/vsvW3jT15+gpat3r/La+g7M4JITJ7Nhdzvbm4MRTKeE9zCYmZKDiIwoJYgR1NvXz4+f2kB7T4wVdS17rdvU2MHUsgLmTyllZ2s3tfXB0MFTytWnICLpoQQxghau2MH2lqBm8Oq25r3WbWroYNaEImZVBuM0vVgbzNY6pfTwR4gUETkUShAj6M7nNjK7sojpFQV71SDcnY0NHVRPKKR6fJAgXni9gYKcCKUFY76bSERGKSWIEVLf1sOrdS18sGY6p1SVs2LbGwmiqbOX1u4Y1eOLmDUhSBDbW7qZcoCx+UVEUkkJYoS8vKUJIJias6qMuqYu9nQEM7BtDGdWmzWhiKK8bCaWBEN7q/9BRNJJCWKEvLy5idxIFidOK+XEaWUAg7WITWGCqA5rDwO1iMnqfxCRNFKCGCEvbW7ixGml5GVHBhPEsi3NAGxu7CDLYHo4DeVAghi4xFVEJB1SmiDM7GIzW2dmG8zs5gTrx5nZQ2b2qpktNrMT49ZtMrMVZrbMzJYO3fdo0hPr49VtLZwxcxwApfk5LKiu4GfP1rJ+VxsbGzupGlc4OKfsQE1CTUwikk4pSxBmFgFuAy4B5gNXm9n8IZv9I7DM3U8GPgL855D157v7qcONVX60WLW9lWisfzBBAHz/qlPJy4lw5R0v8uSaXYNJAVSDEJHRIZU1iAXABnevdfcocD9wxZBt5gNPArj7WqDazCalMKa0WLopuKfh9BlvJIip5QXc9bEaTptezgXzJnHduccMrjv3uEo+f+FxhzxnsIjIkZDKi+ynAVvjluuAM4dssxx4H/CcmS0AZgJVwC7AgUVm5sBP3P2ORG9iZtcC1wLMmDHjiH6AI+WPa3czd1IJE0v3rhGcXFXOnR970z7b5+dEuPGCOSMVnohIQqmsQSS6gH/omNvfBMaZ2TLgM8ArQCxcd7a7n07QRHW9mZ2T6E3c/Q53r3H3msrKyiMT+RHU1BFl8cY9XDh/zFWMRGSMS2UNog6YHrdcBWyP38DdW4GPA1hwR9jG8IG7bw//3W1mDxE0WT2TwniPqO7ePurbeli8cQ/9DhedoAQhIkeXVCaIJcAcM5sFbAOuAq6J38DMyoHOsI/iU8Az7t5qZkVAlru3hc8vAr6WwliPuFsfW8fPn9/IlLICJpfmc1J4aauIyNEiZQnC3WNmdgPwGBAB7nL3VWZ2Xbj+dmAecI+Z9QGrgU+Gu08CHgqHmcgGfuXuj6Yq1lR4Ys0ucrOz2NbcxYffPENDZojIUSelI8G5+0Jg4ZCy2+OevwDs0xvr7rXAKamMLZU2N3awubGTWy6bz9TyAhbMqkh3SCIiB01DhabAM68F05uec1wlx1QWpzkaEZFDo6E2UuCZ9Q1UjSsYvOFNRORopARxhLV09fLC642cc1yl+h1E5KimBHEEdff28Tf3LKUn1scHzqhKdzgiIodFfRBHQKyvn1sXrePhV7azs7WbH1x9GqfFDashInI0Ug3iCHh6XT0/+VMtx08p4c6P1nD5KVPTHZKIyGFTDeII+N9l26goyuWnH6khJ6KcKyJjg85mh6m9J8YTa3bxrpOmKDmIyJiiM9phemzlTrp7+3nPaWpWEpGxRQniMD39Wj2TS/P3mutBRGQsUII4TPVt3UyvKNA9DyIy5ihBHKbmzl7KC3PTHYaIyBGnBHGYmjqjjCvMSXcYIiJHnBLEYXB3mjp7GacahIiMQUoQh6Grt49orF9NTCIyJilBHIamzl4ANTGJyJikBHEYmjqiAKpBiMiYlNIEYWYXm9k6M9tgZjcnWD/OzB4ys1fNbLGZnZjsvqNBs2oQIjKGpSxBmFkEuA24BJgPXG1m84ds9o/AMnc/GfgI8J8HsW/aNXWqBiEiY1cqaxALgA3uXuvuUeB+4Ioh28wHngRw97VAtZlNSnLftGsOE4RqECIyFqUyQUwDtsYt14Vl8ZYD7wMwswXATKAqyX0J97vWzJaa2dL6+vojFHpyBjqpVYMQkbEolQki0dgTPmT5m8A4M1sGfAZ4BYgluW9Q6H6Hu9e4e01lZeVhhHvwmjqjFOVGyM1WX7+IjD2pnA+iDpget1wFbI/fwN1bgY8DWDCY0cbwUXigfUcDDbMhImNZKn/6LgHmmNksM8sFrgIeid/AzMrDdQCfAp4Jk8YB9x0NmjqjjCtS/4OIjE0pq0G4e8zMbgAeAyLAXe6+ysyuC9ffDswD7jGzPmA18Mn97ZuqWA+VhtkQkbEspVOOuvtCYOGQstvjnr8AzEl239GmuTPKjIrCdIchIpIS6l09DE0dGslVRMYuJYhDFOvrp7U7pk5qERmzlCAOUUuXhtkQkbFNCeIQvTGSq2oQIjI2KUEcoubBcZhUgxCRsUkJ4hCpBiEiY50SxCFqGhyoTwlCRMYmJYhDNNjEpDupRWSMUoI4RE2dvWRnGSV5Kb3XUEQkbZQgDlFzZ5TywhyCMQZFRMYeJYhD1NShkVxFZGxTgjhETZ0aZkNExjYliEOkuSBEZKxTgjhEqkGIyFinBHEI3J1mzQUhImOcEsQh6Iz2Ee3rVxOTiIxpShCH4I27qNXEJCJjV0oThJldbGbrzGyDmd2cYH2Zmf3OzJab2Soz+3jcuk1mtsLMlpnZ0lTGebCaw3GYVIMQkbEsZbcBm1kEuA24EKgDlpjZI+6+Om6z64HV7n6ZmVUC68zsXnePhuvPd/eGVMV4qFSDEJFMkMoaxAJgg7vXhif8+4ErhmzjQIkFtyMXA3uAWApjOiIGR3ItUg1CRMauVCaIacDWuOW6sCzej4B5wHZgBfBZd+8P1zmwyMxeMrNrh3sTM7vWzJaa2dL6+vojF/1+aC4IEckEB0wQZvZuMzuURJJokCIfsvxOYBkwFTgV+JGZlYbrznb304FLgOvN7JxEb+Lud7h7jbvXVFZWHkKYB6+pI+yDKFANQkTGrmRO/FcB683s22Y27yBeuw6YHrdcRVBTiPdx4Lce2ABsBI4HcPft4b+7gYcImqxGhabOKMV52eRm6yIwERm7DniGc/cPA6cBrwM/N7MXwmadkgPsugSYY2azzCyXINE8MmSbLcAFAGY2CZgL1JpZ0cDrm1kRcBGw8iA+V0oNjOQqIjKWJfUT2N1bgQcJOpqnAO8FXjazz+xnnxhwA/AYsAZ4wN1Xmdl1ZnZduNm/AmeZ2QrgSeBL4VVLk4DnzGw5sBj4P3d/9JA+YQo06S5qEckAB7zM1cwuAz4BzAZ+CSxw991mVkhw4v/hcPu6+0Jg4ZCy2+OebyeoHQzdrxY4JcnPMOJ2tXYzrbwg3WGIiKRUMvdBfAD4D3d/Jr7Q3TvN7BOpCWv0uen+VyjKy+br7z2JXa3dnD5zXLpDEhFJqWQSxD8DOwYWzKwAmOTum9z9yZRFNsq8WtdCTiSL7t4+mjp7mVyan+6QRERSKpk+iN8A/XHLfWFZRmnsiLKtuYvdrT0AShAiMuYlU4PIjhv6AnePhlclZYxYXz8tXcG9D+t2tQEwqUwJQkTGtmRqEPVmdvnAgpldAYy68ZFSqTlMDgBLN+8BVIMQkbEvmRrEdcC9ZvYjgrujtwIfSWlUo8yejsEKFC9vbgKUIERk7DtggnD314E3m1kxYO7elvqwRpf4BLG8roWCnAilBSkbCFdEZFRI6ixnZu8CTgDyg4FXwd2/lsK4RpX4BBGN9TNrQhEDx0FEZKxKZrC+24Ergc8QNDF9AJiZ4rhGlYEEUVYQDK8xqTQvneGIiIyIZDqpz3L3jwBN7v4vwFvYexC+Ma8pTBAnTgsGmlX/g4hkgmQSRHf4b6eZTQV6gVmpC2n0aeyIUpKXzawJRYAucRWRzJBMH8TvzKwcuBV4mWBOh5+mMqjRpqkzSkVxLtPKCwHVIEQkM+w3QYQTBT3p7s3Ag2b2eyDf3VtGIrjRYk9HlHGFuVSNCwboU4IQkUyw3yamcPrP78Yt92RacoAgQVQU5VJTPY5Tqso4bYYG6hORsS+ZPohFZvZ+y+DrOpvCBDGlrICHb3grk9UHISIZIJk+iM8DRUDMzLoJLnV1dy/d/25jx57OIEGIiGSSZO6kPtDUomNaZzRGd2+/EoSIZJxkbpQ7J9EjmRc3s4vNbJ2ZbTCzmxOsLzOz35nZcjNbZWYfT3bfkTJwk1yFphgVkQyTTBPTP8Q9zwcWAC8Bb9/fTmYWAW4DLgTqgCVm9oi7r47b7HpgtbtfZmaVwDozu5dgzokD7TsiBhLEONUgRCTDJNPEdFn8splNB76dxGsvADaE80tjZvcDVwDxJ3kHSsIO8GJgDxADzkxi3xExWIMoyhnptxYRSatkrmIaqg44MYntphEMDR6/37Qh2/wImAdsB1YAnw0vrU1m3xHR1h0DoDRfCUJEMssBaxBm9kOCX/oQJJRTgeVJvHaiy2J9yPI7gWUEzVWzgcfN7Nkk9x2I71rgWoAZM2YkEdbB6Yr2AVCYp+G9RSSzJHPWWxr3PAbc5+7PJ7FfHXsP6ldFUFOI93Hgm+7uwAYz2wgcn+S+ALj7HcAdADU1NQmTyOHoiAY1iMKcyJF+aRGRUS2ZBPE/QLe790HQ+Wxmhe7eeYD9lgBzzGwWsA24CrhmyDZbgAuAZ81sEjAXqAWak9h3RHSGNYiCXCUIEcksyfRBPAkUxC0XAE8caCd3jwE3AI8Ba4AH3H2VmV1nZteFm/0rcJaZrQjf50vu3jDcvsl+qCOpK9pHJMvIyz6U7hoRkaNXMjWIfHdvH1hw93YzK0zmxd19IbBwSNntcc+3Axclu286dERjFOZENIOciGScZH4Wd5jZ6QMLZnYG0JW6kEaXrmifmpdEJCMlU4O4CfiNmQ10Ek8hmII0I3RG+yjSFUwikoGSuVFuiZkdT9CBbMBad+9NeWSjRGc0RoGuYBKRDJTMWEzXA0XuvtLdVwDFZvZ3qQ9tdOiM9lGoJiYRyUDJ9EH8TTijHADu3gT8TcoiGmU6on26SU5EMlIyCSIrfrKgcBC+jBm5riu8iklEJNMk89P4MeABM7udYLiL64A/pDSqUURNTCKSqZJJEF8iGOvo0wSd1K8QXMmUETqjfRTmKUGISOY5YBNTOLrqiwRDYNQQDI2xJsVxjRqd0RiFueqDEJHMM+yZz8yOIxgD6WqgEfg1gLufPzKhpV9fv9Pd26/LXEUkI+3vp/Fa4FngMnffAGBmnxuRqEaJrt5goL4iNTGJSAbaXxPT+4GdwFNm9lMzu4DE8zSMWZ3hUN8FamISkQw0bIJw94fc/UqC+RmeBj4HTDKzH5tZwgH2xprOnnCyIDUxiUgGSqaTusPd73X3dxNM3LMMuDnVgY0GA3NBqIlJRDLRQU1y4O573P0n7v72VAU0mnT1qolJRDKXZsHZj46wialIN8qJSAZSgtgPTTcqIplMCWI/BpqYdKOciGSilCYIM7vYzNaZ2QYz26dj28z+wcyWhY+VZtZnZhXhuk1mtiJctzSVcQ5HTUwikslS9tM4HPX1NuBCoA5YYmaPuPvqgW3c/Vbg1nD7y4DPufueuJc5390bUhXjgXSpiUlEMlgqaxALgA3uXuvuUeB