|
a |
|
b/modelMC.py |
|
|
1 |
import numpy as np |
|
|
2 |
import os |
|
|
3 |
import skimage.io as io |
|
|
4 |
import skimage.transform as trans |
|
|
5 |
import numpy as np |
|
|
6 |
from keras.models import * |
|
|
7 |
from keras.layers import * |
|
|
8 |
from keras.optimizers import * |
|
|
9 |
from keras.callbacks import ModelCheckpoint, LearningRateScheduler |
|
|
10 |
from keras import backend as keras |
|
|
11 |
import tensorflow as tf |
|
|
12 |
from keras import initializers |
|
|
13 |
from keras import regularizers |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
def mc(pretrained_weights=None, input_size=(256, 256, 3)): |
|
|
17 |
inputs = Input(input_size) |
|
|
18 |
paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]]) # only pads dim 2 and 3 (h and w) |
|
|
19 |
|
|
|
20 |
[ inputtemp, inputspet,inputsct] = Lambda(tf.split, arguments={'axis': 3, 'num_or_size_splits': 3})(inputs) |
|
|
21 |
inputs_temp = concatenate([inputsct, inputspet], axis=3) |
|
|
22 |
|
|
|
23 |
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs_temp) |
|
|
24 |
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1) |
|
|
25 |
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) |
|
|
26 |
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1) |
|
|
27 |
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2) |
|
|
28 |
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) |
|
|
29 |
conv3 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2) |
|
|
30 |
conv3 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3) |
|
|
31 |
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) |
|
|
32 |
conv4 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3) |
|
|
33 |
conv4 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4) |
|
|
34 |
drop4 = Dropout(0.5)(conv4) |
|
|
35 |
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
|
39 |
up5 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
40 |
UpSampling2D(size=(2, 2))(pool4)) |
|
|
41 |
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up5) |
|
|
42 |
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
up6 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
46 |
UpSampling2D(size=(2, 2))(conv5)) |
|
|
47 |
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up6) |
|
|
48 |
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
up7 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
52 |
UpSampling2D(size=(2, 2))(conv6)) |
|
|
53 |
|
|
|
54 |
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7) |
|
|
55 |
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) |
|
|
56 |
|
|
|
57 |
|
|
|
58 |
up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
59 |
UpSampling2D(size=(2, 2))(conv7)) |
|
|
60 |
|
|
|
61 |
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8) |
|
|
62 |
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) |
|
|
63 |
|
|
|
64 |
conv9 = Conv2D(4, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) |
|
|
65 |
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9) |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
model = Model(input=inputs, output=conv10) |
|
|
69 |
|
|
|
70 |
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy']) |
|
|
71 |
|
|
|
72 |
|
|
|
73 |
if (pretrained_weights): |
|
|
74 |
model.load_weights(pretrained_weights) |
|
|
75 |
|
|
|
76 |
return model |
|
|
77 |
|
|
|
78 |
def expand_dim_backend(x,dim): |
|
|
79 |
xe = K.expand_dims(x, dim) |
|
|
80 |
return xe |