|
a |
|
b/modelMB.py |
|
|
1 |
import numpy as np |
|
|
2 |
import os |
|
|
3 |
import skimage.io as io |
|
|
4 |
import skimage.transform as trans |
|
|
5 |
import numpy as np |
|
|
6 |
from keras.models import * |
|
|
7 |
from keras.layers import * |
|
|
8 |
from keras.optimizers import * |
|
|
9 |
from keras.callbacks import ModelCheckpoint, LearningRateScheduler |
|
|
10 |
from keras import backend as keras |
|
|
11 |
import tensorflow as tf |
|
|
12 |
from keras import initializers |
|
|
13 |
from keras import regularizers |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
def mb(pretrained_weights=None, input_size=(256, 256, 3)): |
|
|
17 |
inputs = Input(input_size) |
|
|
18 |
paddings = tf.constant([[0, 0], [1, 1], [1, 1], [0, 0], [0, 0]]) # only pads dim 2 and 3 (h and w) |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
[ inputtemp, inputspet,inputsct] = Lambda(tf.split, arguments={'axis': 3, 'num_or_size_splits': 3})(inputs) |
|
|
22 |
|
|
|
23 |
conv1ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputsct) |
|
|
24 |
conv1ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1ct) |
|
|
25 |
pool1ct = MaxPooling2D(pool_size=(2, 2))(conv1ct) |
|
|
26 |
conv2ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1ct) |
|
|
27 |
conv2ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2ct) |
|
|
28 |
pool2ct = MaxPooling2D(pool_size=(2, 2))(conv2ct) |
|
|
29 |
conv3ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2ct) |
|
|
30 |
conv3ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3ct) |
|
|
31 |
pool3ct = MaxPooling2D(pool_size=(2, 2))(conv3ct) |
|
|
32 |
conv4ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3ct) |
|
|
33 |
conv4ct = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4ct) |
|
|
34 |
drop4ct = Dropout(0.5)(conv4ct) |
|
|
35 |
pool4ct = MaxPooling2D(pool_size=(2, 2))(conv4ct) |
|
|
36 |
|
|
|
37 |
conv1pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputspet) |
|
|
38 |
conv1pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1pet) |
|
|
39 |
pool1pet = MaxPooling2D(pool_size=(2, 2))(conv1pet) |
|
|
40 |
conv2pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1pet) |
|
|
41 |
conv2pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2pet) |
|
|
42 |
pool2pet = MaxPooling2D(pool_size=(2, 2))(conv2pet) |
|
|
43 |
conv3pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2pet) |
|
|
44 |
conv3pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3pet) |
|
|
45 |
pool3pet = MaxPooling2D(pool_size=(2, 2))(conv3pet) |
|
|
46 |
conv4pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3pet) |
|
|
47 |
conv4pet = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4pet) |
|
|
48 |
drop4pet = Dropout(0.5)(conv4pet) |
|
|
49 |
pool4pet = MaxPooling2D(pool_size=(2, 2))(conv4pet) |
|
|
50 |
|
|
|
51 |
conj4 = concatenate([pool4ct, pool4pet], axis=3) |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
|
55 |
up5 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
56 |
UpSampling2D(size=(2, 2))(conj4)) |
|
|
57 |
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up5) |
|
|
58 |
conv5 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5) |
|
|
59 |
|
|
|
60 |
|
|
|
61 |
up6 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
62 |
UpSampling2D(size=(2, 2))(conv5)) |
|
|
63 |
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up6) |
|
|
64 |
conv6 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6) |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
up7 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
68 |
UpSampling2D(size=(2, 2))(conv6)) |
|
|
69 |
|
|
|
70 |
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7) |
|
|
71 |
conv7 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7) |
|
|
72 |
|
|
|
73 |
|
|
|
74 |
up8 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')( |
|
|
75 |
UpSampling2D(size=(2, 2))(conv7)) |
|
|
76 |
|
|
|
77 |
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8) |
|
|
78 |
conv8 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) |
|
|
79 |
|
|
|
80 |
conv9 = Conv2D(4, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8) |
|
|
81 |
conv10 = Conv2D(1, 1, activation='sigmoid')(conv9) |
|
|
82 |
|
|
|
83 |
model = Model(input=inputs, output=conv10) |
|
|
84 |
|
|
|
85 |
model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy']) |
|
|
86 |
|
|
|
87 |
|
|
|
88 |
if (pretrained_weights): |
|
|
89 |
model.load_weights(pretrained_weights) |
|
|
90 |
|
|
|
91 |
return model |