3608 lines (3607 with data), 524.4 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/anaconda3/envs/stream1.0/lib/python3.7/site-packages/rpy2/robjects/pandas2ri.py:17: FutureWarning: pandas.core.index is deprecated and will be removed in a future version. The public classes are available in the top-level namespace.\n",
" from pandas.core.index import Index as PandasIndex\n",
"OMP: Info #271: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n"
]
}
],
"source": [
"import anndata as ad\n",
"import stream as st\n",
"\n",
"adata = ad.read_loom(\"cd3_minus_subset_NK_cells_obj_sub.loom\")"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Saving results in: ./stream_result\n"
]
}
],
"source": [
"st.set_workdir(adata,'./stream_result')\n",
"# cell_label.tsv is a two column tsv without header, first column is cell barcode, second column is annotation for each cell\n",
"st.add_cell_labels(adata, file_name='./cell_label.tsv')\n",
"# you can sepcify a color for each cell label as well. by specifying file_name.\n",
"st.add_cell_colors(adata, file_name= './label_color.tsv')\n",
"adata.obsm['top_pcs'] = adata.obsm['pca_cell_embeddings']\n",
"adata.obsm['X_dr'] = adata.obsm['umap_cell_embeddings']\n",
"adata.obsm['X_vis_umap'] = adata.obsm['umap_cell_embeddings'][:,:2]\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1.0'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"adata.obsm['umap_cell_embeddings']\n",
"st.__version__"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Importing precomputed umap visualization ...\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABZM0lEQVR4nO3dd3wc933n/9d3ZrZjF70QYC9ipyixqHfJsmxZtmTLlhXLXY5T7MRxLr87J9dyd8nlcr5zLhfHPpc4tmUVS5Ylq1myRPXKIvZeQIJEr7vYNuX7+2MWS4AAKwCCJD5PP2hiZ2dnvruE8Ma3K601QgghxGRhTHQBhBBCiLNJgk8IIcSkIsEnhBBiUpHgE0IIMalI8AkhhJhUJPiEEEJMKhJ8YtJRSh1QSt18CudppdTcM7zHGb9WCDG+JPiEEEJMKhJ8QgghJhUJPjFpKaVWK6XeUkr1KKWalVL/VykVPOa0Dyml9imlOpRSf6+UMga9/otKqe1KqW6l1G+VUjPO8lsQQpwBCT4xmbnAN4Aq4ArgJuAPjznnTmAlcCnwUeCLAEqpjwHfAu4CqoHXgAfPRqGFEKMjwScmLa31Oq3121prR2t9APg+cN0xp/2d1rpLa30Q+A7w6cLx3wf+Vmu9XWvtAH8DLJdanxDnPgk+MWkppS5SSj2llGpRSvXhh1fVMacdGvR1I1Bf+HoG8A+FZtIeoAtQQMM4F1sIMUoSfGIy+2dgBzBPa53Ab7pUx5wzbdDX04Ejha8PAb+vtS4b9CeitX5z3EsthBgVCT4xmcWBPiCllFoA/MEI5/wbpVS5Umoa8CfAw4Xj3wP+nVJqMYBSqlQpdffZKLQQYnQk+MRk9ufAvUAS+AFHQ22wJ4B1wPvA08CPALTWjwN/BzxUaCbdAtw2/kUWQoyWko1ohRBCTCZS4xNCCDGpSPAJIYSYVCT4hBBCTCoSfEIIISYVaywvVlVVpWfOnDmWlxRCCDGO1q1b16G1rp7ocpxNYxp8M2fOZO3atWN5SSGEEONIKdU40WU426SpUwghxKQiwSeEEGJSkeATQggxqUjwCSGEmFQk+IQQQkwqEnxCCCEmlTGdziDOX5uPPMOGQ49iu1kWTbmVVdPvpbH7PdqTe6kvW0IiXEtftpUpiYUEzPBEF1cIIc6YBJ9g0+Hf8NSW/1x83NK3kzW7/pGu9CHyTgrXs1HKJGyV4GoXywhSGqnn6tlf5pq5X8E05NtICHH+kJ9YgvcOPjTkcdbppSO1HwCN5x/UNql8tnhOMtfKQ+v/mNf2fp+PX/I/WVR3y1krrxBCjIYE3yT39v6fsr3lBXJOCoXCNEK4Xr4QeOokr9a0Jnfz5Ka/AjRHerYQskpY1vARSiNTzkLphRDi9EnwTVKZfC8v7vwOr+79Z9L5Hjxt+0+46UFnnXyTYtfLkcy28cB7XyUWrADgncaf85lVP6AuMX8cSi6EEKMjwTcJrW18mCc3/3s6+vfjaZdTCbjj0Xh0pg8A0JdpoTI2E4A39v2Qjy//+9EXVgghxphMZ5hk2pJ7eeC936ej/wCedhhN6B3L9jK0Jndhu9liH6EQQpxrJPgmmZd2fYeskyqE3tjTuPRkDjOtfPm4XF8IIUZLmjonma7+RjTuuN4j56SIBMrG9R5CCHGmJPgmmfLItBM8qxh906ciaEZ5c/+PKYvUc8m0u07pVZ72eH7737P+0C8JGGEum3Ufl8/8LG/t/wlbmp9BKYOLGz7KFbM+j6GkoUIIceYk+CaZy2Z+htf2/b9hg1oUBpYRwvayjDb8bDdDW3I37zY+MCz4HDfP2oMPs6/zLeKhGlbPuJfqkjn8r5duZE/Hq8Xz9nW+zbuNvyDv9BePvbL7u2jtcfWcL4+qfEKIyU2Cb5KZVXU5s6uu5GDXOj/ktD9fz1ABlPJrawEzTNbuwx2Y4nAcpgqg0aDBY6DPUONqB9dxONC1Fk97vLnvx2w6/CQajePmSOU6UcqfI/j2gZ9huxn6ss1Drq1x2dP+GrXx+YSsWPH4hqZfSfAJIUZFgm+SUUrxudU/5teb/h2NXevozbQQC5UTC1ah8Vgy5TZuuOjr/OK9r7Kz7SVAYRoWGbuPgZqgQYBoqIyAESbvpjGNAH3ZVo7WFP2/e9JN/M8Xr6EtuZuQVULIjNHRv49YsJJYqJKezBFSuTaqXYgpCGjIK0grCnPnNZ39B7DMIOWRqQTMCK6XP+ufmRDiwqK0Hrvh7CtXrtRr164ds+uJ8dWbaaa5dzsbD/+a/nwX86qv5YpZn8cyg2TsPv7vKx/Cdv1lylzPJpVrZ271dVw/74947P0/pztziEy+Bw3YQya+H2UoC9MIAJqgGcN2M2jtAQa2l8bQ/tBiF//vhAeOgmQh/AxlYSiTgBmmumQuq2Z8mlsWfPOsfD5CTAZKqXVa65UTXY6zSWp8k1hpZAqlkSksqLtx2HORQIIPLf73/G7Ht+nPdxEKlHD1nC9THp1Gd/ogU+LzONyzwa/cKQOlTLR2ObrMmUZh4GkX7frrfTpuHkMF8LSNUfjW8zhaT3Txa3sJ7Qdf0APb8HC0i0Yzs3I15dHpbD7yNPNrbiBoRcf5ExJCXIgk+MQQnvboTO3n6a3/hSO9WwhbcVbPuJfFU27jkfV/Qn++i7BrU9a1i4SlsQFDewQDFXQ4XXhaQ2Fha43maKz5gai1i8LA5Wj/4eA2BwOYY0M+AEGgV3vkFbhenrf3/5Tdba8SMMO8GPwOv7fye1TH54z/hyKEuKBI8AkA+nNdPLf9v7OrbQ0dqf2ErBJKQlVknSTvNv6Cxu519Oe7yDkp7ORBWowcOQ0JFSKkDLSTJmRGyTgpjk6L0IAqBJv/dSRQCmiyTh+eN3QSvQKiGtpMiBSOGZpiJbK/3yXZe5hZ9bPpzbTxu53f4dMr//EsfDpCiAuJBJ8AKA52ybtpbDeD7WYwlEk0WA7Agc53CZgRutNNlGibEJBF00ueSh0C7RI1wthGCI2H1nrIkmgKA9OwMA2LcCCO4/QDDoOHqgQAS0OPcbQWaGrQLhzeN5fejiq0a7B3s0ft1A6aWh4h3T2FO6+8j4rYNA63H2HdvjXs7X2cztwGosEyrp59P1fP/YrM/RNCFEnwCfqyrTR2rQP8gBqQsXuLwRcP1dCTOQJoHKUIaEVCQ1YZBDFYoiNsi00lnWnE9WxQ4GqF59mAQimF6zmkcu2UGhFm6xAxO89WS+Mov2ZXriEKxFxYnleUeYqkUryCxY7uMlyn0C/oGBxpnIarD/Av65/ljZ1PcvHMa1i3sZO21B4cL0tlrUfttB08tvHf0N6/VxbMFkIUya/BgsH77gXMMJYZHnJcKYPbFn0LFNhejhQOeTz6FeTwSOLwfiRMWucpCVUfvazWmEaIgBkpXE0T1B6Luw5Qm02xOgdTXajwoEL70xlW5eD6nKLUM9BaEfPgNs9lblXrkBJrT9HeNBWtYd8exUsbn+RgeyPpfg/XUbQdribZU4LWHhsO/Yq25J5x/QSFEOcPqfEJEuEa5lRdyd6ONwGoiE4jmW0jEZ5CfekSrpr9RWoT84lYpfSpZrTS9CoPtItlBIiWzEGZIbKZFspDtSzVZVRm+zgSKmNfuIS+fBdKa/KF4S67LFiY96j2DO5Na5pMyCrFDBdyCjyt0Gh0odYIcHE0xTbPQCn/GmiFYwdRSmPbJp0tVVg6B54ia4dRhse+bbOoqW8nPh86+vdTE587YZ+xEOLcIcEnALhj2X/lxZ3/m52ta4gEEnxw0b9j5fRPFZ9/r/FBTMOiqmQOyWwbGbsHlEkkVIlrl9O59yLy2QgfqO5igdlCwIZl2R4ey3WgTU23Aq3AwZ+ukECh0IRRXOQerXHmtaa7MKJFafxg04pMNuwPmSkEYW0wy/xoH512kB3pOBE05ZbfY2hrgx7HwtWKlqZanIyie64FdWfv8xRCnLtkArs4rp7MEdYfepRUrgOtNVuOPFNcaqw73UTOSRJ2L+LIG59BZYOYnkcYxc0Nv+XmqS+AdrHRvBXQPBcGFFyWg8ttRUT7IzhNQA1qatVAH5AxKI5wSbsW/2n7UrqdCForbq5o4cNVLYXan6IxE+Ph1qmDrqOZHUnxSk81Cr+p1jIDXLf8Gv7jF/4S0zDP2mcoxLlOJrALUdDVf5CfvPM5snYSAE+7ZO2+4mCXklAltpvG3bWCcL+BgY0qBNXLh6/jytpXiFgZLGCKCzHA9eDyvCIChE/w+1ZCa7BNXEOT9wyeODyDjGEyNZRmaaybz9cfIu2apLWJ4xnMiaS4LNHFu30VgN8zeXG8lzd7q3G0QmuN7di8uG4Ns6bM4gsfum/cPjchxLlPBreIEb1z4OfF0AMwlEnIKmF6+QpKQlVcFJ3DfcZMSrtimFpj6KNDZBzPoitbycAUdqUUJR5cm/MHsUS0/xvXcetdSpEwXOIa8naQTf2lhPAIBBzyOkCHHSLnmVRaNqWmjaU09aEsHoq0Z1ETzJJzlB96DMwo1Hja4zevPzGOn5oQ4nwgNT4xou5MU/HrkOtQls9yqHcmtaE7+KD5BoH9P0J7eebF9nGkd8aQ14atLDURfxRmDohr+FRaYRX6+IIMHkd6PApTaaoCWf7vRRt4raeKX3dMpQMPrRVJ1+SN3kpcrZgd7iegXNKuCVqzLRlnXbIcDSSsPCZgKk3WM2nrbufAkQNUl1ezq2kvdeXVTKmaMmafmxDi3CfBJ0Y0o2IlBzrf5aJUF3O7kjy65XO0pKbymDrAb8xa7pndwKKyzVw35WV29iygJe2Hh6E87pjxOAHTX5JMA+VeoXZXaN48tpnB76krTJ0ABrqdFRAxNK6GxkwJWit6nSBv9lSwPlVBn2NhKc1rVNNpB1gZ72J1opunO+tpzYexcIlYHnnPr1tGDI+w4fHl//5Fsq7C0x6GMlgw/SL+z598m2hY1v4UYjKQ4BNDpFp3sfnVJwnbh7kppqjoa+PlQzfRnGzAQoOXI+cqHtv7MS66ZAvRQJqvL/0Ou3rmk7JLmFe2i9JgL+AvU+2v4+KH2MlreSMzFcSto6vAPN1ZT04bhJRH0HBJuQEMNPfWNWEomBLez5quaiKGy+u91UOuFTEckvk8rva/9V3tsvXAdj77377MsjlLuWzRKm5ZeSOGIb0AQlyoJPjOQ3knzdbm5+jNtjCr8jJmVKw47rmeV9hDz/Bjp6c3x47d3bz8xmH2HuhjxtQSPvmxeVw0p4ytG3fyd995m97sVLRRy/zSUv502T5ae2djoQqb1gJoUnac1nQtDSVHMJTHgvLtI95/YHDmwJ+R42Twep4Uqn1DY/KOqsMcyERpzkewtSLvGbhKkXT9b+H6UIYOO0iZZRNUHrdWttKUjbCxv4ykExhyrxLTIecM/dY/0tFMSbSE/c376U52c89Ndx/3MxVCnN8k+M4z6XwP//rOF+hOHwLgzX0/5vJZn+W6OV9jy/ZOuntzLLyonPKyEI89uZd31vl9bSsvqcF1NW+808yhIylc1w+ZxkNJ3ninhctX1bJ/90G68kC4A4B9mQoe3P1RqsNdHOqbPqTGZiqHslDXCcvqL1WtMNE4DA69gUWsGVi7+ujj44iaHt+YvpuHW6fybl8F3U6IvGfgaEXMdAkqzfRwGlcb9LsWGnBRfKCihV+3N+Bq/+4lpk1zLj7s+hpNT7KH8ngZL294lY9f9zECVmDYeUKI858E3wTL5Vy6erJUVUQIBE7evLb24MPF0Bvw1r6f8eZz82lu8pcaU0pRXxflcHM/2ZxLf9rm0Sf34DgejqPxjskY19O88U4LSoEVzRQDK4vB5u4l/NHC7+I40JGtpDk9FYBrprxC1MqetLwD1yp+o+ljnkQVjhViVQ06QelizU8pTdh0+Vz9QT5V28TfNc5nfbIcAyizbD5afZhSyym8N01jNsbWVJyKgM1XGvaxLxMDDW/0VuEcp97Z1tNOOpehMlGB7dgSfEJcoCT4JtDLbxzmyef2k8u5RKMB7r5jDqsvrSVvuzz53AE2bekgkQhy/VUNzJ6RoKsnS2vf7uLrMxmHnr4c2ZxLcv8WElxCLu/R25dn974eLNOfO6e9k9WnfBoDJ1OJEUxiBNKAYnH1Oioi7dw+80k8bdCRqSbrBlhSse2U32dxWnmxEP7chz7bIuuZlAfyWMXcO6YncCAIC1MTPO2P9vz3M7fzoyMzac6H+Uh1MxdFUjha8XpPFc92TiHpWhzJhbG1QVUgR5ll05iNYmu/8VUV/3/Q+9eaZDpJ3s7zd7/4Nt+850/JZNMYhkllokL6/YS4QEjwTZDGQ0l++cTRhZPTaZufPbKTmdPi/I9/3MCuvT14nsYwFC+92uT3jylFxTxNw8V5ggGD5rY0nqfRnkFvay29Tr/fl6Y1WoPtHPf2I1K4aG3gZsvx8nEqos3cPGUN/W4Uwwmxt3cuW7uXoIGkXcbltW+e2YCVwovCpkfSDdCaD1MVyGMoXZx6APi1vUG1Pr/50pfxTD43pZE3equoCuTptoP0OAEeb2/wz9VHg63DDtFhh4q3NvFrj3nPIK+HzybM2TleeO8lXnn/dZRSWKbF3IbZfP0Tf8jCGQvO5B0LIc4hEnwTZPO2zmHHPE/z04d3sG1Xtx9ohQAb4KLp3HsZqnQ9gXhTceBK377bcPMJinvfneHwSa0DHO10U0yLHQbPxHVDbOhczqvN12MZDgrN3t55bO9ewBcW/BjjFO+n1EAg+Xu0m4amPJQl61i8nyxlajhLZSBPRLlHX6QVjgZj0ILV/mehiBqaq0s7eL6rjq39CTrtIFnPIGT4n0PcdOh2hjZXBpTHHZWHmRrJ8EJXLVv7y0b+LNDk7BwAhmGw/eBO/uHR7/Kdr/0PwsHwiK8RQpwfJPjOkmzOwXE0SsGb77bw3oZW+pJ5SmIBlPJHW/albPYf7MNxjt8w6eTDtLz9daI12zFCXeS6L8JODV19+UTLr0asfhaU7SDrhtjVs6A4rN83MOlAYwbSJPMJcMOAZmPncv/+noWhXIJmnkP9M3E9A2V4I4btSOXQyp/eMNBoGFQQCDhUB7M81lbPteUdXFLSWzzfVZo+FDEFhtIordC6MFpUw09bZrAxVQZA0gnQ4wSoCuT82qPyhtzbRDMvmuSaik7yrqI9f2oBprUmb+fp6Olg6/7trJh/ySm9TghxbpLgGycHm5K8/k4zyZTNvgO9HDycIpOxyeVcLMsgFguQyTikM34NKtnvgD61vjgwSbctOe0yzSvdwX3z/rU4ubwrW8n/2fwn5LzIMWcqTDtIMlPNju6FXFe/Bk8bGMrD9gJk3TDxQJKcGy7W9rQeWtM8XvgOTGkYGNc5cFo04FJm2iyJ9Q45P6n885NAAn+Qi6sVKdck78GmQugBxEyHPtci5VoYSpN0h9b2NP6C165W/Lh5Ju128BQ/OV/OzhEJHftZCSHONxJ8Y2z7rm7+9/fep/FQ8rg//N28Ry6fwzAUmaw78kljTOFx16zHiqEHUBHupKGkiX198wad6feMudokaObZ1r2IVTXvcFHpTjZ0riBtxwiYeRSahWVbMY6pVZ3MwEcyaEID/fjTDD5Xf/CYQmsSGnqV5reGSZWnMIE9XohPKZuUGxjyi4KhNFWBHN12kLRn4hwzUEaj6MgH+R+N82k5xdoe+DU+pRQ15TUsmH7Rab1fIcS5R4JvjGzf1cVvnj/Aa28eIZc/tTDwjp1XMI4SwT7KQt2Djvh9eXPie4vBZ+ChlMbTCks5XFy5gStq3yDnhrm89k1686XsYy6mcpmd2Mudsx4rXu1U+xVN/AEqbmHgiQeUAJYa+bNQ+Ita94Yc2lBoFHOCKVQqSHkgT4WVp8sJFt6RwtEGIcNFaXBcY0gwaiDpBUjmA5zuOjKmYfB7t9wjIzuFuABI8I2B3ft6+O6Pt9DTmzvl0DvbUnaMjBMhYmUKR/w6V1XEjxONwkOhtKI82MFdsx/hlqkvYnsBevNlKOXxpYU/IO1EUFBcluy0FaYjDKzU4i9YPTCXgaFtvVqhCiM9b84p1gc0HaamKhUh6frTEu6obuKJ9ql0OUG0htnhFHsyJYXnhzLQeGcwDjUcDFNXUUNjS+Npv1YIce6R4BsDr755BM/T5PJnp9nyTLg6wAtNH+SOmY8DkHFCrO9YycuHbyo0bnoYeJjKI2zluH7KGgAChk1VuL14HStgYxxTOxuptjcwgnOk48MmrZ+IhoCCuS7MdhVJFH+7fx4zIhlipsP7yVLmhFN8bsoBmnNhNvWX0ZMMDOk/HHAmoeeXQRMKhLBM+c9FiAuB/Jc8BjJZB9vx6E+f5sS5s+yt1qs43N/AwrItrOtYTXeuArc4j80gZGaJB1K42uSBPZ/n8/N/POwax4beiYwUfsWdF0YaBTryVaAwitMAyoAbK9p5pnMKGggrlxsr2ykNODg6z/a2BOUBm/Z86GiZh9X0Ti8A845NXzrFNcuuOq3XCSHOTRJ8o+S6HpmsS9PhFI579vrsztTB1EwOpmYOOlKY+4dHSSBF0Myh0OzsWcjB5HSqI+0EzSyeNrC9MM8duo2dPQuIB/q4vn4NSys3n9XyK2BJSR/PdtbhaYMryzqJGB5JxyJmOnyi+hCv9laRdkxSnj+601IaxzOOu1TZyXjaAzQt3a1MrWmQmp8Q5znpqR+lp55vZF9jL96JJs+dowzlEjEzgD/nzSss5GwoD0dbNGem0J2voCXdQMaN87M9X+K9tsvoy5dyuH8av9hzH22Z6hPf5DhGbAYt/N+JekltDxKmTUc+QJsd4qnOen54ZBYHMxHChsvKRDcLoylMo9BvqQ1szzhObfLUdfd18/0nfsi3H/4HXO/cbdIWQpycBN8ovbOulXzewzjT5VLOCj3sT9DIUhdpJhHsJWjkcLVJ1o3g6YFVLDWVoQ5S+RI0igN909nfO33IVcuDXVjKHn67UVAc3cpopHfR5YR4tG0qfW4IVyv6XZPLSzuZGckQNDSWAe8ly+l3rcKgHb9vzz3T/r1iwfzX72jcyYZdG0d3LSHEhJI2m1FSyl9D0/DX1Jro4hyHP3WhIdbE1NghWtJ1NMSaOJCcTXeuHK0VYTOD7Vl05aqojbRwQ/3v6LPLeHDPvcwr3UXeDZJ1w0TMTDGU6qLNxVriqEt4Ch9drxPgd101vNZTBUDOMwmYHstKetFAxjUx0ZRZNqbS5IeVTQ8aOHqa/Xx2nsMdzVSXVtLUfpiVCy49rdcLIc4dEnyjdOXqOp55oZFQyB8kYjveKf0QP7sUH535Ky6vfat4pCLUybMHP8TrLdcSMGyCRh5XmziexTV1a5gSa+bnuz5HR7YKhcLApTrcTnO2jLxnkLBsOnIVRKzskPd7OhXfgdVejtvsOfhc4IGW6WxPJzCVxlQat7AQdVs+REUgj+eZJF2LlYluNibLyGAecwVVXDnGO7oR4CnxtEcynSSTTdPVd+J9CIUQ5zZp6hyl226awW03zWDOzFKqKsNMbyhh6aIKLllaRSRsYhj+AssT2RI6NXZgSOgBWMqhIXaYkJnHUi5Kgak8qsIdlIV62NUzH0O5uNokacdZUrmFz87/Hv2qi7RnETBzzC/fQshKD516p0+t9jb4/JPxALuwLRHa372hMpCnOpjDKqwcMzB53UMxI5xmSihzzFWO/gOM5vcS1/N44vWnSGVSo7iKEGIiSY1vlAxDcfutM7n91pkANB1J0Z+2mT2jlPu/sYbOrixaa1zPwy2MiQgGDAxTUZYIEQoaNDaN7oeoZSrCEYtUauT+tqpwB++0Xk5jaibxQJLlVesJGVlmJ/ZiKafYADi15BC3T/8NQTPHrMR+Lqt5m8f2f4KME+XeuT/jSD5EvPI34Fl8acYOKqx8odZFcT+98eAVlh5bnehiR3+CoKExtYtGMSuSwlIaS3kkTAcNbEyWsis9fJf1gc2NTDRuYRWY06XRdCe7eXf7Om689LpRvS8hxMSQ4BuF7t4cTzyzn517uikrC5HJ2LS0ZejuyZHPu1iWwrQUjq3xPL/mFwqZTKmL0duXo6Y6Qk1lhGTapqsrd0ZlME1YvLCCnp7ciMGnFBzJXkRHtg7QtGdqaEzN4u7ZD7Ondy6X173Fzu4FdGaruKF+DUEzX4yDiJXmnrm/4Ej/VEzDoyaYI2x4ZHHYmS7h4pIeotrAMoaPw/THVI4+Df19CP1l1BZEk3y8pomXu2vocgLMiya5pbyFvDbY1V/CpYkeMq7Jz5qnj3jngWZOlEIfu+HtaXBch+2N2yX4hDhPSfCdIc/T/NMPN9Pc2g/A/oN9pPptApZR3FbIdf099SIRCzIOylCUl4UwDUVFWZhrL6+nL5Vn174ekn157BNsRzQSpSBgmXR1ZQmHLUpiAVL9R8NPAQHLoNcup9SyCVtZAqYBCvZlLuGa6S+jvDyrq99hV998KkKdWIaN4wUoCSSJWmkUmrpICwAhw+Ou6iYeap3Ou73lrIh3Yyp93PZyjb+482j6PF3tj8rssoOUWg7Xl7dzdVkHrlb0OgFSrkUAl8fbp1IdzBEyPFx1/BZ8D4V3qqvGHIcGNu7ZzBOvP8Vli1ZRV1