Switch to unified view

a b/scripts/grad-cam & weights/Grad-cam.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "markdown",
5
   "id": "dc054015",
6
   "metadata": {},
7
   "source": [
8
    "# Free GPU memory"
9
   ]
10
  },
11
  {
12
   "cell_type": "code",
13
   "execution_count": 1,
14
   "id": "0c6ed669",
15
   "metadata": {},
16
   "outputs": [],
17
   "source": [
18
    "import tensorflow as tf \n",
19
    "physical_devices = tf.config.list_physical_devices('GPU') \n",
20
    "tf.config.experimental.set_memory_growth(physical_devices[0], True)"
21
   ]
22
  },
23
  {
24
   "cell_type": "markdown",
25
   "id": "efba6c8b",
26
   "metadata": {},
27
   "source": [
28
    "# Grad-cam Implementation\n",
29
    "## Commented out codes are for other datasets and models used in this work. "
30
   ]
31
  },
32
  {
33
   "cell_type": "code",
34
   "execution_count": 105,
35
   "id": "c87d97b1",
36
   "metadata": {},
37
   "outputs": [
38
    {
39
     "name": "stdout",
40
     "output_type": "stream",
41
     "text": [
42
      "MAx:  195\n",
43
      "MIN:  26\n",
44
      "Cropped_img MAx:  188.0\n",
45
      "Cropped_img MIN:  26.0\n",
46
      "uint8\n",
47
      "Rescaled_cropped_img MAx:  0.7372549019607844\n",
48
      "Resclased_cropped_img MIN:  0.10196078431372549\n",
49
      "<class 'numpy.ndarray'>\n",
50
      "(150, 150, 3)\n",
51
      "float64\n",
52
      "float64 (1, 150, 150, 3)\n",
53
      "Model: \"model_12\"\n",
54
      "__________________________________________________________________________________________________\n",
55
      "Layer (type)                    Output Shape         Param #     Connected to                     \n",
56
      "==================================================================================================\n",
57
      "input_13 (InputLayer)           [(None, 150, 150, 3) 0                                            \n",
58
      "__________________________________________________________________________________________________\n",
59
      "zero_padding2d_24 (ZeroPadding2 (None, 156, 156, 3)  0           input_13[0][0]                   \n",
60
      "__________________________________________________________________________________________________\n",
61
      "conv1/conv (Conv2D)             (None, 75, 75, 64)   9408        zero_padding2d_24[0][0]          \n",
62
      "__________________________________________________________________________________________________\n",
63
      "conv1/bn (BatchNormalization)   (None, 75, 75, 64)   256         conv1/conv[0][0]                 \n",
64
      "__________________________________________________________________________________________________\n",
65
      "conv1/relu (Activation)         (None, 75, 75, 64)   0           conv1/bn[0][0]                   \n",
66
      "__________________________________________________________________________________________________\n",
67
      "zero_padding2d_25 (ZeroPadding2 (None, 77, 77, 64)   0           conv1/relu[0][0]                 \n",
68
      "__________________________________________________________________________________________________\n",
69
      "pool1 (MaxPooling2D)            (None, 38, 38, 64)   0           zero_padding2d_25[0][0]          \n",
70
      "__________________________________________________________________________________________________\n",
71
      "conv2_block1_0_bn (BatchNormali (None, 38, 38, 64)   256         pool1[0][0]                      \n",
72
      "__________________________________________________________________________________________________\n",
73
      "conv2_block1_0_relu (Activation (None, 38, 38, 64)   0           conv2_block1_0_bn[0][0]          \n",
74
      "__________________________________________________________________________________________________\n",
75
      "conv2_block1_1_conv (Conv2D)    (None, 38, 38, 128)  8192        conv2_block1_0_relu[0][0]        \n",
76
      "__________________________________________________________________________________________________\n",
77
      "conv2_block1_1_bn (BatchNormali (None, 38, 38, 128)  512         conv2_block1_1_conv[0][0]        \n",
78
      "__________________________________________________________________________________________________\n",
79
      "conv2_block1_1_relu (Activation (None, 38, 38, 128)  0           conv2_block1_1_bn[0][0]          \n",
80
      "__________________________________________________________________________________________________\n",
81
      "conv2_block1_2_conv (Conv2D)    (None, 38, 38, 32)   36864       conv2_block1_1_relu[0][0]        \n",
82
      "__________________________________________________________________________________________________\n",
83
      "conv2_block1_concat (Concatenat (None, 38, 38, 96)   0           pool1[0][0]                      \n",
84
      "                                                                 conv2_block1_2_conv[0][0]        \n",
85
      "__________________________________________________________________________________________________\n",
86
      "conv2_block2_0_bn (BatchNormali (None, 38, 38, 96)   384         conv2_block1_concat[0][0]        \n",
87
      "__________________________________________________________________________________________________\n",
88
      "conv2_block2_0_relu (Activation (None, 38, 38, 96)   0           conv2_block2_0_bn[0][0]          \n",
89
      "__________________________________________________________________________________________________\n",
90
      "conv2_block2_1_conv (Conv2D)    (None, 38, 38, 128)  12288       conv2_block2_0_relu[0][0]        \n",
91
      "__________________________________________________________________________________________________\n",
92
      "conv2_block2_1_bn (BatchNormali (None, 38, 38, 128)  512         conv2_block2_1_conv[0][0]        \n",
93
      "__________________________________________________________________________________________________\n",
94
      "conv2_block2_1_relu (Activation (None, 38, 38, 128)  0           conv2_block2_1_bn[0][0]          \n",
95
      "__________________________________________________________________________________________________\n",
96
      "conv2_block2_2_conv (Conv2D)    (None, 38, 38, 32)   36864       conv2_block2_1_relu[0][0]        \n",
97
      "__________________________________________________________________________________________________\n",
98
      "conv2_block2_concat (Concatenat (None, 38, 38, 128)  0           conv2_block1_concat[0][0]        \n",
99
      "                                                                 conv2_block2_2_conv[0][0]        \n",
100
      "__________________________________________________________________________________________________\n",
101
      "conv2_block3_0_bn (BatchNormali (None, 38, 38, 128)  512         conv2_block2_concat[0][0]        \n",
102
      "__________________________________________________________________________________________________\n",
103
      "conv2_block3_0_relu (Activation (None, 38, 38, 128)  0           conv2_block3_0_bn[0][0]          \n",
104
      "__________________________________________________________________________________________________\n",
105
      "conv2_block3_1_conv (Conv2D)    (None, 38, 38, 128)  16384       conv2_block3_0_relu[0][0]        \n",
106
      "__________________________________________________________________________________________________\n",
107
      "conv2_block3_1_bn (BatchNormali (None, 38, 38, 128)  512         conv2_block3_1_conv[0][0]        \n",
108
      "__________________________________________________________________________________________________\n",
109
      "conv2_block3_1_relu (Activation (None, 38, 38, 128)  0           conv2_block3_1_bn[0][0]          \n",
110
      "__________________________________________________________________________________________________\n",
111
      "conv2_block3_2_conv (Conv2D)    (None, 38, 38, 32)   36864       conv2_block3_1_relu[0][0]        \n",
112
      "__________________________________________________________________________________________________\n",
113
      "conv2_block3_concat (Concatenat (None, 38, 38, 160)  0           conv2_block2_concat[0][0]        \n",
114
      "                                                                 conv2_block3_2_conv[0][0]        \n",
115
      "__________________________________________________________________________________________________\n",
116
      "conv2_block4_0_bn (BatchNormali (None, 38, 38, 160)  640         conv2_block3_concat[0][0]        \n",
117
      "__________________________________________________________________________________________________\n",
118
      "conv2_block4_0_relu (Activation (None, 38, 38, 160)  0           conv2_block4_0_bn[0][0]          \n",
119
      "__________________________________________________________________________________________________\n",
120
      "conv2_block4_1_conv (Conv2D)    (None, 38, 38, 128)  20480       conv2_block4_0_relu[0][0]        \n",
121
      "__________________________________________________________________________________________________\n",
122
      "conv2_block4_1_bn (BatchNormali (None, 38, 38, 128)  512         conv2_block4_1_conv[0][0]        \n",
123
      "__________________________________________________________________________________________________\n",
124
      "conv2_block4_1_relu (Activation (None, 38, 38, 128)  0           conv2_block4_1_bn[0][0]          \n",
125
      "__________________________________________________________________________________________________\n",
126
      "conv2_block4_2_conv (Conv2D)    (None, 38, 38, 32)   36864       conv2_block4_1_relu[0][0]        \n",
127
      "__________________________________________________________________________________________________\n",
128
      "conv2_block4_concat (Concatenat (None, 38, 38, 192)  0           conv2_block3_concat[0][0]        \n",
129
      "                                                                 conv2_block4_2_conv[0][0]        \n",
130
      "__________________________________________________________________________________________________\n",
131
      "conv2_block5_0_bn (BatchNormali (None, 38, 38, 192)  768         conv2_block4_concat[0][0]        \n",
132
      "__________________________________________________________________________________________________\n",
133
      "conv2_block5_0_relu (Activation (None, 38, 38, 192)  0           conv2_block5_0_bn[0][0]          \n",
134
      "__________________________________________________________________________________________________\n",
135
      "conv2_block5_1_conv (Conv2D)    (None, 38, 38, 128)  24576       conv2_block5_0_relu[0][0]        \n",
136
      "__________________________________________________________________________________________________\n",
137
      "conv2_block5_1_bn (BatchNormali (None, 38, 38, 128)  512         conv2_block5_1_conv[0][0]        \n",
138
      "__________________________________________________________________________________________________\n",
139
      "conv2_block5_1_relu (Activation (None, 38, 38, 128)  0           conv2_block5_1_bn[0][0]          \n",
140
      "__________________________________________________________________________________________________\n",
141
      "conv2_block5_2_conv (Conv2D)    (None, 38, 38, 32)   36864       conv2_block5_1_relu[0][0]        \n",
142
      "__________________________________________________________________________________________________\n",
143
      "conv2_block5_concat (Concatenat (None, 38, 38, 224)  0           conv2_block4_concat[0][0]        \n",
144
      "                                                                 conv2_block5_2_conv[0][0]        \n",
145
      "__________________________________________________________________________________________________\n",
146
      "conv2_block6_0_bn (BatchNormali (None, 38, 38, 224)  896         conv2_block5_concat[0][0]        \n",
147
      "__________________________________________________________________________________________________\n",
148
      "conv2_block6_0_relu (Activation (None, 38, 38, 224)  0           conv2_block6_0_bn[0][0]          \n",
149
      "__________________________________________________________________________________________________\n",
150
      "conv2_block6_1_conv (Conv2D)    (None, 38, 38, 128)  28672       conv2_block6_0_relu[0][0]        \n",
151
      "__________________________________________________________________________________________________\n",
152
      "conv2_block6_1_bn (BatchNormali (None, 38, 38, 128)  512         conv2_block6_1_conv[0][0]        \n",
153
      "__________________________________________________________________________________________________\n",
154
      "conv2_block6_1_relu (Activation (None, 38, 38, 128)  0           conv2_block6_1_bn[0][0]          \n",
155
      "__________________________________________________________________________________________________\n",
156
      "conv2_block6_2_conv (Conv2D)    (None, 38, 38, 32)   36864       conv2_block6_1_relu[0][0]        \n",
157
      "__________________________________________________________________________________________________\n",
158
      "conv2_block6_concat (Concatenat (None, 38, 38, 256)  0           conv2_block5_concat[0][0]        \n",
159
      "                                                                 conv2_block6_2_conv[0][0]        \n",
160
      "__________________________________________________________________________________________________\n",
161
      "pool2_bn (BatchNormalization)   (None, 38, 38, 256)  1024        conv2_block6_concat[0][0]        \n",
162
      "__________________________________________________________________________________________________\n",
163
      "pool2_relu (Activation)         (None, 38, 38, 256)  0           pool2_bn[0][0]                   \n",
164
      "__________________________________________________________________________________________________\n",
165
      "pool2_conv (Conv2D)             (None, 38, 38, 128)  32768       pool2_relu[0][0]                 \n",
166
      "__________________________________________________________________________________________________\n",
167
      "pool2_pool (AveragePooling2D)   (None, 19, 19, 128)  0           pool2_conv[0][0]                 \n",
168
      "__________________________________________________________________________________________________\n",
169
      "conv3_block1_0_bn (BatchNormali (None, 19, 19, 128)  512         pool2_pool[0][0]                 \n",
170
      "__________________________________________________________________________________________________\n",
171
      "conv3_block1_0_relu (Activation (None, 19, 19, 128)  0           conv3_block1_0_bn[0][0]          \n",
172
      "__________________________________________________________________________________________________\n",
173
      "conv3_block1_1_conv (Conv2D)    (None, 19, 19, 128)  16384       conv3_block1_0_relu[0][0]        \n",
174
      "__________________________________________________________________________________________________\n",
175
      "conv3_block1_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block1_1_conv[0][0]        \n",
176
      "__________________________________________________________________________________________________\n",
177
      "conv3_block1_1_relu (Activation (None, 19, 19, 128)  0           conv3_block1_1_bn[0][0]          \n",
178
      "__________________________________________________________________________________________________\n",
179
      "conv3_block1_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block1_1_relu[0][0]        \n",
180
      "__________________________________________________________________________________________________\n",
181
      "conv3_block1_concat (Concatenat (None, 19, 19, 160)  0           pool2_pool[0][0]                 \n",
182
      "                                                                 conv3_block1_2_conv[0][0]        \n",
183
      "__________________________________________________________________________________________________\n",
184
      "conv3_block2_0_bn (BatchNormali (None, 19, 19, 160)  640         conv3_block1_concat[0][0]        \n",
185
      "__________________________________________________________________________________________________\n",
186
      "conv3_block2_0_relu (Activation (None, 19, 19, 160)  0           conv3_block2_0_bn[0][0]          \n",
187
      "__________________________________________________________________________________________________\n",
188
      "conv3_block2_1_conv (Conv2D)    (None, 19, 19, 128)  20480       conv3_block2_0_relu[0][0]        \n",
189
      "__________________________________________________________________________________________________\n",
190
      "conv3_block2_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block2_1_conv[0][0]        \n",
191
      "__________________________________________________________________________________________________\n",
192
      "conv3_block2_1_relu (Activation (None, 19, 19, 128)  0           conv3_block2_1_bn[0][0]          \n",
193
      "__________________________________________________________________________________________________\n",
194
      "conv3_block2_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block2_1_relu[0][0]        \n",
195
      "__________________________________________________________________________________________________\n",
196
      "conv3_block2_concat (Concatenat (None, 19, 19, 192)  0           conv3_block1_concat[0][0]        \n",
197
      "                                                                 conv3_block2_2_conv[0][0]        \n",
198
      "__________________________________________________________________________________________________\n",
199
      "conv3_block3_0_bn (BatchNormali (None, 19, 19, 192)  768         conv3_block2_concat[0][0]        \n",
200
      "__________________________________________________________________________________________________\n",
201
      "conv3_block3_0_relu (Activation (None, 19, 19, 192)  0           conv3_block3_0_bn[0][0]          \n",
202
      "__________________________________________________________________________________________________\n",
203
      "conv3_block3_1_conv (Conv2D)    (None, 19, 19, 128)  24576       conv3_block3_0_relu[0][0]        \n",
204
      "__________________________________________________________________________________________________\n",
205
      "conv3_block3_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block3_1_conv[0][0]        \n",
206
      "__________________________________________________________________________________________________\n",
207
      "conv3_block3_1_relu (Activation (None, 19, 19, 128)  0           conv3_block3_1_bn[0][0]          \n",
208
      "__________________________________________________________________________________________________\n",
209
      "conv3_block3_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block3_1_relu[0][0]        \n",
210
      "__________________________________________________________________________________________________\n",
211
      "conv3_block3_concat (Concatenat (None, 19, 19, 224)  0           conv3_block2_concat[0][0]        \n",
212
      "                                                                 conv3_block3_2_conv[0][0]        \n",
213
      "__________________________________________________________________________________________________\n",
214
      "conv3_block4_0_bn (BatchNormali (None, 19, 19, 224)  896         conv3_block3_concat[0][0]        \n",
215
      "__________________________________________________________________________________________________\n",
216
      "conv3_block4_0_relu (Activation (None, 19, 19, 224)  0           conv3_block4_0_bn[0][0]          \n",
217
      "__________________________________________________________________________________________________\n",
218
      "conv3_block4_1_conv (Conv2D)    (None, 19, 19, 128)  28672       conv3_block4_0_relu[0][0]        \n",
219
      "__________________________________________________________________________________________________\n",
220
      "conv3_block4_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block4_1_conv[0][0]        \n",
221
      "__________________________________________________________________________________________________\n",
222
      "conv3_block4_1_relu (Activation (None, 19, 19, 128)  0           conv3_block4_1_bn[0][0]          \n",
223
      "__________________________________________________________________________________________________\n",
224
      "conv3_block4_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block4_1_relu[0][0]        \n",
225
      "__________________________________________________________________________________________________\n",
226
      "conv3_block4_concat (Concatenat (None, 19, 19, 256)  0           conv3_block3_concat[0][0]        \n",
227
      "                                                                 conv3_block4_2_conv[0][0]        \n",
228
      "__________________________________________________________________________________________________\n",
229
      "conv3_block5_0_bn (BatchNormali (None, 19, 19, 256)  1024        conv3_block4_concat[0][0]        \n",
230
      "__________________________________________________________________________________________________\n",
231
      "conv3_block5_0_relu (Activation (None, 19, 19, 256)  0           conv3_block5_0_bn[0][0]          \n",
232
      "__________________________________________________________________________________________________\n",
233
      "conv3_block5_1_conv (Conv2D)    (None, 19, 19, 128)  32768       conv3_block5_0_relu[0][0]        \n",
234
      "__________________________________________________________________________________________________\n",
235
      "conv3_block5_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block5_1_conv[0][0]        \n",
236
      "__________________________________________________________________________________________________\n",
237
      "conv3_block5_1_relu (Activation (None, 19, 19, 128)  0           conv3_block5_1_bn[0][0]          \n",
238
      "__________________________________________________________________________________________________\n",
239
      "conv3_block5_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block5_1_relu[0][0]        \n",
240
      "__________________________________________________________________________________________________\n",
241
      "conv3_block5_concat (Concatenat (None, 19, 19, 288)  0           conv3_block4_concat[0][0]        \n",
242
      "                                                                 conv3_block5_2_conv[0][0]        \n",
243
      "__________________________________________________________________________________________________\n",
244
      "conv3_block6_0_bn (BatchNormali (None, 19, 19, 288)  1152        conv3_block5_concat[0][0]        \n",
245
      "__________________________________________________________________________________________________\n",
246
      "conv3_block6_0_relu (Activation (None, 19, 19, 288)  0           conv3_block6_0_bn[0][0]          \n",
247
      "__________________________________________________________________________________________________\n",
248
      "conv3_block6_1_conv (Conv2D)    (None, 19, 19, 128)  36864       conv3_block6_0_relu[0][0]        \n",
249