+4Ir9bH81cF8K4zloHVE1MYlI5kplgpgGbI1brgvL9mFmhcDFwINxxQ4sMrOXzOza4d7EzK41s6VmtrS+vv4IhP2GrmgfedlZRLIy6gZyEREgtQki0VnVh9n2MuD5Ic1LZ7v76cAlwPVmdk6iHd39DnevcfeaysrKw4t4CM0FISKZLJUJog6YHrdcBWwfZturGNK85O7bw393Aw8RNFmNqA4N9S0iGSyVCWIJMMfMZplZLkESeGToRmZWBpwLPBxXVmRmJQPPgYuAlSmMNaEu1SBEJIOl7Oexu8fM7AaCKUsjwF3uvsrMrgvX3x5u+l5gkbt3xO0+CXgonAo7G/iVuz+aqliHoyYmEclkKW0/cfeFwMIhZbcPWb4buHtIWS1wSipjS0ZnNKZLXEUkY+lO6v3ojPZRpD4IEclQShDDcHd2tXZTVpiT7lBERNJCCWIYq7a30tAe5S3HjE93KCIiaaEEMYw/vRbcdHfu3CN7b4WIyNFCCWIYf1pXzwlTS5lYkp/uUERE0kIJIoGWrl5e2tLEeao9iEgGU4JI4MXaRvr6nXOPm5juUERE0kYJIoHNjcE9e8dPKUlzJCIi6aMEkcDOlh4KcyOU5OkeCBHJXEoQCexq7WZyaT7hUB8iIhlJCSKBna3dTCrV1UsiktmUIBLY2dLN5DIlCBHJbEoQQ/T3O7vblCBERJQghmjsiNLb50xWE5OIZDgliCF2tXYDqA9CRDKeEsQQO1uCBKEmJhHJdEoQQ+wMaxBqYhKRTJfSBGFmF5vZOjPbYGY3J1j/D2a2LHysNLM+M6tIZt9U2dXaTZbBhOLckXpLEZFRKWUJwswiwG3AJcB84Gozmx+/jbvf6u6nuvupwJeBP7n7nmT2TZWdLd1UluSRHVHlSkQyWyrPgguADe5e6+5R4H7giv1sfzVw3yHue8TsDO+iFhHJdKlMENOArXHLdWHZPsysELgYePAQ9r3WzJaa2dL6+vrDDnqX7qIWEQFSmyASDWTkw2x7GfC8u+852H3d/Q53r3H3msrKw5+/YVdrjxKEiAipTRB1wPS45Spg+zDbXsUbzUsHu+8R0xPro6Wrl4kleal+KxGRUS+VCWIJMMfMZplZLkESeGToRmZWBpwLPHyw+x5pje1RACYoQYiIkLIJD9w9ZmY3AI8BEeAud19lZteF628PN30vsMjdOw60b6piHVDf1gNAZbEShIhISmfEcfeFwMIhZbcPWb4buDuZfVNtMEGoBiEiojup4zW0K0GIiAxQgogzUIMYr7uoRUSUIOLVt/dQVpBDXnYk3aGIiKSdEkSc+rYeNS+JiISUIOI0tPdokD4RkZASRJygBqG7qEVEQAliL/VtPboHQkQkpAQR6ozG6Ij2qQ9CRCSkBBFqaAuH2VAfhIgIoAQxqL49mGpUNQgRkYASREjDbIiI7E0JIlQfjuSqTmoRkYASRKi5I0gQ5YXqgxARASWIQS1dvRTkRMjN1iEREQEliEEtXb2UFeSkOwwRkVFDCSLU2q0EISISTwki1NLVS2lBSudPEhE5qqQ0QZjZxWa2zsw2mNnNw2xznpktM7NVZvanuPJNZrYiXLc0lXECtHTFVIMQEYmTsp/MZhYBbgMuBOqAJWb2iLuvjtumHPgv4GJ332JmE4e8zPnu3pCqGOO1dvUyb0rJSLyViMhRIZU1iAXABnevdfcocD9wxZBtrgF+6+5bANx9dwrj2S91UouI7C2VCWIasDVuuS4si3ccMM7Mnjazl8zsI3HrHFgUll873JuY2bVmttTMltbX1x9SoLG+ftp71MQkIhIvlb2ylqDME7z/GcAFQAHwgpm96O6vAWe7+/aw2elxM1vr7s/s84LudwB3ANTU1Ax9/aS0dscAlCBEROKksgZRB0yPW64CtifY5lF37wj7Gp4BTgFw9+3hv7uBhwiarFKipasXUIIQEYmXygSxBJhjZrPMLBe4CnhkyDYPA28zs2wzKwTOBNaYWZGZlQCYWRFwEbAyVYG2KkGIiOwjZU1M7h4zsxuAx4AIcJe7rzKz68L1t7v7GjN7FHgV6Ad+5u4rzewY4CEzG4jxV+7+aKpiVQ1CRGRfKb0zzN0XAguHlN0+ZPlW4NYhZbWETU0jQQlCRGRfupOaNxJEqRKEiMggJQhUgxARSUQJgqCTOjc7i/ycSLpDEREZNZQg0F3UIiKJKEGgBCEikogSBJoLQkQkESUIVIMQEUlECQIlCBGRRJQggJZOJQgRkaEyPkG4O28/fiInV5WlOxQRkVEl4ydhNjO+f9Vp6Q5DRGTUyfgahIiIJKYEISIiCSlBiIhIQkoQIiKSkBKEiIgkpAQhIiIJKUGIiEhCShAiIpKQuXu6YzhizKwe2HyIu08AGo5gOEeK4jp4ozU2xXVwFNfBO5TYZrp7ZaIVYypBHA4zW+ruNemOYyjFdfBGa2yK6+AoroN3pGNTE5OIiCSkBCEiIgkpQbzhjnQHMAzFdfBGa2yK6+AoroN3RGNTH4SIiCSkGoSIiCSkBCEiIgllfIIws4vNbJ2ZbTCzm9MYx3Qze8rM1pjZKjP7bFh+i5ltM7Nl4ePSNMW3ycxWhDEsDcsqzOxxM1sf/jtuhGOaG3dclplZq5ndlI5jZmZ3mdluM1sZVzbs8TGzL4ffuXVm9s40xHarma01s1fN7CEzKw/Lq82sK+7Y3T7CcQ37txupYzZMXL+Oi2mTmS0Ly0fyeA13jkjd98zdM/YBRIDXgWOAXGA5MD9NsUwBTg+flwCvAfOBW4AvjIJjtQmYMKTs28DN4fObgW+l+W+5E5iZjmMGnAOcDqw80PEJ/67LgTxgVvgdjIxwbBcB2eHzb8XFVh2/XRqOWcK/3Uges0RxDVn/XeD/peF4DXeOSNn3LNNrEAuADe5e6+5R4H7ginQE4u473P3l8HkbsAaYlo5YDsIVwC/C578A3pO+ULgAeN3dD/VO+sPi7s8Ae4YUD3d8rgDud/ced98IbCD4Lo5YbO6+yN1j4eKLQFWq3v9g4tqPETtm+4vLzAz4IHBfKt57f/ZzjkjZ9yzTE8Q0YGvcch2j4KRsZtXAacBfwqIbwqaAu0a6GSeOA4vM7CUzuzYsm+TuOyD48gIT0xQbwFXs/Z92NByz4Y7PaPvefQL4Q9zyLDN7xcz+ZGZvS0M8if52o+WYvQ3Y5e7r48pG/HgNOUek7HuW6QnCEpSl9bpfMysGHgRucvdW4MfAbOBUYAdB9TYdznb304FLgOvN7Jw0xbEPM8sFLgd+ExaNlmM2nFHzvTOzrwAx4N6waAcww91PAz4P/MrMSkcwpOH+dqPlmF3N3j9ERvx4JThHDLtpgrKDOmaZniDqgOlxy1XA9jTFgpnlEPzh73X33wK4+y5373P3fuCnpLApYn/cfXv4727goTCOXWY2JYx9CrA7HbERJK2X3X1XGOOoOGYMf3xGxffOzD4KvBv4kIeN1mFzRGP4/CWCduvjRiqm/fzt0n7MzCwbeB/w64GykT5eic4RpPB7lukJYgkwx8xmhb9CrwIeSUcgYdvmncAad/9eXPmUuM3eC6wcuu8IxFZkZiUDzwk6OFcSHKuPhpt9FHh4pGML7fWrbjQcs9Bwx+cR4CozyzOzWcAcYPFIBmZmFwNfAi5398648kozi4TPjwljqx3BuIb726X9mAHvANa6e91AwUger+HOEaTyezYSve+j+QFcSnA1wOvAV9IYx1sJqn+vAsvCx6XAL4EVYfkjwJQ0xHYMwdUQy4FVA8cJGA88CawP/61IQ2yFQCNQFlc24seMIEHtAHoJfrl9cn/HB/hK+J1bB1yShtg2ELRPD3zXbg+3fX/4N14OvAxcNsJxDfu3G6ljliiusPxu4Loh247k8RruHJGy75mG2hARkYQyvYlJRESGoQQhIiIJKUGIiEhCShAiIpKQEoSIiCSkBCFyEMysz/YeQfaIjQAcjgyarns2RPaRne4ARI4yXe5+arqDEBkJqkGIHAHhHAHfMrPF4ePYsHymmT0ZDj73pJnNCMsnWTAPw/LwcVb4UhEz+2k43v8iMytI24eSjKcEIXJwCoY0MV0Zt67V3RcAPwK+H5b9CLjH3U8mGBDvB2H5D4A/ufspBHMPrArL5wC3ufsJQDPBnboiaaE7qUUOgpm1u3txgvJNwNvdvTYcUG2nu483swaC4SJ6w/Id7j7BzOqBKnfviXuNauBxd58TLn8JyHH3fxuBjyayD9UgRI4cH+b5cNsk0hP3vA/1E0oaKUGIHDlXxv37Qvj8zwSjBAN8CHgufP4k8GkAM4uM8JwLIknRrxORg1Ng4YT1oUfdfeBS1zwz+wvBD6+rw7IbgbvM7B+AeuDjYflngTvM7JMENYVPE4wgKjJqqA9C5AgI+yBq3L0h3bGIHClqYhIRkYRUgxARkYRUgxARkYSUIEREJCElCBERSUgJQkREElKCEBGRhP4/vzBGDj7K69IAAAAASUVORK5CYII=",
1585
      "text/plain": [
1586
       "<Figure size 432x288 with 1 Axes>"
1587
      ]
1588
     },
1589
     "metadata": {
1590
      "needs_background": "light"
1591
     },
1592
     "output_type": "display_data"
1593
    }
1594
   ],
1595
   "source": [
1596
    "plt.plot(history.history['accuracy'])                                            \n",
1597
    "#plt.plot(history.history['val_accuracy'])         \n",
1598
    "plt.title('Model accuracy')                          \n",
1599
    "plt.ylabel('Accuracy')                          \n",
1600
    "plt.xlabel('Epoch')                        \n",
1601
    "plt.legend(['Train', 'Validation'], loc='upper left')    \n",
1602
    "plt.show()"
1603
   ]
1604
  },
1605
  {
1606
   "cell_type": "markdown",
1607
   "id": "f91b2dac",
1608
   "metadata": {},
1609
   "source": [
1610
    "# Stats"
1611
   ]
1612
  },
1613
  {
1614
   "cell_type": "code",
1615
   "execution_count": 27,
1616
   "id": "08320372",
1617
   "metadata": {},
1618
   "outputs": [
1619
    {
1620
     "name": "stdout",
1621