F7xtcSQpx9EnxnwHU9HntqL5u3d2IoRTbnkMm6aK2xbY9AwEDh/8CvrAgTCBhYpiIWDRQHwQCUlYXYtK2TUNCktiZKb1+edMYuNokOZpoMO6412LZLW0eWaMSkujKM1v7SaVqDZRok4gG6enJ0OlWUx/KUhjyUFSYf6mVGQ4RcWtPW6fG7pluJzkgxv3QHZcFuAoa/Co2hju61p4HLS7uYG02Rdk0SllMcZGIeJ0dGG36WgqwHJaZD3lPYnknY1BgKEpZDxjPZ2p9AA835CLZWJJ0ARmH7ovGgUDS1H+bXrz3JU28+w9c+/ocsm3P620QJISaGBN8Z+NHPt/P2uhbSaQfH8Yrb1mj8MHJdjWUqlIJw2GLx/AqSKZvDzUf78iorwqxaXsPuvT00t/YTCVtEwhaO63GkJV0MUaVAKUUwaJDJ+Mk3eC1nT/vhkko7RCMB6utiBIMm8+eWsfb9Nlrb0nievwFuXy6MawSoqgyzbMkUFIpwNMb2/YuwXYtXjtzIlGgzpcHe4nZDg0Nv4KZVgTwM3uru2HwZYVmz4nVOMwAHTjcUBJVLzjP80aBoTAUtuTCPtzWggAOZKBuS5eMaegNKIiWA3+z5yzWPSfAJcR6R4DtNTUdSbNzaQThkYpjg2YVZYYU0Uqqw3ZAJJbEApqG4YlUdi+ZX8PLrh2lsSjKlNsqN10wlErH40C0z2LGnh3Tab6IMWCaf/eRF7D+YZF9jH4l4kA/eOJ1QyOC/f2d9IVg9XO9omNi2H1JtHWlqa6J84IbpfPS2WXzn+xvJZBy0hnTGD+lkKk9dbZTo7JsJ6EPsXfciv2u8hpZMHa2ZOr698d/yjaV/y6zE8J0IjjcBQCnQDE+0wTutDz63eL3jheCgZHe1X+vztEfA0BjKwytMSziSDfHdw7PpsYMYCp7vmoI9zoE3UL68kyfgBAhaAQ53NI//PYUQY0aC7zR1dmUBvxZWXRHmcMvRGlVleQjX84OoNBGkribKB26YxsrlNQB86JYZw643pTbGX/3ZCt5d30Ym67B8SRXTpw4fkeh5mrLSED29OZQqjEfUYJr+clye56eu62luuX4q4I8eLSv1F2uORExa2zMYhqK/3+ZfH9zNDZdcwXubwrjaxMBfsqw7V8YrzTcxLf6vWOpo2+pI8+pOFDFHN5w9gyDShWXLik2ofu1u6DLTirRn4enCGpzDQvTYPY6Ofe7Maa3pSfbSm+qjuqxKantCnGck+E7T7JkJApaB7XiEQhZVFWG6e3JUVoQoifkbon7ungWsvvTUBzyUJkLccv20E55jGIr/+peX8R/++nd0dOcxVADQKM/DDEQJRixqqsIYhsHh5n7mzS5j8YIKtu7wJ1unUrY/Ed1SBIN+P+NvX2nBcKKY5KiKdNKXj1MTbmFVzTuYhbl9QxSyxNHQbQeJW3nCxsBTA5MFjq6LYpwkYI5t/tRAyjXIewaOp6gO2cXj/sZJkCnsrJ71TDSKHmekb2E16O9jw2+saoT+dfv6+7jnpk+O0TWFEGeDBN9pipcE+dSd83j48d3YjkciHmTBvHLKSkNYluKq1VNYsrByXO4dNHLMKG2kocRAoTnSaZDMBAiHNYnKWpRSKKUoL9Tyrr6snsZDSd7b0IbjakxTUVkRHhQ4Hq6nsICgkachdojPXfQvlAV7CmuPHrPvHqCVv4t6ZdD2J+YfU8YzqeGlXJO0a1IZyBMyNPszUVytSAT6AIWrFQHlbyxka0WXHQI0W1MJvJOuwTD2TZ9BM0BlohKlFNFwhOk1U8f8HkKI8SPBdwauWFXHskWV7G3so7oyzJTa2Fm5b1tzBwCW6ffp1ZXbKLsXw7BQqg6AVZfUUFUZAcA0FffeNZeyQAtrXtpNb5+DaddDaAoANdUlVOS3saejBtDMTewmaOQoCfSDMkAPH16qGKipndkwzcH9eo6GR1qn826yHE8raoJZ7qtrpD6U5Rct08h7Bi9119LjBFid6OQj1c1EDZeU8jicC/NkR/0Idxj/Pr5oJEoi5jdHT6uZSjAQHPd7CiHGjgTfGYrFAixbND41u+Opnza0+TQQMKiriVI7ewaR0ioWzS/nilVThpzz1OMvsf69rcRCmrTKkOveBU6GklCOu+c+y7Tybl7YVMuu7pk0xA5THekgaOZBBaGwD93pGGnAyvH6A1/qruHtvori47Z8mJ+2zOT+KftozETZlCojbPgjW1/uqWVXpoTP1h4k6yn+R+NF5PTEfPv2Z/v9+ZmhCL93yz0TUgYhxJmT4BsnmaxDMpmnqjLi79wwBqprKrjquhW88cq64rG586fz2S/fiBUY/k+Zy+bYuG474PcR1tZEyWXSJPTbfPWaTQRNF+053DZrMx9eVI3n5iDt+u2Zns3RyBpo9tSceNDIcB5HF6O2PYOgcbTJclOybNj5bfkQ29NxdmfiuBjUBLNEDBdQHMiUsDcboz6U5dKSHvZkS+iwQ6e49NjgMo/u38P1PKbWTOX/u/fPiEeHD0QSQpzbJPjGwdMvHOB3rzSRz7uUl4X4zN3zWTCvfEyufevt17Jk+Xwa9x2msrqMefNnYhgj93P50x488Gy8TDs4GQLaIRrtJ2gWmjG9PGgHlIkZqUUHEnj9h8FJ+QEIHA09OFHoaT00Gm2vMPISCCkPT2s67RC/7apjU7KUaeEsjvZ7BQ11dFDM0x111IVy5DwDq7Bc2cBzXuH8mZF+etwgHXaIgW1mveMG2rFlPr2dGYZdzdPsP3IAZ6SVBoQQ5zwJvjG2aVsnz7xwdA5cd0+OH/5sG//1Ly8jHBqbj7thai0NU08+ajQaizB7TgN71r9SqMGB9mzml+1CezbKCIAZwp9tVwgXM4RnxXDyNhYZf8acGjRoxYrjORkU9ojRYWv/m6o1H+K/HVhEwswTNDTdToCPVzfxeMfUwuRyzYJYLzvTJbhaYSl/SkhDMM28aIrKQJ5ftk31l2VTGkdD3HKYFumn2w6xqb+MI7kItcEcZiEcY6bN/kwJ7jhvOqLRdPR20NnbSXm8bFzvJYQYe7It0RjbuKVj2LFM1mHXnp6zXxjgjuuizKzwpzSYhmb59E4um7oDne8FQCkTo2w+KhhH2324vbtx+zsJkC7sYK6gsDqMRuPk+3FcfzTosf15SvlTGHqcAHszMa4q68DDoMPxmyN/1T6VvDfwLad4ubsGD+hzA/Q6AeZFknhasyLRzbxoilsrWokaLo5WTA+n+UBVMxvSCV7Kxum2gwQNj0BhrdCMZ9Jl+/vyDTU+myPajk0kFB6XawshxpfU+MaaZ+NpXZgOcFQ0EjjOC8ZXSdjmU6v2krVNTMMjYGq03QDBOJgRzKpLCC/7M7T26H/2I7jBGnS+qfh6NRAceqDBU2EoD0OB7ZlYhsvRLkxVPGd6OMP0cIZViW4eaJlW6CnUdOaDeBhkPYMD2RiW8oiZ/iZB7/RVUhPIYCl/NuAliW6WxrvB9MhZLj/NlRKN95Bqq6Y1H6Y2mC2WM+cZhAyPmHF2mh/L4uWUSP+eEOclCb4x0nyknUcfeIamw320ddQSiUYpLfN/MM6YGmfOrMSElMuaci0589uEOVoTUsEE0Rv+FbN8QfGY0/o2yopgZLqAkcNjoPZHYdf0VD5CIpQurOupQAUIGHl/N3SCZD2TsHL4wpQDhSZLj37X4rG2BjanSjHQ5D2z2G8H/pqceU9RHcyjNRzMRWjJBelNpPDiKZpTcVra6nAxaLdDxEyXuOlgKE1Y+bXDoU5vMM6piAQj3LLyRkpjE/NvKoQYHWnqHAOe5/HQT56kva2LUMBhVmUbpttJJOhwwzVT+aMvL0VN0BbsRriSyGV/i4r6fYIqVEb40m8NCT0AFSk87/Uf97tCawOldKH2p/zVXQY97yp/AWlXK0otvw8warhUFpofE5bDlGCWO6qbCRsuRmEDWVcrbK1QaG4ob6PEdAkZHo42KLMc3u+t4KHdi+nuqKS9aRp23p+g72pFv2vR51rMDqcwlKbPPdFKLsd7fOoUintuvpsv3/75M76GEGJiSY1vDDQfaae7u6/4OBq0mVHRxZzpJXziI3MmsGQ+a8o1xOquQmc7UMFylDm82dVMzMJquBEvuQ/TMNCeB1qjMQprg2oMf3ICjlasaZ2ObbpcnOhkWjgDKGwVxSSPVgrHg+pADkP559cE/DVG+z2LmOkwO9JPa18EXdhvTwNZbTIjnCGnTVpyZnEs6eWl3byRqqCtaRquazKQzB4GntbkHIMjKkrKschpc9h7843NLx6RcIRP33Q3AWtimq6FEKMnwTcGIuHQiMfDkZGPTwSlDFSkZsgx13Vpb+2itCxOJBomvPq/YnsW+a3fwyAJysQwDVRhIp5hhkhmHf5P4wz2p0sImA7Pd1fxwcoWPlTVimkFaM7EyXsGFg5xI0vccop79eUKzZqONtid9rf1GVxnNNAkLGdYc2VlII/rHC9oFFkssvbZ+VYOWkEiochZuZcQYnxI8I2Biqoy5i+azc5t+4rHDKW47KrlY3aPvR1v8ua+H9ObaWZW5WVcP++PiYUqTv7C49i5fR9PPPICqVQayzK58tpLufHWq/jue3eiO6ZyeenjNIR2YSioimcxorUoI8i6foNWxyMa9DeqRSt+21XHFeV9RHJ9pJ0g32+aQV0ww+FchPJAjvvrD6DBr/kFcxzORch4VnFU6EAPn2laHMiXMz3YPbSs/efOIJKlsxdjmfKfjRDnM/kveIzc/Xsf4tUX32XXjv3E4zGuvG4FM2ePzeLFh3u28Mj6P0Vrf43OjYefpCW5ky9e/vMz6jvMZnL88ufPkM/7c/scx+XVl94j70U5dDgFLOTRtoUABFWGby7+D5QW+v0a+00wLfwRLv7keG1YHFBzWeBtZ3bE5ktTm3iopZ7WfJjGbIz/tj/KVeXtlFs2miQPtE4nYrhkPBNX+9PPA5a/t90vW6fxxbp+ygv9gm35EI+3N4z2IxwTwUCQD1/xwYkuhhBilCT4xkgwGODm267i5tuuGvNrv9/0q2LoDWjt28mR3i1k20vZveMAidISLlm5iEj05HPL9u05WAy9wXbv2A9UDTmW1xGaQh+llCcAaIh6rOsKYcRnoO0kOtOOQjOFwwSVg4eiPpQprLGp8YDGXISDLdOxlOaSeB99ToiQCWEUjuMn6kATYlNflr/ev4i50RSuVuzLxIYsSaaUQp/uNu6joFCEQ2Hi0RLK4+Usnb34rN1bCDE+JPjOA7aXG/H4a89vYtt7bcXHb766jq/88T0kyk7cNBiNHu2jcl2PVLIfO28TiUTBjYE5tA+rcuGHMftacLu2cv2ShWywSjjS0w3aRWuP68paqLVSaFdjorFwsbVB2rVwtQHKH7xia82W/lJCpsbFIq8CBAPQUNXAsjlLWLtzPdFQhFS2n13p4e9hIPSUUliGheM5Yx6CSikMlD94RSmmVNYRKuy+8NGrP0JF4sybl4UQ5wYJvvPA4rpb2db82yHHwt4Utq9tG3KsrzfFW69v4Nbbrz3h9WbMbmDq9DoONTbT2d6N4zgopUglk8T1TjKBJTiehWEo7rgyT93+r+M6WbK2yWvvN1OWWYhZOof6+dWsyvyYOU4bYKI9A09DyHCwPVWY2D5o8IphkleKnAuW6Y++DAfDmKZJWUkpLV2t2M7A4tgDjr5ea42hDAJWgEgoTE+q9ww+zeNTKKKhCGXxMuKRErTWXLn0CqbXTGXhjAXMqJs+pvcTQkwMCb7zwLyaa7nxoj/hrf3/Qsbuoy6xgItjf8AT+t1h57a1dJ70ekop7vvynfzqwefobO8mEg0Tj8cwLRMTj5uuizJz/kJqq6MEtv0nnCZ/hZRfrZ/Foa4SUB0YdjktXX1El8/CiPSBm0MpE5XtQtkpKhLlVAdKaetLogFDGSilCAfD2I6N49pEQlEqEuX0JHv5l2d/VijdiReUNgwDyzRJZ9MnfI+GYWAqE9dz8Y5pJh78OQyoSFTQn0kxtbqheFwpRTxSwgcv+