      "__________________________________________________________________________________________________\n",
250
      "conv3_block6_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block6_1_conv[0][0]        \n",
251
      "__________________________________________________________________________________________________\n",
252
      "conv3_block6_1_relu (Activation (None, 19, 19, 128)  0           conv3_block6_1_bn[0][0]          \n",
253
      "__________________________________________________________________________________________________\n",
254
      "conv3_block6_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block6_1_relu[0][0]        \n",
255
      "__________________________________________________________________________________________________\n",
256
      "conv3_block6_concat (Concatenat (None, 19, 19, 320)  0           conv3_block5_concat[0][0]        \n",
257
      "                                                                 conv3_block6_2_conv[0][0]        \n",
258
      "__________________________________________________________________________________________________\n",
259
      "conv3_block7_0_bn (BatchNormali (None, 19, 19, 320)  1280        conv3_block6_concat[0][0]        \n",
260
      "__________________________________________________________________________________________________\n",
261
      "conv3_block7_0_relu (Activation (None, 19, 19, 320)  0           conv3_block7_0_bn[0][0]          \n",
262
      "__________________________________________________________________________________________________\n",
263
      "conv3_block7_1_conv (Conv2D)    (None, 19, 19, 128)  40960       conv3_block7_0_relu[0][0]        \n",
264
      "__________________________________________________________________________________________________\n",
265
      "conv3_block7_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block7_1_conv[0][0]        \n",
266
      "__________________________________________________________________________________________________\n",
267
      "conv3_block7_1_relu (Activation (None, 19, 19, 128)  0           conv3_block7_1_bn[0][0]          \n",
268
      "__________________________________________________________________________________________________\n",
269
      "conv3_block7_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block7_1_relu[0][0]        \n",
270
      "__________________________________________________________________________________________________\n",
271
      "conv3_block7_concat (Concatenat (None, 19, 19, 352)  0           conv3_block6_concat[0][0]        \n",
272
      "                                                                 conv3_block7_2_conv[0][0]        \n",
273
      "__________________________________________________________________________________________________\n",
274
      "conv3_block8_0_bn (BatchNormali (None, 19, 19, 352)  1408        conv3_block7_concat[0][0]        \n",
275
      "__________________________________________________________________________________________________\n",
276
      "conv3_block8_0_relu (Activation (None, 19, 19, 352)  0           conv3_block8_0_bn[0][0]          \n",
277
      "__________________________________________________________________________________________________\n",
278
      "conv3_block8_1_conv (Conv2D)    (None, 19, 19, 128)  45056       conv3_block8_0_relu[0][0]        \n",
279
      "__________________________________________________________________________________________________\n",
280
      "conv3_block8_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block8_1_conv[0][0]        \n",
281
      "__________________________________________________________________________________________________\n",
282
      "conv3_block8_1_relu (Activation (None, 19, 19, 128)  0           conv3_block8_1_bn[0][0]          \n",
283
      "__________________________________________________________________________________________________\n",
284
      "conv3_block8_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block8_1_relu[0][0]        \n",
285
      "__________________________________________________________________________________________________\n",
286
      "conv3_block8_concat (Concatenat (None, 19, 19, 384)  0           conv3_block7_concat[0][0]        \n",
287
      "                                                                 conv3_block8_2_conv[0][0]        \n",
288
      "__________________________________________________________________________________________________\n",
289
      "conv3_block9_0_bn (BatchNormali (None, 19, 19, 384)  1536        conv3_block8_concat[0][0]        \n",
290
      "__________________________________________________________________________________________________\n",
291
      "conv3_block9_0_relu (Activation (None, 19, 19, 384)  0           conv3_block9_0_bn[0][0]          \n",
292
      "__________________________________________________________________________________________________\n",
293
      "conv3_block9_1_conv (Conv2D)    (None, 19, 19, 128)  49152       conv3_block9_0_relu[0][0]        \n",
294
      "__________________________________________________________________________________________________\n",
295
      "conv3_block9_1_bn (BatchNormali (None, 19, 19, 128)  512         conv3_block9_1_conv[0][0]        \n",
296
      "__________________________________________________________________________________________________\n",
297
      "conv3_block9_1_relu (Activation (None, 19, 19, 128)  0           conv3_block9_1_bn[0][0]          \n",
298
      "__________________________________________________________________________________________________\n",
299
      "conv3_block9_2_conv (Conv2D)    (None, 19, 19, 32)   36864       conv3_block9_1_relu[0][0]        \n",
300
      "__________________________________________________________________________________________________\n",
301
      "conv3_block9_concat (Concatenat (None, 19, 19, 416)  0           conv3_block8_concat[0][0]        \n",
302
      "                                                                 conv3_block9_2_conv[0][0]        \n",
303
      "__________________________________________________________________________________________________\n",
304
      "conv3_block10_0_bn (BatchNormal (None, 19, 19, 416)  1664        conv3_block9_concat[0][0]        \n",
305
      "__________________________________________________________________________________________________\n",
306
      "conv3_block10_0_relu (Activatio (None, 19, 19, 416)  0           conv3_block10_0_bn[0][0]         \n",
307
      "__________________________________________________________________________________________________\n",
308
      "conv3_block10_1_conv (Conv2D)   (None, 19, 19, 128)  53248       conv3_block10_0_relu[0][0]       \n",
309
      "__________________________________________________________________________________________________\n",
310
      "conv3_block10_1_bn (BatchNormal (None, 19, 19, 128)  512         conv3_block10_1_conv[0][0]       \n",
311
      "__________________________________________________________________________________________________\n",
312
      "conv3_block10_1_relu (Activatio (None, 19, 19, 128)  0           conv3_block10_1_bn[0][0]         \n",
313
      "__________________________________________________________________________________________________\n",
314
      "conv3_block10_2_conv (Conv2D)   (None, 19, 19, 32)   36864       conv3_block10_1_relu[0][0]       \n",
315
      "__________________________________________________________________________________________________\n",
316
      "conv3_block10_concat (Concatena (None, 19, 19, 448)  0           conv3_block9_concat[0][0]        \n",
317
      "                                                                 conv3_block10_2_conv[0][0]       \n",
318
      "__________________________________________________________________________________________________\n",
319
      "conv3_block11_0_bn (BatchNormal (None, 19, 19, 448)  1792        conv3_block10_concat[0][0]       \n",
320
      "__________________________________________________________________________________________________\n",
321
      "conv3_block11_0_relu (Activatio (None, 19, 19, 448)  0           conv3_block11_0_bn[0][0]         \n",
322
      "__________________________________________________________________________________________________\n",
323
      "conv3_block11_1_conv (Conv2D)   (None, 19, 19, 128)  57344       conv3_block11_0_relu[0][0]       \n",
324
      "__________________________________________________________________________________________________\n",
325
      "conv3_block11_1_bn (BatchNormal (None, 19, 19, 128)  512         conv3_block11_1_conv[0][0]       \n",
326
      "__________________________________________________________________________________________________\n",
327
      "conv3_block11_1_relu (Activatio (None, 19, 19, 128)  0           conv3_block11_1_bn[0][0]         \n",
328
      "__________________________________________________________________________________________________\n",
329
      "conv3_block11_2_conv (Conv2D)   (None, 19, 19, 32)   36864       conv3_block11_1_relu[0][0]       \n",
330
      "__________________________________________________________________________________________________\n",
331
      "conv3_block11_concat (Concatena (None, 19, 19, 480)  0           conv3_block10_concat[0][0]       \n",
332
      "                                                                 conv3_block11_2_conv[0][0]       \n",
333
      "__________________________________________________________________________________________________\n",
334
      "conv3_block12_0_bn (BatchNormal (None, 19, 19, 480)  1920        conv3_block11_concat[0][0]       \n",
335
      "__________________________________________________________________________________________________\n",
336
      "conv3_block12_0_relu (Activatio (None, 19, 19, 480)  0           conv3_block12_0_bn[0][0]         \n",
337
      "__________________________________________________________________________________________________\n",
338
      "conv3_block12_1_conv (Conv2D)   (None, 19, 19, 128)  61440       conv3_block12_0_relu[0][0]       \n",
339
      "__________________________________________________________________________________________________\n",
340
      "conv3_block12_1_bn (BatchNormal (None, 19, 19, 128)  512         conv3_block12_1_conv[0][0]       \n",
341
      "__________________________________________________________________________________________________\n",
342
      "conv3_block12_1_relu (Activatio (None, 19, 19, 128)  0           conv3_block12_1_bn[0][0]         \n",
343
      "__________________________________________________________________________________________________\n",
344
      "conv3_block12_2_conv (Conv2D)   (None, 19, 19, 32)   36864       conv3_block12_1_relu[0][0]       \n",
345
      "__________________________________________________________________________________________________\n",
346
      "conv3_block12_concat (Concatena (None, 19, 19, 512)  0           conv3_block11_concat[0][0]       \n",
347
      "                                                                 conv3_block12_2_conv[0][0]       \n",
348
      "__________________________________________________________________________________________________\n",
349
      "pool3_bn (BatchNormalization)   (None, 19, 19, 512)  2048        conv3_block12_concat[0][0]       \n",
350
      "__________________________________________________________________________________________________\n",
351
      "pool3_relu (Activation)         (None, 19, 19, 512)  0           pool3_bn[0][0]                   \n",
352
      "__________________________________________________________________________________________________\n",
353
      "pool3_conv (Conv2D)             (None, 19, 19, 256)  131072      pool3_relu[0][0]                 \n",
354
      "__________________________________________________________________________________________________\n",
355
      "pool3_pool (AveragePooling2D)   (None, 9, 9, 256)    0           pool3_conv[0][0]                 \n",
356
      "__________________________________________________________________________________________________\n",
357
      "conv4_block1_0_bn (BatchNormali (None, 9, 9, 256)    1024        pool3_pool[0][0]                 \n",
358
      "__________________________________________________________________________________________________\n",
359
      "conv4_block1_0_relu (Activation (None, 9, 9, 256)    0           conv4_block1_0_bn[0][0]          \n",
360
      "__________________________________________________________________________________________________\n",
361
      "conv4_block1_1_conv (Conv2D)    (None, 9, 9, 128)    32768       conv4_block1_0_relu[0][0]        \n",
362
      "__________________________________________________________________________________________________\n",
363
      "conv4_block1_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block1_1_conv[0][0]        \n",
364
      "__________________________________________________________________________________________________\n",
365
      "conv4_block1_1_relu (Activation (None, 9, 9, 128)    0           conv4_block1_1_bn[0][0]          \n",
366
      "__________________________________________________________________________________________________\n",
367
      "conv4_block1_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block1_1_relu[0][0]        \n",
368
      "__________________________________________________________________________________________________\n",
369
      "conv4_block1_concat (Concatenat (None, 9, 9, 288)    0           pool3_pool[0][0]                 \n",
370
      "                                                                 conv4_block1_2_conv[0][0]        \n",
371
      "__________________________________________________________________________________________________\n",
372
      "conv4_block2_0_bn (BatchNormali (None, 9, 9, 288)    1152        conv4_block1_concat[0][0]        \n",
373
      "__________________________________________________________________________________________________\n",
374
      "conv4_block2_0_relu (Activation (None, 9, 9, 288)    0           conv4_block2_0_bn[0][0]          \n",
375
      "__________________________________________________________________________________________________\n",
376
      "conv4_block2_1_conv (Conv2D)    (None, 9, 9, 128)    36864       conv4_block2_0_relu[0][0]        \n",
377
      "__________________________________________________________________________________________________\n",
378
      "conv4_block2_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block2_1_conv[0][0]        \n",
379
      "__________________________________________________________________________________________________\n",
380
      "conv4_block2_1_relu (Activation (None, 9, 9, 128)    0           conv4_block2_1_bn[0][0]          \n",
381
      "__________________________________________________________________________________________________\n",
382
      "conv4_block2_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block2_1_relu[0][0]        \n",
383
      "__________________________________________________________________________________________________\n",
384
      "conv4_block2_concat (Concatenat (None, 9, 9, 320)    0           conv4_block1_concat[0][0]        \n",
385
      "                                                                 conv4_block2_2_conv[0][0]        \n",
386
      "__________________________________________________________________________________________________\n",
387
      "conv4_block3_0_bn (BatchNormali (None, 9, 9, 320)    1280        conv4_block2_concat[0][0]        \n",
388
      "__________________________________________________________________________________________________\n",
389
      "conv4_block3_0_relu (Activation (None, 9, 9, 320)    0           conv4_block3_0_bn[0][0]          \n",
390
      "__________________________________________________________________________________________________\n",
391
      "conv4_block3_1_conv (Conv2D)    (None, 9, 9, 128)    40960       conv4_block3_0_relu[0][0]        \n",
392
      "__________________________________________________________________________________________________\n",
393
      "conv4_block3_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block3_1_conv[0][0]        \n",
394
      "__________________________________________________________________________________________________\n",
395
      "conv4_block3_1_relu (Activation (None, 9, 9, 128)    0           conv4_block3_1_bn[0][0]          \n",
396
      "__________________________________________________________________________________________________\n",
397
      "conv4_block3_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block3_1_relu[0][0]        \n",
398
      "__________________________________________________________________________________________________\n",
399
      "conv4_block3_concat (Concatenat (None, 9, 9, 352)    0           conv4_block2_concat[0][0]        \n",
400
      "                                                                 conv4_block3_2_conv[0][0]        \n",
401
      "__________________________________________________________________________________________________\n",
402
      "conv4_block4_0_bn (BatchNormali (None, 9, 9, 352)    1408        conv4_block3_concat[0][0]        \n",
403
      "__________________________________________________________________________________________________\n",
404
      "conv4_block4_0_relu (Activation (None, 9, 9, 352)    0           conv4_block4_0_bn[0][0]          \n",
405
      "__________________________________________________________________________________________________\n",
406
      "conv4_block4_1_conv (Conv2D)    (None, 9, 9, 128)    45056       conv4_block4_0_relu[0][0]        \n",
407
      "__________________________________________________________________________________________________\n",
408
      "conv4_block4_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block4_1_conv[0][0]        \n",
409
      "__________________________________________________________________________________________________\n",
410
      "conv4_block4_1_relu (Activation (None, 9, 9, 128)    0           conv4_block4_1_bn[0][0]          \n",
411
      "__________________________________________________________________________________________________\n",
412
      "conv4_block4_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block4_1_relu[0][0]        \n",
413
      "__________________________________________________________________________________________________\n",
414
      "conv4_block4_concat (Concatenat (None, 9, 9, 384)    0           conv4_block3_concat[0][0]        \n",
415
      "                                                                 conv4_block4_2_conv[0][0]        \n",
416
      "__________________________________________________________________________________________________\n",
417
      "conv4_block5_0_bn (BatchNormali (None, 9, 9, 384)    1536        conv4_block4_concat[0][0]        \n",
418
      "__________________________________________________________________________________________________\n",
419
      "conv4_block5_0_relu (Activation (None, 9, 9, 384)    0           conv4_block5_0_bn[0][0]          \n",
420
      "__________________________________________________________________________________________________\n",
421
      "conv4_block5_1_conv (Conv2D)    (None, 9, 9, 128)    49152       conv4_block5_0_relu[0][0]        \n",
422
      "__________________________________________________________________________________________________\n",
423
      "conv4_block5_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block5_1_conv[0][0]        \n",
424
      "__________________________________________________________________________________________________\n",
425
      "conv4_block5_1_relu (Activation (None, 9, 9, 128)    0           conv4_block5_1_bn[0][0]          \n",
426
      "__________________________________________________________________________________________________\n",
427
      "conv4_block5_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block5_1_relu[0][0]        \n",
428
      "__________________________________________________________________________________________________\n",
429
      "conv4_block5_concat (Concatenat (None, 9, 9, 416)    0           conv4_block4_concat[0][0]        \n",
430
      "                                                                 conv4_block5_2_conv[0][0]        \n",
431
      "__________________________________________________________________________________________________\n",
432
      "conv4_block6_0_bn (BatchNormali (None, 9, 9, 416)    1664        conv4_block5_concat[0][0]        \n",
433
      "__________________________________________________________________________________________________\n",
434
      "conv4_block6_0_relu (Activation (None, 9, 9, 416)    0           conv4_block6_0_bn[0][0]          \n",
435
      "__________________________________________________________________________________________________\n",
436
      "conv4_block6_1_conv (Conv2D)    (None, 9, 9, 128)    53248       conv4_block6_0_relu[0][0]        \n",
437
      "__________________________________________________________________________________________________\n",
438
      "conv4_block6_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block6_1_conv[0][0]        \n",
439
      "__________________________________________________________________________________________________\n",
440
      "conv4_block6_1_relu (Activation (None, 9, 9, 128)    0           conv4_block6_1_bn[0][0]          \n",
441
      "__________________________________________________________________________________________________\n",
442
      "conv4_block6_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block6_1_relu[0][0]        \n",
443
      "__________________________________________________________________________________________________\n",
444
      "conv4_block6_concat (Concatenat (None, 9, 9, 448)    0           conv4_block5_concat[0][0]        \n",
445
      "                                                                 conv4_block6_2_conv[0][0]        \n",
446
      "__________________________________________________________________________________________________\n",
447
      "conv4_block7_0_bn (BatchNormali (None, 9, 9, 448)    1792        conv4_block6_concat[0][0]        \n",
448
      "__________________________________________________________________________________________________\n",
449
      "conv4_block7_0_relu (Activation (None, 9, 9, 448)    0           conv4_block7_0_bn[0][0]          \n",
450
      "__________________________________________________________________________________________________\n",
451
      "conv4_block7_1_conv (Conv2D)    (None, 9, 9, 128)    57344       conv4_block7_0_relu[0][0]        \n",
452
      "__________________________________________________________________________________________________\n",
453
      "conv4_block7_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block7_1_conv[0][0]        \n",
454
      "__________________________________________________________________________________________________\n",
455
      "conv4_block7_1_relu (Activation (None, 9, 9, 128)    0           conv4_block7_1_bn[0][0]          \n",
456
      "__________________________________________________________________________________________________\n",
457
      "conv4_block7_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block7_1_relu[0][0]        \n",