     "output_type": "stream",
1622
     "text": [
1623
      "Lowest training loss:  0.4830648601055145\n",
1624
      "Highest training accuracy:  0.9988276958465576\n"
1625
     ]
1626
    }
1627
   ],
1628
   "source": [
1629
    "print('Lowest training loss: ', min(history.history['loss']))    \n",
1630
    "       \n",
1631
    "print('Highest training accuracy: ', max(history.history['accuracy']))           \n",
1632
    "                 "
1633
   ]
1634
  },
1635
  {
1636
   "cell_type": "markdown",
1637
   "id": "4de7d14b",
1638
   "metadata": {},
1639
   "source": [
1640
    "# Prediction "
1641
   ]
1642
  },
1643
  {
1644
   "cell_type": "code",
1645
   "execution_count": 32,
1646
   "id": "99272070",
1647
   "metadata": {},
1648
   "outputs": [
1649
    {
1650
     "name": "stdout",
1651
     "output_type": "stream",
1652
     "text": [
1653
      "val/all_list_length:  1219\n",
1654
      "val/hem_list_length : 648\n",
1655
      "val_all_batch shape:  (1219, 210, 210, 3) val_hem_batch shape:  (648, 210, 210, 3)\n",
1656
      "batch type:  <class 'numpy.ndarray'> batch shape:  (1219, 210, 210, 3) batch dtype:  uint8 batch[0] shape:  (210, 210, 3) batch[0] dtype:  uint8\n",
1657
      "batch type:  <class 'numpy.ndarray'> batch shape:  (648, 210, 210, 3) batch dtype:  uint8 batch[0] shape:  (210, 210, 3) batch[0] dtype:  uint8\n",
1658
      "parasite/all_label shape:  (1219,) uninf_label shape:  (648,)\n",
1659
      "After concatenation.............................\n",
1660
      "x_all shape:  (1867, 210, 210, 3) y_all shape:  (1867,)\n",
1661
      " 1/59 [..............................] - ETA: 0sWARNING:tensorflow:Callbacks method `on_predict_batch_end` is slow compared to the batch time (batch time: 0.0100s vs `on_predict_batch_end` time: 0.0668s). Check your callbacks.\n",
1662
      "59/59 [==============================] - 5s 81ms/step\n",
1663
      "Predictions:  (1867, 1)\n"
1664
     ]
1665
    }
1666
   ],
1667
   "source": [
1668
    "\n",
1669
    "\n",
1670
    "val_all_path = r'F:\\Leuk study re-designed\\C-NMC\\High imbalance\\Test\\enhanched\\all'\n",
1671
    "val_hem_path = r'F:\\Leuk study re-designed\\C-NMC\\High imbalance\\Test\\enhanched\\hem'\n",
1672
    "\n",
1673
    "val_all_list = os.listdir(val_all_path)\n",
1674
    "#val_all_list.sort()\n",
1675
    "\n",
1676
    "val_hem_list = os.listdir(val_hem_path)          \n",
1677
    "#val_hem_list.sort()\n",
1678
    "\n",
1679
    "\n",
1680
    "print('val/all_list_length: ', len(val_all_list))\n",
1681
    "print('val/hem_list_length :', len(val_hem_list))\n",
1682
    "\n",
1683
    "val_all_batch = np.zeros((len(val_all_list), height, width, 3), dtype=np.uint8)\n",
1684
    "val_hem_batch = np.zeros((len(val_hem_list), height, width, 3), dtype=np.uint8)\n",