8BJP1MhxPlDgu88cfms+1g149Pk3TSRQIJMOssz1npsxxly3rQZU45zhaEikTALl8xl86ad9KR6aO1JEQqEKIuX4dh55s0uA6C//zAAHcmwH3rgL9viOXjK5P3WuUydvhPMsL/LQqAEIz6dm1Z8jYPP/oxAOofr+WU0DIO8nae+qo68Y1ORqCCdTdPZO7C+6fBmS3+pM6+407rneQStII7r+rtSaIYEm1KKgBkgGAgSsCwMZdCd7PFXGj2mWdQPYygrKac0Fsfz3GGDhRbMmH9Kn6cQ4vwhwXceMQ2LiOEvkxWJhrn1I9fyzK/X4BV+oNc31HD51Zec8vUq6ktp6WrB8/zX245DNp9jzkXTiudYNavJd28n7w5azsWwwPD7vdz4YszqFtx2f4/AnJngXw/U8uLvvkN/ph/TNIlHSojHEnT1dhEJR0imU/T299La1Ybt5IvlH4mBJmB4ZAuLW3vaoy+dJFgYBaoHgk9rgoEQd17zUS5bvJLa8hrK42V84x//gt7+XlxPF0PNMi3ikTg1FdVkc1nCwRDTa6fz4RnzeeG9F4sDia5edhXL5y475c9TCHF+kOA7j62+8mLmzp/J3t2NJEpLTrg330je3/8+1GfxmixcW6PxSIV7aOxq5CJmAxCc/3ncjg3U6U2URvL0ZiOoaL2/FQOw9JLFRFd8Ard3L16+l//22C9Zu3MjmVzW383BdYiFYwStAJl8hv5cGtuxMQ0TQ6ljQm/4uppBw8P1jr6ngfCyXQfDUBjKwFQGFYkK5jbM5g/vvH9Ire1P7/5j/ubnf8+B5kZAY5om4WCIf/eZf8PVy67gcPsRPO0xrcafenLLyhvZd2Q/DVX1NFTXn/o/hhDivCHBdw5LJdNs2rCDfC7PoqXzqKmrHHZORWUpFZVnVivJ2Tny4SwdiS5MN4BnOGhD89zTL3PD6muxLBMViBG9/oe4XVu4d14TT77YSnNzF6FQkMuvvoSLV/jz/czSORxsPsCBlibSuUzxHlprOvs66U5242mv2Nzoeu5xlsI+qjygKQuHaOzX4HmFgS0WASuIZZpkc1mUMkhE49RV1PHFD31uWFPl4lmL+Plf/Zh1O9ezZsOrhIIh7r7+40yp9NcmPTbcqkorqSod/jkLIS4cEnznqNbmDn78z78kk/EHlrz8wtvc+albi0EzFlbOv5SHnnsUFLiWP6/PxCSYi7F/z0HmLZhVPNesWEJDxRL+4GI/kEPhIIHA0G+fUCA0LPT8L8DV7tHNbAcZXsdTKBQlkSg1VfXcuOJ6nnjtN3T2dQ9UMimPlxELR7njqtuZP30eOTvPwhkLCAdHXiJOKcXKBStYuWDF6X5EQogLkATfOeql598qhh6ApzVP/up3NB9uQwPLLplPw7S6Ud1jTsNsrpx1Na9sepVAOkrIjhAPJsACwzy62POuQ7vZ3riT6rIqVi1YQUk8OuL16qumML12Gl193XjeCCMpFSjtb287YOCrgBlAozENkymVdYSDIUoiJXz6pk+yaMZC/vaBvyeXzxOPlhAOhggHw1y3/GqZVyeEOG0SfOeoliPtQx5nszmONLWRzeQxTYO3X9/AJ+69jaXLT2/UYXtbF+++uZH+VJr5C2fzyQ/eyd43m7FtB4VC56C3J0VFZSkAj7z0GM++c3QO4TNv/5Yvf/gLGIZiWs3UYU2Lf3nfv+WP/vef0N7TjuP6oyQNZaC1HhJ4x7Jdm1AgxLSaqVimSXm8nK985IsErAArF1zKP33jOzz68uN+/1t1PXdec4eEnhDijEjwnYOymRye69HV0UMgaBGLRUn29mOaBo7t0NWRxLYdfvCPD/G1v/gc8+bPPKXrthxp54f/9HBxubItG3cxa85UEqVxkn0pXMcjGApQWhbn/XXbWbJqLs+9+0Lx9Z7WrN+5gT/bv43SklJqK2r52l1/MKSfrLa8mvtv/yKPrHmU/c2NxMJRErEEbT3t2HYeD43rDu/dC1pBouEoX/3ol5leO42GqvohA3XqKmr547u+eoafqBBCHCUb0Z5ALpfn9TVrefinT7Hm+bfo78+c/EWj5LouP/7eL+ns6CGft0n29dNRWF0lnojR1dmDbfvz4vr70zzw41/T3XVqK5i88cq6YWt0btu8l2AwQHVtJXUN1VRUlWFaJtlMjkNth4asEdqT7CGTz5B3/Gu0drXyw6f+Zcj1/uXZn/HImkcBSETj5Ow8AdOivrKOxbMXU5WopDQWH1ZTVEphGga2YzOtZuppjU4VQojTITW+4/A8j59871EON7UCsHXzbjZt2MlX//ReQqHguN1357Z9tBxpxwqY1NZVkclk0VpTU1tJa3MH2vObDF3HBRSHD7Xyy58/w1e+/umTXru3JznsWDA08j53i5bOJVYRRikD7fk1tIGBK8HA0fd/oKWR3v4+SmMJmjtbeH3TG8XnKksrKLFzLJgxn49dcweLZi7gJ8/+nFfefxXXO0x/YfWVgVVdEtEES2QRaCHEOJNfq49j1/b9HG5qxXFcUsk0/akM7W2dbNqwY1zv29N1dCd3ZSiisQiWZdHd1Udfb4p83saxHbQG0/T7znZs28eG97YOu5ZjOxzY20RHWxcAs+ZOG3ZOaWkJn/78HSRK/VVZQqEgH/zIdcyY1UBFUHNLTRK3Zydu7y7iKk3QChKPlBRfHwwEi6MpW7pah11/YDWYRTMXAHD39XeycMYCplTWURKOYRomsXCU6TVT+epHvyxTCYQQ405qfMfR091HNpOjs6MHtEYZir5exVuvbmDPjgOUVZSy+splbN24m/XvbSGdyjCloYabP3w106af2rJhI5k9b+hCyJ7n0dXZQ0VVGbX1VTQ3teG4LgHLRBnK36nANPn1I8+zbfMeFi+bx/KVi9i7+yC//PnTpNP+yNCFS+by0U/cTOO+w+zbcxCAcDjEnZ/6APMWzGLh4jl0d/cST5QQDPq1wOza/8DtpbtZulixs88gbmTZlfVYlz/6/m669AZCAT/4ZtfPwjT89TEHu2jq3OLXsUiMv7j3z/xVW1yb0liCtu52GqrrCQdPvqWSEGLyUEr9GLgdaNNaLykcexgYGNVXBvRorZefznUl+I6jorKM9tbO4nJeA31S27fsoaPWH0348gtvY5omyb4UmUyWfXsP8f767dx065Xc8Ymbi9dKpzPs3nEAO+8wpaGa99duY/fOAyRK41xz46ohg1Pq6qu56YNXsub5t/E8j3zWJlYSLTavVlaX097ahdaaUDBIOBKmq6uHcDrEzu372Ll9H60tHby/dhsdHT3ks3lMy2DLxp1Mmz6Fz//+xznS1MruHfvp78/S1dlLJpMlEglTWVVeLIeX7cJtWwvAjBLNjBIXCLDEioN7KZlcltULV3DtxVcXX1MaS3DPzZ/kFy88XOwbXDRzIdctv2bY51tbUVP8Oh49d3ZYF0Kcvq8+pO4F/gaYDhwEvvW9e/QvxuDSPwH+L/DTgQNa608NfK2U+jZw2tu0qLHcz2zlypV67dq1Y3a9ifSj7z7C6y+vxXP9H+AD+8CFIyFqp/ibtbY2d2BZFrnc0f3ylFKUlSdYuGQu1TUV9HT18fYbG8jl8gQCAUATiYYpiccAMJTii3/4SabPHLqCSF9vitbmdrq7+njq8ZeGPNfR1oXW/ua3uWwOx3WprCojGAqSz9koBX19KXLZfDGwDcNg5WVL+crXP83zT7/G6y8f/XcqK09w/9fuIV4oE4DO95F66gP+LuuDGBWLid0wdEDLsTp7O9lxcBdVpZXMn37RqXzcQogJopRap7VeeaavL4TeD4DBE3zTwP1jEX5KqZnAUwM1vkHHFX7I3qi13n0615Qa3wg8z6Nx32GCwQCO4/pz0LTGcz0syyyGoNYaxx46StJ1XLo7e9m6cRca6OnqRSmFMhT5XB7XdbFth0jU34fO05r33to0LPgSpSUkSktwbIfX1rxXHJjiOi6O4xIMBclmc+TzNtFoGK2huanNXwrM8cNq4L6maeB5Hn29Kfp6krz5yroh9+ps7+an/+9XzF80m6XL51M7pQoVTGBNvRnn0PNDzg3OuvOkn19laSVXLb3idD92IcT56W8YGnoUHv8NMBa1vuO5Bmg93dADCb4RGYZBSSJKJlNCdyG4Bpo8c9k8zYfbiETChCMh0LrYj+ZP0gYUWAGTZF+/vwiz1liGWTjH/2PnHcyIfyyfyx+3LFbA4gtfvZsXn32DxgOH6U+mqagsJVho+uzp7qOvJ0Wyr3/Ya7XWaFeD9stTXllKe3v3kIWh87k8ne099PYkaW3p4PU173H3Zz7E4mUXEb70r8iFK3EOv4iySgjM+SSBmXeMxUcshLhwHG+H5vHeufnTwINn8kIZ1Xkc1964mkg0TE1tJfFECaFQkERpCcrfVpxMJkt1TQXX3Xx5sf8tHA5hGgahUJBQOIQqDNNHH+0nVMpfn9Kyji4JtvjiEzcHVlSWcvdnPsSf/9X9TJ/VUAw98GuA+jgbrQ4YeL66poIp9dVD7t3Xm0KjCRQGtHha8/zTr/vltcKEl32DktueInbLQwRn33UqH50QYnI5eJrHR00pZQF3AQ+fyeulxnccl199CYnSEt5fu51kMsWm9TvI523C4RDhSIhAIIDnetz5yQ/wgQ9fzbbNu+ns6GXt25twChPMS0oiZLNZUIWgURCLRSmrSGBaJqFQkCuvvZRllyw45XJNn1nP/r2HAD/0crm8v0XQcfpq/bBVhEIh9u4+yEc+fhMf+PA1PPvEK/62QbZLIGARK4kUX9Pd1YtjO1gB+fYQQpzUtxi5j+9b43jPm4EdWuumM3mx/GQ7gUVL51FZXc73vvMLHMfFdV0yGb+Prqa2EmUYPPLA0+zYshfDNFi+YhGf+eLHeOSBZ0j3ZwhFQsxfOJt4ooT2tk7Kyku56dYrWLRsHv2pzJAdDnq6++jq7KW+ocZvQj3GQF/fjq17yWVyaAWmaaJQhUEuw5tLDcPAMA3KyuOUxGN0d/WSSqW5/OpL/H38djXyzhvv097WNWQllbr6agk9IcQp+d49+hdffUjBOIzqVEo9CFwPVCmlmoD/qLX+EXAPZ9jMCTKq86SefeJl3np9A8m+fpJ9qeLxyqpyyitKSaeHLmN29fUrueEDV3Bg7yFC4dCwQSvH0lrz9ONrWPv2JjytCQYD3H7njSxfuWjIeY/8/Gm2bNxVeBHk8zbX33wZO7fvY//eJro6eoZdOxCwqKopJxT2gzQWi7D6yot5f912AJavXMTCxXP56Q8eI5XyV1EJhYJ85ksfY8ashtP6nIQQ56fRjuo8H8mv9SeRy9l4nocVMInFouRyObSG2fOmsXXjLlzXIxQOEiuJopRi04YdfODD1wzZy+5Etm/Zw7tvbSw+zudtnvjlC8ydP7O4/U9fT5KtGwcNXFL+UmOdnT383hc/xs9+8Cu6O3v90aaGP6EdIBwJFUMPoKa2kjUvvF18vOb5t3Adhz/9t19kx9a9uJ7HgkWziURlIrkQ4sIlwXcCrusSDgf9NTILNeNINExVdTktR9rJZHJorcnl8uRzNhVVZUMGjpyKPTsbh9/X89i3+yDLLvX7/rLZ/Ihb+mTTWaqqy7nn83fQ2txBX5+/pJllmsRLS1i8bB7TZtSTz9ssXjaPB3/y5LBrvPfWZm6+7erivYQQ4kInwXeMXC7P9q17efOV9Rw+1EJXezfhcIhcNo+nPey8Qzweo621k1Ao5A9ewd8vz7EdVl62rHit/lSanu4+auqqhu1WPiBeWjLi8UTZ0ePVtRVUVZfT0d495JyFS+cBMKW+mllzpxUX1B5w1XUrhtQ8HWf4dkCO45zo4xBCiAvOSYNPKZUAqrXWe485vkxrvWncSjYB3n1zI7996lUONTajtSYcCWM7DrbjUFVdgWWZuK7Lru37cVwXNMX1Mg1DseqKi7nq+hUAPP/0a7z16npczyMSCfORj9/EkhGmLay8bAnvvbmx2McGMHP2VGbOnlp8rJTiU/fdzi8feIa21k4Mw+DSVYu5/KrlxXPu/cIdPPebV9m94wDxRIxrb1w9rLl12SULeO/tTcOOCSHEZHLCwS1KqU8C3wHagADwea31e4Xn1mutLx18/vk8uKW1uYPv/q+fk0ln6Crsb6c9DcoPnpKSKImyOG0tnRimMWTSeUk8Rm1dFX/+7+8nELDYsXUvvzimWdGyTL75V/cTi0U4Vk9XH2+9voHO9m5mzG7gsiuXH3e7oK6OHsKRENERrnOsTDpLV2cPVTUVhArLmT31+Etsfn8naM2S5fO5/a4bx3WbJSHEuU0Gtwz3LWCF1rpZKbUa+JlS6lta61/hz8O+YOzYttdvyrQdtOcPElGGwjD85b7An1Jg2w4hI4BhGLiui1IK13G5+/c+VGzO3LV9/7DrO47Lvt0HWbp8/rDnyioS3HbHdadUzoqqslM677U17/Hy829jOw6hUJBbb7+WlZcv5a57buWOj98EIFMWhBCT0slWbjG11s0AWut3gRuAv1RKfR1GGG1xHsv0Z/0BIr0pHMfBzvsBGE/EKC9PsGT5fBKJEhT+yEvP8zCUQXl5KauuvJi582cUrzUwGvNYsZKRj4+1Q43NvPDM69iF/rtcLs9Tv3qxOOXBClgSekKIc5pSappSao1SartSaqtS6k8Kx+8uPPaUUmdUUz3ZT7+kUmrOQP9eoeZ3PfBr4LzfKruzo5v+wj5627bswXX9BaA1gNbYtoNSimUrFnL19av4yfcepSQeLfbHaTS2bXPtDauGXHfFZUt5542NZDLZ4rGGaXXMmjOVk2k+0s6Gd7fgOC7LLl0wpK/vVO3ctm/YMU9rdu3Yz+VXX3La1xNCiBP57F3fHLYt0U9/9e3RTmB3gG9qrdcrpeLAOqXUC8AW/OXKvn+mFz5Z8P0BxzRpaq2TSqkPAp8805tONMd2ePTBZ9m2eQ/gb+/T15NC4Q9U0d7Rymx7Wxdb3t/F3l0HcRyHRGkcK2CRzeRQhmL+ojnMPCbQSsvi3P+1e3jj5bV0dvQwY1YDV123YsjqKMfyPI83XlnHM0+8jGWZKKVY+85mPnr3LaxYveS4rxvJ8WqcJWepximEmDwKoTd4ybIZwA8+e9c3GU34FVobB1ock0qp7UCD1voF4IQ/T0/mhMGntd6olPqYUupjwGat9W8Lx23ggTO+6wRxbIe9uw+ycf12tm7aTT5nk05n0J4mW5iTN9CfN0B7ms72bqZMrcG2bUzLJBqLFAeXXLxi4Yj3qqou56N33zLic57nsX3LHg7sbaK8sowZs+t59IHn2Lltrz8Pz7KKcwLXPP8Wl65afFr/yBdfupDXX15LX+/RlWaqqstZsHjOKV9DCCFO0bhvS1TYk+8S4J2xuN4Jg08p9V38Js03gf+ilFqttf4vY3Hjs629tZN//cGv6OtN0dHWTT6fL+6rB2A7Dscb4TrQ5Dl3/kzaW7v8haGB+Ytms/qKZSO+5kQef/h5Nq7fXnycSqaJxsLFeXaO49DXk6Siqoy+3hS27RAMjjzKcySRaJgv/9GneOPltbS2dFI/tZarr18p/XpCiPEwrtsSKaVKgMeAP9Va943FNU/2k/Ba4GKttauUigKvAedl8D3zxMvFGpBpGn6YobACZjHwFGrEFVKMwlZEl191CfMXz+bggSOUlsapqas8pXsf3H+EPbsOEC8toa6+ekjoaa3p602C1gRDAbIZfzf3gXBtmFp7WqE3oKw8wYfvvPG0XyeEEKfpIH7z5kjHR0UpFcAPvQcKswnGxMmCL6+1dgG01mk1mkbVCXZg3+Hi1yXxKH29KTzt4dgMqekNnr4wwLIs5sybzpLlF2EYBvPmzzzl+77027d4+XdH18cMWBau62Ga/oBapRSmaWI7DqWlcZy8g+O6mKZJSUmU2wtTD4QQ4hw1LtsSFfLmR8B2rfX/Gs21jnWy6QwLlFKbCn82D3q8WSl1Xq3aUjlo/lsgGPDn3Cl/ZKbWR/8cG3qmaZAoL+FQY/OQPrNTkexL8epL7w45ls3mSA9apQWgJBEjFAxiWiY1dVVUVpXzkbtu5Bvf+hINU2tP740KIcRZVBjAcj/QiD/NrRG4fwxGdV4F3AfcqJR6v/DnQ0qpOwtbFF0BPK2U+u3pXvhkNb6RR26ch2689Qoe+dnTeIPCLRQK4roejjfyepWmaWJaBn09KcLhMBvXb+e6my475Xu2t3YND1LLZEpDDf2pTLFZddny+Vx21XI2v78TpRSXrFrMnHlj0jwuhBDjrhByYzKQZYDW+nWOv1DK46O59slGdQ7fOgBQSl0F3Av80WhufjYtWjqP+792D++v3UZ/KoPj+DuP93Yn6ekeub90oGFXa00um8Oxhy/yfCK1U6qwLHPY4tCrrljGxZcu5MC+Jioqy4rTIWTUpRBCjL9THuanlFqOH3afBPYDY9bReLY0TKujYVodWmuaj7TT2dF9wpGOg4e5GIYx4iLTJxIriXLTB6/it0+9WjxWU1vJ5VdfQiQaPuXlx4QQQoydk01nuAh/i/dPA53Aw/gLW99wFso2bpRSfOL3buOhn/yGzmO2+hl8TjBg4XoeoVCQez73EWqnVJ32va66bgXz5s9kz65GSstKmL9ozmnv2SeEEGLsnKzGtwN/CsNHtNZ7AJRS3xj3Up0FDVNrqamrZPuWPZiWiTuoOTIQDDBteh2Jsjh19dXc8qGrqawso62lk3giVtyh3PM8Nm/Yya4d+4knYixbvoDyqlIikaE7mNfUVZ7y1AchhBDj62TB93H8Gt8apdRzwENcILsyZDJZ3n59Ayh/5KZhKDzXIxAMcPX1q1h6yXyWXHxRYZuhffzDf/8XenuTKBSJ0hJK4lE8T9Pbk0Sj6U+m+dWDv6W6toJllyzgY5+8hVA4NNFvUwghxDFONrjlceBxpVQM+BjwDaBWKfXPwONa6+fHv4jjo6mxmcEZ7k8ZUeSyed54ZS1vvbae+qk1/NE37+Ofvv1TMpks2tM4jktfb5KyigQ9XX2AQil/EWjLMkkl+9m6eTfhSOi4S5YJIYSYOCebxweA1rpfa/2A1vp2YCrwPvBvx7Ng462sonTIYs5aa1zXb+50XRfbtmncf5h//t8PFHdZcD0PjcbTmp6uJJ7nT41wPQ80uI5XHMG5ZeOus/+mhBDiAqKUOlCYN/6+UmrMdjk/2eCWiuM89cvCn/NWdU0Fq65YxntvbaI/lSaft3GUgxUYOvCk+XAb4C9W7blH5+R5etD8PA1aadAUd04/k2XGhBDifNTzfXPYtkRlv++O1by+G7TWHWN0LeDkfXwdQBP+vkgwtH9PA7PHsjBn212fupXZc6exd/dBFIrnfvPKsB7MRGkJnueR7s/6zx1v+10NhqmKm82uvuricS27EEKcCwqhN2xbop7vm4xh+I2pkwXfPwLXA28ADwKv6+NtYXAeMkyDS1cv4dLCfnfbt+2lcV9T8XnLsrjpg1fiOC4P/fQ3GJ5CM3Rtz0DAKm5cO2P2VKpryrlk1WLZ8FUIMVmM57ZEGnheKaWB72ut/98orwecfHDLnxQWCr0ef820f1RKPQ/8s9Z6/1gU4Fzy9X/zOX72w8fZu/sgwVCAK69ZwQ23XIFhGmxav4O21k4CAYvurl7yeRvTNAmFgmitWbRsHn/4jc9M9FsQQoizbTy3JbpKa31EKVUDvKCU2qG1fvWkrzqJk67cUqjhrVFKbcCf2vBfgN34VdsLSmlZnD/+88+S7s9gWVaxv667q5fZ86bT0daFaZmUlZfS3dlDojxOOByiurqCez9/xwSXXgghJsS4bUuktT5S+LtNKfU4sBoY3+ArTGP4KPApoBp/mbJLtdaHRnvjc9nA7uoA76/dxq8feR5PawzTxHM9rrzuUlZctpT+VBrLMpkxqwHDOKUBskIIcaEZr22JYoChtU4Wvv4A8NejueaAk9X42vBrdw8Ce/DbW1cppVYBjOXGgOeifN7m2Sdfxiv06QWC/sdlWRb1DTUTWTQhhDgnlP2++4ue75sw9qM6a/HnkYOfVb/QWj83ymsycLETeaTw9/zCHzg67lFzHi5UfTo6O3rIFHZEH6zpYPMElEYIIc5NhZAb622J9gHjMjz+ZMG3BT/gBoddO/7ozgtucMuxyssTBAIWtj10v77autNfrFoIIcS54WQdUyVAvPD3wNcrgWeVUveMc9kmXDgS4oZbrhhyrKQkytU3rJqgEgkhhBitk01n+M8jHS+s6PI7/EWrL2hX37CS6bPq2bltH7GSKBevWEhs0OAXIYQQ55dT3oh2MK11V2F+36QwfWY902fWT3QxhBBCjIEzGoOvlLoRGHkHVyGEEOIcdrJ5fJsZvjplBXAE+Ox4FUoIIYQYLydr6rz9mMca6NRa949TeYQQQggAlFLfAL6Mnz2bgS9orbOjve7JBrc0jvYGQgghLmxX/MH1w7YleuufXx7VvD6lVAPwdWCR1jqjlHoEf9nMn4yyuGfWxyeEEEJAMfR+gL9epyr8/YPC8dGygIhSysJfEu3IGFxTgk8IIcSonGhbojOmtT4M/E/8GmQz0Ku1fn401xwgwSeEEGI0xmVbIqVUOf4mCbOAeiCmlBqTvd8k+IQQQozG8bYfGu22RDcD+7XW7VprG39t6CtHeU1Agk8IIcTofAt/G6LBRr0tEX5wXq6UihYWTLkJ2D7KawISfEIIIUahMHrzfqARf9pBI3D/aEd1aq3fAR4F1uNPZTCA/ze60vqU1sfOTz9zK1eu1GvXrh2z6wkhhBhfSql1WuuVE12Os0lqfEIIISYVCT4hhBCTigSfEEKISUWCTwghxKQiwSeEEGJSkeATQggxqUjwCSGEmFQk+IQQQkwqF1zwua470UUQQghxDjvZDuznjbVvb+bl371NX2+KmbOn8pG7bqS6tnKiiyWEEOIcc0HU+PbsbOTJx35HX28KgAP7mvjZj36N53oTXDIhhBDnmgsi+DauH75gd093Hwf2H56A0gghhDiXXRDBZ5ojvw3DUGe5JEIIIc51F0TwXbJqMYYaGnLV1RVMn1k/QSUSQghxrroggm/GrAY+ed+HqauvJhwOsWjpXO67/04M44J4e0IIIcbQBTOqc9HSeSxaOm+iiyGEEOIcd8EE3/Ec2NtEZ0c302c1UF1TMdHFEUIIMcEu2OBzXZdf/MuT7N55oHjshlsu54YPXDFxhRJCCDHhLthOsE3rdwwJPYCXX3iHzo7uiSmQEEKIc8IFG3wHDxwZdkyjaWpsmYDSCCGEOFdcsMF3vOXKqmqln08IISazCzb4Ll21eNhglqUXz6dhau0ElUgIIcS54IId3BKOhPjK1z/N+2u30dHezczZDSxcMneiiyWEEGKCXbDBBxAKBbnsquUTXQwhhBDnkAu2qVMIIYQYyTkdfLbt0NbSiW07E10UIYQQF4hztqlz/btb+O1Tr5HJZIlEQtzyoWtYefnSiS6WEEKI89w5GXwd7d08+ejv8LQGIJPJ8ZvHXmTazCnU1lVNcOkmD7dzI/m9j6LtFIGGG7Fm3I5SstWTEOL8dk4G386te4uhN0Cj2bF1L20tnWzdtItgMMjqK5YxdcaUCSrlhc1pe5fM618H7e9i77a8QTB5gNDSr01wyYQQYnTOieDLpLM888TLbNu8m0gkTF199Yjn7dt9iBefe7P4eNOGHdz35TuZM2/62SrqpJHf+dNi6BWP7X2E4IIvoQLRCSqVEEKM3jkRfI89+By7duwHwLZT9PYkAVCDdlCPxSIcamwe8jrP83jtpXcl+MaBzrYPP+jm0HafBJ8Q4rw24aM6U8k0u3ccGHJMGYraKVWsvGwp9Q01XLpqMfd+4Q4cZ/jozt6e1Fkq6eRi1l457JiRmIURrZuA0gghxNiZ8BqfLvzvWIFggDs+cfOQYzW1lbS1dg45Nvciqe2Nh9DCL+P17sJtew8AFa0jvOqvJ7hUQggxehMefPF4jHnzZw7bQujSVYuHnXvnPbfy4E+epK/Xr+VNmzGFG28dXjMRo6cCMaLX/BNu336wUxgVi1FqwhsIhBBi1JTWw2tbZ2rlypV67dq1p/26dH+Gp3+9hu1b9hAOh7j86ku49qbVI57rui6HDjQTCgeZ0lAz2iILIcSkppRap7VeOdHlOJsmvMYHEI1FuPv3PnRK55qmycw5U8e5REIIIS5U0nYlhBBiUpHgE0IIMalI8AkhhJhUJPiEEEJMKhJ8QgghJhUJPiGEEJOKBJ8QQohJRYJPCCHEpCLBJ4QQYlKR4BNCCDGpSPAJIYSYVCT4hBBCTCoSfEIIISaVc2J3BiHExNi/9xCvvvguPV19zLloBjfeegXRWOS45x8+1EI2m2fGzHqsgPz4EOcn+c4VYpI63NTK9//hQXq6+3Achx3b9rFrx37+7FtfGnZuJp3l5z/6NYcONgMQi0X49OfvYPrM+rNdbCFGTYJPiEnq1d+9Q0d7N+BvRm3bNts27+bXjzxPS3MHhqFYsXoJKy5byssvvF0MPYD+/gyPP/w8X/+Lz6GUmqB3IMSZkeATYpJqOtjCQOgNcF2XNS+8TWlZvHiObTvs3X1w2Os7O7rp6e6jvKL0bBRXiDEjg1uEmKTqp9UNeay1RnuawDF9d2+/voGy8sSw1wcC1gn7A4U4V0nwCTFJ3faRayktixebKi3LIhAIEImEh5yXzea55sZVmKY55PhV160gFAqetfIKMVakqVOISaqiqow/+uZnef7pV2lt7mTGrAYcx+HggSNDzlu0ZC4zZjXwla9/mvfe3Egum2fRsrksXnbRBJVciNFRWuuTn3WKVq5cqdeuXTtm1xNCnF2pZJrHHnyWvbsPYijF/MVzuOtTHyAUDk100cQ4UUqt01qvnOhynE1S4xNCFJXEo3zuKx8nlUyjDEVM+vDEBUiCTwgxTEk8OtFFEGLcyOAWIYQQk4oEnxBCiElFgk8IIcSkIsEnhBBiUpHgE0IIMalI8AkhhJhUJPiEEEJMKhJ8QgghJhUJPiGEEJOKBJ8QQohJRYJPCCHEpCLBJ4QQYlKR4BNCCDGpSPAJIYSYVCT4hBBCTCoSfEIIISYVCT4hhBCTigSfEEKIScWa6AIIIYQ4PZl0lueffo0dW/cSjUW46roVXLp6yUQX67whwSeEEOeZR37+NHt3HwSgvz/Dr3/5AsFQkCUXXzTBJTs/SFOnEEKcR7q7eouhN9i6dzZPQGnOTxJ8QghxHnFdb8Tj3nGOi+Ek+IQQ4jxSVV1Ow9TaYceXXbpgAkpzfpLgE0KI88w9n/sI8+bPRKGIRMLc+IErWHHZ0oku1nlDBrcIIcR5prQszn1fvhPHdjBMA8OQOszpkOATQojzlBWQH+FnQn5NEEIIMalI8AkhhJhUJPiEEEJMKhJ8QgghJhUJPiGEEJOKBJ8QQohJRWmtx+5iSrUDjWN2QSGEEONthta6eqILcTaNafAJIYQQ5zpp6hRCCDGpSPAJIYSYVCT4hBBCTCoSfGJSUErNVEptOebYf1JK/blS6idKqbRSKj7ouX9QSmmlVNWgY3cWji045roZpdT7SqltSqnvKaWMwnPPKaV6lFJPnY33KIQ4NRJ8Qvj2AB8FKATXDcDhY875NPA6cM8xx/dqrZcDy4BFwMcKx/8euG98iiuEOFMSfEL4HgQ+Vfj6euANwBl4UilVAlwFfInhwQeA1toB3gTmFh6/CCTHrcRCiDMiwSeEbzdQrZQqx6/ZPXTM8x8DntNa7wK6lFKXHnsBpVQUuAnYPM5lFUKMggSfmCyON2F18PFf4dfmLgNeO+a8wWH4UOHxgDlKqffxa4lPa62fHXVphRDjRnYxFJNFJ1B+zLEKYP+gxw8B64F/1Vp7SikAlFKVwI3AEqWUBkxAK6X+ovC6gT4+IcR5QGp8YlLQWqeAZqXUTQBKqQrgg/iDVQbOOQj8JfDdY17+CeCnWusZWuuZWutp+IF59VkpvBBiTEnwicnks8BfFZolXwL+s9Z67+ATtNbfP/YYfrPm48ccewy490Q3U0q9BvwSuEkp1aSUunU0hRdCjA1Zq1MIIcSkIjU+IYQQk4oEnxBCiElFgk8IIcSkIsEnhBBiUpHgE0IIMalI8AkhhJhUJPiEEEJMKv8/Tg3sPQzq6hAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 453.6x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"st.plot_visualization_2D(adata,method='umap',n_neighbors=50,color=['label'], use_precomputed=True)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AxisArrays with keys: harmony_cell_embeddings, pca_cell_embeddings, umap_cell_embeddings, top_pcs, X_dr, X_vis_umap, X_vis, X_stream_S4, X_stream_S7"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"adata.obsm"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Seeding initial elastic principal graph...\n",
"Clustering...\n",
"K-Means clustering ...\n",
"The number of initial nodes is 5\n",
"Calculatng minimum spanning tree...\n",
"Number of initial branches: 3\n"
]
}
],
"source": [
"st.seed_elastic_principal_graph(adata,n_clusters= 5,use_vis= True)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"np.random.seed(123)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Learning elastic principal graph...\n",
"[1]\n",
" \"Constructing tree 1 of 1 / Subset 1 of 1\"\n",
"\n",
"\n",
"[1]\n",
" \"Computing EPG with 50 nodes on 2000 points and 2 dimensions\"\n",
"\n",
"\n",
"[1]\n",
" \"Using a single core\"\n",
"\n",
"\n",
"Nodes = \n",
"5\n",
" \n",
"6\n",
" \n",
"7\n",
" \n",
"8\n",
" \n",
"9\n",
" \n",
"10\n",
" \n",
"11\n",
" \n",
"12\n",
" \n",
"13\n",
" \n",
"14\n",
" \n",
"15\n",
" \n",
"16\n",
" \n",
"17\n",
" \n",
"18\n",
" \n",
"19\n",
" \n",
"20\n",
" \n",
"21\n",
" \n",
"22\n",
" \n",
"23\n",
" \n",
"24\n",
" \n",
"25\n",
" \n",
"26\n",
" \n",
"27\n",
" \n",
"28\n",
" \n",
"29\n",
" \n",
"30\n",
" \n",
"31\n",
" \n",
"32\n",
" \n",
"33\n",
" \n",
"34\n",
" \n",
"35\n",
" \n",
"36\n",
" \n",
"37\n",
" \n",
"38\n",
" \n",
"39\n",
" \n",
"40\n",
" \n",
"41\n",
" \n",
"42\n",
" \n",
"43\n",
" \n",
"44\n",
" \n",
"45\n",
" \n",
"46\n",
" \n",
"47\n",
" \n",
"48\n",
" \n",
"49\n",
" \n",
"\n",
"\n",
"BARCODE\tENERGY\tNNODES\tNEDGES\tNRIBS\tNSTARS\tNRAYS\tNRAYS2\tMSE\tMSEP\tFVE\tFVEP\tUE\tUR\tURN\tURN2\tURSD\n",
"\n",
"3||50\n",
"\t\n",
"0.5674\n",
"\t\n",
"50\n",
"\t\n",
"49\n",
"\t\n",
"42\n",
"\t\n",
"3\n",
"\t\n",
"0\n",
"\t\n",
"0\n",
"\t\n",
"0.3844\n",
"\t\n",
"0.379\n",
"\t\n",
"0.8897\n",
"\t\n",
"0.8912\n",
"\t\n",
"0.1755\n",
"\t\n",
"0.007438\n",
"\t\n",
"0.3719\n",
"\t\n",
"18.59\n",
"\t\n",
"0\n",
"\n",
"\n",
"7.062 sec elapsed\n",
"\n",
"[[1]]\n",
"\n",
"\n",
"\n",
"Number of branches after learning elastic principal graph: 7\n"
]
}
],
"source": [
"st.elastic_principal_graph(adata,epg_alpha=0.02,epg_mu=0.05,epg_lambda=0.05)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEYCAYAAAAjyJMaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABjhUlEQVR4nO3dd3wcx33//9fsXi/olWABe+9UpSSqUL336u7YsWPn69iOYzv5JU5z4iSOa+IaN9kqliVZ1bIkU4UUKfbeG1jQe7m+u/P7Yw8gQIBiAwlS+Dz1gIjb25sdHAi+MbNTlNYaIYQQYrgwhroCQgghxNkkwSeEEGJYkeATQggxrEjwCSGEGFYk+IQQQgwrEnxCCCGGFQk+MWwppaqUUotP4DytlJpwitc45dcKIc4MCT4hhBDDigSfEEKIYUWCTwx7SqkLlVIrlFJtSqlapdT3lVK+o067SSm1TynVpJT6T6WU0ev1H1VKbVdKtSql/qiUGnOWvwQhxEmQ4BMCbOCvgCLgEuAa4NNHnXMnsACYB9wOfBRAKXUH8FXgLqAYWAo8fjYqLYQ4NRJ8YtjTWq/VWr+rtba01lXAj4BFR532Da11i9b6IPBt4MHs8U8C/6a13q61toCvA3Ok1SfEuUuCTwx7SqlJSqkXlVJ1SqkO3PAqOuq0Q70+PwCMyH4+BvhOtpu0DWgBFFBxhqsthDhFEnxCwA+AHcBErXUObtelOuqcUb0+Hw3UZD8/BHxSa53X6yOotV5+xmsthDglEnxCQBToALqUUlOATw1wzl8rpfKVUqOA/wc8mT3+Q+ArSqnpAEqpXKXUvWej0kKIUyPBJwR8EXgI6AR+wpFQ6+05YC2wAXgJ+D8ArfWzwDeAJ7LdpFuAG898lYUQp0rJRrRCCCGGE2nxCSGEGFYk+IQQQgwrEnxCCCGGFQk+IYQQw4rnTF+gqKhIV1ZWnunLCCGEOAVr165t0loXD3U9zqYzHnyVlZWsWbPmTF9GCCHEKVBKHRjqOpxt0tUphBBiWJHgE0IIMaxI8AkhhBhWJPiEEEIMKxJ8QgghhhUJPjGgRKaDXQ1vUdu+fairIoQQg+qMT2cQ559tda/x0pZ/JGMnARhXeDGF4bGsPvg4trYoCo9Fa5v80ChKo1MwDJPZFbeRHxo5xDUXQojjO+O7MyxYsEDLPL7zR9qK8923biBtxXuOtSdqiKVbcLSNoy0AlDLR2gE0CgNDmUwsuZJ75vwnI/NnD1HthRAnSym1Vmu9YKjrcTZJV6foY93hp2nq2k9XqpFkpoOUFaMr1YTlpHG03XOe1jbg/tKkcbB1hh31r/OLlR9hZ/2bdCYbqevYiePYx7iSEEIMDenqFD3e2fd/vLTlX+hI1