458
      "__________________________________________________________________________________________________\n",
459
      "conv4_block7_concat (Concatenat (None, 9, 9, 480)    0           conv4_block6_concat[0][0]        \n",
460
      "                                                                 conv4_block7_2_conv[0][0]        \n",
461
      "__________________________________________________________________________________________________\n",
462
      "conv4_block8_0_bn (BatchNormali (None, 9, 9, 480)    1920        conv4_block7_concat[0][0]        \n",
463
      "__________________________________________________________________________________________________\n",
464
      "conv4_block8_0_relu (Activation (None, 9, 9, 480)    0           conv4_block8_0_bn[0][0]          \n",
465
      "__________________________________________________________________________________________________\n",
466
      "conv4_block8_1_conv (Conv2D)    (None, 9, 9, 128)    61440       conv4_block8_0_relu[0][0]        \n",
467
      "__________________________________________________________________________________________________\n",
468
      "conv4_block8_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block8_1_conv[0][0]        \n",
469
      "__________________________________________________________________________________________________\n",
470
      "conv4_block8_1_relu (Activation (None, 9, 9, 128)    0           conv4_block8_1_bn[0][0]          \n",
471
      "__________________________________________________________________________________________________\n",
472
      "conv4_block8_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block8_1_relu[0][0]        \n",
473
      "__________________________________________________________________________________________________\n",
474
      "conv4_block8_concat (Concatenat (None, 9, 9, 512)    0           conv4_block7_concat[0][0]        \n",
475
      "                                                                 conv4_block8_2_conv[0][0]        \n",
476
      "__________________________________________________________________________________________________\n",
477
      "conv4_block9_0_bn (BatchNormali (None, 9, 9, 512)    2048        conv4_block8_concat[0][0]        \n",
478
      "__________________________________________________________________________________________________\n",
479
      "conv4_block9_0_relu (Activation (None, 9, 9, 512)    0           conv4_block9_0_bn[0][0]          \n",
480
      "__________________________________________________________________________________________________\n",
481
      "conv4_block9_1_conv (Conv2D)    (None, 9, 9, 128)    65536       conv4_block9_0_relu[0][0]        \n",
482
      "__________________________________________________________________________________________________\n",
483
      "conv4_block9_1_bn (BatchNormali (None, 9, 9, 128)    512         conv4_block9_1_conv[0][0]        \n",
484
      "__________________________________________________________________________________________________\n",
485
      "conv4_block9_1_relu (Activation (None, 9, 9, 128)    0           conv4_block9_1_bn[0][0]          \n",
486
      "__________________________________________________________________________________________________\n",
487
      "conv4_block9_2_conv (Conv2D)    (None, 9, 9, 32)     36864       conv4_block9_1_relu[0][0]        \n",
488
      "__________________________________________________________________________________________________\n",
489
      "conv4_block9_concat (Concatenat (None, 9, 9, 544)    0           conv4_block8_concat[0][0]        \n",
490
      "                                                                 conv4_block9_2_conv[0][0]        \n",
491
      "__________________________________________________________________________________________________\n",
492
      "conv4_block10_0_bn (BatchNormal (None, 9, 9, 544)    2176        conv4_block9_concat[0][0]        \n",
493
      "__________________________________________________________________________________________________\n",
494
      "conv4_block10_0_relu (Activatio (None, 9, 9, 544)    0           conv4_block10_0_bn[0][0]         \n",
495
      "__________________________________________________________________________________________________\n",
496
      "conv4_block10_1_conv (Conv2D)   (None, 9, 9, 128)    69632       conv4_block10_0_relu[0][0]       \n",
497
      "__________________________________________________________________________________________________\n",
498
      "conv4_block10_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block10_1_conv[0][0]       \n",
499
      "__________________________________________________________________________________________________\n",
500
      "conv4_block10_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block10_1_bn[0][0]         \n",
501
      "__________________________________________________________________________________________________\n",
502
      "conv4_block10_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block10_1_relu[0][0]       \n",
503
      "__________________________________________________________________________________________________\n",
504
      "conv4_block10_concat (Concatena (None, 9, 9, 576)    0           conv4_block9_concat[0][0]        \n",
505
      "                                                                 conv4_block10_2_conv[0][0]       \n",
506
      "__________________________________________________________________________________________________\n",
507
      "conv4_block11_0_bn (BatchNormal (None, 9, 9, 576)    2304        conv4_block10_concat[0][0]       \n",
508
      "__________________________________________________________________________________________________\n",
509
      "conv4_block11_0_relu (Activatio (None, 9, 9, 576)    0           conv4_block11_0_bn[0][0]         \n",
510
      "__________________________________________________________________________________________________\n",
511
      "conv4_block11_1_conv (Conv2D)   (None, 9, 9, 128)    73728       conv4_block11_0_relu[0][0]       \n",
512
      "__________________________________________________________________________________________________\n",
513
      "conv4_block11_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block11_1_conv[0][0]       \n",
514
      "__________________________________________________________________________________________________\n",
515
      "conv4_block11_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block11_1_bn[0][0]         \n",
516
      "__________________________________________________________________________________________________\n",
517
      "conv4_block11_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block11_1_relu[0][0]       \n",
518
      "__________________________________________________________________________________________________\n",
519
      "conv4_block11_concat (Concatena (None, 9, 9, 608)    0           conv4_block10_concat[0][0]       \n",
520
      "                                                                 conv4_block11_2_conv[0][0]       \n",
521
      "__________________________________________________________________________________________________\n",
522
      "conv4_block12_0_bn (BatchNormal (None, 9, 9, 608)    2432        conv4_block11_concat[0][0]       \n",
523
      "__________________________________________________________________________________________________\n",
524
      "conv4_block12_0_relu (Activatio (None, 9, 9, 608)    0           conv4_block12_0_bn[0][0]         \n",
525
      "__________________________________________________________________________________________________\n",
526
      "conv4_block12_1_conv (Conv2D)   (None, 9, 9, 128)    77824       conv4_block12_0_relu[0][0]       \n",
527
      "__________________________________________________________________________________________________\n",
528
      "conv4_block12_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block12_1_conv[0][0]       \n",
529
      "__________________________________________________________________________________________________\n",
530
      "conv4_block12_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block12_1_bn[0][0]         \n",
531
      "__________________________________________________________________________________________________\n",
532
      "conv4_block12_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block12_1_relu[0][0]       \n",
533
      "__________________________________________________________________________________________________\n",
534
      "conv4_block12_concat (Concatena (None, 9, 9, 640)    0           conv4_block11_concat[0][0]       \n",
535
      "                                                                 conv4_block12_2_conv[0][0]       \n",
536
      "__________________________________________________________________________________________________\n",
537
      "conv4_block13_0_bn (BatchNormal (None, 9, 9, 640)    2560        conv4_block12_concat[0][0]       \n",
538
      "__________________________________________________________________________________________________\n",
539
      "conv4_block13_0_relu (Activatio (None, 9, 9, 640)    0           conv4_block13_0_bn[0][0]         \n",
540
      "__________________________________________________________________________________________________\n",
541
      "conv4_block13_1_conv (Conv2D)   (None, 9, 9, 128)    81920       conv4_block13_0_relu[0][0]       \n",
542
      "__________________________________________________________________________________________________\n",
543
      "conv4_block13_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block13_1_conv[0][0]       \n",
544
      "__________________________________________________________________________________________________\n",
545
      "conv4_block13_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block13_1_bn[0][0]         \n",
546
      "__________________________________________________________________________________________________\n",
547
      "conv4_block13_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block13_1_relu[0][0]       \n",
548
      "__________________________________________________________________________________________________\n",
549
      "conv4_block13_concat (Concatena (None, 9, 9, 672)    0           conv4_block12_concat[0][0]       \n",
550
      "                                                                 conv4_block13_2_conv[0][0]       \n",
551
      "__________________________________________________________________________________________________\n",
552
      "conv4_block14_0_bn (BatchNormal (None, 9, 9, 672)    2688        conv4_block13_concat[0][0]       \n",
553
      "__________________________________________________________________________________________________\n",
554
      "conv4_block14_0_relu (Activatio (None, 9, 9, 672)    0           conv4_block14_0_bn[0][0]         \n",
555
      "__________________________________________________________________________________________________\n",
556
      "conv4_block14_1_conv (Conv2D)   (None, 9, 9, 128)    86016       conv4_block14_0_relu[0][0]       \n",
557
      "__________________________________________________________________________________________________\n",
558
      "conv4_block14_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block14_1_conv[0][0]       \n",
559
      "__________________________________________________________________________________________________\n",
560
      "conv4_block14_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block14_1_bn[0][0]         \n",
561
      "__________________________________________________________________________________________________\n",
562
      "conv4_block14_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block14_1_relu[0][0]       \n",
563
      "__________________________________________________________________________________________________\n",
564
      "conv4_block14_concat (Concatena (None, 9, 9, 704)    0           conv4_block13_concat[0][0]       \n",
565
      "                                                                 conv4_block14_2_conv[0][0]       \n",
566
      "__________________________________________________________________________________________________\n",
567
      "conv4_block15_0_bn (BatchNormal (None, 9, 9, 704)    2816        conv4_block14_concat[0][0]       \n",
568
      "__________________________________________________________________________________________________\n",
569
      "conv4_block15_0_relu (Activatio (None, 9, 9, 704)    0           conv4_block15_0_bn[0][0]         \n",
570
      "__________________________________________________________________________________________________\n",
571
      "conv4_block15_1_conv (Conv2D)   (None, 9, 9, 128)    90112       conv4_block15_0_relu[0][0]       \n",
572
      "__________________________________________________________________________________________________\n",
573
      "conv4_block15_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block15_1_conv[0][0]       \n",
574
      "__________________________________________________________________________________________________\n",
575
      "conv4_block15_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block15_1_bn[0][0]         \n",
576
      "__________________________________________________________________________________________________\n",
577
      "conv4_block15_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block15_1_relu[0][0]       \n",
578
      "__________________________________________________________________________________________________\n",
579
      "conv4_block15_concat (Concatena (None, 9, 9, 736)    0           conv4_block14_concat[0][0]       \n",
580
      "                                                                 conv4_block15_2_conv[0][0]       \n",
581
      "__________________________________________________________________________________________________\n",
582
      "conv4_block16_0_bn (BatchNormal (None, 9, 9, 736)    2944        conv4_block15_concat[0][0]       \n",
583
      "__________________________________________________________________________________________________\n",
584
      "conv4_block16_0_relu (Activatio (None, 9, 9, 736)    0           conv4_block16_0_bn[0][0]         \n",
585
      "__________________________________________________________________________________________________\n",
586
      "conv4_block16_1_conv (Conv2D)   (None, 9, 9, 128)    94208       conv4_block16_0_relu[0][0]       \n",
587
      "__________________________________________________________________________________________________\n",
588
      "conv4_block16_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block16_1_conv[0][0]       \n",
589
      "__________________________________________________________________________________________________\n",
590
      "conv4_block16_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block16_1_bn[0][0]         \n",
591
      "__________________________________________________________________________________________________\n",
592
      "conv4_block16_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block16_1_relu[0][0]       \n",
593
      "__________________________________________________________________________________________________\n",
594
      "conv4_block16_concat (Concatena (None, 9, 9, 768)    0           conv4_block15_concat[0][0]       \n",
595
      "                                                                 conv4_block16_2_conv[0][0]       \n",
596
      "__________________________________________________________________________________________________\n",
597
      "conv4_block17_0_bn (BatchNormal (None, 9, 9, 768)    3072        conv4_block16_concat[0][0]       \n",
598
      "__________________________________________________________________________________________________\n",
599
      "conv4_block17_0_relu (Activatio (None, 9, 9, 768)    0           conv4_block17_0_bn[0][0]         \n",
600
      "__________________________________________________________________________________________________\n",
601
      "conv4_block17_1_conv (Conv2D)   (None, 9, 9, 128)    98304       conv4_block17_0_relu[0][0]       \n",
602
      "__________________________________________________________________________________________________\n",
603
      "conv4_block17_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block17_1_conv[0][0]       \n",
604
      "__________________________________________________________________________________________________\n",
605
      "conv4_block17_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block17_1_bn[0][0]         \n",
606
      "__________________________________________________________________________________________________\n",
607
      "conv4_block17_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block17_1_relu[0][0]       \n",
608
      "__________________________________________________________________________________________________\n",
609
      "conv4_block17_concat (Concatena (None, 9, 9, 800)    0           conv4_block16_concat[0][0]       \n",
610
      "                                                                 conv4_block17_2_conv[0][0]       \n",
611
      "__________________________________________________________________________________________________\n",
612
      "conv4_block18_0_bn (BatchNormal (None, 9, 9, 800)    3200        conv4_block17_concat[0][0]       \n",
613
      "__________________________________________________________________________________________________\n",
614
      "conv4_block18_0_relu (Activatio (None, 9, 9, 800)    0           conv4_block18_0_bn[0][0]         \n",
615
      "__________________________________________________________________________________________________\n",
616
      "conv4_block18_1_conv (Conv2D)   (None, 9, 9, 128)    102400      conv4_block18_0_relu[0][0]       \n",
617
      "__________________________________________________________________________________________________\n",
618
      "conv4_block18_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block18_1_conv[0][0]       \n",
619
      "__________________________________________________________________________________________________\n",
620
      "conv4_block18_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block18_1_bn[0][0]         \n",
621
      "__________________________________________________________________________________________________\n",
622
      "conv4_block18_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block18_1_relu[0][0]       \n",
623
      "__________________________________________________________________________________________________\n",
624
      "conv4_block18_concat (Concatena (None, 9, 9, 832)    0           conv4_block17_concat[0][0]       \n",
625
      "                                                                 conv4_block18_2_conv[0][0]       \n",
626
      "__________________________________________________________________________________________________\n",
627
      "conv4_block19_0_bn (BatchNormal (None, 9, 9, 832)    3328        conv4_block18_concat[0][0]       \n",
628
      "__________________________________________________________________________________________________\n",
629
      "conv4_block19_0_relu (Activatio (None, 9, 9, 832)    0           conv4_block19_0_bn[0][0]         \n",
630
      "__________________________________________________________________________________________________\n",
631
      "conv4_block19_1_conv (Conv2D)   (None, 9, 9, 128)    106496      conv4_block19_0_relu[0][0]       \n",
632
      "__________________________________________________________________________________________________\n",
633
      "conv4_block19_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block19_1_conv[0][0]       \n",
634
      "__________________________________________________________________________________________________\n",
635
      "conv4_block19_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block19_1_bn[0][0]         \n",
636
      "__________________________________________________________________________________________________\n",
637
      "conv4_block19_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block19_1_relu[0][0]       \n",
638
      "__________________________________________________________________________________________________\n",
639
      "conv4_block19_concat (Concatena (None, 9, 9, 864)    0           conv4_block18_concat[0][0]       \n",
640
      "                                                                 conv4_block19_2_conv[0][0]       \n",
641
      "__________________________________________________________________________________________________\n",
642
      "conv4_block20_0_bn (BatchNormal (None, 9, 9, 864)    3456        conv4_block19_concat[0][0]       \n",
643
      "__________________________________________________________________________________________________\n",
644
      "conv4_block20_0_relu (Activatio (None, 9, 9, 864)    0           conv4_block20_0_bn[0][0]         \n",
645
      "__________________________________________________________________________________________________\n",
646
      "conv4_block20_1_conv (Conv2D)   (None, 9, 9, 128)    110592      conv4_block20_0_relu[0][0]       \n",
647
      "__________________________________________________________________________________________________\n",
648
      "conv4_block20_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block20_1_conv[0][0]       \n",
649
      "__________________________________________________________________________________________________\n",
650
      "conv4_block20_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block20_1_bn[0][0]         \n",
651
      "__________________________________________________________________________________________________\n",
652
      "conv4_block20_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block20_1_relu[0][0]       \n",
653
      "__________________________________________________________________________________________________\n",
654
      "conv4_block20_concat (Concatena (None, 9, 9, 896)    0           conv4_block19_concat[0][0]       \n",
655
      "                                                                 conv4_block20_2_conv[0][0]       \n",
656
      "__________________________________________________________________________________________________\n",
657
      "conv4_block21_0_bn (BatchNormal (None, 9, 9, 896)    3584        conv4_block20_concat[0][0]       \n",
658
      "__________________________________________________________________________________________________\n",
659
      "conv4_block21_0_relu (Activatio (None, 9, 9, 896)    0           conv4_block21_0_bn[0][0]         \n",
660
      "__________________________________________________________________________________________________\n",
661
      "conv4_block21_1_conv (Conv2D)   (None, 9, 9, 128)    114688      conv4_block21_0_relu[0][0]       \n",
662
      "__________________________________________________________________________________________________\n",
663
      "conv4_block21_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block21_1_conv[0][0]       \n",
664
      "__________________________________________________________________________________________________\n",
665
      "conv4_block21_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block21_1_bn[0][0]         \n",
666
      "__________________________________________________________________________________________________\n",