1685
    "\n",
1686
    "print('val_all_batch shape: ', val_all_batch.shape, 'val_hem_batch shape: ', val_hem_batch.shape)\n",
1687
    "\n",
1688
    "\n",
1689
    "def Read_n_Crop(list_data, batch, path):\n",
1690
    "    i=0\n",
1691
    "    for x in list_data:\n",
1692
    "        image = cv2.imread(os.path.join(path, x))\n",
1693
    "        image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)\n",
1694
    "        image = crop_center(image, (height,width,3))\n",
1695
    "        batch[i] = image\n",
1696
    "        i+=1\n",
1697
    "    \n",
1698
    "    print('batch type: ', type(batch), 'batch shape: ', batch.shape, 'batch dtype: ', batch.dtype, 'batch[0] shape: ', batch[0].shape, 'batch[0] dtype: ', batch[0].dtype)\n",
1699
    "    return batch\n",
1700
    "\n",
1701
    "\n",
1702
    "def crop_center(img, bounding):\n",
1703
    "    start = tuple(map(lambda a, da: a//2-da//2, img.shape, bounding))\n",
1704
    "    end = tuple(map(operator.add, start, bounding))\n",
1705
    "    slices = tuple(map(slice, start, end))\n",
1706
    "    return img[slices]\n",
1707
    "\n",
1708
    "parasite_images=Read_n_Crop(val_all_list, val_all_batch, val_all_path)\n",
1709
    "uninf_images=Read_n_Crop(val_hem_list, val_hem_batch, val_hem_path)\n",
1710
    "\n",
1711
    "\n",
1712
    "para_label = np.array([0 for _ in range(len(parasite_images))])\n",
1713
    "uninf_label = np.array([1 for _ in range(len(uninf_images))])\n",
1714
    "\n",
1715
    "print('parasite/all_label shape: ', para_label.shape, 'uninf_label shape: ', uninf_label.shape)\n",
1716
    "\n",
1717
    "x_all = np.concatenate((parasite_images, uninf_images), axis=0)\n",
1718
    "y_all = np.concatenate((para_label, uninf_label), axis=0)\n",
1719
    "print('After concatenation.............................')\n",
1720
    "print('x_all shape: ', x_all.shape, 'y_all shape: ', y_all.shape)\n",
1721
    "\n",
1722
    "########\n",
1723
    "'''Model imports here'''\n",
1724
    "#model = tf.keras.models.load_model(best_model_name)\n",
1725
    "model.load_weights(os.path.join(os.getcwd(), best_model_name))\n",
1726
    "########\n",
1727
    "\n",
1728
    "x_all=x_all/255.0\n",
1729
    "# Make predictions using trained model\n",
1730
    "y_pred = model.predict(x_all, verbose=1)\n",
1731
    "print(\"Predictions: \", y_pred.shape)\n",
1732
    "\n",
1733
    "y_pred_flat = []\n",
1734
    "for pred in y_pred:\n",
1735
    "    if pred > 0.5:\n",
1736
    "        y_pred_flat.append(1)\n",
1737
    "    else:\n",
1738
    "        y_pred_flat.append(0)\n",
1739
    "y_pred_flat = np.array(y_pred_flat)"
1740
   ]
1741
  },
1742
  {
1743
   "cell_type": "markdown",
1744
   "id": "56042f75",
1745
   "metadata": {},
1746