vaEnNuyO9Hw0sSSzfx23f/DY/rR2iEaKOH2mf/C6IJ5Z67iQghxEqTFJ9he9zr/veRqfrP6z2mNHxqgZXfiWpOHqW7fREPnLjJWgs5kA89u/DK2kxnsagshxCmRFt8wt6NuCT9edi8pqwsHaxBKdABIZNpJZDooDI8BoLZ9m9z7E0KcE6TFN8z9ftNXSFqdgxR6R9O0xavR2iHkyz8D5QshxMmT4BvGHO1Q37kbzZkbgGJrC6VMooHSM3YNIYQ4GRJ8w5ihDEzjDPd2O/D0t3Yxc/44Lr/8ch5++GH27t3L/PnziUQiLFu2bMCX7W5Yyk/eeYAfLr2LlVW/xrLTbKt7jcfWfJpHV/0Z6w89w5meiiOEeH+Se3zD3Ki8OWyvf53uqQndDDygFI4+vUEpBzdCMh3j3n8p5gvXPImTCBAIBHjttdf4/Oc/T13HDl7Y/DqGMphZcSuj8+fy0uZ/5sWtX0Nn7xdurH6OZXt/Rsrq6Cn3UOt6ulJNXD7hE6dVPyHE8CPBN8zdPOMfqGpZRcqKZSenKwAMw4NCoQClFJaTPk5J7tndYdXNE9A0HbTZs+sAzRdVYRgeXt7yU9qTtexu2Mor25YxzswDYNWBx0BDfdfOPmVoHHY3vkFxZAIBb062VrD64OMsHP9xDCUdF0KIEyfBN8xNKF7I9VP/hhX7f0l7ohbbSRPyF+I1AihlsHjy56nt2MryfT/HspMoZWBri94tREN5CHnzyDgpQGPZaWztBuWIqTD1Gnj7/ywW/MeVzLnJx0W35xH2FdKaOExnMoCjo8RSzbQmDpFjQ162XEtBTIF2c46W2AE8ZoC84Aj8nog7EtWxMEzf2XzLhBDnOQk+wQ3TvsL80fdzuG0jO+uXcLBlLT5PmAWj72fhuI+hlKI4Mp4V+3+BoTw42qY9UUPGTjKt7HrC/gJ2N7xFa+Kwu4xZPEKgYQZGIh8n2Mq0izcx5ao2Mgmb5/8xzsi5GQrK29HaIeOkqO/cScZOoDTEDbBx250RB/I0tBruAUc7WE6KtkQ1JdGJjC+8DI+EnhDiJEnwCQCKI+Mojoxj7sg7B3x+7si72du0nKaufRjKZETuDOaOupuU1YXSsCb+axwnjVk/lcCBK8BRKEw6qwvwHpyMM3k5FG/DE9DYToa0ZaG1xnEcbLt76TM39HT2I2ZAvuP+JXU0KOVgOzZa2wS8ueSHR7N070+YXnYDBeFRZ+mdEkKc7yT4xDElM120Jg6z7uBTbK55EUfbeM0gl479CPUdO1i+72cAVLZWEXAS2KkCqLocpT1orcnYFl1dCZa89RYosIIGoxfYBKPwwr86tFZDy2EYNSfDBfe61+w9xMbQMDEDO71gAh1KYxvgaJu9jctojR0k5Mtnxb6fc++8bzO28MKz/h4JIc4/sjuDGNC7+x9l6d4f0ZGsoyNZT46/lKAvD3Dv6dk6g+NYdMYOEki306o0/gOLMOtnASbrNm5k/caN3HbTTRQXFaGxSZVtIDVmKd0DaPxmCDDJOAm0k+kTegqIaCiy3e5PhXu/r1OB4yhi7XmkkwFGlRYSDFuU507jM1c93e/riKVbaYtXUxwZj88TPLNvmhDnoeG4O4O0+EQ/1W2bWbLrOwAkrS60dmhP1uL1hPAYPmLpZkzlIZZuwXaSKBQBDU4yH7dtBoX5+SSTSR59/HGuuuIK5syahZko6LmGoUxsbZEbKKU9WUtQZ+hSR1p8JhDU0G64f0nzbfAq6FAGVdumEe/MwXEMavZqcgpaKRvzOp/acg+fvPMDTCq6lqWblrN81+9pziwnkFONMmDeqHu4e85/SQAKMcxJ8Il+djcu7fncUGbP5ymrC4+vAK8ZBK1JWV3o7ASGIJAItqLbR6EwGTN6NB9++GFefvVVXnvjDbbu2MFV948ggkJhoLWNrW2MRC2Fjs1FScWfApq0clt3uQ54NUywYE7GQGWHdu7D4IdoHMedwqBRtLcU4PElaKmr5x9++m9Ujv4f6g4V0Bo/hK1NIrkFjJl0kBX7f4mtMzxywY/P4rsphDjXyAQo0U/Im9fzedhXAMoNHVO5vydNLrmSC8Y8iOWksJwMnUrTiSZVsgnUkXl84XCYe+64g5uuu47W1lYe/95a1j7pxUq74ebRmuJUggsTGUY6MDvjDmYpcMCv4aIULMgoDO02BbWGsVpzRUlN35uBGlobygBobVFs3dVAdWMtXZ0mqaSX1sY8ag+U4diws/4NWmIHz/RbKIQ4h0mLT/Qzc8TNvFv1S7pSzXgMP4WhShydYWzhJYwvXsjFlR/gqfWfJydQTleqkYzWODqDEWzHnLgJZ88cd/KdNjCUw+zpk7jvkmq+++YO1vw+ze534IIHYcKFsMcDaaWZGIebbUWb0rQZihIH0Jq4AYZyU85C4WgY60mjteEmIQAK21IopbEsL8QMco00jlKkbUXC8tBQXUxXe5jZcy0SmY5jfelCiGFAgk/0E/Tl8sGLfs6Kfb+gsWsPI3JncMnYDxP2F9CVakZrh8OtG8gJlOI1A3QmG0jbDkqZeIp81BzKwdPhJceboDJSzeKy1yn1tjD5Aw4/WQjP/Qpe/y5sqIS/uAtumQR5KAygUBsU9qyZrUhpdyI7gAdNBqiLR3qeD5sWNxXWMTnUQYvl47WWEhrSAcKGu9uENhUWaRotH+3Nubz7tomv9Rm+9GAlkVAEIcTwI6M6xQlpiR3k+c3/HzXtW/EYPtJ2AoXRs5xZU9delA7SsfSvMeJ+DO1gaLe19unp32NU5BAaaFMO3w7CtuWw4XfQ1ASXTIa/vwMuGusmXPeSZBqIa0gY9GyaFLM8/P322SQdL5ZWfHH0Lsr9SVAajcJ2FL+sHUNzJpB9hWZuTisvNZXjaHcmvFKK4rxifvnVn5AbyT27b6QQ55jhOKpT7vGJE/LMxr+hpn0rAJaTJmMnSGTaAfAYPiLeXKINY/HEvHgcN/QUoLViXdN8uqeoB7TCa8Ccy+HNr8HX74fdNXDjN+AjP9bsb+z7i1hIaSKWwm8Z6JSXpw9XkvJAvi/FtYV1TA53UuBNU+JNEVA2AcNhQU4r3dPgA4bDWH/M7RrN1sHRDg2tDfz0pV+cjbdOCHGOkeATx9UcO0BD5+4+x/yeCKPz53LpqPtYbJTy53E/1ycUZjbwVL9SNBq32/KBhOL6hCLfo/j4VYo1/wxfuhle2wIXfw3+7ncObbEj9+/8hibXcAgZmnwzw1x/F6BI2h6Sjkmn5aEx7cfSCp+y8SlNm+WjIR2gNePhyfpROLhRGDRsAoa7Psybq/94Jt82IcQ56qTv8SmlfgbcAjRorWdkjxUATwKVQBVwn9a6dfCqKYaS1wyilEJrzfhYK6UtNu/suZ41HTM4HEhydVmcnPxapkZqyPXdSHv6SPehUpr5RW5XdwY3fMptGA2klDtXLyeg+PKt8KHLNV9/Hv73T/DYCs2XboKPXglew+38jJoWHxpxkOebyjmYCnEoGSRmmSxvL2JtZz4KyPOmyTdTlHgSTIl0Up0KsScRIWRYlPhS2NmWnwM0JRy++P0vcqipgbbOVsqLyvmrez/L7Akzz+4bLIQ4q076Hp9S6gqgC/hVr+D7D6BFa/3vSqkvA/la678Bucd3vrMTTcSqlrCh9jEaWzcyo72RX6z/CxpiZdnfmhRKaz4+9UdMyN1NQ6KE56vuYH/nOAoDTVw38o/MKNiMBpzsnD+D9+5q2HIY/v53mjd3wMxR8D8fVMwYeaQN+YvaMbzbUYhPOXixeeO1Gjqb4xhKEYj6GH/1FEZsWcXWwxq8HmYunsCk/DSbu/L6XMfSitq0v09t/F4fD1/7ABMqxnPhtAsIB0KD9VYKcU4ajvf4Tmlwi1KqEnixV/DtBK7UWtcqpcqBN7XWk0GC72xp6qoilm6mInfmSe9YUN8Y5613qunozDB9agEXzSvFMBSr3lzKzx7bTnM8TI4/xqdnfJuUSvGzTZ9xw0t337lTzC5cz0MTf3PMa3SfaeHGzMDdod3c1uVLGzRffBxauuALNyo+fyN4TcXBZJDvHJ5IxjHYtitO9d5Wpl49AYBUwsLb2kKk+gBff8jH86sz7KiF264p4OnGin5Xbcz4SDp9Oz4iwTAjiyvIi+Tx1Q98ieK8opN6P4U4nwzH4Bus6QylWutagGz4lQxSueI4LDvNs5u+zO6GtwEIenO5Y/a/MbbwQhqbEySTNhXlYRxHs2TZYTZvbSYS8bLo0gp27G5lydLD7KvqwLLdwSDPvKgYOyaHW6+v5Ge/qCauveBtI+FofrT1wzww9rd4ssHUm6MNNMcOM4UbkGa21afpXtxsIBql4Ja5iksnar78JHzjJc3LG+F/PgTTRyb4fyN3851DE/H4TOItMRItcXz5ESIhk+rNHdw2U2Eqh0XTPfxueYJP+JNU+BNUp4604BQay+nf9owl4li2TVtXGy8sf5mP3vTBk/qeCCHObWdqHp9PKbUGYPTo0WfoEu9fjqMxjGO3h3pbffDxntADSGTa+f3Gv8W7/z/YvtOdqF1cFKSoIMD2Xa2kMzbJpM1rbxwCoCuewem1abqDZve+dv77BxsxvQ5mIAa4QdVuB9jeOY7Rkf0krABNiWJ0tptwbtHxW/XdkxV6Ak8DqleA6qO+ZqUpiCh+/DG4fR584XHN4m9onv4sLJwc51/GbWZ9cR5/11HMjrf3kexMMnlOCUErycS8NKU+A7/y0BHX7E2Eua2ohpUdhVQlQ+SYFhmtOJgK96unRlNVd4DywjKqag8c9+sSQpxfBiv46pVS5b26Og93N50XLFhwZicKvo8cONTJU8/vYf+BDkqLQ9x+41hmz3C72Vatq2fdpkYCfg+XX1LOqIoImYzDvqYVPa9PpWw6OtMkkp3Etq4lYkwgmbLZvLWJeNLG5zVIpx0crTl+D7fGtv3oRCFmoBWUJqkcxuXuYvaol+nKRGhOFvFm7SJmF2xkWv72E/oa3ZZf78soUBpbK1KWwmtqvKrvc2jFzXM1F0+Em/4LPvhjzVOfy6XZN4fmVD6fubSTpTNH0JpIsOb3m5k7wqYtBhs6c3mmupRO4yCP140mx5NhYV4zsyLtbOjMY3Mst1dt+oauZVscajhMPBXnnc0rWDjzkp5WrlIn9kuJEOLcNFjB9zzwIeDfs38+N0jlDhuJpMX3/28z8XgGcO+7/fTX2/jK5+bzm9/t5J2VdTiOxvQonn5hT3ZjViifG6N0ooWhoLY+ju1otKNoavDRYnW5j7NBl7Dt49TiKFrj2D50vATMNFeN/AMjogdpShWSsXzs7xyLT1m0pgrpSEfJ8XeeULE9uQZHWnxa0en4CGGhTLcJairdszg1WlEYgSc+DVf9u8F9/6v4wP2TSFuagLeUEQEvcwvXcTBkM2+8wdMbFbnhSvbtbqG4IkrMMelKe3iqYWRPHdwPjd9wSDomeoCO2ub2Fr70g78lEopg2RY5oSi3LbyFR657AK/He3LvpxDinHAq0xkeB64EipRSh4F/wA283yqlPgYcBO4dzEoOB5u3NfeEXjfH0TzxzG7eWl6DbWm3pZbq+7r6HQuxw2tRZgbHcUMkXnsBdjIPG8f9p/xUGyjaxB1o4hYxObofJxPEygR4cu9DtKXz8SiL7W3TWFp7BV+Z+0/k+Lo42QaRDWhDk+tLkbA9HEgGiZg2uZ4MfsM5Un0NObn53H7LIh57+nl+++zzXHnFFby9bBlKKRxtc+HUApwJBezZ3UzDk7vw+Q0uuHYccdOm0z7y1929x6i5INpMwNSs7cyn0x44yBzt0BHrQClFOpPimbd/j9fj5ZHrHjj591QIMeROOvi01g8e46lrTrMuw0o6Y9PVlSEUNFm1vpFl79bS1pEiGvZiGIr2jiTLlnybjtYDgEEgVERR2QKq97/qvj7VRjg6itmXfJm6lf+P6KhlGP4Okk3TiFVf1HMd3fO/gZUE6xgTqaIhUcqBrrFHPds98MPGH2gmkQmjrRD7O8fRkioEwMKDqWw0