667
      "conv4_block21_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block21_1_relu[0][0]       \n",
668
      "__________________________________________________________________________________________________\n",
669
      "conv4_block21_concat (Concatena (None, 9, 9, 928)    0           conv4_block20_concat[0][0]       \n",
670
      "                                                                 conv4_block21_2_conv[0][0]       \n",
671
      "__________________________________________________________________________________________________\n",
672
      "conv4_block22_0_bn (BatchNormal (None, 9, 9, 928)    3712        conv4_block21_concat[0][0]       \n",
673
      "__________________________________________________________________________________________________\n",
674
      "conv4_block22_0_relu (Activatio (None, 9, 9, 928)    0           conv4_block22_0_bn[0][0]         \n",
675
      "__________________________________________________________________________________________________\n",
676
      "conv4_block22_1_conv (Conv2D)   (None, 9, 9, 128)    118784      conv4_block22_0_relu[0][0]       \n",
677
      "__________________________________________________________________________________________________\n",
678
      "conv4_block22_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block22_1_conv[0][0]       \n",
679
      "__________________________________________________________________________________________________\n",
680
      "conv4_block22_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block22_1_bn[0][0]         \n",
681
      "__________________________________________________________________________________________________\n",
682
      "conv4_block22_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block22_1_relu[0][0]       \n",
683
      "__________________________________________________________________________________________________\n",
684
      "conv4_block22_concat (Concatena (None, 9, 9, 960)    0           conv4_block21_concat[0][0]       \n",
685
      "                                                                 conv4_block22_2_conv[0][0]       \n",
686
      "__________________________________________________________________________________________________\n",
687
      "conv4_block23_0_bn (BatchNormal (None, 9, 9, 960)    3840        conv4_block22_concat[0][0]       \n",
688
      "__________________________________________________________________________________________________\n",
689
      "conv4_block23_0_relu (Activatio (None, 9, 9, 960)    0           conv4_block23_0_bn[0][0]         \n",
690
      "__________________________________________________________________________________________________\n",
691
      "conv4_block23_1_conv (Conv2D)   (None, 9, 9, 128)    122880      conv4_block23_0_relu[0][0]       \n",
692
      "__________________________________________________________________________________________________\n",
693
      "conv4_block23_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block23_1_conv[0][0]       \n",
694
      "__________________________________________________________________________________________________\n",
695
      "conv4_block23_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block23_1_bn[0][0]         \n",
696
      "__________________________________________________________________________________________________\n",
697
      "conv4_block23_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block23_1_relu[0][0]       \n",
698
      "__________________________________________________________________________________________________\n",
699
      "conv4_block23_concat (Concatena (None, 9, 9, 992)    0           conv4_block22_concat[0][0]       \n",
700
      "                                                                 conv4_block23_2_conv[0][0]       \n",
701
      "__________________________________________________________________________________________________\n",
702
      "conv4_block24_0_bn (BatchNormal (None, 9, 9, 992)    3968        conv4_block23_concat[0][0]       \n",
703
      "__________________________________________________________________________________________________\n",
704
      "conv4_block24_0_relu (Activatio (None, 9, 9, 992)    0           conv4_block24_0_bn[0][0]         \n",
705
      "__________________________________________________________________________________________________\n",
706
      "conv4_block24_1_conv (Conv2D)   (None, 9, 9, 128)    126976      conv4_block24_0_relu[0][0]       \n",
707
      "__________________________________________________________________________________________________\n",
708
      "conv4_block24_1_bn (BatchNormal (None, 9, 9, 128)    512         conv4_block24_1_conv[0][0]       \n",
709
      "__________________________________________________________________________________________________\n",
710
      "conv4_block24_1_relu (Activatio (None, 9, 9, 128)    0           conv4_block24_1_bn[0][0]         \n",
711
      "__________________________________________________________________________________________________\n",
712
      "conv4_block24_2_conv (Conv2D)   (None, 9, 9, 32)     36864       conv4_block24_1_relu[0][0]       \n",
713
      "__________________________________________________________________________________________________\n",
714
      "conv4_block24_concat (Concatena (None, 9, 9, 1024)   0           conv4_block23_concat[0][0]       \n",
715
      "                                                                 conv4_block24_2_conv[0][0]       \n",
716
      "__________________________________________________________________________________________________\n",
717
      "pool4_bn (BatchNormalization)   (None, 9, 9, 1024)   4096        conv4_block24_concat[0][0]       \n",
718
      "__________________________________________________________________________________________________\n",
719
      "pool4_relu (Activation)         (None, 9, 9, 1024)   0           pool4_bn[0][0]                   \n",
720
      "__________________________________________________________________________________________________\n",
721
      "pool4_conv (Conv2D)             (None, 9, 9, 512)    524288      pool4_relu[0][0]                 \n",
722
      "__________________________________________________________________________________________________\n",
723
      "pool4_pool (AveragePooling2D)   (None, 4, 4, 512)    0           pool4_conv[0][0]                 \n",
724
      "__________________________________________________________________________________________________\n",
725
      "conv5_block1_0_bn (BatchNormali (None, 4, 4, 512)    2048        pool4_pool[0][0]                 \n",
726
      "__________________________________________________________________________________________________\n",
727
      "conv5_block1_0_relu (Activation (None, 4, 4, 512)    0           conv5_block1_0_bn[0][0]          \n",
728
      "__________________________________________________________________________________________________\n",
729
      "conv5_block1_1_conv (Conv2D)    (None, 4, 4, 128)    65536       conv5_block1_0_relu[0][0]        \n",
730
      "__________________________________________________________________________________________________\n",
731
      "conv5_block1_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block1_1_conv[0][0]        \n",
732
      "__________________________________________________________________________________________________\n",
733
      "conv5_block1_1_relu (Activation (None, 4, 4, 128)    0           conv5_block1_1_bn[0][0]          \n",
734
      "__________________________________________________________________________________________________\n",
735
      "conv5_block1_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block1_1_relu[0][0]        \n",
736
      "__________________________________________________________________________________________________\n",
737
      "conv5_block1_concat (Concatenat (None, 4, 4, 544)    0           pool4_pool[0][0]                 \n",
738
      "                                                                 conv5_block1_2_conv[0][0]        \n",
739
      "__________________________________________________________________________________________________\n",
740
      "conv5_block2_0_bn (BatchNormali (None, 4, 4, 544)    2176        conv5_block1_concat[0][0]        \n",
741
      "__________________________________________________________________________________________________\n",
742
      "conv5_block2_0_relu (Activation (None, 4, 4, 544)    0           conv5_block2_0_bn[0][0]          \n",
743
      "__________________________________________________________________________________________________\n",
744
      "conv5_block2_1_conv (Conv2D)    (None, 4, 4, 128)    69632       conv5_block2_0_relu[0][0]        \n",
745
      "__________________________________________________________________________________________________\n",
746
      "conv5_block2_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block2_1_conv[0][0]        \n",
747
      "__________________________________________________________________________________________________\n",
748
      "conv5_block2_1_relu (Activation (None, 4, 4, 128)    0           conv5_block2_1_bn[0][0]          \n",
749
      "__________________________________________________________________________________________________\n",
750
      "conv5_block2_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block2_1_relu[0][0]        \n",
751
      "__________________________________________________________________________________________________\n",
752
      "conv5_block2_concat (Concatenat (None, 4, 4, 576)    0           conv5_block1_concat[0][0]        \n",
753
      "                                                                 conv5_block2_2_conv[0][0]        \n",
754
      "__________________________________________________________________________________________________\n",
755
      "conv5_block3_0_bn (BatchNormali (None, 4, 4, 576)    2304        conv5_block2_concat[0][0]        \n",
756
      "__________________________________________________________________________________________________\n",
757
      "conv5_block3_0_relu (Activation (None, 4, 4, 576)    0           conv5_block3_0_bn[0][0]          \n",
758
      "__________________________________________________________________________________________________\n",
759
      "conv5_block3_1_conv (Conv2D)    (None, 4, 4, 128)    73728       conv5_block3_0_relu[0][0]        \n",
760
      "__________________________________________________________________________________________________\n",
761
      "conv5_block3_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block3_1_conv[0][0]        \n",
762
      "__________________________________________________________________________________________________\n",
763
      "conv5_block3_1_relu (Activation (None, 4, 4, 128)    0           conv5_block3_1_bn[0][0]          \n",
764
      "__________________________________________________________________________________________________\n",
765
      "conv5_block3_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block3_1_relu[0][0]        \n",
766
      "__________________________________________________________________________________________________\n",
767
      "conv5_block3_concat (Concatenat (None, 4, 4, 608)    0           conv5_block2_concat[0][0]        \n",
768
      "                                                                 conv5_block3_2_conv[0][0]        \n",
769
      "__________________________________________________________________________________________________\n",
770
      "conv5_block4_0_bn (BatchNormali (None, 4, 4, 608)    2432        conv5_block3_concat[0][0]        \n",
771
      "__________________________________________________________________________________________________\n",
772
      "conv5_block4_0_relu (Activation (None, 4, 4, 608)    0           conv5_block4_0_bn[0][0]          \n",
773
      "__________________________________________________________________________________________________\n",
774
      "conv5_block4_1_conv (Conv2D)    (None, 4, 4, 128)    77824       conv5_block4_0_relu[0][0]        \n",
775
      "__________________________________________________________________________________________________\n",
776
      "conv5_block4_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block4_1_conv[0][0]        \n",
777
      "__________________________________________________________________________________________________\n",
778
      "conv5_block4_1_relu (Activation (None, 4, 4, 128)    0           conv5_block4_1_bn[0][0]          \n",
779
      "__________________________________________________________________________________________________\n",
780
      "conv5_block4_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block4_1_relu[0][0]        \n",
781
      "__________________________________________________________________________________________________\n",
782
      "conv5_block4_concat (Concatenat (None, 4, 4, 640)    0           conv5_block3_concat[0][0]        \n",
783
      "                                                                 conv5_block4_2_conv[0][0]        \n",
784
      "__________________________________________________________________________________________________\n",
785
      "conv5_block5_0_bn (BatchNormali (None, 4, 4, 640)    2560        conv5_block4_concat[0][0]        \n",
786
      "__________________________________________________________________________________________________\n",
787
      "conv5_block5_0_relu (Activation (None, 4, 4, 640)    0           conv5_block5_0_bn[0][0]          \n",
788
      "__________________________________________________________________________________________________\n",
789
      "conv5_block5_1_conv (Conv2D)    (None, 4, 4, 128)    81920       conv5_block5_0_relu[0][0]        \n",
790
      "__________________________________________________________________________________________________\n",
791
      "conv5_block5_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block5_1_conv[0][0]        \n",
792
      "__________________________________________________________________________________________________\n",
793
      "conv5_block5_1_relu (Activation (None, 4, 4, 128)    0           conv5_block5_1_bn[0][0]          \n",
794
      "__________________________________________________________________________________________________\n",
795
      "conv5_block5_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block5_1_relu[0][0]        \n",
796
      "__________________________________________________________________________________________________\n",
797
      "conv5_block5_concat (Concatenat (None, 4, 4, 672)    0           conv5_block4_concat[0][0]        \n",
798
      "                                                                 conv5_block5_2_conv[0][0]        \n",
799
      "__________________________________________________________________________________________________\n",
800
      "conv5_block6_0_bn (BatchNormali (None, 4, 4, 672)    2688        conv5_block5_concat[0][0]        \n",
801
      "__________________________________________________________________________________________________\n",
802
      "conv5_block6_0_relu (Activation (None, 4, 4, 672)    0           conv5_block6_0_bn[0][0]          \n",
803
      "__________________________________________________________________________________________________\n",
804
      "conv5_block6_1_conv (Conv2D)    (None, 4, 4, 128)    86016       conv5_block6_0_relu[0][0]        \n",
805
      "__________________________________________________________________________________________________\n",
806
      "conv5_block6_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block6_1_conv[0][0]        \n",
807
      "__________________________________________________________________________________________________\n",
808
      "conv5_block6_1_relu (Activation (None, 4, 4, 128)    0           conv5_block6_1_bn[0][0]          \n",
809
      "__________________________________________________________________________________________________\n",
810
      "conv5_block6_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block6_1_relu[0][0]        \n",
811
      "__________________________________________________________________________________________________\n",
812
      "conv5_block6_concat (Concatenat (None, 4, 4, 704)    0           conv5_block5_concat[0][0]        \n",
813
      "                                                                 conv5_block6_2_conv[0][0]        \n",
814
      "__________________________________________________________________________________________________\n",
815
      "conv5_block7_0_bn (BatchNormali (None, 4, 4, 704)    2816        conv5_block6_concat[0][0]        \n",
816
      "__________________________________________________________________________________________________\n",
817
      "conv5_block7_0_relu (Activation (None, 4, 4, 704)    0           conv5_block7_0_bn[0][0]          \n",
818
      "__________________________________________________________________________________________________\n",
819
      "conv5_block7_1_conv (Conv2D)    (None, 4, 4, 128)    90112       conv5_block7_0_relu[0][0]        \n",
820
      "__________________________________________________________________________________________________\n",
821
      "conv5_block7_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block7_1_conv[0][0]        \n",
822
      "__________________________________________________________________________________________________\n",
823
      "conv5_block7_1_relu (Activation (None, 4, 4, 128)    0           conv5_block7_1_bn[0][0]          \n",
824
      "__________________________________________________________________________________________________\n",
825
      "conv5_block7_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block7_1_relu[0][0]        \n",
826
      "__________________________________________________________________________________________________\n",
827
      "conv5_block7_concat (Concatenat (None, 4, 4, 736)    0           conv5_block6_concat[0][0]        \n",
828
      "                                                                 conv5_block7_2_conv[0][0]        \n",
829
      "__________________________________________________________________________________________________\n",
830
      "conv5_block8_0_bn (BatchNormali (None, 4, 4, 736)    2944        conv5_block7_concat[0][0]        \n",
831
      "__________________________________________________________________________________________________\n",
832
      "conv5_block8_0_relu (Activation (None, 4, 4, 736)    0           conv5_block8_0_bn[0][0]          \n",
833
      "__________________________________________________________________________________________________\n",
834
      "conv5_block8_1_conv (Conv2D)    (None, 4, 4, 128)    94208       conv5_block8_0_relu[0][0]        \n",
835
      "__________________________________________________________________________________________________\n",
836
      "conv5_block8_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block8_1_conv[0][0]        \n",
837
      "__________________________________________________________________________________________________\n",
838
      "conv5_block8_1_relu (Activation (None, 4, 4, 128)    0           conv5_block8_1_bn[0][0]          \n",
839
      "__________________________________________________________________________________________________\n",
840
      "conv5_block8_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block8_1_relu[0][0]        \n",
841
      "__________________________________________________________________________________________________\n",
842
      "conv5_block8_concat (Concatenat (None, 4, 4, 768)    0           conv5_block7_concat[0][0]        \n",
843
      "                                                                 conv5_block8_2_conv[0][0]        \n",
844
      "__________________________________________________________________________________________________\n",
845
      "conv5_block9_0_bn (BatchNormali (None, 4, 4, 768)    3072        conv5_block8_concat[0][0]        \n",
846
      "__________________________________________________________________________________________________\n",
847
      "conv5_block9_0_relu (Activation (None, 4, 4, 768)    0           conv5_block9_0_bn[0][0]          \n",
848
      "__________________________________________________________________________________________________\n",
849
      "conv5_block9_1_conv (Conv2D)    (None, 4, 4, 128)    98304       conv5_block9_0_relu[0][0]        \n",
850
      "__________________________________________________________________________________________________\n",
851
      "conv5_block9_1_bn (BatchNormali (None, 4, 4, 128)    512         conv5_block9_1_conv[0][0]        \n",
852
      "__________________________________________________________________________________________________\n",
853
      "conv5_block9_1_relu (Activation (None, 4, 4, 128)    0           conv5_block9_1_bn[0][0]          \n",
854
      "__________________________________________________________________________________________________\n",
855
      "conv5_block9_2_conv (Conv2D)    (None, 4, 4, 32)     36864       conv5_block9_1_relu[0][0]        \n",
856
      "__________________________________________________________________________________________________\n",
857
      "conv5_block9_concat (Concatenat (None, 4, 4, 800)    0           conv5_block8_concat[0][0]        \n",
858
      "                                                                 conv5_block9_2_conv[0][0]        \n",
859
      "__________________________________________________________________________________________________\n",
860
      "conv5_block10_0_bn (BatchNormal (None, 4, 4, 800)    3200        conv5_block9_concat[0][0]        \n",
861
      "__________________________________________________________________________________________________\n",
862
      "conv5_block10_0_relu (Activatio (None, 4, 4, 800)    0           conv5_block10_0_bn[0][0]         \n",
863
      "__________________________________________________________________________________________________\n",
864
      "conv5_block10_1_conv (Conv2D)   (None, 4, 4, 128)    102400      conv5_block10_0_relu[0][0]       \n",
865
      "__________________________________________________________________________________________________\n",
866
      "conv5_block10_1_bn (BatchNormal (None, 4, 4, 128)    512         conv5_block10_1_conv[0][0]       \n",
867
      "__________________________________________________________________________________________________\n",
868
      "conv5_block10_1_relu (Activatio (None, 4, 4, 128)    0           conv5_block10_1_bn[0][0]         \n",
869
      "__________________________________________________________________________________________________\n",
870
      "conv5_block10_2_conv (Conv2D)   (None, 4, 4, 32)     36864       conv5_block10_1_relu[0][0]       \n",
871
      "__________________________________________________________________________________________________\n",
872
      "conv5_block10_concat (Concatena (None, 4, 4, 832)    0           conv5_block9_concat[0][0]        \n",
873
      "                                                                 conv5_block10_2_conv[0][0]       \n",
874
      "__________________________________________________________________________________________________\n",
