|
a |
|
b/modelQW.py |
|
|
1 |
import numpy as np |
|
|
2 |
import os |
|
|
3 |
import skimage.io as io |
|
|
4 |
import skimage.transform as trans |
|
|
5 |
import numpy as np |
|
|
6 |
from keras.models import * |
|
|
7 |
from keras.layers import * |
|
|
8 |
from keras.optimizers import * |
|
|
9 |
from keras.callbacks import ModelCheckpoint, LearningRateScheduler |
|
|
10 |
from keras import backend as keras |
|
|
11 |
import tensorflow as tf |
|
|
12 |
from keras import initializers |
|
|
13 |
from keras import regularizers |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
def colearning(pretrained_weights=None, input_size=(256, 256, 3)): |
|
|
17 |
inputs = Input(input_size) |
|
|
18 |
paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]]) # only pads dim 2 and 3 (h and w) |
|
|
19 |
|
|
|
20 |
[ inputtemp, inputspet,inputsct] = Lambda(tf.split, arguments={'axis': 3, 'num_or_size_splits': 3})(inputs) |
|
|
21 |
|
|
|
22 |
conv1ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputsct) |
|
|
23 |
conv1ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1ct) |
|
|
24 |
pool1ct = MaxPooling2D(pool_size=(2, 2))(conv1ct) |
|
|
25 |
conv2ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1ct) |
|
|
26 |
conv2ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2ct) |
|
|
27 |
pool2ct = MaxPooling2D(pool_size=(2, 2))(conv2ct) |
|
|
28 |
conv3ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2ct) |
|
|
29 |
conv3ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3ct) |
|
|
30 |
pool3ct = MaxPooling2D(pool_size=(2, 2))(conv3ct) |
|
|
31 |
conv4ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3ct) |
|
|
32 |
conv4ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4ct) |
|
|
33 |
drop4ct = Dropout(0.5)(conv4ct) |
|
|
34 |
pool4ct = MaxPooling2D(pool_size=(2, 2))(conv4ct) |
|
|
35 |
|
|
|
36 |
conv1pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputspet) |
|
|
37 |
conv1pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1pet) |
|
|
38 |
pool1pet = MaxPooling2D(pool_size=(2, 2))(conv1pet) |
|
|
39 |
conv2pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1pet) |
|
|
40 |
conv2pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2pet) |
|
|
41 |
pool2pet = MaxPooling2D(pool_size=(2, 2))(conv2pet) |
|
|
42 |
conv3pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2pet) |
|
|
43 |
conv3pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3pet) |
|
|
44 |
pool3pet = MaxPooling2D(pool_size=(2, 2))(conv3pet) |
|
|
45 |
conv4pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3pet) |
|
|
46 |
conv4pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4pet) |
|
|
47 |
drop4pet = Dropout(0.5)(conv4pet) |
|
|
48 |
pool4pet = MaxPooling2D(pool_size=(2, 2))(conv4pet) |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
comerge1_temp = concatenate([pool1ct, pool1pet], axis=3) |
|
|
52 |
poolctexp_temp = Lambda(expand_dim_backend, arguments={'dim': (4)})(pool1ct) |
|
|
53 |
poolpetexp_temp = Lambda(expand_dim_backend, arguments={'dim': (4)})(pool1pet) |
|
|
54 |
|
|
|
55 |
comerge2_temp = concatenate([poolctexp_temp, poolpetexp_temp], axis=4) |
|
|
56 |
input_mm = Lambda(tf.pad, arguments={'paddings': (paddings), 'mode': ("CONSTANT")})(comerge2_temp) |
|
|
57 |
input_mm = Lambda(tf.transpose, arguments={'perm': ([0, 4, 1, 2, 3])})(input_mm) |
|
|
58 |
comerge2con_temp = Conv3D(filters=128, kernel_size=[2,3,3], |
|
|
59 |
kernel_initializer=initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None), |
|
|
60 |
kernel_regularizer=regularizers.l2(0.1), |
|
|
61 |
bias_initializer='zeros', padding='valid', activation='relu')(input_mm) |
|
|
62 |
colearn_out_temp = Lambda(tf.squeeze, arguments={'squeeze_dims': (1)})(comerge2con_temp) |
|
|
63 |
conj1 = Lambda(tf.multiply, arguments={'y': (comerge1_temp)})(colearn_out_temp) |
|
|
64 |
|
|
|
65 |
comerge1_temp = concatenate([pool2ct, pool2pet], axis=3) |
|
|
66 |
poolctexp_temp = Lambda(expand_dim_backend, arguments={'dim': (4)})(pool2ct) |
|
|
67 |
poolpetexp_temp = Lambda(expand_dim_backend, arguments={'dim': (4)})(pool2pet) |
|
|
68 |
|
|
|
69 |
comerge2_temp = concatenate([poolctexp_temp, poolpetexp_temp], axis=4) |
|
|
70 |
input_mm = Lambda(tf.pad, arguments={'paddings': (paddings), 'mode': ("CONSTANT")})(comerge2_temp) |
|
|
71 |
input_mm = Lambda(tf.transpose, arguments={'perm': ([0, 4, 1, 2, 3])})(input_mm) |
|
|
72 |
|
|
|
73 |