   "source": [
1747
    "# Classification report"
1748
   ]
1749
  },
1750
  {
1751
   "cell_type": "code",
1752
   "execution_count": 34,
1753
   "id": "95e50d9c",
1754
   "metadata": {},
1755
   "outputs": [
1756
    {
1757
     "name": "stdout",
1758
     "output_type": "stream",
1759
     "text": [
1760
      "Samples classified as all / 1219:  178\n",
1761
      "Samples classified as hem / 648:  1689\n"
1762
     ]
1763
    }
1764
   ],
1765
   "source": [
1766
    "print('Samples classified as all / 1219: ', y_pred_flat.tolist().count(0))\n",
1767
    "print('Samples classified as hem / 648: ', y_pred_flat.tolist().count(1))"
1768
   ]
1769
  },
1770
  {
1771
   "cell_type": "code",
1772
   "execution_count": 35,
1773
   "id": "b522f7b6",
1774
   "metadata": {},
1775
   "outputs": [
1776
    {
1777
     "data": {
1778
      "text/plain": [
1779
       "array([0, 1])"
1780
      ]
1781
     },
1782
     "execution_count": 35,
1783
     "metadata": {},
1784
     "output_type": "execute_result"
1785
    }
1786
   ],
1787
   "source": [
1788
    "np.unique(y_pred_flat)"
1789
   ]
1790
  },
1791
  {
1792
   "cell_type": "code",
1793
   "execution_count": 36,
1794
   "id": "38d2bac5",
1795
   "metadata": {},
1796
   "outputs": [
1797
    {
1798
     "name": "stdout",
1799
     "output_type": "stream",
1800
     "text": [
1801
      "178 1689\n"
1802
     ]
1803
    }
1804
   ],
1805
   "source": [
1806
    "print(y_pred_flat.tolist().count(0), y_pred_flat.tolist().count(1))"
1807
   ]
1808
  },
1809
  {
1810
   "cell_type": "code",
1811
   "execution_count": 37,
1812
   "id": "189bf5b2",
1813
   "metadata": {},
1814
   "outputs": [
1815
    {
1816
     "name": "stdout",
1817
     "output_type": "stream",
1818
     "text": [
1819
      "[[ 137 1082]\n",
1820
      " [  41  607]]\n",
1821
      "              precision    recall  f1-score   support\n",
1822
      "\n",
1823
      "           0     0.7697    0.1124    0.1961      1219\n",
1824
      "           1     0.3594    0.9367    0.5195       648\n",
1825
      "\n",
1826
      "    accuracy                         0.3985      1867\n",
1827
      "   macro avg     0.5645    0.5246    0.3578      1867\n",
1828
      "weighted avg     0.6273    0.3985    0.3084      1867\n",
1829
      "\n"
1830
     ]
1831
    }
1832
   ],
1833
   "source": [
1834
    "from sklearn.metrics import confusion_matrix, classification_report\n",
1835
    "\n",
1836
    "# Classification report\n",
1837
    "\n",
1838
    "confusion_mtx = confusion_matrix(y_all, y_pred_flat) \n",
1839
    "print(confusion_mtx)\n",
1840
    "target_names = ['0', '1']\n",
1841
    "report = classification_report(y_all, y_pred_flat, target_names=target_names, digits=4)\n",
1842