875
      "conv5_block11_0_bn (BatchNormal (None, 4, 4, 832)    3328        conv5_block10_concat[0][0]       \n",
876
      "__________________________________________________________________________________________________\n",
877
      "conv5_block11_0_relu (Activatio (None, 4, 4, 832)    0           conv5_block11_0_bn[0][0]         \n",
878
      "__________________________________________________________________________________________________\n",
879
      "conv5_block11_1_conv (Conv2D)   (None, 4, 4, 128)    106496      conv5_block11_0_relu[0][0]       \n",
880
      "__________________________________________________________________________________________________\n",
881
      "conv5_block11_1_bn (BatchNormal (None, 4, 4, 128)    512         conv5_block11_1_conv[0][0]       \n",
882
      "__________________________________________________________________________________________________\n",
883
      "conv5_block11_1_relu (Activatio (None, 4, 4, 128)    0           conv5_block11_1_bn[0][0]         \n",
884
      "__________________________________________________________________________________________________\n",
885
      "conv5_block11_2_conv (Conv2D)   (None, 4, 4, 32)     36864       conv5_block11_1_relu[0][0]       \n",
886
      "__________________________________________________________________________________________________\n",
887
      "conv5_block11_concat (Concatena (None, 4, 4, 864)    0           conv5_block10_concat[0][0]       \n",
888
      "                                                                 conv5_block11_2_conv[0][0]       \n",
889
      "__________________________________________________________________________________________________\n",
890
      "conv5_block12_0_bn (BatchNormal (None, 4, 4, 864)    3456        conv5_block11_concat[0][0]       \n",
891
      "__________________________________________________________________________________________________\n",
892
      "conv5_block12_0_relu (Activatio (None, 4, 4, 864)    0           conv5_block12_0_bn[0][0]         \n",
893
      "__________________________________________________________________________________________________\n",
894
      "conv5_block12_1_conv (Conv2D)   (None, 4, 4, 128)    110592      conv5_block12_0_relu[0][0]       \n",
895
      "__________________________________________________________________________________________________\n",
896
      "conv5_block12_1_bn (BatchNormal (None, 4, 4, 128)    512         conv5_block12_1_conv[0][0]       \n",
897
      "__________________________________________________________________________________________________\n",
898
      "conv5_block12_1_relu (Activatio (None, 4, 4, 128)    0           conv5_block12_1_bn[0][0]         \n",
899
      "__________________________________________________________________________________________________\n",
900
      "conv5_block12_2_conv (Conv2D)   (None, 4, 4, 32)     36864       conv5_block12_1_relu[0][0]       \n",
901
      "__________________________________________________________________________________________________\n",
902
      "conv5_block12_concat (Concatena (None, 4, 4, 896)    0           conv5_block11_concat[0][0]       \n",
903
      "                                                                 conv5_block12_2_conv[0][0]       \n",
904
      "__________________________________________________________________________________________________\n",
905
      "conv5_block13_0_bn (BatchNormal (None, 4, 4, 896)    3584        conv5_block12_concat[0][0]       \n",
906
      "__________________________________________________________________________________________________\n",
907
      "conv5_block13_0_relu (Activatio (None, 4, 4, 896)    0           conv5_block13_0_bn[0][0]         \n",
908
      "__________________________________________________________________________________________________\n",
909
      "conv5_block13_1_conv (Conv2D)   (None, 4, 4, 128)    114688      conv5_block13_0_relu[0][0]       \n",
910
      "__________________________________________________________________________________________________\n",
911
      "conv5_block13_1_bn (BatchNormal (None, 4, 4, 128)    512         conv5_block13_1_conv[0][0]       \n",
912
      "__________________________________________________________________________________________________\n",
913
      "conv5_block13_1_relu (Activatio (None, 4, 4, 128)    0           conv5_block13_1_bn[0][0]         \n",
914
      "__________________________________________________________________________________________________\n",
915
      "conv5_block13_2_conv (Conv2D)   (None, 4, 4, 32)     36864       conv5_block13_1_relu[0][0]       \n",
916
      "__________________________________________________________________________________________________\n",
917
      "conv5_block13_concat (Concatena (None, 4, 4, 928)    0           conv5_block12_concat[0][0]       \n",
918
      "                                                                 conv5_block13_2_conv[0][0]       \n",
919
      "__________________________________________________________________________________________________\n",
920
      "conv5_block14_0_bn (BatchNormal (None, 4, 4, 928)    3712        conv5_block13_concat[0][0]       \n",
921
      "__________________________________________________________________________________________________\n",
922
      "conv5_block14_0_relu (Activatio (None, 4, 4, 928)    0           conv5_block14_0_bn[0][0]         \n",
923
      "__________________________________________________________________________________________________\n",
924
      "conv5_block14_1_conv (Conv2D)   (None, 4, 4, 128)    118784      conv5_block14_0_relu[0][0]       \n",
925
      "__________________________________________________________________________________________________\n",
926
      "conv5_block14_1_bn (BatchNormal (None, 4, 4, 128)    512         conv5_block14_1_conv[0][0]       \n",
927
      "__________________________________________________________________________________________________\n",
928
      "conv5_block14_1_relu (Activatio (None, 4, 4, 128)    0           conv5_block14_1_bn[0][0]         \n",
929
      "__________________________________________________________________________________________________\n",
930
      "conv5_block14_2_conv (Conv2D)   (None, 4, 4, 32)     36864       conv5_block14_1_relu[0][0]       \n",
931
      "__________________________________________________________________________________________________\n",
932
      "conv5_block14_concat (Concatena (None, 4, 4, 960)    0           conv5_block13_concat[0][0]       \n",
933
      "                                                                 conv5_block14_2_conv[0][0]       \n",
934
      "__________________________________________________________________________________________________\n",
935
      "conv5_block15_0_bn (BatchNormal (None, 4, 4, 960)    3840        conv5_block14_concat[0][0]       \n",
936
      "__________________________________________________________________________________________________\n",
937
      "conv5_block15_0_relu (Activatio (None, 4, 4, 960)    0           conv5_block15_0_bn[0][0]         \n",
938
      "__________________________________________________________________________________________________\n",
939
      "conv5_block15_1_conv (Conv2D)   (None, 4, 4, 128)    122880      conv5_block15_0_relu[0][0]       \n",
940
      "__________________________________________________________________________________________________\n",
941
      "conv5_block15_1_bn (BatchNormal (None, 4, 4, 128)    512         conv5_block15_1_conv[0][0]       \n",
942
      "__________________________________________________________________________________________________\n",
943
      "conv5_block15_1_relu (Activatio (None, 4, 4, 128)    0           conv5_block15_1_bn[0][0]         \n",
944
      "__________________________________________________________________________________________________\n",
945
      "conv5_block15_2_conv (Conv2D)   (None, 4, 4, 32)     36864       conv5_block15_1_relu[0][0]       \n",
946
      "__________________________________________________________________________________________________\n",
947
      "conv5_block15_concat (Concatena (None, 4, 4, 992)    0           conv5_block14_concat[0][0]       \n",
948
      "                                                                 conv5_block15_2_conv[0][0]       \n",
949
      "__________________________________________________________________________________________________\n",
950
      "conv5_block16_0_bn (BatchNormal (None, 4, 4, 992)    3968        conv5_block15_concat[0][0]       \n",
951
      "__________________________________________________________________________________________________\n",
952
      "conv5_block16_0_relu (Activatio (None, 4, 4, 992)    0           conv5_block16_0_bn[0][0]         \n",
953
      "__________________________________________________________________________________________________\n",
954
      "conv5_block16_1_conv (Conv2D)   (None, 4, 4, 128)    126976      conv5_block16_0_relu[0][0]       \n",
955
      "__________________________________________________________________________________________________\n",
956
      "conv5_block16_1_bn (BatchNormal (None, 4, 4, 128)    512         conv5_block16_1_conv[0][0]       \n",
957
      "__________________________________________________________________________________________________\n",
958
      "conv5_block16_1_relu (Activatio (None, 4, 4, 128)    0           conv5_block16_1_bn[0][0]         \n",
959
      "__________________________________________________________________________________________________\n",
960
      "conv5_block16_2_conv (Conv2D)   (None, 4, 4, 32)     36864       conv5_block16_1_relu[0][0]       \n",
961
      "__________________________________________________________________________________________________\n",
962
      "conv5_block16_concat (Concatena (None, 4, 4, 1024)   0           conv5_block15_concat[0][0]       \n",
963
      "                                                                 conv5_block16_2_conv[0][0]       \n",
964
      "__________________________________________________________________________________________________\n",
965
      "bn (BatchNormalization)         (None, 4, 4, 1024)   4096        conv5_block16_concat[0][0]       \n",
966
      "__________________________________________________________________________________________________\n",
967
      "relu (Activation)               (None, 4, 4, 1024)   0           bn[0][0]                         \n",
968
      "__________________________________________________________________________________________________\n",
969
      "flatten_12 (Flatten)            (None, 16384)        0           relu[0][0]                       \n",
970
      "__________________________________________________________________________________________________\n",
971
      "dense_24 (Dense)                (None, 1024)         16778240    flatten_12[0][0]                 \n",
972
      "__________________________________________________________________________________________________\n",
973
      "dense_25 (Dense)                (None, 1)            1025        dense_24[0][0]                   \n",
974
      "==================================================================================================\n",
975
      "Total params: 23,816,769\n",
976
      "Trainable params: 23,733,121\n",
977
      "Non-trainable params: 83,648\n",
978
      "__________________________________________________________________________________________________\n",
979
      "dense_25\n"
980
     ]
981
    },
982
    {
983
     "name": "stdout",
984
     "output_type": "stream",
985
     "text": [
986
      "Done\n",
987
      "30\n"
988
     ]
989
    },
990
    {
991
     "name": "stderr",
992
     "output_type": "stream",
993
     "text": [
994
      "Lossy conversion from float32 to uint8. Range [26.0, 188.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
995
      "Lossy conversion from float32 to uint8. Range [26.0, 176.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
996
      "Lossy conversion from float32 to uint8. Range [38.0, 197.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
997
     ]
998
    },
999
    {
1000
     "name": "stdout",
1001
     "output_type": "stream",
1002
     "text": [
1003
      "Im132_0.tif [[0.99999213]]\n",
1004
      "Im136_0.tif [[0.9999312]]\n",
1005
      "Im148_0.tif [[0.99993384]]\n",
1006
      "Im152_0.tif [[0.9999883]]\n"
1007
     ]
1008
    },
1009
    {
1010
     "name": "stderr",
1011
     "output_type": "stream",
1012
     "text": [
1013
      "Lossy conversion from float32 to uint8. Range [20.0, 180.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1014
      "Lossy conversion from float32 to uint8. Range [27.0, 197.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1015
      "Lossy conversion from float32 to uint8. Range [23.0, 187.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1016
      "Lossy conversion from float32 to uint8. Range [35.0, 182.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
1017
     ]
1018
    },
1019
    {
1020
     "name": "stdout",
1021
     "output_type": "stream",
1022
     "text": [
1023
      "Im156_0.tif [[0.99999475]]\n",
1024
      "Im165_0.tif [[0.9999957]]\n",
1025
      "Im171_0.tif [[0.9999974]]\n",
1026
      "Im172_0.tif [[0.99989057]]\n"
1027
     ]
1028
    },
1029
    {
1030
     "name": "stderr",
1031
     "output_type": "stream",
1032
     "text": [
1033
      "Lossy conversion from float32 to uint8. Range [36.0, 192.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1034
      "Lossy conversion from float32 to uint8. Range [17.0, 182.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1035
      "Lossy conversion from float32 to uint8. Range [40.0, 175.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1036
      "Lossy conversion from float32 to uint8. Range [35.0, 175.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
1037
     ]
1038
    },
1039
    {
1040
     "name": "stdout",
1041
     "output_type": "stream",
1042
     "text": [
1043
      "Im176_0.tif [[0.9998524]]\n",
1044
      "Im178_0.tif [[0.9999939]]\n",
1045
      "Im181_0.tif [[0.99999845]]\n",
1046
      "Im187_0.tif [[0.99999]]\n"
1047
     ]
1048
    },
1049
    {
1050
     "name": "stderr",
1051
     "output_type": "stream",
1052
     "text": [
1053
      "Lossy conversion from float32 to uint8. Range [25.0, 191.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1054
      "Lossy conversion from float32 to uint8. Range [24.0, 193.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1055
      "Lossy conversion from float32 to uint8. Range [24.0, 189.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1056
      "Lossy conversion from float32 to uint8. Range [19.0, 166.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
1057
     ]
1058
    },
1059
    {
1060
     "name": "stdout",
1061
     "output_type": "stream",
1062
     "text": [
1063
      "Im189_0.tif [[0.9998784]]\n",
1064
      "Im191_0.tif [[0.99999464]]\n",
1065
      "Im195_0.tif [[0.999946]]\n",
1066
      "Im201_0.tif [[0.9999964]]\n"
1067
     ]
1068
    },
1069
    {
1070
     "name": "stderr",
1071
     "output_type": "stream",
1072
     "text": [
1073
      "Lossy conversion from float32 to uint8. Range [22.0, 175.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1074
      "Lossy conversion from float32 to uint8. Range [24.0, 178.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1075
      "Lossy conversion from float32 to uint8. Range [21.0, 181.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1076
      "Lossy conversion from float32 to uint8. Range [18.0, 173.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
1077
     ]
1078
    },
1079
    {
1080
     "name": "stdout",
1081
     "output_type": "stream",
1082
     "text": [
1083
      "Im212_0.tif [[0.9998431]]\n",
1084
      "Im218_0.tif [[0.9999825]]\n",
1085
      "Im222_0.tif [[0.9998821]]\n"
1086
     ]
1087
    },
1088
    {
1089
     "name": "stderr",
1090
     "output_type": "stream",
1091
     "text": [
1092
      "Lossy conversion from float32 to uint8. Range [28.0, 170.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1093
      "Lossy conversion from float32 to uint8. Range [13.0, 119.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1094
      "Lossy conversion from float32 to uint8. Range [16.0, 142.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
1095
     ]
1096
    },
1097
    {
1098
     "name": "stdout",
1099
     "output_type": "stream",
1100
     "text": [
1101
      "Im226_0.tif [[0.999998]]\n",
1102
      "Im228_0.tif [[0.9999784]]\n",
1103
      "Im232_0.tif [[0.9999753]]\n"
1104
     ]
1105
    },
1106
    {
1107
     "name": "stderr",
1108
     "output_type": "stream",
1109
     "text": [
1110
      "Lossy conversion from float32 to uint8. Range [22.0, 146.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1111
      "Lossy conversion from float32 to uint8. Range [21.0, 146.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1112
      "Lossy conversion from float32 to uint8. Range [19.0, 143.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
1113
     ]
1114
    },
1115
    {
1116
     "name": "stdout",
1117
     "output_type": "stream",
1118
     "text": [
1119
      "Im243_0.tif [[0.9999944]]\n",
1120
      "Im246_0.tif [[0.9999696]]\n",
1121
      "Im250_0.tif [[0.999811]]\n",
1122
      "Im251_0.tif [[0.9998184]]\n"
1123
     ]
1124
    },
1125
    {
1126
     "name": "stderr",
1127
     "output_type": "stream",
1128
     "text": [
1129
      "Lossy conversion from float32 to uint8. Range [15.0, 127.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1130
      "Lossy conversion from float32 to uint8. Range [19.0, 144.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1131
      "Lossy conversion from float32 to uint8. Range [26.0, 138.0]. Convert image to uint8 prior to saving to suppress this warning.\n",
1132
      "Lossy conversion from float32 to uint8. Range [17.0, 175.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
1133
     ]
1134
    },
1135
    {
1136
     "name": "stdout",
1137
     "output_type": "stream",
1138
     "text": [
1139
      "Im252_0.tif [[0.9999641]]\n",
1140
      "Im254_0.tif [[0.9985845]]\n",
1141
      "Im257_0.tif [[0.99995434]]\n",
1142
      "Im260_0.tif [[0.9999981]]\n"
1143
     ]
1144
    },
1145
    {
1146
     "name": "stderr",
1147
     "output_type": "stream",
1148
     "text": [
1149
      "Lossy conversion from float32 to uint8. Range [28.0, 165.0]. Convert image to uint8 prior to saving to suppress this warning.\n"
1150
     ]
1151
    },
1152
    {
1153
     "name": "stdout",
1154
     "output_type": "stream",
1155
     "text": [
1156
      "Number of 0 : 0\n",
1157
      "Number of 1 : 30\n"
1158
     ]
1159
    },
1160
    {
1161
     "data": {
1162
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR4AAAEYCAYAAACKkJnLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC3z0lEQVR4nOz9bcx1W3cehF1jzrn2vp/zOglxQlJjBzlpTNtQCdFaKSpSa8mloBZh/gQlEpVbIr2qlLb0EzvlR8QPS6mo0iIhVXpVUhwVkhhKFf9ALcEVQv0RIFBa8tEUi0TBxI2BpPLrc55777XmHP2x5nWNsfZ9n+f4Pcfvk9v2mtI5+372x1pzzTXXnGNc4xrXMHfH2c52trN9zFb+RnfgbGc726++di48Zzvb2T56Oxees53tbB+9nQvP2c52to/ezoXnbGc720dv58JztrOd7aO3b9vCY2Z/n5n9BTP7aTP70W/Xec52trP98mv27eDxmFkF8P8B8PcA+BkA/xaA3+Puf+6X/GRnO9vZftm1b5fF8zsB/LS7/wfufgfwxwD80LfpXGc729l+mbX2bTrudwP4D9O/fwbAfyV/wcy+DuDrAPB0vf6Xv/t7/hYgG1/28qAyziw+fu0nfvgyz5e+fDj2Kyd6eWbQMnQAxXjMMvvlOh/fe/UoqUt++OOhry+7//IAdux3/pfzeP7ye4dz8bMvMno9f2Ve58MZH7/3Wu/cHTE8r/w+9YvH9/SZzmkf6PCLz+Lc+6HzRHjxtWPzxw/Tlyxd0+f35nOnl/v40K8+/zj5nvors/8wrK+MXT7MB07nXzApPnh/Zvu5//g/wc///DdfPc23a+H54G0EAHf/BoBvAMBv/+2/1f/Jf/KfQO+OUvaZydfsCurvYnMCzRuvv3t8bxwHruDlsQFg7ePw3toHaq0AgDZXmG3bNKHNTOfh99Cjb61wSAvQR/wNoLuh99RHAOhD77HPtRRd0+jpOnqMAz9vbT9fbaZjrutd/etz2HU+Kw8PIV/TeI+H36S/bcRvXrjpwzHGfs2WzqFrGQNe/DB2Pt8HgDFXpVorij1MTcsP6sZLgVX2b45r6YDP6VdLuq7981IKSnlYjMrrD5nLITD9Ft50XfsxTGvd/t7QtQKA24hxLnENca/W/bNm6TPTODzeK/Q4Hkp8PpDHux76MLYec3/2dYzxcP+BUuPv3jf1h/dK8zT13yzmYq2LPhtj4H/xj/0T+Lz27Vp4fgbAb0n//h4Af+WDvzAHrKPUeUNHXGQM0P7vgYHe4wbz4cvf54TUe2nealK4o5T9i7wxFQ6uS7qpY2gRarXq3L71eb56tH6w72jGB4CTYgDGh1oPNzhXtUGN7no48qIGjwWBj8o6ryXNkzhfAYwPHMdw7/B+Hu5aw1Hmqsaxyb8ZY2B0fh4L3otd24rMQa77pRQYJz0qtvV2HKdhsPmAc9EuKC9NPo8HUzNjDDgXZt7gMnQvrQ+YHcfO4LEzy1DLVmrawe34Cjhg6/wrLAyzvGjE2AP7cIw5l/ngmlka5/11KRf9Nt9KT/ccAFpabNyzJZ7Hi+eZfSjQOOg9S1aX+l9eLEbuvm+8iGPt788N24qupfs9uvD4AD60bxfG828B+D4z+61mdgHwuwH85LfpXGc729l+mbVvi8Xj7puZ/Q8A/F8BVAB/2N3/7Id/NeZqOk31ubSOEdYNV/fd5OV2NeAP7tJuah5/k6GO2EwNnsxHAKgeVgl3v1YM4Z0NlLkzc6UvMB2zj2QFwQ7fQzf11bfoX6NlISsAGLTotthxDq4izei583RsMolrm2O3bWFbz7b1e7iS0zTetv7omR7Gbr8ebpX7e7335ELx+/2w+/MYuv7hgNPkn320l7t67/2Fi1FQD8ecvYLLfZk7dDEZR8uSoJHBHRwYD/st+7L3Z9M5XsJjr7kaBmcfS4GP47wDLKyfZA3zY96L7P5zbmC4bl+Mg2me9Gxxpr6Ohz60Ul987Wh1ff5vxxh6r9YqN059HaZ72g/zZXwQJ/p2uVpw938ZwL/87Tr+2c52tl++7du28HyrjWDlaxbK4ypca8WyLPEZtzjtrAnEI5aSgDNuFKUUVAKNIywoKwQDw18foJ/ugZfwvGbyeQm+7t+dvjF31OHCc/g9Hy5gULv2GNqht21gXffPn5Y6v1W0Y7IvcEedgKyxL4ggj/AaL7IeTGBuUx/3CN0D3uNAJYYFgo+OQoBY1mdEo2T5eAy4e7ruDDYQAE+43cG6xQ7SPlpGZi/P13vss8NqWInTyilWNF+0qyewPvc7rIP44zGQUVIfqhXcH8DlbMkE0D1QjffyaDUe+nD4O/pM8LnVhC0lq2s83L+arMpjewCu4S/6nftfShFOFeC5hQWdcM492vf5cbM3s/Cg789lRBzmw5MujBddrKJEOCO9Py/nEPUkqFoCTHSFh9DmAtbvK98C76fgv7HBjf0JgNUV4Ulu4Bz83gc6XSQtCIbKB4TzewyZzrnP0e+GKgA8jcNcKFtjdKjE5J1jtyRfg4tMxuGzC8cxHmPIfZP7uHUdOyZpg2+u69r7Gg9htrJLcm26HvD54CW3I3k8GCOiJgBQUSKEnQ4+XkSeLIHLDqMboAfXtPjpHDW5Q+0yj7shwdhqsfjF8eL2uX7SNBfLi42zWDtE+gBgW9cIcNSXbmWA8Q4uYNldGv64iKRFI0+vFLH0h4Vn2P4fgJinB5c6Fn/2cdt6ANc6iR3+9Vo7c7XOdrazffT2RiyePaZcfYj7EjyOWK654w8MbGPT3+SqLCXtaj75EXNptZLM9zo5H+i4rRMMTtyOkUKF+4eLwtLmVat1zyFRgXEBENfHEHsfwLyuvu396/cu10duxQiLp2DIX+rrtFAS0GpzvFptATi3ZJaDIL18rvjtBKH7GOhjD3O/f/8eywPFYAeIJ3dpnrvaSKAxLZ7oV72k4ACCQ1NF8MtALbk/5E+VACrlU4Yv0j0sCJr3oloMl8VnpWEj5aHRdd0e3B/soL8fx6nWC4bmEM2hHjyl6YYXmFy3fu8aX1qYB2tWSDGw0SUzWiwI6zS5VcVp2dNSDj7aNnr40gymIIB5XR6Kjk2LxpH4b6RAjLu8h6U87V0ucX9GsrayKxzg89Ey+hC4fFo8Zzvb2T56exsWj3N3Dn9zncBsa02sJYGKgAhtDqDWl+xU4g7yr0dPQGUKXT6A2TnlwUDLx9FTiD3wDoKrJiCZO5QhAOtthkerjgj44PcixNw37qJHHIOAUPjvKZyeGNVhMc3P9g49/NYjhJt2QcJe19Jix0wxdkXl52967/tuj7BJC1JIfE1h6blpmwOX646h3G5BJHwEbHsfwlCy1fUqq/3BUtlBVmJw2z6+AGxMjMsK3I64yRgB2OrmthaZCRyHOoRc5ND/9fKkcWKgIBP7dH0JjyrCe+Z79RGI3q0lxSqIjW1DA77j8vNezmdg9BHzVseL4zKY0nvXcci9bHZBrS/xxtdoFXHPjmRDfvaCivDQ3sTC42Y7Xd6gAS40rQswekzi/bO8OEw3AykyYGFuczJbyuHJY1Jb0Lx5jAADX/a1IDIh+OD1dWBbmUaRwFN5C5x4VQvY0DFqgLldK1r0dQCFD6HeHfqX6ST5ZqfxeZwoY0TUY7qcBRVOBm2tL9I6ik9zHWHZKxtknvvhtIk+ZOI9lVKUIpBByvwQP/ZbURZrWgfj1BYLBhebPlI4Ki0USrMoCQznZ/E3F7D1dteGlpnxkXoyr7MWvP/sM/W5LHGtwL4uBjAcEa/gnHHB8+B4HZ7aef3ztJsfli99q6QFjxsiI2eZ7/NadCsCGVVpHWO8fG72337AfUobQj9S6V9+94Ofnu1sZzvbt6G9CYuHLa+lNB17CuGxPSYecqcUj2AMDI9EQiAAO+BoEsaxuQYPZM4EXxWCDWMqQpgAlskCjn4ll4xWDobcl0wofgyZwuyQZM3vKrfGU24Z3UxLIG1JoeWH8PaWXBaxo0dP4e20wx24JdOtHDF2Q5vay52aYe4c3h1j4N4jgZXHDepEffEb5QllykJ0awffU9t3aIb5431Zkw4x4TUOKWESnS6QaSy2e+Qgyfqha7OFK9XdZTn2edM26y+sm9ZacJbYr5T86SWs1CG3kNagwcq0SEeav/TJrIpz5nIBEv0ghfYflRR2/g2Z8ByHcBE7HPUhbJ8fTc7F3jvWdf0c7tDe3tTCA+QLigF69H0zLrCkpLmYkn6IsOzHzX4qIwWJ+8KbMwI/IS4A9xQ88OCl8HswPezEafq6RmqFJseIJNFs7r+SrxCL0XHR5GeZkr9fU3LPDkmLx0W0WsF1clW2+ZCtfcXDczdbjKdwqEEcraIu8eACOCwBucfdw8Wo5To/n1GmNX6VM9Iz52V/fUny2zGex+/H93BYOKNfkf3C+zyvEUG07L1rDmkzcUffeM/3o1yvV9z7e42WxlmJr0uMA12pnhYjcsJQYiHIybl+hBmu12tE8DzSEhiVey0Vwiy73Amr5KKGlwuUooWwxPcpLxarz1vUluXyIn0mt9PVOtvZzvbR29uweHKqxHzL8l+PK2cfEa2osXbSLG+tBY9CgF6yBJIVELo36b1x5GBYkmQoiakqz8eDfbyuIYEgVrHSMQQFy4LKu1NO6ZCRtDmgqFBQ7vN17W9mik7+LCJ98ygCeIeA95duaG671RTn5pjQHQ5jMllijI6kgAHMEPmKrut7tGTGiMhMS9yQ0PqJ8aKrlWeIjpMvYsS9txLHBHaXJTSB9s9qbbJq5JJivLC+t21LVmVcK+fDGDmqRVe4CJ2PtIai66JXZW7AjH5WWkio6FvMsWA58/7ggxYPR8XMUHF85kaxZGmn54FRNJTE1ud4+sE6B4ClXdDLdlo8Zzvb2d5WexsWD8L6yEJafL9mBTgAXuN7vQeb1MlstgzIPoYDERyYkYDWiN5DewBB5J5ZuiNZHgEUS4UNafcjnpPATO0Ywoz2XwFxjK2nZD1U9CTpAOx4ABnAPfXhEVR1QYRIO/HAOsFSbt611sMuOx52PYwYi8pr78CY7GtZAeZJFiJ2xlCoq3CygUmbqP5iZyw12NnZyqHlobHbt/Ljbz0FD5I1LI75gHLtJPw4egQoJv6181MC2wAAt4H7fYLd87fLsqAnyzEZd/McsfOHCmDqM+9tSTlfKfetGTlXc57etwOHLRCbTIE44npWkLAgXhNgNYIQHBwlrYpSYQdw3B4sHkNYiwoueEG19ssgSXSS34oHN0aD98rXSwn5zjFCqhT1pSsSspMJBEvhmjCDk8IeFeMmUOwJFO59aLIMPayubPmakh8lZcok0XyTUtJi9IxU+C0WqFr0oAgMtSJ3IWzWnhZtulcWE3aa57sU5xyuGgsoeRdmLaIhPG8vWvWY/Lhtm1w1ArIlk/cSGA+LB7Mk12l/L0/8NBLlmPleak2L+jwf7BCF44n1kI3I++ezvhMaj1GmXbLzgcS5FC0oOnRNaTezL2taWMwsopUJOpAr84pbzTayO58DBnR51BUTFLC0zBXj+UwnlDZUOl8oCQB9hiUVLzPTIlu18AfsUWvdI7OpGUJ3iu5xX1eghILCa+10tc52trN99PYmLB6Do8EnWHk0b/MuQfNv15CNVfZ62UO092n6GyBRcbFwR30Rqh8YknaosjZWjEnb0M46qiQuxj3pj3j00bf971XLfFP4FMnMjbB7gIsR3o+dPIegdf1zb6qlYhSGQmf/a5j8lWF8dNjc1a7XOUb3SATEdCsKDButwF6ALcBwALDh2nEHrRfPAKoo4+qrjbByaAXuwjBHa2OM7bAL87NH9rSPrsP77MMAkng5P3O0ul/XusXYuaQwBnB3jQUAtLbga1/7GgDgs8lCfv/peywPLGTrSXtnhEXmk1ezPC26CI1x6ZFkOi2tApPbGO5Q6B1vI9JJwvphhCFsqCzibhbHYzCDaSt2WRJ3Kbuw02pb6TIDl3Y99Aubw9u0duuCbc5BuettOfCYOF72BTbNafGc7Wxn++jtTVg8QGA5jzk6+T199yH3JPJ/cliY5L8HMPfwvfBDR2LPcveQxZJlKkoiaKXkIUlpfCiXxUoCSPfvZQLkGMRZXPiLjbQrSrIhQMzAywcKc9a2KL/DkbrfA8Mqk9Q29mFDXzvWSeSrCPGsAMI9Suuk6+POGmS4BMK3OR61HoD50Y6lgYpBFUU43q211IfMtH2wWMd4ITo5xhApsSwXzQ29V0KPm0bJ/XbH/ba/92um5dPvju1GCzvGnS2LqK1zIKs1tMu0TEJ/IlUUCWvISLVQnl6WCdlfbS8TMq9rzo22KI9qt4hoMaV5R/ivBVFW/Ng1PIo6P+9zPLbnFeVCWYxIyF2nJ/H8/IzlOsspUZwv5Z3VNCmtHJ/Zx/ZGFp69FtDoSWBb0YGXPJ7hJb5QXMBcLDYlLVyhVPiC3wATR0elR9xEERcoaKGhNwyhbaNQyUvJyJpOlWMrqjeVAM4tPTQAZpZ+pHAEGBw6OaYaYvPytqG6RjLtE8guuVdb9CDQFfHNUXz+FlULs8YkUfNp+u9la44L8Eg1pCQw7kD3eEjFJpJZHuNpaQJTp4YP1Ohd1xpuGNKiTbq+xYN+v0GAPQc5yRwWm5ozvmF9v//mr73/NPr64O7XFveAG0NpBZfJxsbqAmzlIpZI/ylpHhOkJT/H0/zkM5vrq1G/p1rRhOpjDSA5gcxKbxHD3rWoc0E3TxuUB1fI58LU58axLIuAZt8cWPYTLtOdRd/CbWRyaq04wuov2+lqne1sZ/vo7Y1YPPvOnyzCtGofXSu2kMhoL/KR4I6HSOhusb48jFyxsdJMHLA5LNr5N8OmndVCOF1mboNPIE/6hCNZTFJVtF1YHREe7b3Hceb3c0G7XKkx+hxaOLQSvPQ0JhH6L7LeCMYnCyNbGk49Z5fZH8LecWpa9M0a2vJQYdKHaAU0NHOpmt0aPFpJhqQiKOXEge1Bp3gP+R+FxnfrjOehFeewEQAqS8XclZS56bs0A/drouXBsXbUcpwwrbjkWqhbMy4Vl3nJ3Ya4MaJ4tJT8mebkOl21y2W3HKxmyz5Ae3KJZP/6prmx0wn292klZW5P5vPI0gHv2aaxCVepyrXtzIvtA2UJK3fTb3g+P1jq+7E7WlsSp+JlOy2es53tbB+9vRmLh+Bhlirg+1BIkTtC7KL7Lki/1Q7Hy83Se5ZDoXNTo97vnvk9fdWkYsidoFnDyg2zcOctyvEJEpzhBSjciiwQgpNbCokKsPNMfHx5LXtYHvM3xDaGGI2j6KLSeHad7zgq05qgdTeCgCelhRL5OLREdpnsSYxkvXgLMprGtTQoxOxDynvRgwjr0kw6yD2wj3F56MJpDH2bIeEZIt/W2Gi3u2NbaTGR9GkiZEZmfJRtubYom0QrQlaHDywXkvfCUr7XYIK3+fnlyvmQ7kcC45Ul3pO1wI5L/CAo4wLwtxEZ9Ok3h/I4TN8SQ3ugYInzADAsUk/gWK9bl0Xe+9QE7xuuqcoJaSVdVHaLckmzj/f7Hd3KBzWXv/TCY2a/BcAfAfCfwT4633D3f8rMvhPAHwfwvQD+EoB/yN3/+i/mmNmcPkheEtBMtZ22ybTN5mgWbH+RvJ8qHo4UZYgaU1wkklvzQHVnHyT8nvqtsjzpQVEnBAaG2a2yLTXYooc6Vi3Yzrx9fpAx5cJLvZqh3wS7NCXBTtBz7bljBG6LFplhFrOzZHlWukacZFVsYEsC5zK3DzITsw97BiOA0LUpSxOfJgSALNHv54PgKxyz9Mwc/211rPOnnTyq+77gAMD7zzaM7bhpje6Svh09EiypIHlPGq/tMdG4r1imFMiTFhjgOn2t0jaMTqb4dMkWQ2WEbwLgVoE2o0N8b4we8ynVOdCIMNJVkqs/cnJ19DtUKbkhxyJgnu/9cX57dwzqEbHiayl67z42lHb8zUFNcU6IahUlMZpfa1/F1doA/M/c/b8A4O8C8PvM7HcA+FEAP+Xu3wfgp+a/z3a2s51N7UtbPO7+swB+dv79TTP78wC+G8APAfiB+bUfB/CvAfiRLzreniDaU1h67vjmYkFmBTqBbWnFFddkuMzy3GjpcAU3M9BnkdxDlnYYLMhnUeRv3HF9SBLtfcvoH9hJrffUguojsYune9WqrKxwg8KiOdAJRF41aQhzT7RShPx6D3CSLpTPW93a7o4AWYt3gYqejooxzWy23ZvjbkarEtpRc14ZLTn2wUeXRIaZYdCdouiXp5w4htBRBQDzvqxb3Ld1nu92c/FvttX0ytD42BY8fzqZtrrAKsb1lgouMjlUAPbWQRX0ZbofrVywzvPcn/fXr72r2K4TKF4a+sJ+7OdYWsf03lCWaTlVx2VMUPnC+xPUh3KNggGyXnhvvevOdw9XOizpkiwizOMYfBznrA+XvIbUIA8eR1iKFIMfIyImRYC5q3xRdhbwinJobr8k4LKZfS+AvxPAvwHgN89FiYvTb/qc33zdzP60mf3pn//5b/5SdONsZzvbL5P2lcFlM/sOAP8nAP9jd//5D4n/5Obu3wDwDQD47b/9e32MPcuXq29mrPojBpLlMwYitncQbjr69jvGE+F2IPJW8vdKMRGriCMVAKYM8y7ym2t33AIYTnlZgkpm/5ZrVVmXbZCItcDE4p1+vyP6n0K6LMuy1/o+YiXWkjgY4RFLrOF5q0tdtJMrY30AGBOnsJJkMeJ8bGTvuicwn5tyrcJpxASvkekMDAxiYYG9Bo6BaBvzjbYAxWmp3aeFdL8Bz+/3N9f7BDZXx3ab8+Bu2Ob7tFTMiipkEI/Z3FFm/ldYdFU4zcoQegmJFqoZ9PtAu+xA09c+abheWG5mjsPSMSYutFzmvLsU3H2fB8Un+bB6spaTRU6cTRUjIrctC3wJ//Sw9jUftihDHNSHKKc9GOi4r6JDZLE01TMsJcinkwnfPQokeiqdc7HABV9rX2nhMbMF+6Lzz7n7vzTf/qtm9l3u/rNm9l0Afu4LjwPbXQ8vSvhc5wM6krwEXzc/1nDmQ096/MwS3b+bzEm5ZJV6FqE/wmiLw/VgzkKbu7mZIg7u+0RjVKtdk2A54mGkC8LwyOoDZQKRdEV60r7l8zkAMNlh+F5ZE4DkLsZwlAe946VEZCaqsVasieUL7Imt4vTQZnfomq27xAMV1esB8JNmXWuVHnDRJC1YLnwQWHJo00NaU3rINmvVjwFxiLYEdq796H6ufWBSpbCt+7W/fz+w3mdC6Fxs3n96h6/haqy3Caorkmk6DoHyfREVhD+vHYp+yS2oRdEcphvctoJtuk3eC97PlJDLTKxcLgWfvOMDOfu/DdWwF//rqWBZpru3BmvYuDkw+lWObhDnkfwhCD1Q2sOoMXeE2SMitUxZaaUEs77HwsNVotQkgaGoayRfk6F+aeUYZnulfWlXy/az/TMA/ry7/6H00U8C+OH59w8D+BNf9hxnO9vZfmW2r2Lx/N0A/jsA/j0z+3fne/9LAH8QwE+Y2e8F8JcB/K4vOpC770BfyqMREDxcim2xiMYqO0ZWhSOdMkw8lRHxEupwyt+K0KwljgUtqHFAy+ZvzaKgnwrVtZTXFJYPQ+sSBMsJk+KIQNq3h/MwHF2L6qxTw7mUqtrxNI2v1wu++c0dK9vUP5MGtAD160VA4227zXMtiU6QQrQRlU/XD10Td1ZaQxUWVTTEuE10gBROV3E7N91XssMNReAsrZt13cPj+3vz+2vFdtvP/f7T/c33nw2pJK6rY8zfb3MH75tjegmqqpkrM5Aq0RE0hxBtG/FeEvrqqTLphZVJaJ33rrn8bk7Ty7ViEGie571YU8KVT5OzDMdQYur8bLFgnr9kfsDd0Ti3aAyZaZ7QDbvf77ovoduc+VNDx42caoNq2OtZeh1a6f4hFs9Xi2r93+P0L9oPftnjnu1sZ/uV394Ic9l2TMDC0mGocwfVHkOBscL3HlZNhAUt1UfnDpQlRpOswHyT56vJ4qEVsG0boixsgdUIBed+7VcS+skjiTPt/XL50DWREl/zh8kCHesa4B2SuBYlRKdf/fycyYmBZ7ysY4WQs7CJTYwCF95T0vUE+VC9ZWTfgMoQvWRYTRSEIHUGROc9cIVgH8YuTJWBbeu4r9FfAHi+GZ4/m+9N0uD9eeD+2X7w2/O8VzeTRvW2Oepk4/GaxwqVxC4tqAgBtAcmKKCZGFaPselz59+G4Tpz1vxuoiVs04go1VX4kCzrd5sJfL5cSS8YxPeVG4XRgeURDYl8t1KCakG28ra+rO4w0JVjFRzVjscsgUNhw9l2sDrmZ0k0j31sUpWJlGMG+zybZG9vYuGxmTzpHqVXgr5p0OJxQMnngHuwZZmENy8fQLgBOdnSDkDy/ndbyEvo0Qf+toWWro8oW8PJmkuYSEzQhyauEjn7kPlbk8lOPo1SJ5C0kounhScBiA9Rip15+8hIRmjvENhcPem9MBHXxGxGcrWqmMsjfoO0mIrvNEHY4XHuGjIjNWnFiOejtxpWguYbOTIDzxNgvU/Q+Pm9Y33e5wTZyvfPHPf3dN2m5jVKWmQ2mBGcnfwUGMocbwL4rcYD1e90mWOhd6aG1DDxPbn/XbwpYGPkcUYmmre415OBM7or5UL8qOqRWuNp3kkLKLSu6e7tmwldov29a1tiIZgLxjpWKVBacgvxIK2SU5YOuljSmiovFqbcOMdKzlj9nHYmiZ7tbGf76O1NWDw7uDzgw5S4x2oG7o5VfsDeChInZwT/gbtDFvwiw9IQerkBe7kKxnHnuY9N7kud1kIpBqd14wOVqCtBwGyVSX7BFVKW2BMSvyUBtwTPm7L7wuWs1WRhrZKr2MTfocu1n/Z4LWO4cpCkMFiuYgobOTc9rMUxuorkBU0nLDVqLg8fynMTYNxLKOGlWt8j0cglYzH/vW0bbtPKmBF2fHZzfDZB49v72f/3wP09OSSz3zfD/WaHA9oYOvWCCOuWEff8wvD+vAetV9UEH2mnj0oYHK8lLILCe5/EzdK89JSgeaNFd5t147Hhk6/tc6vNsPvzp5FXdqEF+dQUG1/eTatrM/HWPLHsy+zj9ekqjhD7/3S5hqudrGt6A6SCbD7S1extt9pnH8oxqMPrDF4Rrz2Sjj+vvZGFZ/flbQylD5DbMkZMerbhCe9JkpGm0jKuB7dU+T6HBUfvHTKBd9dFhD+VYunYVDO8BGeHZmeJelLiw1j44tL9Tlj8ofrkCy2Y7IoYslQrsGekl0TW2r8f6o3BoVkfsvyxV2HV2DFytGqhL/DInFYKg8Pr0OfzJCHuGOFCrX0jjXHGCKhSx7rt728dz3MheX+fEaob8DxTEiadC59+c8V2m3PieR5rjYgYgy21FLk28BKqAiRQloKNav68ZWvXgC8koTowxpG8ZxYEwxiioUWvFKDz+qVRE65ttUnOqwue5yJ0mRvI1jaovpoWtY4qVQRy0FwbBrJLPjeWzValMHBzai0Sce9rVNulYmWf4jtZBVH41nDx0MZARN54e23vx+wc9GHvp6t1trOd7W21N2HxAHOR3Lq4PCqJkky54JcEBTwLsefdfyRezt4CGNOODsdYI1IEAEsJcC4yNCqa1PH8oJ27HyWByxI+T2u62KUv9aMzoMc2kGplF8P9Nnk812mJLYs4OOzjUiKxktG0sZfN3H9Lyv16V6qAftxHiLOXqC3ucjEg4XAFsFrWWyHY6cHFypwskUyKxocW5H11rBt5RTPtYQOeZ1SLQPLwVJmSbl/vUtFjgukelWNORFh3UmJ0oD3IQZiPqG9PZrJb2paDe1QUUdo/2Rnc8xxe1Dl6nOvm4b6xcqdVWepMNl0uCzapF85RtRD1XyvB8QLm15onPaZ5zff7XZ+r6OBtU6I1S/+MPuS665mrLayUg/U9ralt0+dh7ZsswrCuDe4ftmlOi+dsZzvbR29vyOLZy9QQlLtQ4a13gaGQ/xn+a0WNAmZJrY3hRbKL9w326J97St0Xc8WC4RwWVEhvFCvieng6TlN4PLgREU6vOvajbvCeaxbW1N6XCFW7F507SipvD6JgFBmb1gQLtHkA0gLW3RUm3ljwzQIUrbXK0mFzg1QGCyUuSpFLzwHzkmq156mlHLNIZmRBw/s6xCqmKshtHbgxZD5f379fYZ0A6zzsCMmUMHi6rDsvAS4TF+lbV8332qjKt8JYhYG1ylPAwGewofsmnlaVBVGknzy8ij9G3Kt4kWqj4MjeNX9vUiAx1vuTVVWtolxmkIVcIF9FkXB0UAWSvzWr0q6OooIRtOBMN4tqHK+VkmL/baRnaIRlKEtrRMKykrTHbk19IEf0bSw8e1RrxV6HmRyZ+aD3KhC0KBFzaMKhhHJbuGdQtEoVLbPnk7Balf0QaFhkJqvEzBhJLNsgEHAeZxs3fHp/DyAWxD2ZlItfuHi8oUphKP4iG7xU003bfE3ZwRyvrn6L7NgWRQSl1wLDmHY3JXbGcDijQsmsLrNq5lorKl0sJsvWhkIyJHFkgyqbcjHJYyzOkRdN3PttDUnN6YpuZcHPv99Xl9t8iN6vBTcCzjP7/PbpBky3+FoJhIfYOcvpmJdUCbUIVBa4fgPafPia0h5M4+l0OVtLUa15Do8kySsfsnWVVtPukszfkADpsRDSHbrdV4wrH+b9t2sfwHSDSE4sF0Ojrg8ruFZHZc36JHPJsbeSghEkCCZBdgZbluWKda7uJD1Wa7GJEHC2cJ+tFFVxpau8X9oMGDgX4BTl/Zx2ulpnO9vZPnp7ExYPYIDXfbElUEVzuifAUgzmLcBj1OCOZNnBlPgG7DseE+XouqzrelCq3Y8XoKl4DuXI2Hx0xWpd8O7dDJWmNIvQrZ3ddkA7ojSaQ+8kztD1D7Mchid4F0xiXvLuHgWIu/+2SCNXDFkgSOGH+t0MlycAee68S62Qia5BiH6TkWtWQhqJ0fu+guL51hzr8zzntFDa8iTL6XkSebat4v3cjUNaJFyIXCaGXoSSam1Iw6dvGzDdEjskIE+Lj5diJldyJLeQyt1VFl0w2IM7FknDA64OOV3zAaw0LWmdFhPPhTSA+7rhzsqlLJ0zQhGQYfUKk8QFYJr7stjxMordbMFK1vQgUHzXcxDC9I77ffIXOJ4FhyIKlhJr929todckt7biQwxn4LR4zna2s/0NaG/D4nHfy6OOGiAat5HVwyKQ72rwiVm0azAwqW4HDAyyc+dbtRRhGysoQjVQCESq8kRmrEbJ4MeQfv67pDB5LjT4GCa3PhL5EDp2hPm5i6Q9a0Q4Vm9Z6q9MiyCy5ePJWlJXisBjZ2ldz4DmTlzLxykWpMpcHSMEvmaY/xLyEk5QyYbwHjNT6ebbxKOet1XWxjqzP3/heZVYV58Yx7oNPDHvjOB+ypG7TBGt5VJVRrjfh8yjEpGAkFnpBP87aMsNAsojQvSe7hXNpDvFs1oL2kHQK8PiGy5Lrql4X4vkZDLGwQogwEUBCmCb7y2s4BCiLq9aFXt5pvm5WAXjxTzYBdrmWzVbe8QeSZitKd/TdS9DN81fSGO4+7RAPx9dfiMLjwGjAgNiLpOfgW3AWoBbwDSbBejFIOTLF1s2nnCZrQQ4SykYHn/vr+2wuOyHOPJvHj8vibquZMvXGktK47jIRP2mefyRolXYkhsYme+PiXjeh56QRWCmpSqlHt9PWjLAHpkhN6lZlE8JOdg0jEpQTCyeyWq2WgM85gRFLFaXyxXP/ZjC8XzvmHrteD9DPKMXlLYnNZKv9PM//008/brfCAB4eto/6/cVPherfH+Y5OsJuDdVAoCy4OPhifu7Jdp/RHjmOGFE9IxZ+I6IZBUImKdeEpIWTuZHCczWgx6C7NAzUMKt7HQzoypo8aR/pKhWcrlTFFdqCLMP28iVWRmlNQnTu9x1O8x3KQ1ogw2ukdzZxHb+vHa6Wmc729k+ensbFg+A0sl4nKY8V9ZqUoqr0/IZ25pcmyGtkSog1UM0npbIFro2RdUSO5rUBsn2jVKUywwxL0vTLrquq3g3ybAOly4dj65ILk6oPJy0I9hDQp2hypIxC51i5q9ZCRdK4OuI3TgA3qGwr4TiLSnYze8txaIyqSUaAfuT/6nN1CboDNn0L+uk7/wiWl21Fmz+Xt/dvxh61Wy1VtyeV40ZAPzaX/M3iZl9n/Hf6iUqX0pvZksu7hB4q13bTIqBkXZW0j0KSzQoDQwyeFiszuKJlqzdIWsliioWLJP1zX47TNRmljtaajvwZYBdT+hK7kdn/wZkySRms+RdWonggUahh8RH8sNCjwc6L/O33MMKyrXqLVOC5rvhfsx3zPfCl5+rE3haPGc729n+BrS3YfE4MDbfAUCP1Zyvhx0FO4OUIlV5twwl/cA28qI7HsGuYkGEIp6RfkC85n7vodzm/oK8l7N6ZdHU406ynyNhJepKZt1FGDx/2lkTPWntCuI5gN7EASb+AEtKhzGe0pIWhhP5WYDjcaPKImqZDKkic6yIgS5GdZkg8nDDfTJ7n99/pv4S98C9CzhYCquFDPSpo03coyGUKCN0bIFx5ez7kYBRPMyd2dP9AOxjiHBZei+sIB7aYfU4T8b+5f171qM6wxzD1Qe2iXvdaKktDZcJNMcYJwyRGM+w9DwwV85QWeyyuSqdyLQroVKQlSSF56zB7q8xiQBgMqxJEQmPgq3UoCCEFMbLOvc7K/rDGM/bWHhgsLG7F3Q7KJoOAKMwisEHeOihyTdsJJPvsQyHG1J9qFg4VOJjfpLrm2fpConBezx8TaZqpF4wraHWKqp9dj9Cz4SoYaKrg1ygYKTurxFx4zeHJj5ZyC5Sz7HWUiK97G8G/0ZrUkR/duAa6i/PFxvB0G82meNkhw8lk2bpEB7ndg8JWT549dNn1XUaTB/oBU8zSnV7ZspH3IONqnylBFdq/rT2PDbBFNfmhdiAsgs5ohiV+k2QnpE4+CYhfbouY42IkdUAg33CAh0DN4auqDFlC+4qnTOZxAg+kOpqVdNCrp2qpL8xIr2F8w+uEvS9P9x7INPV0wDMxQY1dJdG5v3EPOB9zfc3mNIE5g25rtxr7XS1zna2s3309jYsHt9DyFlKIfNiCLqxtcSrGRbWBnc/d0+M3b1ta4BpNvOp1j6U4xNdiWTLbMaXxOlhuZlIFnVwDRcHJrk+kQfWZYn1XL9d35umOIp2LbOazHqG6lMIM1l0qj0usxw6tszhLBCetp0MgHMX7claUhg9ibiHazTF02uE4p8nGL85BFguS8V9WjD36X5c2hWfTEHzT20PnS+lyvLtdH3Mo7yPtmWPnVciaSYjb0tJnTFejqizmOYIrbtUd35jfpSUGiOo0ZrMQnS5HUUVUGlZWF3A8jhljsMwkywGgedhkJwJrcZ6qcAyrebGcXcByW4jXO6a3FBeKwsWjhFyGJVFGEOiJBKWYz715G/T+sm0Cl7/stQQkqcl6RYyJZ/TTovnbGc720dvb8PiYbWHJD/BLd+KYYxZZzppF0dt5wABc6Z58Afn7t6ibB6tiYoq9uqS2JvO7Gb6rA5shc67q9wJ5SRbzWJeZPNa+PsCgKPIX1hBcQsITPYO4UO1emg2J05kl69OQDlA42sL0Jshb2Iqz+tnOp/0iFPp2taiOCFL/pSlyNIh4dKGiZ0ssa1eoioCM5a3jm1actflE2wz65la0D66Sry0th/v2VaVEKrKK3MsxK6Ij2wdyxyUqAIzAlBfU06bpVdVJ+J4hyVKMmBxFxky6zswoBDabqa8s2JFeCRLL5s72ixbTUxs12lmh8LCIqzZeDH1hjYx6HIhTtTFdi6toWj+8DgJ+J2f7Fn8k2lNsuNw5aXR8hs2hF/6FtYQ5Vn3a00YEYD3t2d5JFJKEJj9+SjPV154bLfr/zSA/8jd/34z+04AfxzA9wL4SwD+IXf/619wkJmoFxESgphjSmYAUImOknRtSi0CBgMATS5BMrEjcrU39xEmPZFNzyzlGLhITDQB3+xP7x3rFiAosJu3kYR4NGn37yUXQC5igMdxE0uKbCRX8iH0VPcPeHIA2DlK011Yt2eNA9tILhWB1G3bBBZyQu2RPJrR7GK+vnlah8xu8mpK6v967xHtkGrdqgXzcmFVVBf46jP4VbtjTJYypS7aYsBKDlECO1mdsxaJm1PYvZeRFhIuvDik4/Cj4kcumCcwVxsIUlRvjKiGWsmfqgEaJ/fYEu8G2GutP13ozu/fW1pFmQsZGdGlBL/MSwD70D17mQyba7jlaBQ3SUW8SkSoiEA0KyHl4h48JfLeuqO04EgB+9yv9cOJor8UrtY/CuDPp3//KICfcvfvA/BT899nO9vZzqb2lSweM/seAP9tAD8G4H863/4hAD8w//5xAP8agB/58JH2ygZ5fbQUQn56ejp8e/iGorI0Q+prsgxgsphi0R3BrEyJXgQluUvuRnCE5YHdnRs9rCq6ebRKtnWNWuAsa5J0mHVNloqtqcumBMbIHRrJXA5XkqVxxtxR2B8AWFrTzlal3VvkLggAbjmhlddUU95O7JqP7O/9y2G9aZzEfTFZRgJUS5Ml13uGqyPkTXOS57ssLpXBMo/Xe5Hly36X2vZqfIC0s4HkmqLD5BNNC8OKZDjkuxZo8KnNvItnPXLBEle9BA2DuV+7ZjG5ZgTwSwqOTAtj3XB92n2op8sc67KqyJ9OZy6RMd5TW2wHnQF0y+7M51sXYww8JiznxnEvTYyMEMur6U1E4CJ1UZSAqEY7gx8fiKd/VYvnfwvgH0MmowC/2d1/FgDm62967Ydm9nUz+9Nm9qe/+Qvf/IrdONvZzvbLqX1pi8fM/n4AP+fu/7aZ/cC3+nt3/waAbwDAb/tbf6t76Yc1W5tRq7jMbGTmS+2yofFtWQRb5EbVVBAQwIGQyDBysSIrIjM0R6Tgzn9nmQ2T/EZfb7Nfm8iEBKbdXTKTsnJeCTEOH5GhnMmQAn6jZpeKJ/R+EKeaVyOQkMzl/TKCbMfvyz/PJD/W1Uo74/1OEtmmXVGM1hE0gISEyQqS3jSqOGuWJCkoHtaqoTMxzwig+gvA0kvHsuzzALcpe9F9Mppl7O7YGoMN96T7S83oYrKC9BHqi3tgZhof9gE1ZazP344xtH1v3oXxVCmUJea9CKUdbV7zNNiwNFMZ7dYorIbQuJ64TmkF5cI8uGyJvsRhhCMmnG2kgEKiz+/vWUib0mLdybFzbB0gS4X3Zyn9QGPZz7fLuz6qOOT2VVytvxvAP2Bm/y0ATwB+rZn9HwH8VTP7Lnf/WTP7LgA/94VHMp9C4cmM40UUU/SIrdYWEZdSUpLlNO/dJK8h9ypFv/IKp+S5xAAOTRl2xWXTuQeYPRJnY9Z+k4C6u09TOEXj8uJXE+D3oPvcrOgBHz6CtxFPV+iizGOUpD1nJS+6NOXpIvWkxhevPHZNsiDsb3eLRU+6RYjMg/SwPrqXjh6lY4YrWscSM5cGdFbQnIvomkBccnb2FIt5DSzPs7r0cwRsYsPKqCSqdhkurGaGOkXju4p9RzpjflgedZLyvKlpKmWO7qO7O3xoQ6iJC1WnLznXE1wvwMTWBTJfWke9zD6w5E0zRejwyniPkaKMTK1IKRM9FfTrD0Uh96E2nUfjwSiiFW2s4rpZDf3wtAB9AY3ny7ta7v773f173P17AfxuAP83d/+HAfwkgB+eX/thAH/iy57jbGc726/M9u3g8fxBAD9hZr8XwF8G8Lt+MT8qcBRsCreqbInnHKu91fooP0HgcK7wbrIiwvwrsSJToa53cNs2mcNDWNqQ21RCcGkUrfBMYBzDsd7nez3W8mCEcucMEPeQD6V46zxGDQkQs562BwLgSIAf3bjY+czybeU47d/bRuxWZLP6MHRaY3UXUQAg5UOzK7aHHXMfs2MIt6bN15LrIound7m8pAMso+I+zal3ywTrF0dXMuPceUvkpbEihvuQQh/D0o6K26wC2MoiqoLqvHuMo3b3tP8eLOlHQHaE7IfKJ8E1d6pVLCxHM+fx6l0VTxYqPhpwnS7U07zm69NAm6xiCt/Vq7HwhMDsYYbOag6WrbIJOI+R7Ni99SRUJ6txxDNWxQVL1t0IK0YCZu7iGtEELmYRYs8uWbt8MJz+S7LwuPu/hj16BXf/TwH84Ld4gJlOUKGHK3Fp6oNOiW1DOjrbCNFxUekR2cZ02Tzh33wIR3dQ9M2TmTi4oKRID7/YN0efNb7JVfGecJyk3Db6QwSgmo5dxMtwPcBcTJdqKkfTWsXCqj2sJlljItFV7Bo/KKXDsLzIsIaHHo+COw7R/tf7hvtDvaVdw4e8jdmvlLbSuABVPR+grb2LLs5rHYYyr581yg0qYop1uqbXZuiX/Td3LZh3pQXIxatNx+bC6XBxcQYiU7tnhfgPtFa4mEZCpBY/N7l0F9a2cg9MrW9o/qA2iIE2r6vN/n9yrajzoi+TA3NppqgWsZ5lMdhcjPSkFmhj2FMrApKYnYhs+qTzJMypcaONuutZY4lt5RzypP3kGVeK+U43fSTHH+7f1qjW2c52trN9y+1NpEwY9p3QRgBx2UobM5pF2v8YQ7v6DubN1TdFtR7F1w9/EytManyi1g+XXjPTKbZ1gOjxeh/o062iSh5QZJU9P7MsS1VqhYTrEW7JImOoo8wd8d2VSGNFIYDdI5RgCwHgAjeVoNRxFK1T9dS4dlmLXrDeWaxNvcImvkzHrZN9TJdr/07+0eZRv57ujpW8Me/vbRioTH4sRcXtyPQuS1GhRqZgtLrg6V0kOO7Hi513CyHiSGF43vSZEjiRdvVXuEjSRkKyWEtYrLKsnOMa84oJsmMMDFZHtYj6yC20gesSSbLA7pLK7aIhUgyX6aZdmUJyHaiVruTse0NSsUxQAnWCWjC3WeanuLJjDpEnf4h09S34YbxoQwLhOS77QOl48iDkeu/PzAeCWqfFc7azne3jtzdh8QD76jv6kPRBLsAm4DDBNoU7jge3ote4HOkmTSkCQ4kwORPmWsP9/XudH9j1dbdZfnZilOhbxUpc515xm0Xp7p9NLMiwI8KArKGCioWgMg2tMgQC32gFJM5KI6A3gIU7Z7kpI/GTWXkBa8cTgWHiUDVoBZJmQA+geL4zRtc2O+7EdVw6xH0zrLSUZgJi9+CErKoD3mX9RJjYUGZ/yGu61qJEqe5dmIUA3RVYJiD/xHMYJEVRJtbz7CNYvHPstlvgbAw7ozTUEaDpmGA4SzeWUqKsj4DSEmJk8/qyBvLttvO13l2fYq45x8PR52NkSVSQ/JxLbcJxmARbquPpk5mX9m5+72uONv+uV9Z2dyWM1hrWZ0lUjNBNZlWL4KSRsjE6JExG02fbOkg15hgtrQVnLBXuK3ruPHkipKGEFeTKrxx7HqB9vsnzZhaeXUekBleFD95Ii5HkN9PAJ4JWHel4VHGjyetQdIWm+rquqvLICXzvJhfjPvkl683w/rN98t0+HQKIfZuLTXfcnvfPGfW51Asu07RmRjDgUUokSaQyb/42weN368DT5HS0lBl+u08Nl6VgUZVSLsprLMwWJjRNfgHhHryL+axh7Y73s999M3QmaDrHYYDu7Jbcxj5dYLodpQLMF7yNfdW+m+NCIHWpyjYnKG5tAW92S9yQUPuf9/FquE3SIT0tc6Sk13mMZigURu8j+EmcI7W+qFVvcIXkjlVbuWC8TLJkKsoeWbvP61vQWK2WxL8y9PeV6RHN0ZZ5r7+2j93T1woqiYNzItelwho3Dh4vrtUtOETB8QJMGlOhyyTxfNbpKk1C+YzQdR+RVP1YHmpe+zHJlMvPMXq1E1Ltxfu5na7W2c52to/e3obF4wD6zoMQGEiAd+vwGqxT/UTM5hI+GK0IR1KSm/ooFqs1PYm1m0DVbVoxz6vj+f38zZ3haeDT5/3c7z/rAp3DbB3YVDhz3/HW1XCb7tmFof8eDOwob+NgsbnLRCZHd/h178+l77WvAeA+t/p+H/B5LPJGUBK3iZaBp8J6dMM6sM3qnKzmua3A7bZ/fr8NMN+Sv+lbAXevrYelxc/vBJdH310rALXMqpkN0n3xAdg8J90mbxGElRxHdZRpiUptxjZcmGbwNF2IBVjfz/tMc3fYXjMdAPpeaXY/NjlcSUKD2+5wJfdKt6cPfS49Gliad+TuFDTbXWAzh4MFIue9X0yhc6aEtMXx7omfz7B1dbTpLpbLnPulS/kSyfUJBY+ga8gOrUVjR4b3cI+UErpFLZQTRfLvqbikeDweCdnJ4hFTPMlruCwt33lFn2/wnBbP2c52to/f3obFAwC+y03keuTAvrM+Cu17rmWOwDlCVd/SCr+/bklqYhvcvR3rxGnuE1B+vg9MuAbPnxF87bjzvVuq707Rq+4oE1kkaNrvHSvPTQLgaEnvePa/d/2GYnLVHZX5L73gNv9eJwb0dKlYJE8xL7mZcsOY6NctdiGmL9034DZNGlpk22q436fF9wzcbiwtQwvM4IPJmGKbJWE1EjyhBNoyw/1jKQJDe3G0yTqWHuSWcCqGcLspHK+d0UKZj3ljKwYwsRJjuRwPJcZ+j8RjsrD75igUKZsYnvcOYrM5xc8SGZT9U3g/hd2L8rI2XRfB9aWFiuKy7J+9e6p49zXiPQSFB+q8hnbhWA/1R9rgJYIpOTcucqOKtJvZ3D3KCdV4TxImJBxuoUEewHuQE80jVM/3CgKIrqI7jB3g/kA4/W0sPIb95nksHgS+aq1yF1QHe8SA99HTJNgP133IzONvtz4CSJ6DuvWCdbpYn73fXZdf+NS14Hz6C/vD89kv9L38DoBW32G97d/tPRYwIp5jEHQ0tBkVuVOrEuH6NT60FoCsTReobRsuPaj363xQrpTEtIbx2bz+OZ/sYgKSnQmrPnBnLW8tPIb7XHCeZ7/We1HU7n43vP90Ti4EeD46Uwk4ZaIMUKMr4sCmlYLj1VTnasOGy7zGRSGqgUaekjK6XUxbujsNpnvKayrVsbwjWh1KAExl6UswrjMPaZsLDoXn1/vAwqLhFIovrlWoJ7c9VAyYtoFgY9eqOvJMk1mWgsvkZ12eJjP7yXCZi0t7Yub7XZVwmapRikkClotyRdXKaw6k9Fa9KCKc0hqKFB/nZjkgHSi5mb0o6TavXUX+Z/CTLHGhgl/F59Olbvl57XS1zna2s3309jYsHgA7PFZktUgYuxRxFLKJGWHklIMjofhg7TL8e+shpr0SNO1V5IvP3u++1H/6n36K2/t5vL4rH/qo2Cb4+txvSjikvvDWB3yKoJPFWWsNM39Q2zbAOXJfqjkm/qnKjneEpVJ9oE+frX6y366tVvlY632GR3uVid3peppjm70gG/l5dazTLHmeZtB6c9wnN2m9Afd5rW3utsWLNtQs4fL+s08BAO/e7QSUtgQDmhbSGAOMRhsGVoaWWcIlbX0csVJ3xi+QxN73zFgAwBP5Ua2q/A2TO4engoXuSTwv8u5438gKrsVRBIBPTlWxmC/TNS09AeALQXuX9VZKzMtZjxC1ucBlso/bAvh0mytL9lwWVA4GqSDZlSLo+xCmFj1DCH0KvKQYCNnHBN7dS6gtiuFuwUdz8q1MnkKq2KS2W13z1KqxftR5fq2dFs/Zzna2j97eiMXj6OiohqMAEQAUF94TK3mwImuyfrJusDY6bpkjVvb7DH3fbx2/8H7ftRlONnunTHZiARjLjhthBycJGt/vOYflmDk9EBUO2PaN9kiCXPsmH5mAJIbjszt3soIL5TmmFeAGXMnOneN1/2wo5MpY9SgN6+zDbVo593vHhKhwn8fYVsNthqVvz1tkrU/6tOt/R4uOVTZUlrkn339mbw833CbREH3gMo9J3GC1LqyBLIWlQElPC8dm8QAeiLMWYDOSGIOtS8Lftiay43xd7z1ZOvPY1jE2kg4n7oNgdhfCPy2sDSthJZhy0SKz/DLN2LZ0EQjrJBC2i6mPJrwKKKp/LltZSo3MBcwqlo4wN0QeRY8qxfrMX1hG7q5yzHw1LAoiCE+FR6koAJXEVZE9VThcbHugwO2FcXRob2ThmRwI80DQZf4NLTzkX+ys1/k9AIMaEmTcdhdLeWXC4+q4Mzo03ZNP32/4a3/9ef52f4jcm6I5rP3UtxVjI5AMrNOtojxktRayDJw7Y2hS0a0ayQwmSFnNxMEIOYoNdfJzmkdU78aF8LnjeUaelku4nOS31AlC333DOk3r57mQPa+hN8R1c1sL0CnYHaVzxhaLbfR7P97T05POI5r9QRGP4P+QdEW1im2e/K5NIi+8c+xakTRokYJgpMksnOFtaGEySqTWcD8uS7hLlHOo5pi4PVa6NO7A5NBst3hqN+opUbdmRERpk28DNJVScukoxQJkaRGa99fvaNdPZr/nOJiH3AUf7goAdCE595vA51DehBbj0YcCKnLTakh8KCt1vFwWrC3oa394s4oXVnahnXlsfh73vCl9Y+ypTC/OEO10tc52trN99PZGLB6DWYVZDZBsrqyOWJwjIQ6gPdlKlZjXbQKaqztK24Fh5lDdVuDTadw8z9dPP624T+vn+T13967k0Ntt7hJe4ARN4VAJc1U7vUstuk8gfNscdSKMpe59sTGw3ekS0I1x8XxovXQsAmlXrCHENC2e7mGqr9xtW4VN14Dqffd7SDbAL/O9rmsmD2nbegiR93AnmofZzR2KSbfNI6eNblg3U2idfGT3lPtVa4TWE23i7szFm5/50HhuKgnzjMt1P87XmFlpjm26HiwGaDVCxtsI0PlKOY4Syb8UMGsouL1njXJakAapN04f0LYuq7tSh7gEfQEFKp2jap/d8MSa6Z3JnwXb+/3vp3fzfEhJt+LaFA0urXAvoXiYm7yBZCFjBL9KJWjIH0MJlU6jd3APEFtM7qKqsLAhXlwXScdDtO9BguZDAfXT4jnb2c720dubsHj2vWUnEL4sM/xSsb6W0EDey29wp2e98Ra5JJT0XDeBxfE6YJjYDnfiNSwe6iibeSJlVUkUsBUfIbkRJQCCrMVcFs9EwwSO0xcn4Wtnau1/L5En5TLAEnZBxm0qlXdP4XsKblHGtXsR8XGsPG+RFnLO8OeW1awq/B26Wh1LozQEq8ANkALMsLOPcSijUwUMk04ABBq6t1pr0qnef/u1T74mjIS7dm0FT8IcaJF2PM1iebf+XoC08LZioZcsEBfCvUwSt0NkQGpY7+Pmh/6PMURYLCiStHWSS+8Dz5+RODjHcFSVXpa1dIHC6IqrlAKjshgBfFhKzBqHmoT7b6PkMIn87ggKP+fQ5jqRZFs8KA08YKnxbIz0LBJTM485byVbPF1j9Vp7EwsPEIsPGauifZshjTSAXT6BUSbvnkSmuQB19G13sbJW8P22m7fvJzP5+T3w6ZwU9+dpiq4F1vlQEMBewEEcA6qpLfAOGyJaFaA4VdpY78vMgqvCAFRJ3BjS8aspiXJXuHvgcvQKL0zXYEQpFp6bzG4TZ4eL6Ogh2B1azw0+F20bAS5HNaCua2CQsDRDpTsx+SfNIC0f8kBsBM1+6wOFQuYTPC/p3mYmdGnzfBPAtua4vFvmb6MvPsvEaNKbS8PnMmrisnARgdxYpQVUqDrn+j7ugRi9SUZDqn1cTNHg9wDXB6NVDNFtwI213Geyr5dwb1z1tUIyxNQ/R8V002ZXR34W3A414/me2MwqKxSLrUos+ZA7xfqoluFg8po80pd4/P3nCdRXTa9IWXp8Zh/b6Wqd7Wxn++jtzVg8wG6ePa7gr9Z8trBuco1rKq71W8ezQsFcrQt8Wir3+/N8BbbnufNstE5MZrJ2/sTHKQCGU++46j25JRJpKtKg1U7gRaFl6fnqf4jCfl60C3mC8WQmeUoOnW1D7MbdyWNxDCZ3zu/fb509VpjfN6hQ26VUvV9SBR1VPmD42oE+tZvrdRJdkMrkkG3uJcbEXbswzftqBVT2YM5WbeGSXab+cGlDKoOXJ4ptdawqXkdradEwDTeJi+lSRlig5O6Yu75Hz8ZLkSqjrObEBYsEUoQwnI+DGuM+dIYm7W66e47G/EOynq9Vbi61kkcdqBe6buFTZQa/7uHBKiMFIZJNoyIjIwE95mCmPYNfo9WMCN+bhdmtIpUesEZ6VD9s75wWz9nOdra/Ae1tWDy2r6oHoS/uCDYOmq8A0GGh7I9NRK9NBfiqMA++d78ZQBkEVox4vmOdIJ9p1zJg23dysmsXC7wDMMkAqBqFb0InS1rqVZSQOz48qlnM/nltSUs4Mr9JWGzNtIOrKN2wQA75ixEWj8DFdYh1yl2wlhL+Ocd161Fb3VP+j4h9sbNqGLzLetsmFXrzAQdlL2a/3BOwW3CdoWXe0+ouLO2JFk911DmQlMJoCwHLCMW3kiQ1nPeiC3C34WlXZ/8NlWzhmZFuI/rdZ17VdhuydBnI2LauK5M6Qu9h2Y6BMS9MGOXoEmu7qwqKizhYptxKvZSgWBDLS6HxTSaupZpdfgC5+TmfHX0vFb0MImJ/AbLnIM6gyYl47l4rUT2QpEJY8aN3uH3YpvlKC4+Z/U0A/vcA/ovY7bR/BMBfAPDHAXwvgL8E4B9y97/+Rcfy4gcRa+qj7J/xxvKpHZEekRL36KaNHoXzCCjfnoH1fuRlrGtUrBQVY4SGCyMrDY5KdUMzySTQCeojFPNU9dSLdHGEk6NoAgjQ8x4LhrgvKbLRa6jCxVOP8Nhc59gkP6EKgKmi6rwmS3Du/KxYyJBgSxG6pHAn7Ra6UBUCuKVh44bH+WaIRaZZUVVNJv4WDNR5HrlzF6BNThNVONqloi58AHgFrpJHfa423bfwGDLfhYvpcDGDNV/WgfvMDKZWk8PEbeIaP2wIcGZzhGyLJwigKLFyi1rtXHiqoU49E4Lx9eaCChhgKaVF2CsBt5piY0TqAj+1gB5caRK51ExEaiOoR3c1jtNSEU3y5GCW+FkpKJAKKAIT8nADcByr3L6qq/VPAfi/uPt/HsDfAeDPA/hRAD/l7t8H4Kfmv892trOdTe1LWzxm9msB/NcA/HcBwN3vAO5m9kMAfmB+7cexlzb+kV/MMdfetRKGmejaMcWmHF1g6L45c8WdVs7mEs8ac7fZesc6wb3OhMBRZOY31WoP14ApQaUPgY8VBXcXdXm+FyHvlSU+xpAaHV2azUM8K/IAu3C/yKMZMm+22271AEd+BwdKbpwDZQS3AgCqm3Zw8XhG0g0WMFuwTvLStS1y+QRybl1cFu7KPhJzSBcT+5inPCKVa7a9VDUQJWqWpYIaXMslLJ5pyChny7FqTCIp1XG/HSVTPDGql+WiPCsaBtt6l9Ywk0jvNxdzfeM1jIsY1z25+ExlYgn5WtsB6B+0cnWzGt6Ta8VxWqvMwDJ5SG0z1OleFwUEGrxzTClR4nKB95JNHB9ef1g38VliERdL30+gP/bnp2TQeI5rUERylYk4nigLpFeUgoEPM5e/iqv12wD8xwD+D2b2dwD4twH8owB+s7v/7LygnzWz3/Taj83s6wC+DgB/83d+JzCxHFVqnFjAOtYXKnLZ16zYIzpA3Ozee1KNo1kdUQVWBcWweFhFXCzCXC6qS7Ql/9dxoZzodBd66o8U2mByu5Qkmi3PpCP0gtDmUZZl6+EaMDpk1SKjMg4ocICL5L1HDXm+rlsoNtKzZakWYF+sJMXKa/GB21SzJ57RWt39LcQCtWKNSpQlFAElfF6bdIsuE7v52ifvVOplYf2p6ippxIztPRXjZazkPvNfmKqBEg/jN3/hjmqURN3P9/w+ZGw3psashnXbf8+E9rU77ve5aUmjJmV0M3K4lYMmFPllGuNquJGcqEXEFelkv5frhSquSreoa4HVWACA3f3lfEItSgmh69N78Mc8RaYi5ETOTo00jBTUCo/s5bKxP3eP/QkZ4vjphxcd4Ku5Wg3AfwnA/87d/04An+JbcKvc/Rvu/v3u/v2/9jt+zVfoxtnOdrZfbu2rWDw/A+Bn3P3fmP/+F7EvPH/VzL5rWjvfBeDnvuhAZkArWS0OuG/7TlZbTabCNH23LvMXbhL6HdMOrliwTnP7mbovw/HZBJpZiqbhCdtkOLPg22Iu5qjNrefJiiyevQ713NWoZzMy8r/vsBs2AX+MJJQkqyDuAxxO8fUtdndGxBZz3Kl3XMM6G6Tc08orQJnuECMqS2naEcnfqB5gb/CVGrjXrWtHfZBVAICVVtHU4OnFsd3DUgJ2Oj/lJ2wJl5NUqloKGqM5T0wZeK+yLqy+2SpghaVgeE2hw8yo2xhAtSkv4XSzI+Vl84FvzkqxXQm/C/o6rZ9nRuUM60wfGRsDEFURTyXs3gN8JpB6W+9yOVtr6IPcrrmn3zZ8guk30qdeUn/Xqn4v87eci2Pd4AtBdkIPXTyyUA5M7GILJ0d2R4Gs4dCVCp4a69mbx7nDlR9Sk2y1itPDz7sNzU9fOD8r+n39oLP1pS0ed///AvgPzew/N9/6QQB/DsBPAvjh+d4PA/gTX/YcZzvb2X5ltq/K4/kfAvjnzOwC4D8A8N/Dvpj9hJn9XgB/GcDv+lYOqMRKlcq1lDtEvoGLujuGKdzJDeC2bqoK0e+UVYhdZqO630GumdmPXdIWKrS3XLAQ9xhdwJtA0xohziCRxLGF/ySTLpdHyaFJYA/BRhnhgcsMda8sR+wIBjTHrZvwgCHyzqaQOQHnZkX9HxkVlW5wCZLrSJYPiwquXZ+98PdL8ADKoOxFaCAXdDxNUax31xD1IricrRzmdOm+lB79UTTdcGfon4EDj+KKtwFsE7tRSaPVcGfBxlmkcduqdK03BSUcNwYwVBZp6L4ILkyBAE9UDLGnx8A2FRiFQRbDNrVVKM44tiWUHzlNxs6xmn/un9WupONuJWFqIoFEGZXZLIoJHTSc+V6E3x2FZmcCfgKviuNI+M6Q2OGBUe6qd/jc9pUWHnf/dwF8/ysf/eC3chwDsNSGDa7J1eZs3LZNLsbT065r82ky8c0sBk7gsmNw0kxkz7cSym5codwxHghhPnJUaz4cteDCh35sR5YggFICqFPEBP1FDWvzKtAbFg+WwEl5lBGZ2OuMirQzjzOw1Adqvg+NA8fw9nxTORoSBHMiuIIs6xrSrYgKoZmaz0YNHwAiKlZlKjtUE32OR71UiZ0X61o1KDt6uRRMKR2V77k0wB/5PiXdZ7pcHbjNtI1NC4/J3bndDc/3cJP2/lfcZ5LwbbpaYwuAn1Gk3rsKBUjhoI9IR5hj0EqQ+8YWnBdV6jFPwC/Ub7pqVLkcvQVPja7+CB0obrqj9qjsWWJRH4eFcH7cCP4HcZWfWQ1Cqsi6fcBJnJobh5VUTd49drBYymIDKzEfhkW067V2pkyc7Wxn++jtTaRMOCbNGp4KhcVuS5byZ599tr/e7lOqYt/J17FvZy5VuKZQt4DgXpX0yGS89d5lUkq6wl3asQTsxnaX6CB6aAizr2N0WTCi+tcI81NA/BASlr6PCUjOoU6ycw1x/dwRSykpvQKzj0NC4FQ+xNgU3meJluGuEG5LFPethwulEjzUMU47F7V3SikoEnRn9y0pMcxx6AVtgo4VEd6nm2q+yQWp0vwZob2tkH/QAGTu957qwE+LZxTxtT67h7IkLZ++Af22H4dWEEaadyz62C1ZfpNZXcKyUsX3YdJRmh/M65rXUoMbE0ZlIRNB3LMxgh1OHlLvHW1EKgsQ1AxgWudSKPTD9w4tuT0c12pFVietobsNWd8yvi2VDHR/ARiPPU17/5tlgLyh4NRcPtvZzvbG2puweIDd59xzZmaC5qz1XGuVNUKi2tKuSv7ctqEtOaQB0sov/KfLIrpPXOD9+xsudbcOxty9q8XuQB9/bF35Ys3C52U4GtYVo24MaTfXuW+d1lSEsruCsDUUCLWbmULj8MCzgsHt2B4YuwMBUpMdvCyLShevrFJY43wEZkcxYQlWYlfjPj7SeQiK+mYpsZR4VYuQ/vztuplYeQWGK5NVVaHDVLxvaQzvB8HusX45EGWMtm2kWufEdQY+mwTB273gvlEKJVjKpFqw/rO7x/UngTlafI2sYSDouQLww5IxMzG7I7wdfWfBvtaq2MC6f24iJ4aaZRNmSAZ2X4dyCGu1sCDFZg5FS2TpDuJMon0Eix4KEvSgJOcSO3rLdF/EdvYoL0XLdVvXXQDu2wUu/9K1HVQuS4mFgHirGWojQEqOxIL1PvkZW3BnWHqlb0HZj+TGAYK8rKZow7UAUNjcWqgNMiFyYNGiNaxExUSlP5S0+E0XA0Pg62VOsvvo0kiJSx8vQNxs0haEed2ULDvkvolXgejDbXKTLpenqGw53a8NHhEJ1c4OQNJRpIUjV6u4ElAVwXBTza6o+QSxmasyraMu036a4HrsvfYDy3e/pnFYaPYxDhDTGXkarkgQXcnnO1QH/nY3bDNaxRSHdXPcJ7GI0b+KGpn69BW3WAC2ySlzN0WcKl0gq8ihLEUouZDVyOxX3anhocRY0/1j5JSAse0byn44HjfBELWG36lXT+7W3IAqIpGVm1dy8MeEB5ZLiygiAxVwqURu4+VKYj5iTBhkGAcVqVfb6Wqd7Wxn++jtTVg8Znu5lrJcZKHc16hFPlKYHAB8HVp9HVUhSers2PDQu6H7tR9t/5zlZJaaBLG5+3vgv6zW6UW13PfvcqdnaLUe9Woxwer5lgqdeYeXaUXJrfIkEL+3Q4i9BJzncqtcJjHNc/cegDvz3NZN3IoIF3dZU6aQvIMFbDwVyOYONmzIBWnTIjUrYpTTzdnGwMpkVF7LpQYj+dJCV5iaw9gg1vQk4FwuVRQKMW5Hl5xJVgSkljTzr9a7475OsffnoQqxz3eGjA1jWrfk7GyJK0UNaxtFJWepN1RR0abVTSmPUoqsOO+OjW7LvKY2inR9qO+EbdXYS52xDyU+i6fUXTIcKqtTF/HVsLlcIguNiySHEUEC0aFo8VgEACieX6qpr3LJkuGSuVucG9s45voBu3WapJhfbafFc7azne2jtzdh8Ti4eQb+QACx9yhbU2zutohdZreGyBwlwOaJeDbxodpwf8gI9tL1OePlO34yrR9ZTeFroxqupNp6YCXcAaS8N0YCtucuUUqE93OI2o5AcakR1q2tib3KUHY1k2gasY1t27DMftFPv99veH+nFTHHrtaElURoXDINJUL5vAeogckQb9vLQCuhZ79mN4GYS2E4OQ1KHQEWE1NJYzek/lbDAuU9gIdwl7CXIeYvpU5yON37BWMlgfB5/rYIIFURvC1Ac+UvwURZINZXa8XCi2H/ty4iniEXt6PFGoqBUiFAqC7mCiMMVoSkiKXSM9lGCGtZAYlkmpTl+Fjb8AQAT2zQ8CKny0qbKouBp3oPK6cUSP4lYzi8fxIl65MI/AF0+U0sPAageNlNtlTEHtgfxjJdCJbc3EbUExprcEMEv7sLnV4Wuh0uPZQbJTSbo3CBmg9UGcHtofmNPrRSjGLo8/eCBRPw2cRDalhL0MqB3QTmo8UFttYq0Fjg8tb10LfiIegNHsfAnEfV3GwNK7/xvLsGNhxPcxKGAHpMeunDeADYZYSbFBGXnti788FcKt7fyZWaoH3JDw0X2IKF4HiPBEdjFLG67nWW2KRC4/N6m99vWJnyMs+3eUOnBMgk5fTngTHrn683hzsLpdOFMsnc2kbgOaRXnqZwfTcLt6td53m110iVxNxESa7V0v0PV6VSZbDOBcxd5Hfegkvda73v48kNrT3o52AXoE9cKMmezLtWzIKdrEhkWmS1uVW0JCOz9ysiZmImldhMvECVYHmfG4pcfCatFrtgqx+WPz1drbOd7Wwfvb0JiwfYd4vek3C0Ek5K7NYpCS0SBbtWWrpI7lV8mlU7cOSBRfg2GKgj6LdYppVg0w2zbSjBs/sQN0a7Xir7EVIEKWDp8R4FzqyHm9OScDiw71B0jeAe1p3OUcRSTpeXdrg4n3bMB6Gy2fN5nVEYzgNbT5U2SxSgSwJlUdAwOqGQqip4huIhEIBu3vPWmbT79AkBXofheK8cwSSmOwBfIuDAz0ZQMdxN1kF27bwzCXj/zbXVYGHT3XPNtlRqaGjMiBNX5/vYi/uxkKF+K4l+JRo3w6FoH7ADyi84OY4oa0NLpA80FkNs4bof2fF0w0kHCVeLLd+T4IJlQDpy1nKysIkOQtA/gi08x21d9+fqA67WafGc7Wxn++jtbVg8NslSIyQ/s9iWsl9T9q5K9ubwd9rVQnZif2+vxz13FNbgHp7kPUmMCx+aO+NSaoBO3XEft/n53I0tWwdxUdz1M3bRVOs7kQX5+fzlUoIY5h7kMdPemWgC3FTMZG2tCWhUqRTBX5mwePzssdE2CWGSnTgI7N3Lusr7D1xF+fLOKIsNTVUmyB5ud08h9sgdI1BJq3HbhiwdlUnuho3jQInTBJpibLpHlOnAiGvhhZcS5MX7GgC2xLxo7dlA0JR5713x7/3zCPXvHe9RimmL/DuytMPyiLEU5oWwNkTMXKqs3ZEIfWTWd7jC6Zo3WSqYZbXHUBg9sLwNtEX6xNYS5AmzCNYoE6u48tKU7wfArX4wW+ttLDyzDZieFE5C767Jo9pXfZPsxY6pzUFN1Uc5mSvB0G647BghLvNe3vsmnoRchD4iZkAtm1IkRdBqSfyeiExUuS1xM6P213zIKituQoxjd8c6QzOSWqgtEkPdtQiNtBrFYjbPYRDfibIRDqgEDQ9iCLfwUBNbGrrJLUu1t9nkciFMbHmU6UEIJrCpzE/vRYBtbDDhkj5ddzXBdXvG7fmzw7UMt6RQGW4Ay7/QFTar8EGRG4fNzYO1tGqJEjyh4DdgBPstgbSq7RZDRNkL1fGqWaM6RXaYsGsFHHsJz/vOYgeA6+y/1wpKMq/OiCxgjXNoRgtr1X3pGEmviO6Sy4XUnEZN9+alixWSMFFjXd85LB4lvT83CUv13Cbo3y4VA6csxtnOdrY31t6IxVNQ2oKyBo9HTFuPnBpIHa7AmLhXHQvTWObrUgxjulWkNGy9Y5nhygt5Hi3oFuQ3lGJYZE7SDYMQy2I15BvIJrUhdnIOI6sADAHHEpZMMIGr4EfxZuCoRK7XJBGhxLwuWQmas1VnjuYerGi5ngjLZLA2OAJAhZksnsDyk1Y0d+/dv5xf4y7fpXVXPPqsPLfhqlJBGYvaBp5n+Puv/7VvzvccNsfY1wgji9NCxvQYYZWKMzU0EtVifBaVS4rfJ4Kw/AkBu9XUV92zEmNDSsXOd6HbZaI3hJsWuzsNrIpIQJbRlWgamLmEF69hSbNKyO0ewZEW4PkQ16bE/Zsts49LsrTHA4CP2nbTOY1NtSL2+87NKRqL/c2wvo8A9uNsPLY3svDsC86Ay2Tc9IAW+ctjI7HNUUhQK1UPcZ26PMWazGOWK6l9YFZPwaLARdwR3oQ+Qv+GVH/rlr7XhbS4HtyhCdSE9QwYSWmqKOrSQKGnaD6kFMdIzu05Ta4kchr1sNKNT5MiSGYKg+l7IrnZFsSxRIAkfb5YeRmh81xOKC1KhB9SZc9G95OzfbgWKB+O250KAzNrfHEsrOxKkfbN4djdJaZobAaAGfsrx7OoFgxdAuubJrWVGioAXGy2fihllMdwv5ZI/tTGk0u5zO8pYbIUzcU+oHueo16qGjuP04rplKzt5R2CD1Q5diuqqcaNcYyOQlH1WlK5Y96ropVG7rrlSC5d0yFh/sDqSix+XHR3p1rjQ4XJeHai5I10eQQFnFGts53tbG+ovQmLZ/hewqWjK8ExTOcw5aJuc8hGVMTOTabxNgYurMRJev0IkPf6xNW8opJJK/2bVJc98VgE4mZ+R0ralBs0weVqZWe1IpmgHqp/PEi4Vwgtm3ETaNpK0e4zqIVjriiHC2iM3YXsWa+WLBnu0JY2oggHMgKyuyZHdmpFgI5yd8xCiXEezWqRFjQjiLuLykheVXIkK70uo+0+L4CVciUYstBYmdVrU7iHlq/1GPciDZtV0iNuJSU9QuPlM/WGlkpFqC6yWPvoUOTKdNGRykFW7nDDs1zgsG6UOpP1m+brYgU+7/XMXcXt7ljA+TKv/VbQppkuDZ5L1fVXM9jCQEIkhvJe8nlpyfVaXyk4wJafNQZTdh4W/x7hikmpsKYiDPOa3VFqeSFtkttp8ZztbGf76O1NWDwAdlkHcyjxcu4y69gQ7vTcgWqEur1kRba5z6ybuAd1WiDLpeI+w6xtYYgduM2kJ5aGKU8GrseUMfB1KF8FMG37rYQVoOIR2RJ7WPDLIUmUO1VNyYrhcwe+UsRYZr92WQyGmWeoengIaR2SCBm+Dt/cpI0Q4fmWwfwH0ShYUy6XxgnBdtaOl8qtsDb6SLuoe1alI64z8KnvCZyUiq5lyHLQsStA0Wxifr2HZeR9B4gWa8K1eg/OUq2BMwXwPbtSW1g8Ao+3RDtgUcGCx1JEITKyc8A0tsqxCqa0EKLS8cnMIbzPyf3pOvBuTt/iZMwD9jxzyJ7mnOypWE11PQe0bHeyzfyYyZs1cMs+TazWmvIYxRXyEuPEROEE4AP5+jmGPfC1SLpDbYkv9Up7EwuPj4Ht+Ya2XOVqdSUgDmmDCASzruzsgi24M/OBaUvRzb7OkFcvjit1XOZD+HQp6JfpkjFhzovU4Vh/izwbAGioUNFxgtXpgSPAduse7pu6ncmCSVydC90086/XEBXfLLKyOUlLKdK9iYiXxeIyzfN9Qh2BzX39eFjIRtdiVUpBmw94JYjpvj8FABqz+TOnQ+S0lem8ISHqG3yb97QW3FmQisRArwJYyyxFdL0s4tM0RvdqLKI8hI8Fd0U650O0biCNB6MIQOaDebksqrUmBQNcktsx+/DUsM45tIqIF6RCSdOi4D6e50UDY47PmjYlgv6Nsq+j4D1VEOfD2raKOoHk8Z7Rj6jyqXJGvmGdmk5Xa1KLNPGBIJ4Z5+m2DaWEVBZoN0OfY+wqLRsyptvURrrfb6iTAFeKhb7TnMf3zcVnM/F5xhcFtb6aq2Vm/xMz+7Nm9mfM7I+a2ZOZfaeZ/Ukz+/fn66//Kuc429nO9iuvfWmLx8y+G8D/CMDvcPf3ZvYTAH43gN8B4Kfc/Q+a2Y9ir6f+I19wLCzLguEeiZIEwVIqgmjoXiJ0bIbLZYJxdzI+h0x0AmtPBoGYShwcwHYhiDuB6WfHjWU6Zsj33deWsFS2FF5PwtfySkq4OY85cp7SGrTJpOuixTLSubuVSWWHEmjd8CJSOUyegUDvWusL1yDvagJPvYifUauhTpBeX0OPv5UsukWJGoXfuwrxWQIu6bptPkLsnpu6v7TK0MMtaUu4FQzbbykz9vaox7M17fi+bXIhCaqu95vGRwm7JVELJGcxdvFz7Fwx9o/WJLlJbo6FovFWBehG8mrImgwqUZaKjfOX6LK57t/1yhSEgvvkMS2qtmpRTx7hunNO1lKUUCoXyU3pGvWS5kZk086Dh0umOVRKaAYlVr8l2EPXx8Nht6K/LbXTZ2sA3tnuU3wC4K8A+CEAPz4//3EA/+BXPMfZzna2X2HtS1s87v4fmdn/Gnt99PcA/hV3/1fM7De7+8/O7/ysmf2mLzrWXknigjG6FPUUwkMQogh4tbqknXMoR6lcG/uGmgAxABi24Ym7kSyMsErePxPPGSgsB8BdfivawVptoApX1rZl/oxCy/4SXN41a4/kPLeoiS4LqTbhPsOHwvomhz4SUGXlHEhwMa4suRsqiAHYFuY5lZCuqGZK5GQt81IMVpiYqNKGoeTIkDV2azOPwx5WHzoeyxI5QepuEh7j93qP/KdKUl0rqXIFv1+0k7Ne+hgmy3a/TDKJOXcMtUTO3P6bRNjM5xCOSqpBwRAuAr1HisCACYc7ZC4/lIzpVhVI6ASwLxW3jazD/eU6qgCtwjlXgea0eFwhbBMz25QwqgKQNewLQWYlghrDo8+yqknKtXLI13oRgrekw0xHwFzP6ue1r+Jq/Xrs1s1vBfD/A/AvmNk//C38/usAvg4Af/Nv+A17Rnld4Bu5Kvv3SqsonVwc3iwXGGpmEc2a84lVSXO7wpQIeJ2T3i+AUeSbqoQdcmO2lSZkJHK2VgXoyYsZHuLYVILDbnrnto41+qrJbAL3uNigOFZdc1e1SSZMZo0bmrzVgotSatx0LtBVHJESdbyYWNlCZa4UF2O7SAQc4IO0cfFvTecOcx8xSTkLsYhX0kfwjiieX73mJXMObCRy0lWqlkTvlSCbzm1V7ymiWasy2rk4LK1KqJ33tG8b2lQZpHsFs512zL+BKYQwx0TZ6SV4M961aHhjdCweVA1JUbqvNgEHcJurZ124+DWl3axUxXTX4laHSYqVAREgolA1LRJiLE+3fV3X4CdxXHtw1FQjPi087gHw0yXLgRfK3da613T/UFTrq7ha/w0Af9Hd/2N3XwH8SwD+qwD+qpl9FwDM15977cfu/g13/353//5f92u+4yt042xnO9svt/ZVwul/GcDfZWafYHe1fhDAnwbwKYAfBvAH5+uf+KID7WDUAEp9oRUDIABmhQ6jiiVqyi1iMqZ5FL+bh7BS9PfCHdiA24y9Lk/7wS87Ayf1DBjdsM08ojG2yJOiCVtGcGfI3txFEo4XalWJh5TjMDOxWJnfM0aRO9i9iLPD69vzsg5dhBWP3dNDnJycD5XiKT1Kqij3y+Hgb4pC2GSvoowQe5+dbG2RNo/GyapYtzJZSkGnZdGHxoTW4oZ07HDQVF2U1l7Z7sExmXlcpYQ1mN1L0iVGShZWvhiAjeM4LcOlFLQLOTsv3YppvGAbLi0gWqxWWoTs3eSqyPVuAZoXubPhcmusbaTrIrgf78XQXCSRYYjST9kKzGVt9jHs4MQMPWePkjcq0xS/zS668rI8XGQ2s1RJFGlOF3sBNeT2VTCef8PM/kUA/w52tc7/B4BvAPgOAD9hZr8X++L0u77sOc52trP9ymxfiUDo7n8AwB94ePuG3fr5RTeb/63rGtt+wiRqmyv8hSqAEVq2FKIOnd6AwzaWIXbgshBonuFKDJRZR73V3ce/XGuUWeBOjpDrKJtHCZBpEexeMC2ZEn1UxnCAipJYmDt+rSVEz5R3hZQblYsFzv74kMmgFCyP61e97eqoE+ylvVfhWIg9lXQMlbEtaJoVCSsisYyhaodY2iTTWXUwxyyzsRnqbdb0e+lke1gEQeJM5Zrn9Y0OCbktM2M9qy5qpz4URwzg02vs9LIOWKCjllBOVN6Ry6AVItMjiz9KwmyAaqsXbFRH5Hzxqvw8FfVwRxXgDp13mdZPW4KVbiIvhrgbD5RVL11la0wBAIqu1VTuJmCfHIzg8RZhNhL38hT0gElSpKq6yefkfH0I4MEbYS7D98kvKjigcTFDlChqNGk3rLN64bUuWCZArNQKQPokHIFaXJ8v01y8LsB3fO0JALBOvkTtJkCW4OrNt6h7fe/ArM1NwW7LkzlxGVQn6ZVLFp29lESjoKka4HlLAuMhJWkCN4NfU3RyKjE2C0BTlnoxvSdVPiso15k4WR+OOfsl10AaNaY0Eb4WC75IJ6jbizaTPSoX0TyNU15QsXN4tlQrfHYimOsEPktFH3xQuBCEu+RjSIZELreFcD0UJS0oC6M48xQe0qAcT3NHmwvnqkRMk7xEH0DTYIQLKMndBOY2HrtGtE1yqHXfDIdVzNuCxk23dpVisupaPOUh2pB0KoFkwA7jo8Z+kzvnUaE30mAabISL7w+u3UiuXcwbSylGr7evyuM529nOdrZvub0Ni2e21loymYM3wpraS9mX/8u7q3YyAHDyTYSBbXJPLleCmabSKhLtqoYnAmsqpjcwLuEG7H1wMYm35koyddbj3jbtzB57a3B2KKbrXdIdEn13V+13tt28pqVmocBIc9pHhLqVYxVgdlV5nq7PG8PJ1RUlZqXM62VBuTA0fpf/drlQuDpMbyWndhPn6q6yPBbhfSWsWhrHxFJOW54Az0KlxqSLPL//tDS5kqvvQuSlL+pr7NAJ7LTkxiWWdVgJ+3ttMVklVdQGV1KqCgZYU38qixgOk3B92WKXvzqr1dYoOGnUfy7i03AeLC2A5mWytZ+eGi6TIlLoCjaIz2XW03UH/0YKmaIBRPEDAu8c5zz+o48IDqRGWsh+90g3mP0qJcnW2LyW5ZA8+lo7LZ6zne1sH729DYvHdp/fAFyvO4L4Wd+rDNzefyY8hNjM6LeoIpEsC63m7pFLoh06gM+46CGcBmViBbULiKxzx29ueFao3ngYpX65LSKMjVlEbacwTv+du6QbpL9M7VMvCSie1oIHQ9italcn7lFqiUoDc5e9liYg2aYE7CdLQ5llcxurHpTYlQVmto4yd3e3ESTHiHmDe1Sfx67WsEp3eFoV3SMPjuV/h8HXYDsrF0qVMKLeODGsARcQG9K+Gxpzpqgz7GtYcjOZabMuoLWmUDY5lbVWzR1WpqjNcLkQu5mli7Di+sk+F5cLRbuixI7C/KXivobSQB/MGZtD52vQnPkbhBVFi2apBTQwaaUvbUgqhOH+5VJkOXmxEPaSPK8pk71RGM/vouszINB7R2mX+b0p0VFWrJM3QpWIgi5rd7Eq5vmgZGsNkTjSE7oPjPKhTK23svBgnxCrD9QHDsLT05NMQQ5y8RLlYWCRSjFdsa3fFSEKXeHgkNA8XZYF3WdUi65PKeK53NZEG58z5dqKGM190tjXtaNL3HnedLeIhgxGbVZNkFDv7VpEXGBgkRuwL6ZHrsoYIxi9r7CZLwm4FijM8jxtUbRmEbenYN3eaxwu7ajT0rsrAZDRqj7WWCjoCY6KPicm3VofFteHAWPILAHAbFUs5RIZh3S1nq7S+KGGdVuKonEgB8YGlguTNkckyWpeAdcrCwXMJNE65D5/R3u3f6+9g1EyZT6M1js+YVoON7QBNDHmXWPCRNVbT6A4Wx/o1OghwL9UXGa/WUO9VNexlws3iSIQt9bgg0nio5hUN8fUKDJLVV9TCSi5WLzPI9x1TsVhgHOxfaV4AFLggfOv9z5v7+cvPaerdbazne2jtzdh8bg77tsNtrSoCT5BvnapYDqISt+USIRzhyyKVeBdg9cHsacSOwV3ib45rk9TIGmeY9s2cUiiKoCyqNDrwMadcJq/7bnh9sydl+e1KEan0HE5KAuyXzSd2QwhkbBX24hkTYCm+rQiyJcZG65zx2T/FxTUyYJdpsWzJIZz1c5pMETiJEHzTMaQG6g3atAc5u5uo0fpGeWdFZ1odNPuWmflz5I2RYWd99TLvb/i1wzxi8jCrs21dXK8vDra5H2hBM2BAfVaDZfLrHQx+TK1FVkWRjbz0vbjA9im5MbdTXNIibG9Y5nu+vvbGjlml7044dMYAuF1ndZkC1yMKoEDSzvyw2oDrtfl8F5JgROzos9V2dQ9JfcynyznhoWtEVwdjvvLpOIcind30TiUmJ2OqXu5y1h+yOA5LZ6zne1sH7+9CYvHClAvBbYU3O8E92K5ZG2kCCOmVH6LUqllYjx74bjIpQF2EJq4g+QCSpOEo4e+APq0Jq5zx1vMhD3d1oHC8Kl2pqoclqFw7FDpXtVlHy7GLmUmmhWJZ40HXGq/vPibQKqZSWZy64ELkaBakrGhPuZ66sJVeM2OC2tD9a5jEpgvFiFxlqndsapkdc7rdKHBEwAFZPG4j6h17il0LsuS/TZdK0Hfp0vgHHWG3dtSlIsVchZRn96xCvjM+sMCXxeG2F3HFgZSu8Z+mfOgWTnkOgGA1Ribp0tTLt46ZsgfhusnD8Jqw2WiXUQLyaoAoQCwvDviQ2Prur5hXZU5WB27LU3HJngOKwl/CaqItKeFS7kqWLA5okSx5bpiFAwbUUa5JDvGx9HKe2xvYuEBDLXaXGCOLMj9Akk84fc9mXElJcrRPG8y+zRRzMO3mKznMbrM9qjsWYIqT/kE72A1wGJRCzyCaBsuV078+b1WYFOKtycXgh3nIjNshHRLHhEujs0iikMafqlyp2ph+sCGcCdUclDHC3M5uSUJDIzidTW4LHRJkVnTEWETvUiVNPECaHQbEcmqSRpC6Rau/goAX4oAVqYytAVytcjibQ3o5NoUuuhAnQtKK4tc0iUp76lQo9QUu1wtJqrWWjHmAhduRwDpuhcejPp3KFhnqPPGBxwFohIzsXRE8YAq3teGK79G7k7ZDlHI/Qce9HgbWlwuU9YDNgJcZh+ROD36DEC65/ubrqKCGYyOq0/cOW583qM+vTaO8kE3i30629nOdraP2t6ExeNwbNuGUeohP2h/heQQFOrrCdAqJnkGWfkjwqj6nnkAm9xhlyWS73rsYNzgaKn4NpIGrWHQ+pm9Mt/kTklTGRaclmk5XL0IaGbY2RzK6YpdycAto6JqV3NVlgj5ELo2hpAh6OIFDYDAL3O7ELwil+xDUR6bWTBQcxlbuohUzLNSsVKNkLvf6EEhUI7U0OelGKwd97pLq8nF2l9bdby7krcyXZLLkO4wLtM6XYCLCgjOvpYRYfnmqGRzE5iuHgJYqUyR3Be5gK5EyJxDp2KPpHYAhwTNOsfk3XTxvdZkZczvLS4xMlVIGS2SPhvnros6oOKKlyJKg5kLXL5cdsv3fr8ncbSgO/AZojSHD9ecCBWYkqRVwosQ89xdxpuqqvgRiOZvrbYPMpffxMJjMJTSdtnGTtScfme4BowE9aR1YyMo8uF9uR5SpltUi0XIsgYKyWY2CYTwgD6mCXmpySDegqvRuLBYEVbEzPAxhgaXVT6rh1lLRTxPWey8UQWeMBXX4hETJJT1+CDUCqwkr7HWlkX0j5OimGtRKHOsvRSVkwGAwcWfVTXhUsC768ELLRg+UGvfYiHnBO4D2dtv8zxUq7tcooJmlTs7cJlJm0+TN9MuXXiPXUikHCiTdXeZfkqHa9NZSuB/dMXMovYVH7LrJcrE+Fg0rlE3LPOieLz5aibcxKxE4uUWpWNqPT6A7nFuCuvv79Ml5cJalCohvKYURf/cwnW63d7P74W+0bHN54pJtcNCvlXuY3yPYzj6iGtNR5Mw/0jSqCniVQ4u2uf15mxnO9vZPmJ7MxZPswXriB1zvXNHNzSxc/k6ZBFsiKJnPun88AAOxX8wSM955W7UwyyPUi7JWqI6YaliSm+jSxpCGjU25N5QH7o6IPoGQegegK0003vsOKL3W1QPXbeOxaYeMNMaOpSuILO6NCUrLo2s2nArIkI1JPJOy8jQcW0R9ZHgnEq4mBIKVVXTu5TwBC4jtIUEmI8Al1srKjfE9IdqJokIMopr2fA0Xayn6/7Z5VrRphWEC49nwELrhczlDK4HmYQKi6VGMqaA6xb8IqlcWligxoTXKnxYxx0+sBW6nCFZQY4QsvWhqGW4bNA5miwKgtVWwm1mkrLDZPkaYg5m7eOI/s75hCLdplVun6kKq5Kne8ixqMsjZEH2cZ3zjvwxj+BABrC3lBD8WjstnrOd7Wwfvb0Ji8ex76r1Erk+zJOxzQKo3OjnAomWIlU4llcd26YEyKsyAh0+rZuFK3Qz8Um4c/RtU7Lb9d2etzNuUaO6wHS+QfBxVIDSF/fZ/60A5A3d993IPML8AtERyZ+mkjzx945TEMicfexdlgVB0d67dlQaU9caaoqDYVlz3MmElqRExT1VfXCCqbRoDCjcwWfRxLuvMd7z0tetJFWwaQW1IvpCAQSqSh6kdlER2mX/3tMVWAggP02Q+SmUEZm0WZtjmzlawlHqgPK2Wk0WYaIWcPIQZyuG233Wb19mud4lBMO6yhjlHEFaCxsIELXWXoStzRPFQDwGoM74fUh4RP+Ide2hbGJTxF4C8xwWeXBM+NzPc8Q8N7i4QUM62lkQbVqzLVnfzMky1/0tLfAsiN1fIj+VOBIcSwme12vtTSw8wB5xGhhB2WYEqjSJbXPQvOOgcEZQjomTIyndaSEroamDRAsniE2T1tFhC90Suiw9JDjhGLPGNeuA3/rANgf5roS7DDpSu2Uczs2++AMPaYfrYlJE1dS43kfJT8AQtPnZh22IGMmoxjAEaZKrUgU6xzZyaRXJ27xj3PYFh9dpSRFwm4vk2oeEyk0mvYsbsyxLXBdTOC4NT59QF2i6itehrG3KndY2FJmiy1lrRGGUCVAiWucWgYCRo5wPqe+lGS5P1+N4moFl4umSjMS/4UJWlyJ3qljJvhiAnWckIFbpFhElrHPBsBoJvdFnhxnJkGyRBrL1noiRaSG0cIP21yBpSpdnDEUv6UoWtyg4IBfVtUBtY5XLHe5siTSMuUC31lCSMsBr7XS1zna2s3309kYsnrk6p/BgrNYb1lQKBghzMH8PAIYTlCtyEzbyatyD80L8cziIJtLC6lbkq7B+e8eQRdA78DzfZy7lfQxMgwCUnumbyyIiT6d3wFitRLtB0Y4a1WI8fW6S+BgpVB+l42NXkRIcccsaTNvndQLv2PBuirxEONXDwmwmHZcu181wV0VP7sAm3WGCy1nzW1itRS32asB1WpNM7zDrqPOYF7pVF8Nlulq0ePb0j2ltkAm+pHC5eE3RkW4WqRSeLDUNPV0gKGxNsaVs3WTOWBiYiQ+T9m9pfROQtkjKlVD8GOG6znHo3mMuE9RPwK2aQa5RtRoQAcP4PlSl9FjmJugE8yQvoV+rspCt0QoKr2CP2gRLHQDGtqIUyosEp8oqPuRpnRbP2c52to/f3ojFs5MAq+f0/f3VvWBjYWyJ5aadPlV4oLW0tCVYw8LzhsK/BGndgoCn2tlWFSqk4TBKVXh4HQP3jZjG/pv7avjmp3tSYH8mmF2xTpPIpqzC2DrKRsbqvE4zlVHOwkw06uorJVxQTLssAUt3j+uaJtuwIgDZZg7RHoI9Ji2WUiJkXAoY6c2AJi3DMa232+q4rfriPJ+lPkyAd2kp7yosmOsMHpTWsTTmyWG+diwLd8+5a1/iHmFKnpRmgefM8RqwYOkWE11iJCtiPIxnhLb3I+zjEOPeEXNEYffZ3CyCHjFMARoXvMBXgMBVZGGUXMo52PsPVYYxRsz31i6p79NCvFwkw3HItwozT2MzHp4bS+RST4EOltvJ/SHx1i0IkpVWUglxvs9rb2ThwaRmx6TJqm3eX4Jlj2U2gGzqB6j6mivCloXB40thI4Z4naNvEzy+dfROdutceG53vP90PuCMbvWCPsvgiCHcPZnR89g2dL7jJJuuolui+M/vDdMiKnkfasciwOxtHWBC4dNMX261wkl3p/B6bTofRkxScZe2rsnsc0Eo9YpBsfsk9s1yLSJMl65SnG0paDO68smk+i+XhidmnS9k7JoUAVlTrbQaekp0c8wwHu7fAKI2lpUDmLqPUwDzbHleZNetj6NOUq1XuT7b5IR5D2lQuCsgQWXInlIOtKlaC7nQEdf32PY+MALJDatG+opHBMu02BbUEQvX4/XlslGCh1PEj1NtUzTFFYwoaRPkc2plg9VQGgAm0F06Hmuz5/aFrpaZ/WEz+zkz+zPpve80sz9pZv/+fP316bPfb2Y/bWZ/wcz+3i86/tnOdrZffe0XY/H8swD+aQB/JL33owB+yt3/oJn96Pz3j5jZ7wDwuwH87QD+FgD/qpn9be7e8YHm8F0geoyo06yckZyYR7CvHSwZmZTz3/tuNHfPRjZse2EmA5Ero3N0V9Ipmbv3dRMreHXDfbpL92nR3LaGPnN8Rp9Duhas23Rp5tU3X17UPAcidyhBeJHrtI20QwdgWR+Qu82HLI/LrLTpo0vkm6HzYSZWtPJxxhC3yeFyJbULjyKtI4LMvQ8wY1BKduihk1QppN6ke7OHxOd9mZydy5Ph8jR31ElFuVyL9GWKuDYemhrzQ0+lVaJ+d0/h6K4xIwBupShRssh1j0J1ZABfr2HdqODdtiW5j8hnUy7T8MO83L8YJZvC2ijSVxbjOLn9fN3dwr3R9QRc7vWawuk8x/1+R2GQhb9I4fSQAom+xjG6ggyN5xuR+zZ6lymrEjoI115QRll2c+qrgMvu/q8D+GsPb/8QgB+ff/84gH8wvf/H3P3m7n8RwE8D+J1fdI6zne1sv7ral8V4frO7/ywAuPvPmtlvmu9/N4A/lb73M/O9DzabJWoGSuQPzdW4J6kF5a2kz+FFOrBUPdtlAI75XUDajRLQKFCSDF+Ycl2o19Bt4D7PvaLi/cRsnifu834r6GUvhfx+Vpsoo4gMGVaOK8+L4f7hYb1kJT655a0KT6jJYnvENsxLkuGY4lC1wGeok4JnJVUcUK323tH0eQssRSWYPXSqiQFgqMSLdLLhwpRUJvrq+NrMwbq2juu7eVlP0yK6FhUTXKbl0xaDkb1LPLkFwe5I2AuW7/5eYCU9EfUYGm+tRbFIQTNJm3laWOtI1tvsxF4UkPhJ0DBksdYgE3o5Wh0aHzCkTwLiBO0B1VjHFiWDA4MkuN9hIGlQRqcy6YdvsHnPi7SuA9cqGbgmkC67aojgKaJgKWK1A6Zika1RDSB5EQT2qu2a5x+weH6pweXXTvUqwmRmXwfwdQD4m3/Db5hujeuGZk0RuktsObpAdwiAKmO6WSpoz4jSlsxNyhyY0Hk+3NsYwemZw9MNWOcAP7thrjdY57Fvo4Ba79+c0q1P5YJlujwMEz1vN+m0LBlx5GKbGLdFC6ujkC+TwML6WJt68qAAwOgq1aD4KxrRR9SYn2N0uVy0iAwP10nM61LCDeDitlQtcCLtmCs58jrB4aVEEujlWnC5Mko1F4JrEahMfs5eauzIoXld6iEHIQK0p1vpVlRbPdT4qjawMWJqSvoigb5aPLRhQW6caX411aJaSgl2svG4SKgyFzdHn2kkSrGAByzAebxtWlnGnJ+wKH1UWgmZ3MykfpDzLcUO7tv+XtEiw2OYjwDmKSNSiurFt9ZUy0fs6RH9Xp72+d57PwjMv9a+LI/nr5rZdwHAfP25+f7PAPgt6XvfA+CvvHYAd/+Gu3+/u3//r/21v+ZLduNsZzvbL8f2ZS2enwTwwwD+4Hz9E+n9f97M/hB2cPn7APybv5gDenH41uWe0P3Yti6rhjtB8RKZiQCMMg/KPanoTnN1/06r8X33KYbkxx0AABYA2zz2XRyJYH66A2O6WrQI+hjKlXk3E0u39ytKSrQDALMuUTAu+dVN8nh0fSqaKpy6reJHcHPrfWhnjkGIPyns3se6Hx+72uL+vRHcpkqxqqId1UrD8wwjkxkwzHBjYiyZtqMjqB7sN+J8qRY5NYQv7xZcrizGN8e99lAHpLXQI7+JVn6/h4KkMdS+VA1KlD4q4LQ2bKg+c6GMxwlrhG968TDa5mdPT5/gPhNiyesqViNHMFvaZScnbWOkeTYtJ7jmhqUyRpHHN/9tkB/LHKruAR9k4ThxbbZwETkfMu9LPfQulccIcXfxkyRAZtnCFMlLB9ow4LZb9BqHOjA9O2zTuiy17Nb5V3G1zOyPAvgBAL/RzH4GwB/AvuD8hJn9XgB/GcDvmhfwZ83sJwD8OeyJB7/viyJaZzvb2X71tS9ceNz993zORz/4Od//MQA/9q12xKzicml4ft795ShBU8ClMwDglEKNksLs9NMzTrGvwt3Hq4JFxDlYUnaXpSQJkHXHFzFgl2K4CaibPajA+iCvUaupVAiL09VaE/OT5kLiqwpIHBAwMEy7Wct5Ng+kSrgn9nVgE1L+ZxgVQ+Q2ccS2APALTHiB2NGIcDMxo1qKyuAIU6ymnZXh+YoBpiVVA5bKAoP7e62Y8CzZcCVAWrGnR9T45k62bV10Z2ITe5h4WqSercKMifH9TGDgNeyfvX9/C8xFYfUUoEjHVqmiWpLMKa3OTecLcNzgVSaIvv8gXYxaa66pqO/JSvIhgiGVGUotsBFUlL2rMTeQxqm8grQov6vkfpE0WFEU1idBcguxuRdW1ee3N8Nc7r0fuAUHCYhUmgXYb2lwFJIJruutAiolqm05EsZJ6DubOP12aYXrjRYMwLBMUHgtQLVj3etWgWeamYU6DqbFCK8AowKKkVi1fMi2TVEoHxYuwYjFKMzo2dcSNBcqMV6WRQ8CNX3GGBJAV+QQUSalD8NGOjyoNjgmJwbytdwG+gRV9aBcLupDUd5FR53pGg1QzXh9D64HRYmVqDGLuelYbECsS+5pHMXDcsOy8OGqhzQTXrOxTtuhXAsjfOTDbNq8MlcmaoYfo2n733i1PbKT91pix3tg6IeFSf16SO8wS5IoGOqHwN4t3LlI20g6Quz+K36Q25CqB9nhFZaOY5rKoRMeY8H75+n/n9e+LLh8trOd7Wxfur0Ji8d936lutzsWUlYtwojcbLU7eEkJlfF+TvorqVY2sDNouatr90aqODp3oEtt+OyZBcpogYSL0GzIDGWYuJWoqR2VSfOOwjB5kdUm7oQnRcP5WR8dB5K1H3f1/XqT+YeZo0Ntao9rjxQgnjhU7cJLC77I6l0UAzKch7kS4Rii3XN5jvlwxUfsZFRQXAxUEy4jlBwJzhYUWZaycdySCuI+H7Z1xTIBcie/qvdwZwtzpKL8C8xSBYTc16M1dYAhp0nw7ulrCsVnVyP+zpZOuO4spvcqYz4q3um3ynOzon4xzD3GeLjnwOhbHBtFtAPxgpKMxiF0/uBJHAv1zVagyrOEKFCq3tthifAWeGzlwz2woj+ALZ8Wz9nOdraP396ExWNmqLViWS4JrxHrKjLNVRsolPHNisBUtr2W04MP3kNoiRtcKVXWhKpW3FdsM4xabeY8mYUuMoakWFlyd6khcLV17v6OyjijkxVcFR7tMjdM4VaWTN6wRng44UOSqoTF+Ij8lYBN4QchW5mlGTIgzVdZaH0EHiKLICysrp8kKdm0QxMXCQJo6ExjuP4mGFprjSJylq0yHpnEuBbiUwnoVglqEfFKCHjlLTdJRCAd/bE5geLrAr8drY1SIuiRDVqjqNlAKJ+KLFgTKS8A5ZTQrj/Cuol+ReURAmlXmcY+RlBMpCOTLJ2EI2VhOX4v1wabJwmvoo70W/40gHu+NcyTgF063gdkT4E3svC4O9YpYP5SZdBBw0xC0z2kJOBFfJKgUBQw9qHfpAQ+FqvfiRJcjCY417vM9gC4e+j2WAnNXzJIq+G6kG3KSEJoxbQJro4tEhipSnhHyBOw9N3wUFCEWWJp07ULsLAkU30IuGXCZ9dEyZIS/uBe1lLlnngxgb3bdIfW3rFSVzk9qxrPOfAdUbxvnQh994KumjGBgBvFzpvpAeBDPzzSMSTcvlzDVc5Rwrn43RQNHbhcnuZx1oMbCOyLqTNq95A4CYhkjvef3cSf4sIxMMSnYWqIWZQDKrUqWhVsGY+nNGUIq3ROiYWARQBLcu0UAND8s8RqLwKTVYW1NRhdd9V3XzSnB0skuas/3PiQMgIsyXQMz/1+CarrN4krtwcIPn/xOV2ts53tbB+9vR2LZ11RralgnCogoIg5SiARYyhRbl9V546UTD2BvHQNiimMLGbnHsvWMQHAhslt6pMRvVqIGpl1FGr+TuZvqxXjMt2kKb7cDRgUkuI1DUtJizlkOq2JaSWYebB4M8Ao7WlESFwxdA95Cn/phgrq8x7F2ORShchWHeHmHNxdcJjCEhPdiTu0FdVWv0gIK651WAEKwdD9txscVTV/dGKApj7LyPg9aTfTndsw1nH47Z5MOu9VD84LslvxsBMbUth93oveO1qb1Ah21gLEztU9aEF5MfU35DOSQmYP9yWM6uxzHbld7q55KR3tMiTb0ntKxJx9GOg6JrWsvbgCGMgSLOXht9bjWlJw41VBMX5Wi8y7LDvj5cMljN/EwmNWcFmeds4OUwWE8I+DWbd/WLTI7CVOeLOjmqKwDQ4KEt+HDxlCm+Y1zlNIaHYsXFi2HpGyJOgdC1NwLNb1Nn8/Iy61Ji4O5mdRH/s+FypD1CXfExMjggDspi81V2KRgMrg8BxeAnMJB/zI79g/MaU6DEuC5hrjBlaPL1xMS+AUVBS49w0L1e9mLXOrRXjb1rswIi5Wh3HXXmJRTTMtsFy0XaBRSvWYeRl79vlr0ZwU1Xp4kHZsKvCl/TgLQvh9Hm+pKNQC4hhbuDl9jHDjpMYXmeMkXLbaUC87frip/8n1K7FZyKWe+cYjRbJyM3GEiqJ0TIlY2pKuL0XdVPSAEVZPeNtLN8kQyp9WXjpLeWHyYR+k8pyu1tnOdraP3t6ExVMMeKqG9+9vEiVnDfLeTf4SOQpjJL7I6PrckntCVrG4H/2GQUCQYu0lgg+M0Gz3OzC5I0Str0tFn5Umr9WwEpSlRTDuuD7wKUoZKE8TVF6ZjuECSMOtKKGrO3eg+/0ZjYXeSjCpxT8qVQL4rJRqBbjN3ZPaOtUqOt2zFMmhy0I5h7JclJy7F9uZY88+9pEE8ifw3AFOnzblP+7jjjrB9ev8/rtLxfNkUl+t6ve81pziEO51BALIuLYSOkFkhFspKro35iBtdYTFYKbCgi53IoBdWT4Y2KY728iFArDe3+s4ALCUqG+u6q6tySKqpaqcEvk8pZjm7VOSKPGpV92o2TTCVbZUzqk/MJNhXfo/7RDNDStIddaVMhGfhQJhlwup8juIiGenbCbCKjWzsLSTtEiU/5nBlNawris+5GydFs/Zzna2j97ehMVDcNn7EPeij/hMcgEMp/Yeq2sJ5ikX6VwwjUDkltToKgWSrGqHIy+olUVYyWefvp99qFF0b+sKd6qMLRxDLN7gaggXMh7vFuqG3Fm8Bz8piSvxmpdmOrYsOx/a4Chq1WtcK9/bPOE5VDxMYPWYlkPvji4OURUFgaDw5q6QOHEDlKa/GX63YpGENW2D+20AjRIlVZbVNkHhammnl5XzGjyQdm2aqR7h3cihgpBR9xizgHBSyFfs6LzrE1wNQTh+bx1rYDjkLm2brJKKKjNYZbfhYmaHzenos8CiShCXQ+aYxsEeskQ7UtJpCfzwNQCYDOfhIYLnxEOTEBjvVSmJ7yNZmRE8LPdIDNbzF8xsvrfdN7ys5XFsb2LhAfaJUeyCOsE7uhLuXTckSGlh6jk8kenmDckLkyISDRtN9FRjiCLurFFtcEl+tsIyNiZCX4GhzvMtnJClYH0Y5mGI3ND5ILdL8CS2JMkpU1Zp3lcWM8V2Dw4RF5adBLh/Ll7NcNmvFz70vYMlTpeW3Rn6pKznFfIyA4jo2GC00JNqH1HxmOySpnGTa0dR+HpPWdB2UXSGfJlmJVQkc1RSRLYAwvm1lK2Qkh0Z6RpCe7d1HJUAMRctcppSsrAWsxQFLMsDwGpRk0sPrTsxaAwbBzlVjsljK6UAjQtmDHy4RojPeBgSFxOoW6y+iLKNLdwppvZUW9LCE/yjR/z4MO5zfhbPG8LLOl/H0kAxPyc0/uLa1ffP/eRsZzvb2b5N7U1YPDuDocDNsW5D7wH7Rs51M+QJQo9mNwUfaNzDQ/x6hDUk7k+hm+NoJXZ96Cg0u0Pntk6LoayRRElqRI0jq5lZ7H6kvV8WbLf7fI+fFdw28oF23ohXk+vn6CgTDN5oYnuBU0tYUhEeI8BQ7uhShbuCSnyxC0U6RlF4e3gAmizqNkZwpAQOm83ERiS/KInCs3pqBTZVXF3wNK+18/pGU7+ddIKlCmhWbfC0efI9d0/jzvC26W8yj/ff8JoRrmtSgwzFlJdh9zgIIg9D+LSlo6WkTXkxQ8fJ7tCjazSScxJld0zyLkrFsPqQRsNGF6pH6gnpIDWlySBA48d0mgMPJyWYhitcVFWUZXm2bcil45zdjz0+6GydFs/Zzna2j97ehMUD7BaAF8dKbIfgnbn8Suao9FGChexIO24Q+h7zu9xqbHtiZw6sAooD1VaJHZYOGT0UA4tp1ScWZG3AqItsIf7FHUViVb7poIUhTi9wvx/6Ojxwj+4OUM2PoWwPMDtEoVKp3PnHpTV9Th3lZi3tZrGjK6UNJkuHOFQvjq6a2xMLsxoKhdzlUSTSRaxnf28eb43rUmmdrUjHuTB/ywpEUheDIPZIzxYuS+vwmvImm3CohJAGS51WSwkrlxVEYEH447GXVgUuiwCJSMbc85/mzx9kKPJxDv3Nof8Hy+i177nVZPHF55JIrhW0A4kH7SnTFHejCFpYHXneBM4U+B2DHn10WZ6HJGxinazUsm1o1w8vLW9k4XEAfdYJIn+HAx6C3noY+4aCeABE2RYtvM164BC9HEm5jSCtlSKSQjZ5la8gpnNExNxHiHFzcXTXRFznk7L5lOYEVGMdwyOKRuYrgOuk5vvYP7v3oUjI1hFPSK5xLQ4K5nVGFIaTfSlLRKvIi0KUMAnZ1y53tefr07NqMu/ZL0NVwiuvuaSEXk/3TJn/a0eXemD03x8f1pFU9sganosS0nCYmUBvNi/5AcaL3+yLwzFatZeMme5wiQf9kTFfW7gszkCFhSsCIKWZzEvBK9VFkUDi1xIpWeYHoS6gBQ2ZJV/0QV60lKprXGzW5IXnRe1h7HLfqYflrj66+0EVAgCsFSk38LmpZTlsaq+109U629nO9tHb27B43Hed4BHhupJ229CKmRbLAAQg5l2NyZHFjgxNniMBqGxVu/++wj+vm0C2rHu8jp25XOoiVjVdsXYtaPO9y8rKnRW3ecw2+3+7rbIstFO5hZsnE7rL4vtkidybkcA7yEKbbfQEAM8/bnft4NyJWwmphVDTSRaGh2sY1TmhRNbQO950PvpDte1qjEg9s+LhsnpXCSJe6x4w4O8Jcna5opUVNLc1mOuvhKhziZbQj8kWSt7N7fC6zxWhwfqaZDGSdTke8qTMoiikuwsEFmDroaUcmHFydF6xZjM358hOZl+pEPnSAt7/PrqfR8svu3vl8D2gpH7v7+zM5AiThx7RS3eQ96e1BoztVUtP1/i5n5ztbGc727epvQ2LB0DBwBiu4nzCdXqSwJi7Uasm5pzVoV0xl5wlIUzgXA3SHXfjnTF9BO9KKXspWkAF3cyLyhGvm0dIdfriy7XhPvOxWOHARsHGnR4EdosADWo4VxTcWM4WBDELjBIZ7hj9aPHUWsEkpSgl23Vd1Cle1w0+oZFl7jHb6KIiXC483pJK/RqcBQZlEURWvUh3VrSTMkt/WYpKvbAvrRU8vavzfJ7Gfv+WI6xShWX7+uJ7iR+JQ9li4TVzPiwBYBtSyRj+wqJc0Gst5wOGxRDBgUeLBwiszCwrFhAX4VUeDa0+lRQac+2S8JalIPl46EOtwRQ2VjFBYGbzg4fzRVb5puPVZNwVvep8ssghhmipVblxqmbRhzwD3bO+HjP+X2lvZOFx+OiwYVG4fipc3LehqqIEOH3bJIcKWDA9QT5MU61zDm73SGaLkjYmC1tJe6UmpvA8Res6npVYIKoA5xVTgFAP2dYq1nVPudimmzaKYaG+geobbWiJBQvsUaJBkB0Dm9IUGHGIBUfKdDVM9JA5MMm81pksawiKv5T8rCi5sXuAwbUFED5Smsn+26E0ElXK9BEi708UO4fK7bSlgRI3uEwpDRvKL3g/v2cl7vVy3X+wJLCX3CRkt5B8Hw/dG69RJodrzbIsEjKPhzEtFCNHsjKICzSrGA+MrVJKKvkyQmGRG9mIxSEqikay5UGj56GK5xgjQFxyy3ok1aZw7kEZ8LFqeV4AGJXsPdQw5e0VV4BipA2bulI+uhb6Ts6VVc0J1YwbY6/v9VWYy2b2h83s58zsz6T3/kkz+3+b2f/LzP7PZvY3pc9+v5n9tJn9BTP7e7/o+Gc729l+9bVfjMXzzwL4pwH8kfTenwTw+919M7P/FYDfD+BHzOx3APjdAP527LXT/1Uz+9u+uIyxwVDgcDEiXSn7oT+snQxdvI5SusA0JpZu611hVprvZhbHnlbCpS1oTYjf7ElauaXo5yqXYxYKhUwWvVkwcRVCXwcucyd/ekfNZWOEU8De2CJpM0Kjrn71bRP9KPgW/UViZUkhYQKAOcGW/ItSg39DU3GMooOXEozk4055DIPvcDN1gPkll9xFbbQQo/9LA8q8V8xzu7Q0CUfiT6X673sfk/5wKs4nITeBoi5reIwtqsdKz3mVvEiMnUHBivn9+/2+864AlVyqdZHwmO5VDYB/OFDEXA6r0pLLyvO6Ha0py6WPkouUWdpsOvYr6nWv2xivg+wfCnl/HjDsiZ81DyhaSc2+5Be0L7R43P1fB/DXHt77V9zlYP4pAN8z//4hAH/M3W/u/hcB/DSA3/mFvTjb2c72q6r9UmA8/wiAPz7//m7sCxHbz8z3XjQz+zqArwPAb/zOX49+38PdY1oMAggtlaAh69ICSN0DtGQDK004Kkkw/AcXVpRLtEC6yPtLH5tYwcyRGmNIBhUwdEo6UJAJwJV+/jJ3lm1gPHGX2XfM22ddWedGHeXmsoIsA6oelSwInHbk3Z2h/rgWVdsQcJ13W2IKaxAue+xaRtQwkwCTBebChQI7445ZpUFtaDPr+kI2chKuqq3iMi0hlgZqpagwIq+zIEDQ5/dTROzdk+bBUW979lrWXrxvNWRZNbbw0BUWtpaK0s39tDYTdiFpU6wJ+AurY1uTQZ/KzLCPEjoT3pSqOSSp0Ud5Uljgl5H7FafKGIrkPHbgC7nt9ISXNsZLasBLqyqfMDObj9YiP4/8OsuuwyvtKy08ZvaPA9gA/HMvehnt1bO7+zcAfAMAftvf+rfugmgezNguZm+kGTBiUGpo87iPFw9XqU2aO5qsniNXTe/lmtR8jXsUERNxTPquAQRAkg1eu1ImeC+3+8BgLWnW8r5WDQcnSmtld3UQi20bUPmbpTYlm3Kxco8EVGhSuyqJji0mB6tAenpo5RklfoaAW7hKwbBUy15A8gjW75E1dmxeSwUuywRiFz7AjsvCxWig8XOmmJQw1UvSSqaLvBy0hPmQzgtwj7HRLEvuSQmd7exqRBXQAHEFNM8xXpYF1mLj2X8bCZ8Z3K9LuPNWj587AmjW4gi8XAiKx+qSXCC6jVokH1IrciCBbTw8hbnEzmsP6KtulWf3v7z47kEqg+eRXpTH4vk57UsvPGb2wwD+fgA/6LE8/gyA35K+9j0A/sqXPcfZzna2X5ntSy08Zvb3AfgRAP91d/8sffSTAP55M/tD2MHl7wPwb/5ijjmm9oLM++QOMXpIzoO7IYOqoaER4PMj+xgj9I7HAUjkjwnyhQUVpmjoFI/RpWnMSggZsFuoHFiBcUmcCeymKP9exag2EK9kUmatBWW6Qds2ZPIvSwqFyiKM3BlZ+aIwOwSCSoc5OD3MiysY2mXbGOgWFgMAjFwmhyB1ylsiY7yVguu07mj5XBfH09M896WhlGkJzWsZZRUfylgUsYZFQJB9HR6gcLJeohpCWDF0X7YZ1t3HZIL1w/U53WdDUeCBQnTuJv4U+1JLjWpICOtkufI3LjggWy8RCEnW0KOVYZ4s0XR9hBeYV7eN4BpZ9CPzfR7D2K8V39ufq+Cu6XwPrlT++zXRr/x+/t5Yt6/G4zGzPwrgBwD8RjP7GQB/AHsU6wrgT86T/Sl3/++7+581s58A8Oewu2C/74sjWmc729l+tbUvXHjc/fe88vY/84Hv/xiAH/uWejFBZRupNrOkDyJ/i4xb9NCxLdUSfjG/N0JKI+AAP/j5wARPeezELg2LZx7DSmTejpRZrh0/EtqJTVyvDpu71Z0SEJe4ZGXfG7D0EDjbj3fcTWjpHDBDlrigFvI20Cfb+cKaVB64WNzo0LUWmFsinGypfjZJhcUcF46JmLmQBUK8ZqklAHdaUM1xWXivBnwWQVSp3wKUOWbtEjKezHgeKnJoIOY2PL2nnZeA84B7YDM5hK0REAGPQQtAPAASEcdI9IV5hlJljdggbwAhYGaGl6xhZu3j8Jl/AHiV+FnvYTUoxy/A/5IIsCFuFu1QK+zBMszzXOzwkat7JCZ1pio8vGcIwa+cp1bq8kEC4dtgLjv2EiqJmp8V6EzpEzS146fWW/BSZitWxO8IPkWYqxygXb3w+L3SIgphCSDrcuNiDhD42+fsfNBCvUEaNjZdvEuKXCxiPQO4zIkEqru5AOz6LutQ3+eRR4ooReSlrgkExc6rUPTI4yFTxkcytcnmRrHQSCabGa4fcf66D9R5nnfLXqt8aQ7MVIBl9utyLWgLo14dUaY7FjqVupFmjKeEwzkmfUNUy0wPt4DYOZ4WgvS7el5En3Ts+QsCyWblRUkYq1GRlG2PbhLsju8f1BJfcGNS+gN5Sq+4Q6/kve