comerge2con_temp = Conv3D(filters=128, kernel_size=[2,3,3], |
|
|
74 |
kernel_initializer=initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None), |
|
|
75 |
kernel_regularizer=regularizers.l2(0.1), |
|
|
76 |
bias_initializer='zeros', padding='valid', activation='relu')(input_mm) |
|
|
77 |
colearn_out_temp = Lambda(tf.squeeze, arguments={'squeeze_dims': (1)})(comerge2con_temp) |
|
|
78 |
conj2 = Lambda(tf.multiply, arguments={'y': (comerge1_temp)})(colearn_out_temp) |
|
|
79 |
|
|
|
80 |
|
|
|
81 |
comerge1_temp = concatenate([pool3ct, pool3pet], axis=3) |
|
|
82 |
poolctexp_temp = Lambda(expand_dim_backend, arguments={'dim': (4)})(pool3ct) |
|
|
83 |
poolpetexp_temp = Lambda(expand_dim_backend, arguments={'dim': (4)})(pool3pet) |
|
|
84 |
|
|
|
85 |
comerge2_temp = concatenate([poolctexp_temp, poolpetexp_temp], axis=4) |
|
|
86 |
|
|
|
87 |
input_mm = Lambda(tf.pad, arguments={'paddings': (paddings), 'mode': ("CONSTANT")})(comerge2_temp) |
|
|
88 |
input_mm = Lambda(tf.transpose, arguments={'perm': ([0, 4, 1, 2, 3])})(input_mm) |
|
|
89 |
comerge2con_temp = Conv3D(filters=128, kernel_size=[2,3,3], |
|
|
90 |
kernel_initializer=initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None), |
|
|
91 |
kernel_regularizer=regularizers.l2(0.1), |
|
|
92 |
bias_initializer='zeros', padding='valid', activation='relu')(input_mm) |
|
|
93 |
colearn_out_temp = Lambda(tf.squeeze, arguments={'squeeze_dims': (1)})(comerge2con_temp) |
|
|
94 |
conj3 = Lambda(tf.multiply, arguments={'y': (comerge1_temp)})(colearn_out_temp) |
|
|
95 |
|
|
|
96 |
|
|
|
97 |
comerge1_temp = concatenate([pool4ct, pool4pet], axis=3) |
|
|
98 |
poolctexp_temp = Lambda(expand_dim_backend, arguments={'dim': (4)})(pool4ct) |
|
|
99 |
poolpetexp_temp = Lambda(expand_dim_backend, arguments={'dim': (4)})(pool4pet) |
|
|
100 |
|
|
|
101 |
comerge2_temp = concatenate([poolctexp_temp, poolpetexp_temp], axis=4) |
|
|
102 |
input_mm = Lambda(tf.pad, arguments={'paddings': (paddings), 'mode': ("CONSTANT")})(comerge2_temp) |
|
|
103 |
input_mm = Lambda(tf.transpose, arguments={'perm': ([0, 4, 1, 2, 3])})(input_mm) |
|
|
104 |
|
|
|
105 |
comerge2con_temp = Conv3D(filters=128, kernel_size=[2,3,3], |
|
|
106 |
kernel_initializer=initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None), |
|
|
107 |
kernel_regularizer=regularizers.l2(0.1), |
|
|
108 |
bias_initializer='zeros', padding='valid', activation='relu')(input_mm) |
|
|
109 |
colearn_out_temp = Lambda(tf.squeeze, arguments={'squeeze_dims': (1)})(comerge2con_temp) |
|
|
110 |
conj4 = Lambda(tf.multiply, arguments={'y': (comerge1_temp)})(colearn_out_temp) |
|
|
111 |
|
|
|
112 |
up5 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
113 |
UpSampling2D(size=(2, 2))(conj4)) |
|
|
114 |
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up5) |
|
|
115 |
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) |
|
|
116 |
merge5 = concatenate([conj3, conv5], axis=3) |
|
|
117 |
|
|
|
118 |
up6 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
119 |
UpSampling2D(size=(2, 2))(merge5)) |
|
|
120 |
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up6) |
|
|
121 |
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) |
|
|
122 |
merge6 = concatenate([conj2, conv6], axis=3) |
|
|
123 |
|
|
|
124 |
up7 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
125 |
UpSampling2D(size=(2, 2))(merge6)) |
|
|
126 |
|
|
|
127 |
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7) |
|
|
128 |
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) |
|
|
129 |
merge7 = concatenate([conj1, conv7], axis=3) |
|
|
130 |
|
|
|
131 |
up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
132 |
UpSampling2D(size=(2, 2))(merge7)) |
|
|
133 |
|
|
|
134 |
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8) |
|
|
135 |
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) |
|
|
136 |
|
|
|
137 |
conv9 = Conv2D(4, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) |
|
|
138 |
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9) |
|
|
139 |
|
|
|
140 |
|
|
|
141 |
model = Model(input=inputs, output=conv10) |
|
|
142 |
|
|
|
143 |
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy']) |
|
|
144 |
|
|
|
145 |
|
|
|
146 |
|
|
|
147 |
if (pretrained_weights): |
|
|
148 |
model.load_weights(pretrained_weights) |
|
|
149 |
|
|
|
150 |
return model |
|
|
151 |
|
|
|
152 |
def expand_dim_backend(x,dim): |
|
|
153 |
xe = K.expand_dims(x, dim) |
|
|
154 |
return xe |