    "print(classification_report(y_all, y_pred_flat, target_names=target_names, digits=4))"
1843
   ]
1844
  },
1845
  {
1846
   "cell_type": "markdown",
1847
   "id": "2a8892e4",
1848
   "metadata": {},
1849
   "source": [
1850
    "# Save model and stats"
1851
   ]
1852
  },
1853
  {
1854
   "cell_type": "code",
1855
   "execution_count": 39,
1856
   "id": "df0b5cd7",
1857
   "metadata": {},
1858
   "outputs": [
1859
    {
1860
     "name": "stdout",
1861
     "output_type": "stream",
1862
     "text": [
1863
      "0.3985 0.6273 0.3985 0.3084\n"
1864
     ]
1865
    }
1866
   ],
1867
   "source": [
1868
    "import os\n",
1869
    "\n",
1870
    "report_list = report.split()\n",
1871
    "for x in range(len(report_list)):\n",
1872
    "    if report_list[x] == 'accuracy':\n",
1873
    "        acc = report_list[x+1]\n",
1874
    "    elif report_list[x] == 'weighted':\n",
1875
    "        precision = report_list[x+2]\n",
1876
    "        recall = report_list[x+3]\n",
1877
    "        f1 = report_list[x+4]\n",
1878
    "print(acc, precision, recall, f1)\n",
1879
    "\n",
1880
    "log_path = 'F:\\Leuk study re-designed\\Log\\C-NMC\\High imbalnce'\n",
1881
    "filename = best_model_name[:-2] + 'txt'#'baseline_run_3.txt'\n",
1882
    "f = open(os.path.join(log_path, filename), \"w\")\n",
1883
    "\n",
1884
    "content = best_model_name + '\\n\\n'  + 'Location: old pc 64gb' + '\\n' + 'Low Imbalance' + '\\n' + 'Train-path=enhanched' + '\\n' + 'Test-path=enhanched' + '\\n\\n' + 'height: ' + str(height) + '\\t' + 'width: ' + str(width) + '\\t' + 'crop: ' + str(crop) + '\\n\\n' + 'factor: ' + str(factor) + '\\t' + 'patience: ' + str(patience) + '\\t' + 'epoch: ' + str(epoch) + '\\n\\n' +'Lowest Training Loss: ' + str(min(history.history['loss'])) + '\\n' +'Highest training accuracy: ' + str(max(history.history['accuracy'])) + '\\n\\n' + 'Accuracy: ' + str(acc) + '\\t' + 'Precision: ' + str(precision) + '\\t' + 'Recall: ' + str(recall) + '\\t' + 'F1-score: ' + str(f1) + '\\n\\n' + 'all: ' + str(confusion_mtx[0]) + '\\n\\n' + 'hem: ' + str(confusion_mtx[1]) +  '\\n      all hem' \n",
1885
    "            \n",
1886
    "            \n",
1887
    " \n",
1888
    "f.write(content)\n",
1889
    "f.close()\n"
1890
   ]
1891
  }
1892
 ],
1893
 "metadata": {
1894
  "kernelspec": {
1895
   "display_name": "leukemia",
1896
   "language": "python",
1897
   "name": "leukemia"
1898
  },
1899
  "language_info": {
1900
   "codemirror_mode": {
1901
    "name": "ipython",
1902
    "version": 3
1903
   },
1904
   "file_extension": ".py",
1905
   "mimetype": "text/x-python",
1906
   "name": "python",
1907
   "nbconvert_exporter": "python",
1908
   "pygments_lexer": "ipython3",
1909
   "version": "3.8.3"
1910
  }
1911
 },
1912
 "nbformat": 4,
1913
 "nbformat_minor": 5
1914
}