594WSji1tef2Rfc33YXpP4yMqCdL/GiPtG3pMNPyQNc5EVy/7QB87FMpORP5+tcyaJnu1sZ/vo7U1YPI4JSPlQ8llL4cZc4QEA7fz977KhlgAE9fEHzpdBsGANz8ONUO5HCo1uHrsjd20RgkoJtTfVLa+4CJzeP3u+bajzvQvrst83PALAQBQiHCWFQJkQWVxyHkooNA9vI3GYYteeOzlMlo7cAUfKdRppd41rOkLw00jtkd+2D9cGI/9o7syXpeByLfOahv4msD1K0BcOOyS5M0o2S25xpOklUNU1hpHHGvtx7OrHgn/AtDYeMOrdbZrnO/hcHPfsctJkK7r+uI4M0uJzm/nL8sAFVfMpVA4R7lWyyF8DgB+vXb/X9x8sng4pD1YL1zUbZ4/0hMwVI6fHEjPg89qbWHgA7D31rg6xlje2EVEMxI0Rfd7Cvy0lfPvQbMm8A/I2EO89qrANU8oBuURWPCINGGCYrV4oct0xphu0NLpFA8vFDv3aFIMCOlmD9zt8RrCW+sRewDfyRBzK9OYVlSIyGlspiwgc5PG01sTJ4eJdralGlqJg5gea/ngAN6qbokKWUlkwF0cyg5ZaRbpsy0yNuFQsc5GpDbBJMBxyucLkr2kB7qoltr8clPwCpNJFWIrMcGi2g7bOnmxa3B90cV5/WD0vMrzfLaVtpAfwsqSo1qN74SPxx1K06mHeocSmdc8qBFwc6EqWEknMKaFZhylFLo8WiTH0NzFIDEsu+ezfBcIxmPoDQC51Rbi+WcOH7qAKGGAmFn9g9TldrbOd7Wwfvb0Ni2cmMw6EO/VaqY3XdqgCCHweoKxClamYzfc+3TjuHsVKAJapLAl3dwq37xIGYd+Ll8M+lCLmMr9W3aQ8yG9erimtg5yOfsWNLt2N3y9KrXBLLiR3nhKC7bLe3IJrk5QbQsdlukMlIl01aQ9HImoJZUFeUjU80utrCYtJkiANWKYr9cmUxbguBZdp/VyWsAiVJ1JKKluUd8jjnujJRarJBdbuz2OMcCFYkiiPwxhhQcsmLjnB9iX74yWvC3JrW2tHresHcNndo/pqog/TGhBY3ar6xWvaktsrd6ZY0qseslBKcp9DIoOWb9E8eU1cXlHeEefrPYBwQg57oIe/YcqSy45vlQUwx6vjmNtp8ZztbGf76O1tWDzYV1jzCEeWjGg9pnuZJ+APKT5OjCByalQh1k27rFElsISSGlm6tVqAtEq86zrecBeFhrwicxdgu81wY6kVy0M49lIMlXlbiYfDCOmqcjjBIbFhkO4Vnegafn5IYHSUWYZZbnyXeIF2vwqXYFp8Ng6CVDWbTNiHmtQC7pjLki2nOYa4o5G5PCkCrY5479rEwRF+VCJB078gv0dWHpNqzZQw2qZC5JZVAhMvxRPewfsrgNRKsn6SBewxJrOzKSxNsHo7WA6PYWtH4o8lvJEgrsrE9NBmzmBJ8GVodW3Iz4PiEey3D11LrlDBHDJe05GzY3GIB+/iMUzP/urB8rBdVmFPC3xsj0/tob2JhWfiyoA5+pQQjdDRnqENBGq+E8M4MC/N86273AWCaW25hoku6voACjVl5uDXIvM1W/4c/ppTNNJnqmuUqebk9JBduA2s1MfxcO3CG5znrSltY60i7WFl5n58t0ujqMC08AZ/SK7WPMMY97hWipmjqBPZBI+WJzq5S6aET5tpEK0NvHu3LwBceErdNEcLqtTsolxOqOwp/mbHh3QfwuDkZDF0SsTSjT5wjhAaN54WkeAiHR+y3F7L5kbqa15s3IJ/9EjIOaYZREzwUS0yp0LkY6s4AEH2Edd/EHvPZYUeLic/LxHj9JQuPK+5Rn+XBFFIzH6kpNyUmK25yvSNMV4kqj6209U629nO9tHbm7B4AN8TKFPy50hateLT6Ovhiuwb05FpXGuLlIlXzOCsXZJFtoF9Fwl2ebJeZFIWnU8aPVmaI5VE2dTHME+NNcPp2hWLEjSqS94x5rG3Fdhu89STuNy32NUagcYt+kVvppQiWQwVLh2WrAgCvZFMybHKrZkHoK5rcRjlLmaS5NOTCVyGKqp22AQdrXi4gwup2TVckVe2wXA1Qlye5r67y9Wi+1UvS0qNSe5L2t0PyZrzHGFNpXO3owWyz0BSLOKoYjn5S4snW5AHtrKmxLxnKTH2mNpzvBe1XOMQSc4juFnBKYsKr1twxMbxeI8t+hrgci6+yAdP3gcgN71MZc5tHYn9/no7LZ6zne1sH729EYuHeEvRzjsOav+P4daRdqHwMSVfUGsCp2MXycxmYN9t+kPxs9d0hs0MoXZAQAqSq0Bib4Y4nkl/NyQ6XAQ61LBuYk9mWLNjZSndGtUeiGpvKwSoj2xpTavmPk2jWixyuaI4euBQPIZHbpiXyCMKKyBVQGgRqm2yePbPrk+LMDcyjq+1HnZyAumSFMmQWfreSCVXOIYvgGJ3larOtAFKXORreFEmObWOTQZRPVjI+3vSvx5rEPZGynOTWmammUd7POcY4wWGlK2uCFogReBDdfFAuGTwREGGwD1jXiUVz1wS58Gy3UMRzBIIzCj3/lXRMKpTbqHBnYjfr7Y3s/AUc+ySpim6hB08dT/yILLbtL9O3sMc/DVV3LRp2i/LInOUrNgdvMP8G/MzTzckFjSZycWDbzETIquZmKzKqreCZT5c6wSFmw1FF0xpIHukCQhlw2oVzxP0Xpuj8HoIPt7S5OKC0Q2gQqG6yjHFrL4KmA9Wk4ms6TGktldL0QI3slmuqNac9C2iZ0URQSiCxTSKljhHW4cWK20s1qTkqMaZiwDhYYia7x41xTgzxMPatuNx9GfAqjqfbnNy8UOHlv9T5HPd7gG+XnYQ3UqJWmN4GdU6nij65Y/uXq5DxbldssPCqFUEFErJrlEkCI+Rn419ozkwjUEXCvOYdJ/CXR9ikgW/KHUtLsXDXewJXO4jstZfa6erdbazne2jtzdh8RimlV1cJUWulwmiJS1ahkR36dtXTGaPUC0LA0Yyn2vXRuKsbBT3FrO3PlhTD+arVQHXtAiKBbNXEgl1EUuXFts67pH8Oa0YQ1RipIV0XS6odbemPnvv6AvNeuj19sgn6R7F+8TiHfpctCGEmiDDqWMUONUISwE0ZtwdoxhimwdqS4NuUSV72LDQoqtRBC6KCjZZR7Q6DT2B/eTzRCXYiIeHQHoufVQfrKUtuzE1KerlXK5HjoqFWz10nyPszvNmLWhSEXxE+N6Hye1gO7juFm7hYx6T1SIXklItNQPvc+4vdUHfnud7ca9C68fjLbqPtSbeVxyb8lbKGyvJMsqaRqm0E61laU4n2IOBjLH5pNSfFs/Zzna2N9TehMWzMyt3YIsr6f0+864sgpCxQ/Xw9zEUh40azilVnxnB1lNpltgFiXNw4yy14TWgeTAaud0lXMVddPOuUCIJXw5g8xkHn9bEpTTt4Je5+63okqZiZvNtDFxnh9pTxTbru78fBGwbyiz3SwC7313iVLN0OnxNu1G2/BKNDABaLdiUvTykjkgS2Rgdjcxnlq+5FOknTyMO5VKAmZfVLjOEvkTYfbOutPQyQ+wDEDhbWrzHnTkqRkAayMQO1r7p3i/KlEeEjL0EWZK7f6uaBzn36rFgYa3xPZoQ1S4qQxwR9JGssijrLEurh6gZZLH7izntZrKqyTjeUgY7caTVB+xC/GuVgdVoQ1iEt0VOTCH+QjXLJIIndn/CRntWIUjkw/WhGKJjhDQJVTXLns/4Ot7F/r6JNnk8Jcw1Jakhkh/ZslRnR4DP5uRdjHDLpOAWEgNZe8VS1ATYE02D75POS9yvVS1SQc23REmfLx4sT9XTfkUmIHdLWOfiaIW1zof4Nvce6Qa/7js/AQC8/2y6ZL/wjKcp/cB+rbctgd3RB37OxcaK4d11phzcux5wgrC1NpXOWehqtaaSP6ylVauJ2RyuaQK7qwXlXoqBMQVVHsUsqoFKR6geHlKADwUjc9PNTikYm/dgRTN40MM1kmh6iUROum7uA1HHDXpl3XW2FykSjy5UcsNNkcryonqse33x21cjrKUK7MawFwvhtkXKSCSgJmF+gsuwF+DvgcnM9CKMB6b3Ua7ELFI4BGtg3vTP97ROV+tsZzvbx29vwuIx7ByXHP4kcNtaBnMpLp5lIfrBBQP2Xe+4rwIYSUWvxmUHn4JLeEnWD16cD0CwjpPActSUjqsiKMfdzctL9jQS44hU51YLMK23rRRs6/6NX9N2obDRDfcZov/kO1j6ZoGTvstwa3OwUmoxAt1QAcE6uPtVWSXtUrFcmEcV1ie1m1UMr47QR6dERAkejLFkTS3EKfdNUNVCi97TGMrye0WYv3TxmSg3MsaIcZRVFdZWSQJuoUDo+rIl/WIJfCVxeavHLdssOFC63x6sbrMIJATvKQl3zeOUVEn09UYrNVv+pAA4CghS9xhHSr2U+pJxvXdsv/4kCcKhDwZ3XG9LlpzAjsw1SuH5F3I1jiTE96ErPNvZzna2j9jehMXj2EOkNkLYaZlhS4Ml7WOCZfsnAGC1RbhTbMuEAdGXTnlgqlediraxFQt/mAlOVjzEnpAJXAxzt5AgyJiKsAjupqv6JZGmpSrPiNK9+47IHQy4PpXDF263VZgGyVtLMYT20gSmFxPQGlnaUM302E2DJLdcrwr7EuDvowtLYHrXZa9rnM62WxjcbWVIVkuFAU1jyjw2z+Fvbaym0jnZ0iTOJGyiQOJo2nWLJR1mqI+iS9Qa4XsPa4hhckuqCI/6wumWAvkYyTqQdEli/kboeZ4vkxwRl/6YVzZGFHPUHPei+WTWXhR2rLUKA9N5k1eQK128kD/J15HSyz197g9jt+fQvSTmPiq7PrY3sfDQ8Mu1fHgDl+USrgpJpTUGZfSQGCCt3PBSMc8OKK7yA7BN01qAnCdQjvT/vmqgd7eLk4GdBR7lEsYYgD0uUEsAjYkXRBp7Zb0kAPf7XAhamMRaHKqhzTSFwJtN3AtKizQzLTijs1+uCF2UanJcVP97l84AIC6RXYFajtGMWquig0z4rC0WnCykTrN7AGjzpKHpm9JNskyFpC0iOukPi1GtFf6QWIniB2mSSJkIN5afjgTw8uHi4rbXtOK5w3XJovFxnSlq9JAKceQNYV77Jh3u/H3Of2lEjX3+5/MVLw8LIY8d49AfUN1XuUuA7p8SfwwqcxTloUy63fv785hx9BSzSeNejn14bF/oapnZHzaznzOzP/PKZ/9zM3Mz+43pvd9vZj9tZn/BzP7eLzr+2c52tl997Rdj8fyzAP5pAH8kv2lmvwXA3wPgL6f3fgeA3w3gb8deO/1fNbO/7YvKGBumCWltB1YBhTJ7D/GlRjA3uU2t2QvzFl4j4VI7XhTqQ3LJXkvWUyO1M4V33auAN6nCocuyUIIlUq3v6bpcWsVGH0Puo7wPWXK7YNbcUatL5IpWR700bPdpoU1LZSkVt2eqH86dzILZOg2enVVaYkw0RiXM5E7rQGC/hYkODrGLpVwleJbC4PKeEgsZJitx2ygoVsE0RGlnG5I7QRcqVS0g36VE3lVJO3oU5ctBiLBUPCXgqs1+rykZOLFt5jlKSjbFi+buL/oNpARbWcMP8wxHeCC7KY+/7b3L3bE0f/WAmSkv7TU+mn3AEsmJsaHBPeTGIXHqkkYNIgzT9V6aeq+2L7R43P1fB/DXXvnofwPgH8tdAPBDAP6Yu9/c/S8C+GkAv/OLznG2s53tV1f7UhiPmf0DAP4jd/9/Pqzc3w3gT6V//8x877VjfB3A1wHgN/y6XzeB0dCvHWk9O/rTxxyWPoZK/GY5UaZtx8IcIdqsoF+ITyRch7v7SKVpVf1ivWOdlpfK8CLvsvvpSi1hdVlkz5MNq+v0rsJsscs46mSnejdcpmWxilfgMNZh51vrTYQ+vo4R4PIgoF6qSJXMxN534CAgjIedcozw2QOvgiRPyZgupQbGI8KbIRXVRrT0NwFS1ltH1d9h8YyE2yVLLeNCwKzkPfHBUgLsb+xr9EdWxAj2LRnV8B0/BCZDGkDpOUCRu888PU+CcdDYRUABc5zaS4tnpNy/ZOWQsKi+HlDbkc4deKIY0CwGWBHXnH5OSWEBxqmSBx6OMd/cMwXSb/av8jjzWtwZMcLntW954TGzTwD84wD+m699/Mp7r57d3b8B4BsA8Nu++7t9L+wW6PtCQM8D6IoyKMGmLAaZlsHpCCOZN9PMDuYju8v0gJgISeuH7skYh4lig4D0/HcNtiyjPw7H4IRlQT9fo367XLKe1P9Y1qRHKZeyqEAfH/6lGgZZt9MN2+531IUL4gRw1y40UC5lKUCfACof6h4lSnoPfSCxeGvWOw6mdzxI80GpD+fBfn+yS1fqkWNSrCkoMPyVaA9d6mUJnZ0E9hKE1mI5PPo9TG5n3L8e6paJHU1uVwhtpHvK6/PsvsTilXksj+7NGCOCI0yXuVyCl8OzFTuWlJnfZ2Rx0b1Nm1wGc9N5H93Aln7j9vJxzBuyFlbO7SSNsuPowSeKRoiAB+Sz8fm+1pexeP6zAH4rAFo73wPg3zGz34ndwvkt6bvfA+CvfIlznO1sZ/sV3L7lhcfd/z0Av4n/NrO/BOD73f0/MbOfBPDPm9kfwg4ufx+Af/MLjwnDqIa+bWjM3dGy7SI05+Jt2h1KlAVW6NhcALAARI9QaN61+WPumMNC7f8A7FFz2F0heO3u28BlCkOxX713iNhMYHpE7hDzwEpd1HEnk7i4LDHHPepZX+hehkvH86IWlT1mKz0ASzEVSpfqYq20pAq2zl22vEh07P2VcGxHMM2XAMx9/l2XsNJGkty4TTfWVYXCVeqHHJoBqA/isXQX+zoziil0Rquxu4Pa21bu4TrIIgiqBikGpTUVqsvWLt0JJXn2IQ5XLhQpKMCDV6X+lSLrJofQGW/hfCkpx0xh7lLRliPXZrdKeEk5yZXvderBHcBsWh+kbIwxlBtHusBlaYIX6P57y4mvllzSkM3QtfJ8Bnj5cEG/L1x4zOyPAvgBAL/RzH4GwB9w93/mte+6+581s58A8OcAbAB+3xdFtADA4DA/ykEezdeIAAE7z0FcDgtZR5n+jkQSpPsViaNSjDMEN4SUc0A+VH6OeXNqrXJfdOj6kmy2k6iObkfmEkWkwbPBnK5/LoR9sFfKvneDOE33jZGsSOFQ5gRG+IN82IppYlvUKhEXp6RkRSkQRlkxRIDDpDbIh74sge2EUmdJUbQYz1gw46pZ+XN3xx4zrLcX/KrDMV+px1ZSSZws7P6idM1wsBfEwkZSBNRcy5yjQ4tF6zF9IL/32m8PpL0HN26MgfYiQfq44L0WuXo8dv5e8KIKIjUj421HcmmtLaWW+DERdF55bFDhfpby4aXlCxced/89X/D59z78+8cA/NgXHfdsZzvbr972RpjLeyvWZKpSk9iHh/bOg8QBMJmcdEUSdTvvOPuPSlTLnJyV1iLdItdOV/mT1DdRyJM+SaDPHgBwChtsqdrk/vXtIEivY6uvsQMt05TdbBM9IrNUaSd1lhm1Kiayqn4aZObTyPNucrvCcHAB+AVAp6bQdPfqYbz5akoY5XihJkszid5bclm1EVKtLlXi5BDvYuj731SirDWp45UYY4HLitBEIGDb0033c7OPKWEyWychGzJHZCQGNPVt7KXFs1s00HEem/uRkc/re4y5lNQfutlAuCyhpLik+ZKB5GAuP1pBOSmVUigVhqqAwtAxwnWaAYgNh8KB0twmGO/9kIahVwc+BC6fSaJnO9vZPnp7IxZPKJYFJhOhzMhrSjt+ZmPORbprp68K0cqCKqZETzFgvahA2ph8CfcoEtcSyErLoW8Glj12YhulppyotNvQYmCCYrMI72s3CqEvCVON8KXrAe/A/A1U1lhWIELMit/fmdBH7emyDVkyUkt0UzkaoAT/Q7Mj71zztxYBYQGbxcWMFQ8nldgxM7TLtORIA+gbLjMf6fouA/TH8O9yCQEsWWelgFIogd/1qHrgYfEssjoCzwlrIRjHYSXE7h7WcLDoqQ5YrKGmpGPxhuaRs63jUkb0wNnS54c8OPXlATs85CCmqhaqZa7LC+GVhGtlMFgW5nxtFgmfcZ6j7AXx1p7meXyOF+99XnszCw+sTSs4uBXAfjMGpjuhSWGaNYYApbvWrKHvymwtNWqFa80acD5dKnliKfGQLleJLGAfqgklPl+Pm+lKYDUtLnTDSgYfRV5zjFl1s/dYYHjsUkIZzuXSFB27sT6VJXN8SREHjwkE7ItR6UeuxuibwHP3oUmREz11bI5xmldy7WpU+6TbV0pE1EoxCfKzNI7V5aD6B+z8ocfg5r3fFRQgmG3VYkNIHBhtUJ/LczmCvbZ/sB9bxE7Ho+vkxSJJcsSiVAvdjph3rz14mdvzmArh3l/CAzg+zHtfx4t+7QOQNuKHj0audJte6wNQXErM+fI5aUUxjiSf5rrsOcJV8OhO5na6Wmc729k+ensbFo9hT/bLYXAWFDNExuFsY/RwSzybx8fVGIjdMTM2h1b4gsGC5Ep/AJzDotU9r/ixo9AK2tKqX1KFyVKPe896X8VAtWTGCyDmcCSh7DE8zIMUilc6R82mPXcz6NWTdQcA6Lt8xX6cadq3IncpF/GTq2HH93nsR7mHDHbSOrHix3QUO4KlzQxRWz4UJKM/4R4/WhE7pyUAVJ5X1sHAQSKD533Nskhf0PmKYvUHh2j+9iVzGUDSaZb/+cLa2MvyHLlS7nGtAusBDLo+DBy87PHntmzlPXLT9iTY4/eyFAiTb8fWg6H/CrheLbupoR1kDxVIH9tp8ZztbGf76O1tWDwg5hGrsKXqA1ZjpwemVEZOpKP8BEPGPlCmEt4yqyd0twAnPQBJlZJVzLhA7Dy9lYmNR4AOOGIElLDo2POL9p/TKjGMdf/tLSX/vcgJyuHX0rENslsDZ3oR1kXGLhh63fGp3Ib9/9s7v1CriiiM/75z7j1WVqiZdUtJhQh8KaWHrIjQCBMxehMSjOq9Py8pQtCjFdFbEUVEmRFmJUJYVM+SUZqhphctb2jaS0G9XO9ZPczsPXP23fdicvacA84Hl7P3zD1nfXvvmbVnrZk1K7zx41W2he+l1QZTcAYXN6JYvRrLbVXeaXHqnCJA1u1KGDlIrfet3umMlm/jqWjhXHnr29NHHUWd8y/0OvDjxH/xLYr9ItXnFwdthv9rEdZXlvPl00ZLsf8jnraOHa7V/+2ZGCmeWStshVL6Kn2fiL+r7lQYxkYxgnULCXsWsxbPPB64Vq8vOu5G11m3yLHASLtd7t5Y7Fft0HuPqxgixWN0u+EGFSs2ewM0g0d91C8l73RGSsfipM+w2GqFILypi+47k3TLZd6taJhb5lMvMi1OWSmn7LOm3gdWechuR7kiKDL8dtmQimXx7agxFHvstNvYaHVGJQ7qix27QW51lqKlWHEFqmH5SkjlEsym0GjbsQOxutI2MnNiE6HaWWOzpqXgKLa4E1bTCXUvUm2kMgt79NSYQ+1yxlPRNqZVxUFPzvDaHFp1Jlc7mGyqUTLVDm4W9l2Ky+PA0LDyd7qTNt4+N8xgRb9XBmAWEwzdEMBplEGc8W4OwfwsZEG4x+Hap0XIWzCbws9VXy69593uVNgxsWcbWs1qF2ZTKyMjIzlUOzWXmoR0AfgH+HPAVBZmDkPBYdDyM4f+cLjNzG6sqxgKxQMg6aCZ3Z05ZA6Dlp85NM8hm1oZGRnJkRVPRkZGcgyT4nlr0ATIHAoMmsOg5UPmUKARDkPj48nIyLhyMEwjnoyMjCsEWfFkZGQkx1AoHknr5FIen5S0NYG8JZK+lXRU0s+SnvHlCyR9JemE/5yfgEtb0g+S9g2Cg6R5knZLOubvx+oBcHjOP4cjknZJuqppDqpJzT2bTDWQmnsGDq/4Z3FY0qeS5jXFoU5+VNdsevIijmNQf7i9ksaB5UAHOASsaFjmGLDKH18H/AKsAF4GtvryrcCOBNf/PPAhsM+fJ+UAvAc87Y87wLyUHHAJH08BV/vzj4EnmuYAPACsAo5EZbUyfds4BMzBpXYaB9oNcXgYGPHHO5rkUCffly8B9gO/AgubkN9Yg/4fF78a2B+dbwO2JebwOS4P/HFgzJeNAccblrsY+BpYEymeZByA632nV6U8JYdbgTPAAlzs4D7f+RrnACytdPpamdU26Tvl6iY4VOoeA3Y2yaFOPrAbuBM4HSmevsofBlOraHgFZkx73AQkLQVWAgeAm8zsLID/XDTLV/uB13H55+MoyZQclgMXgHe9ufe2pLkpOZjZ78CrwG/AWeAvM/syJYcIM8kcVBt9EvgiJQdF6ckrVX2VPwyKpy6GNckcv6RrgU+AZ83s7xQyI9kbgPNm9n1KuRWM4Ibab5jZSly8XOM+thjej/Iobvh+CzBX0uaUHC4ByduopO243HQ7U3FQSE/+Yl11P+UPg+IZSNpjSaM4pbPTzPb44j8kjfn6MeB8gxTuAzbKZWL9CFgj6YPEHCaACTM74M934xRRSg4PAafM7IKZTQJ7gHsTcygwk8ykbVTSFmAD8Lh5uyYRhzg9+WlCevKb+y1/GBTPd8DtkpZJ6gCbgL1NCpTbMOQd4KiZvRZV7QW2+OMtON9PIzCzbWa22FxCxE3AN2a2OTGHc8AZSXf4orW4LLDJOOBMrHskXeOfy1rgaGIOBWaSuRfYJGmOpGVcYmruy4GkdcALwEYz+7fCrVEOZvaTmS0ys6W+XU7gJmHO9V1+vx12l+ngWo+bWRoHtieQdz9umHgY+NH/rQduwDl7T/jPBYmu/0GCczkpB+Au4KC/F58B8wfA4SXgGHAEeB83c9IoB2AXzqc06TvYU7PJxJkg4zgH9CMNcjiJ86UU7fLNpjjUya/Un8Y7l/stP4dMZGRkJMcwmFoZGRlXGLLiycjISI6seDIyMpIjK56MjIzkyIonIyMjObLiycjISI6seDIyMpLjP77CFk2JHH6eAAAAAElFTkSuQmCC",
1163
      "text/plain": [
1164
       "<Figure size 432x288 with 1 Axes>"
1165
      ]
1166
     },
1167
     "metadata": {
1168
      "needs_background": "light"
1169
     },
1170
     "output_type": "display_data"
1171
    }
1172
   ],
1173
   "source": [
1174
    "import tensorflow as tf \n",
1175
    "physical_devices = tf.config.list_physical_devices('GPU') \n",
1176
    "tf.config.experimental.set_memory_growth(physical_devices[0], True)\n",
1177
    "\n",
1178
    "\n",
1179
    "import numpy as np\n",
1180
    "import tensorflow as tf\n",
1181
    "from tensorflow import keras\n",
1182
    "\n",
1183
    "# Display\n",
1184
    "from IPython.display import Image, display\n",
1185
    "import matplotlib.pyplot as plt\n",
1186
    "import matplotlib.cm as cm\n",
1187
    "\n",
1188
    "import numpy as np\n",
1189
    "import os\n",
1190
    "import cv2\n",
1191
    "import matplotlib.pyplot as plt\n",
1192
    "%matplotlib inline\n",
1193
    "import operator\n",
1194
    "import tensorflow as tf\n",
1195
    "import random\n",
1196
    "import skimage\n",
1197
    "from skimage.io import imread, imshow\n",
1198
    "\n",
1199
    "\n",
1200
    "def crop_center(img, bounding):\n",
1201
    "    start = tuple(map(lambda a, da: a//2-da//2, img.shape, bounding))\n",
1202
    "    end = tuple(map(operator.add, start, bounding))\n",
1203
    "    slices = tuple(map(slice, start, end))\n",
1204
    "    im = img[slices].astype('float32')\n",
1205
    "    return im\n",
1206
    "\n",
1207
    "VAL_ALL_PATH = r'F:\\Leuk study re-designed\\ALLIDB-2 best models\\High\\Test\\all'\n",
1208
    "VAL_HEM_PATH = r'F:\\Leuk study re-designed\\ALLIDB-2 best models\\High\\Test\\hem'\n",
1209
    "\n",
1210
    "# VAL_ALL_PATH = r'F:\\Leuk study re-designed\\C-NMC best model\\High\\Test enhanched\\all'\n",
1211
    "# VAL_HEM_PATH = r'F:\\Leuk study re-designed\\C-NMC best model\\High\\Test enhanched\\hem'\n",
1212
    "\n",
1213
    "all_list = os.listdir(VAL_ALL_PATH) \n",
1214
    "hem_list = os.listdir(VAL_HEM_PATH)\n",
1215
    "\n",
1216
    "all_list.sort()\n",
1217
    "hem_list.sort()\n",
1218
    "\n",
1219
    "\n",
1220
    "'''FIX THESE PARAMETER'''\n",
1221
    "# PATH = VAL_ALL_PATH\n",
1222
    "# LIST = all_list\n",
1223
    "\n",
1224
    "PATH = VAL_HEM_PATH\n",
1225
    "LIST = hem_list\n",
1226
    "\n",
1227
    "# root_dir = r'F:\\Leuk study re-designed\\ALLIDB-2 best models\\High'   # ALLIDB-2 High root\n",
1228
    "root_dir = r'F:\\Leuk study re-designed\\ALLIDB-2 best models\\Low'    # ALLIDB-2 Low root\n",
1229
    "\n",
1230
    "# root_dir = r'F:\\Leuk study re-designed\\C-NMC best model\\High'       # C-NMC High root\n",
1231
    "# root_dir = r'F:\\Leuk study re-designed\\C-NMC best model\\Low'        # C-NMC Low root\n",
1232
    "\n",
1233
    "# model_name = r'HRD_EfficientNetB0_MccLoss_test1.h5'    # C-NMC High model\n",
1234
    "# model_name = r'LRD_DesnseNet121_weighted_test1.h5'     # C-NMC Low model\n",
1235
    "\n",
1236
    "# model_name = r'EffNetB0_mcc_loss_high.h5'              # ALLIDB-2 High model\n",
1237
    "model_name = r'DenseNet121_low_class_weight.h5'        # ALLIDB-2 Low model\n",
1238
    "\n",
1239
    "# last_conv_layer_name = \"top_activation\"        # For EfficientNetBo\n",
1240
    "last_conv_layer_name = \"conv5_block16_concat\"    #For densenet121\n",
1241
    "\n",
1242
    "out_dir = r'F:\\Leuk study re-designed\\ALLIDB-2 best models\\Low\\corresponding hetmaps\\hem'\n",
1243
    "index = 0  #Index of ouput layer    0 = all,,   1 = hem\n",
1244
    "\n",
1245
    "crop_height = 150\n",
1246
    "crop_width = 150\n",
1247
    "'''END'''\n",
1248
    "\n",
1249
    "\n",
1250
    "\n",
1251
    "import os\n",
1252
    "import skimage \n",
1253
    "from skimage.io import imread, imshow\n",
1254
    "img_all = imread(os.path.join(PATH, LIST[0]))\n",
1255
    "# img_all = imread(r'F:\\Leuk study re-designed\\C-NMC best model\\High\\Test enhanched\\hem\\4.bmp')\n",
1256
    "print('MAx: ', np.max(img_all))\n",
1257
    "print('MIN: ', np.min(img_all))\n",
1258
    "cropped_img_all = crop_center(img_all, (crop_height,crop_width,3))\n",
1259
    "print('Cropped_img MAx: ', np.max(cropped_img_all))\n",
1260
    "print('Cropped_img MIN: ', np.min(cropped_img_all))\n",
1261
    "cropped_img_all = cropped_img_all.astype('uint8')\n",
1262
    "print(cropped_img_all.dtype)\n",
1263
    "imshow(cropped_img_all)\n",
1264
    "rescaled_cropped_img_all = cropped_img_all * (1.0/255.0)\n",
1265
    "print('Rescaled_cropped_img MAx: ', np.max(rescaled_cropped_img_all))\n",
1266
    "print('Resclased_cropped_img MIN: ', np.min(rescaled_cropped_img_all))\n",
1267
    "print(type(rescaled_cropped_img_all))\n",
1268
    "print(rescaled_cropped_img_all.shape)\n",
1269
    "print(rescaled_cropped_img_all.dtype)\n",
1270
    "array = np.expand_dims(rescaled_cropped_img_all, axis=0)\n",
1271
    "print(array.dtype, array.shape)\n",
1272
    "\n",
1273
    "\n",
1274
    "from tensorflow import keras\n",
1275
    "# root_dir = r'F:\\Leuk study re-designed\\ALLIDB-2 best models\\High'\n",
1276
    "# model_name = r'EffNetB0_mcc_loss_high.h5'\n",
1277
    "'''loading model'''\n",
1278
    "# model = model.load_weights(os.path.join(root_dir, model_name))\n",
1279
    "model = keras.models.load_model(os.path.join(root_dir, model_name), compile=False)\n",
1280
    "model.summary()\n",
1281
    "print(model.layers[-1].name)\n",
1282
    "# last_conv_layer_name = \"conv5_block16_concat\"        # Foe EfficientB0\n",
1283
    "# last_conv_layer_name = \"conv5_block16_concat\"  #For Densenet121\n",
1284
    "\n",
1285
    "\n",
1286
    "#pip install tf-explain\n",
1287
    "\n",
1288
    "\n",
1289
    "\n",
1290
    "\n",
1291
    "\n",
1292
    "# Import explainer\n",
1293
    "import tf_explain\n",
1294
    "from tf_explain.core.grad_cam import GradCAM\n",
1295
    "\n",
1296
    "# Instantiation of the explainer\n",
1297
    "explainer = GradCAM()\n",
1298
    "\n",
1299
    "arr = array[0,:,:,:]\n",
1300
    "data = ([arr], None)\n",
1301
    "# Call to explain() method\n",
1302
    "output = explainer.explain(data, model, class_index=index, layer_name=last_conv_layer_name, colormap=cv2.COLORMAP_JET)\n",
1303
    "\n",
1304
    "# output_dir = r'D:\\new_leuk\\Leukemia_Work_Revive\\Corrected\\Grad-cam heatmap'\n",
1305
    "# output_name = 'test2.png'\n",
1306
    "\n",
1307
    "# Save output\n",
1308
    "#explainer.save(output, output_dir, output_name)\n",
1309
    "\n",
1310
    "for x in range(len(LIST)):\n",
1311
    "    img = imread(os.path.join(PATH, LIST[x]))\n",
1312
    "    cropped_img = crop_center(img, (crop_height,crop_width,3))\n",
1313
    "    rescaled_cropped_img = cropped_img * (1./255.)\n",
1314
    "    data = ([rescaled_cropped_img], None)\n",
1315
    "    output = explainer.explain(data, model, class_index=index, layer_name=last_conv_layer_name, colormap=cv2.COLORMAP_JET)\n",
1316
    "    output_dir = out_dir\n",
1317
    "    output_name = LIST[x]\n",
1318
    "    output_name = output_name[:-4]\n",
1319
    "    output_name = output_name + '.png'\n",
1320
    "    explainer.save(output, output_dir, output_name)\n",
1321
    "\n",
1322
    "print(\"Done\")\n",
1323
    "\n",
1324
    "\n",
1325
    "\n",
1326
    "\n",
1327
    "import os\n",
1328
    "import numpy as np\n",
1329
    "import skimage\n",
1330
    "from skimage.io import imshow, imread, imsave\n",
1331
    "print(len(LIST))\n",
1332
    "pred_list = []\n",
1333
    "for x in LIST:\n",
1334
    "    single_orig_image = imread(os.path.join(PATH, x))\n",
1335
    "    single_cropped_img = crop_center(single_orig_image, (crop_height,crop_width,3))\n",
1336
    "    single_cropped_img_dim_extended = np.expand_dims(single_cropped_img, axis=0)\n",
1337
    "    single_cropped_img_dim_extended = single_cropped_img_dim_extended / 255.0\n",
1338
    "    pred_value = model.predict(single_cropped_img_dim_extended)\n",
1339
    "    print(x, pred_value)\n",
1340
    "    if pred_value > 0.5:\n",
1341
    "        pred_list.append(1)\n",
1342
    "        pred_flat = 1\n",
1343
    "    else:\n",
1344
    "        pred_list.append(0)\n",
1345
    "        pred_flat = 0\n",
1346
    "    des_path = out_dir + '/' + x[:-4] + '_' + str(pred_flat) + '.png'\n",
1347
    "    imsave(des_path, single_cropped_img)\n",
1348
    "    \n",
1349
    "\n",
1350
    "print('Number of 0 :', pred_list.count(0))\n",
1351
    "print('Number of 1 :', pred_list.count(1))"
1352
   ]
1353
  },
1354
  {
1355
   "cell_type": "markdown",
1356
   "id": "1ebc6f94",
1357
   "metadata": {},
1358
   "source": [
1359
    "# Split classifed and misclassified"
1360
   ]
1361
  },
1362
  {
1363
   "cell_type": "code",
1364
   "execution_count": 38,
1365
   "id": "7175982d",
1366
   "metadata": {},
1367
   "outputs": [
1368
    {
1369
     "data": {
1370
      "text/plain": [
1371
       "\"\\ntarget_path0 = r'F:\\\\Leuk study re-designed\\\\C-NMC best model\\\\High\\\\corresponding heatmaps\\x07ll\\\\classsified'\\ntarget_path1 = r'F:\\\\Leuk study re-designed\\\\C-NMC best model\\\\High\\\\corresponding heatmaps\\x07ll\\\\misclasssified'\\n\\nfor x in range (len(all_images)):\\n    if all_images[x][-5:-4] == 0:\\n        orig = imread(os.path.join(path, all_images[x]))\\n        final_path = target_path0 + '/' + all_images[x] \\n        imsave(final_path, orig)\\n        print(all_images[x][:-6])\\n        name = all_images[x][:-6] + '.png'\\n        print('name: ', name)\\n        heatmap = imread(os.path.join(path, name))\\n        final_path = target_path0 + '/' + all_images[x][:-6] + '.png'\\n        imsave(final_path, heatmap)\\n    else:\\n        orig = imread(os.path.join(path, all_images[x]))\\n        final_path = target_path1 + '/' + all_images[x] \\n        imsave(final_path, orig)\\n        print(all_images[x])\\n        print(all_images[x][:-6])\\n        name = all_images[x][:-6] + '.png'\\n        print('name: ', name)\\n        heatmap = imread(os.path.join(path, name))\\n        final_path = target_path1 + '/' + all_images[x][:-6] + '.png'\\n        imsave(final_path, heatmap)\\n        \""
1372
      ]
1373
     },
1374
     "execution_count": 38,
1375
     "metadata": {},
1376
     "output_type": "execute_result"
1377
    }
1378
   ],
1379
   "source": [
1380
    "import os\n",
1381
    "\n",
1382
    "path = r'F:\\Leuk study re-designed\\C-NMC best model\\High\\corresponding heatmaps\\all'\n",
1383
    "all_images = os.listdir(path)\n",
1384
    "all_images.sort()\n",
1385
    "all_images\n",
1386
    "\n",
1387
    "target_path0 = r'F:\\Leuk study re-designed\\C-NMC best model\\High\\corresponding heatmaps\\all\\classsified'\n",
1388
    "target_path1 = r'F:\\Leuk study re-designed\\C-NMC best model\\High\\corresponding heatmaps\\all\\misclasssified'\n",
1389
    "\n",
1390
    "for x in range (len(all_images)):\n",
1391
    "    if all_images[x][-5:-4] == 0:\n",
1392
    "        orig = imread(os.path.join(path, all_images[x]))\n",
1393
    "        final_path = target_path0 + '/' + all_images[x] \n",
1394
    "        imsave(final_path, orig)\n",
1395
    "        print(all_images[x][:-6])\n",
1396
    "        name = all_images[x][:-6] + '.png'\n",
1397
    "        print('name: ', name)\n",
1398
    "        heatmap = imread(os.path.join(path, name))\n",
1399
    "        final_path = target_path0 + '/' + all_images[x][:-6] + '.png'\n",
1400
    "        imsave(final_path, heatmap)\n",
1401
    "    else:\n",
1402
    "        orig = imread(os.path.join(path, all_images[x]))\n",
1403
    "        final_path = target_path1 + '/' + all_images[x] \n",
1404
    "        imsave(final_path, orig)\n",
1405
    "        print(all_images[x])\n",
1406
    "        print(all_images[x][:-6])\n",
1407
    "        name = all_images[x][:-6] + '.png'\n",
1408
    "        print('name: ', name)\n",
1409
    "        heatmap = imread(os.path.join(path, name))\n",
1410
    "        final_path = target_path1 + '/' + all_images[x][:-6] + '.png'\n",
1411
    "        imsave(final_path, heatmap)\n"
1412
   ]
1413
  }
1414
 ],
1415
 "metadata": {
1416
  "kernelspec": {
1417
   "display_name": "leukemia",
1418
   "language": "python",
1419
   "name": "leukemia"
1420
  },
1421
  "language_info": {
1422
   "codemirror_mode": {
1423
    "name": "ipython",
1424
    "version": 3
1425
   },
1426
   "file_extension": ".py",
1427
   "mimetype": "text/x-python",
1428
   "name": "python",
1429
   "nbconvert_exporter": "python",
1430
   "pygments_lexer": "ipython3",
1431
   "version": "3.8.3"
1432
  }
1433
 },
1434
 "nbformat": 4,
1435
 "nbformat_minor": 5
1436
}