BltbZ3Fx6XLQ9Au/gbtW3YEuKnslpcD0WDga3mopYUq4k2nhI61IR8HK1plUjBjJNYsW8eqSJTz59NOMHzuWstJSSkuKiJY4HEjVMPbyAkocD8XeJAAZ2+lzZQPNzEgbD5YfpjYZYE1n/rHfpJ6vQWM7Dm1d7SzfskKCT4jzlCxSfZbU1sVYurKWhsY41XUxDhzqJB7PkEzZGIYiGPSQSdvEYhZer2LvrhVYls0FV34DgEy6E68vSvnoRQBsX/9D8oumAWDFymndcfKN7OtHvsyVFUt6Hm9tns6v93yIo5uICkXI9rKq/hKm52/DZ6YxlYWjTWKZMBFvJ6Zy6EjnnFTjUqve0xp0d/sUZbgpOdIf73N+TEFbJh/LUezeuxeA4uJimpqbex4DhKM+xs0sJn9mJZ2GB0cr4kdNWVDZMagdlof/q62kyz7xHwXHsbGdk+w2FkKcMyT4zrCGxjj/9T/r2bi1+ZgDShxH09mZQSnQ2oEEmGaQrvYDdHUcIpIzCq8v2ut8i6a6tUya9ZFTrldJsK5P6AGMy91L0EyQsHtP2s5uCeR4aE0VsqdtImOiVdm6QswKE/W6rbLJeTsGvNZ7DaTpngLRfYoFaOVwZ0nNUSGqiWjI87fw9isH2X/gANddcw1zZrqrrKRSKeoa6jnUsJuqQwfYvLya/L1tjL9qMv68MHa/0hT74iH+vWoKMcfDifYHa60xDJOLpl14QucLIc49EnxnyKHqLp5+cS9vvXOYWPzEWge9AyK/eDojx93Ajg0/JBFrYPSEWxkz8TYAmurWkl80HdP0n3L9xkSq+h0LmElyfO0kEm7wGdh0x1KOr52LS99hbM4+DKW5vOxNltdfTmmwHo+R4aoRf6Iy2r/M95IdsHmkpQf4gKA6dlLW713LqrUx5syc2RN6AH6/n9GjKgiMqmPcggns39nKqiWHWPe7DUy4eAz500f2GY2pUXQ43RP9T7ydqoCAz89Di+8/ia9UCHEukeA7AxIJi+/+ZBNt7SniJxh6AH5PnKJINX5PnJQVwj/hUioqF2Nl4qx+66sUl19IKFJG3cG3qBh73YBlaO2wff0P6eo4gMreG6wYex2bV32TcKQCgEmzPkJDpLTfa5XSFAUaqU+Uu2VhoHAoDdbyt/O+RoG/jfZ0LjErzGVlS7lixBs0xUspCdUT8Xb1Kufoco/V6lMY2cWrVXZMpTpmCCkONDr8/RMxpo4Jce1VC3GHxZgobAylGR9dTUc8QZftYdSkAiaM9vPKK7XsWrafnH0tTLp+Oh6/J/u1vdd0+2OLhqOU5JWwt2Yf0yunnvTrhRBDT4LvDNiwtYl4PEM6bb/XuJI+CsLVjMrbA0pjKE1H5yHG5u2nITGd5q4ReDwBQGNl4nS07WVmyawBy2mqW4fWNhf2ujfY2V5FUdl8ps//bM95B7pgW8sMphVsAWBry3RWNVzM7vZJ2TMcFBqPshgRribf1wZArq+dXF97TznRnL6jOE92RKdC9fRzqr5P9BmU4ziaz/wKDAVPfjJOIPIka1pnsqFtFD5PB/n+vazo8nJhtIXZOe3UpoJsjeWw/4YZ5OyoZ/dbe6hatocJ10xhgKudMFOZeEyToC9w/JOFEOckCb4zQUMmY9Pckjyh0/2eOKPy9mAYR0YexmKdLHnrLVC/J5YKUVR2EaFIOdVVr1M84iKUGniZZ49n4HuDzfXrWf3mV4jmjWXizA9hmn5+vfsDzCzYjN9Msq11BnEr1DOXzQAKA834zRQNiXLerr2SRSPe7He9zkwOXZkIZaFajPfoouwOxKNbfrpnBOiRIHIczecf02yvdoNuZAHkhWD5bphQAp/+Bfzvh9q4oWQZxcE8fllbyX4rQJkvwbzcNvK9GdLaZEdjDvneDJkp5SS6Mhxec4CC0fkUTOzd2j25AOxMdDE1ZwrjRhw9AlYIcb6Q4BtkjqPZvruFmvo46Yxz/BcARZHqnoncsXicqgMHKCos5L6778Y0vTR1VlDdPhGAisrF71nWQPcGKyoXs/D6H2KaPvZseZSqnc8ycux1dLZX8fzOKjrbq4h3/c4dWIO7MolC4zUsfL4g4VCUrZv8bJngoyjHw+iCJHlhH2tab2Rbx8WAQa6vjQcn/uY97/Mda5CLPmr6w+tbwbbhlS8ZoGHVPofbvwXXz4THPqX4zQr48Ruaf7pbMdKfwKdsYraHEb4kDekAhoJcM809JYdY0lJCm+Vl1LxRtB9qYe/SPUTLcvBGT23XBduxaWht4PdLX+CWS2/EY8qPkBDnG/mpHWTrNzeydkMjHkORPsHX+D3xntZSTW0tL/3R3SBVKUVubi55eWWY4fmUjLiYSM7x1z6tqFzc796gYXqpq1tHe8suWpu3sW/74z3nB4JFhKMVeD1uCNmOCTj4zBSZdJyaujr27utg5YbeQW4BT2MazxEIhAkEwvyxQHHTVM28SpgzGoqip9adGA7A9hrYVasJ+eBjP4WcIPz3QwqlFJ0JzfSRipSjSDkGtSk/XbaPN9tK2BbP4baiGuZE2yjytfJma4mbqobBhGumsPGpdexespOpt85BneB6qL1prWnraue5ZS/Q3NHCx27+0Cl9jUKIoSPBN8h27WkDwHZOfInSlBXC0a0YSjOuspKPfuADNDU309TcTGNzMw2NLbRXPcberb8hHB1JScUllFRcSjR3LEqpPoNiWtsztKcrcVQR8Vg9mXQH69/5R+JdNQB4vGFCkRGMHHsdkdxKorlj8PoilAQaMQ2L9nQeSSsACnxGmgJ/M6aymV6wgbGBVcTjnbTH4rxeNZfadh+JZIxEsotksovWtn38+4tH1gEdVaCZOwYWTVXcNhcKIycWNAsnKj50Ofzlo5p1VWCa8OpfKzYfgod/4NCZhMc/rWjK+Hm5uZw2O4CBJuUoPlR+gKhpkdEGXmXTkA7Q/a3w5wQZe9l49r6xi/rtNZRNrzjh71FvjuOgtWbFlnd58Jp7CcmefUKcVyT4Bll+njvoweczsW2d3e7nvTV1VVAUrgGlMU2TosJCigrdlVEcx2BH/QW0dyZorFlJQ/UK9u94mv07niKaN46p0xZy6Zx8PF7THRTTUsvqN75PZ1eCTCYJKILhUvyBQnyBPAKhYqbP/wxTi2q4csQb5PpeojFRRH2inJUNl5BxvAQ9MQwcUk6AtnQ+F5csZ1H52zy1735akoWUh2rJrRhNyag0NqpnROafT/tf8s39bDmsWX8A1h/UrN0Pz6/XfOkJWDRFc9cCxc2zITfUNwSb03msb51JUyqfQn8rl03byE/fbMNjwIg8iAZg5kzFdTMVz67VfPVZkytuqWBdZz4e5WBpd5c/UzloIO0YaA0j/Anq0gEy2W9D0aRS6rbU0LCtlrJp5dk+1pNr+bV2tdGViFGcV0TaShNCgk+I84kE3yBbeFEZS9+tIZG0yWQcNDbda0Mfa1h/ygpxqG1Cn1GdjlagFYfaJpCyQgSCIUaNv4lR428ineqg/vA7VO97kVXLH2Xz+iATxo3D6/Gwr6qKtvZ2otEoE6bdTcmoG/D5c3pdTTMqcoCPTvkpKtu9OjJyiKj3bWriI2hKFuNRNqays8uJaRYUr+TlgzezpWUWprJRCqbmbWN7+wQa0wFyzAxh0yZmhRgThYWTFAsnQfeGsltr4JnVmmfWwGd+pfm8BxZP19x/keL6mbCtazqvNyzC0QYOJiurArz4x020tSl+8+ea/34FEr2WMY0EFI1OiB2xHIzsItM+7QZefTpAhT9Jxnbj+Ir8RrbEcok7ZvZ7oCieUkbV0j3EmrqIFEdPemqD1pq0laapvYkNuzdx5dwrTuJviBBiqEnwDbJoxMeXPjuXt5bXsO9AB7blUF4awus1efXNQ9TUxtCAbTt9QrA1VkEsnU9RuAa/J0YqE6IpVkHK6t+a8PlzGDX+Ri6aN55E27us37iBzVu3AlBRXs6iyy5j/LgJtMRGUd2e0+/1FxWvoCVVQGOymJJAA4WBJgr8LYyJVNGSKsJQDkppSgMNXD/qFQoDTVw78jVM5bC8/jKCnjj3T3iCnx2aSmvTQvI8cGHRZsbm7OwXIUopZlTAzJGKv79Ds7YKnlmjeXYNvLxRkx9WTJhkMH1aGyXFxbS0tvLUcy8Qj8cpKsjn315q55ZZDqv3wV8/4U5193rg7uuj7AACpoPXSPe8l0XeFBrwKo1CU+pL4cEGjixAXTShhAPL99Gwo55IcZRTZdk2P//DoxJ8QpxnJPgGWWt7ijXrGwj4Ta67chTvrKpl07ZmQOH1GBimO2/Nsd1paoYB0YiXeMKmsLCIUKicg4c7SaWPPyI04E1QOnoUlaNH8Ytf/5pEMsnD9x9ZUcTvjQ/wKsXujkmsaLis58jswvVcO/KPTM7fwZbW2YDGq9LcMfZZfEYarQ0i3i5urXwO0FxR/ja5vnaigTqieX9iQrSVeQUNKKWxtMqGzgBXVor5lTC/UvGPd2re2A7ferOI1Zu2sHr9JqLRKLFYDJ/PxyP3309FWTHz8zdyTckyAD54mcIBLK1ozrTwnYNFxBx3BwkUXBhtIeMYFHqT5HsyxByTX9WMocnqO+fO4/dQMLaQpt0NTLi0EvsUR2bajs2BuoOn9FohxNCR4BtEe/a18z8/20w6beM4mtr6OJGwl45Ot0Wi0aDB4zHIWArTAJ/XoLgwiGVpykpDjB+bS2dXmrqGxHGv13tQjDIMiouKep7TqAFbi6ap2B+bRo7ZlH0dbG2bx+Tc3RxOjObe8U+wrWU6IU+MsLcrO8JTE/F2EfQkeGTSoz2rtFyY28LGrjy2dOVycU4LRd7UMUNPo/usyuIxFdfOgJbchVxwWSnbd+7kzWXLcByHGxcvprysDAdoThX0vMbJNiczjkHYtPmbyu2sbC+kMeNnlD9BZdBtTX/30AQ+NmI/CdtgWVsRHjTWUbUqmVJG855G6ve1UDSx/yo2J8q2Ld7ZvII5E2YRDvbfzV0Ice4ZeBa0OGmZjMPPH9vuLlOWsKipi5FMWjS1JHG6++E0+P0mWmu8HgO/36S4MIhSCq/XoLQ4RDJpEQn7yIn6MM33vmZTV4W72CWQSCQIBoNHntQKyxyLUke6Hg1DEQyYJKwwXXYuyvTi8Xjw+Pyk/KO5dsJGRufUMzl/D43JUhzHJMfbQdgbI+SJYyiHkCfWM/ViZriD+0sOUeRN4TdsMtkBJceiB1jHptDfSjjoY96cOXziIx/B6/WydYe72LWBTaG/pedcI3uP1FCaoGETMW2uLmjg/tLDLMhpwdGKDstLcybA3kSEvYkoNm4r8Wg5FXn4In4ad9a995t8HLbj8O2nvs/nvv8lXlj+8mmVJYQ4OyT4BkFDY5yv/ccqNm9vprEpQW1djHTGHWzhOJpM5sjE8FDIQ1lJiInjchlRGsLvP5Jus2cUuZPHFZQWBykvDZOf5+sJr74hdmRQjOMYxLPB52iFow1qOycRCudRVhKiqDBAbtRHUWGAdNrBsh3aUznUJyvIBMZhRMdRkg+F+QHKi32sbbqAQ11jaEkV4DEscn1teI0MHmXhya4u0x1hC/Oa+UrlTsYF4+R4rIGXLOu1ootSRz4A5uVtxlBumZFwmAvmzWPXnj3U1ddjKIe5eZv7FOWgsDXYWhOzTHdlM63xGRqf4fCnlhIAOjIelrYVo1GYA6woo5SieHIp7YfbSHWe2Ao7AzFNE7/Pj2VleOat37Pz4K5TLksIcXZI8A2Cp1/cR1t7Cp/PwHbcdo3ONn2OLNWlUQpCAQ+Vo3P4y0/OorjI7Yo0TYNFl47g0gvKuPSCsp5ygwEPRQVBKkdFKS0JEQp68AdMKkdHmTerGNOE9uRIttbMwrIsDE8BTV0V7Ki/gIaOcuqbkgSDHm65fiz/8rcX4fUYoNzuTq/HwNHQ0JwhHPYz5ZIbANjdOobNzdOpiY3g5zs+zsbmOQOPdzxGy67fucdZxqzA18bikrfwqAwGNhfMm0cgEGDZindYXPIWBb3WBXWyu+p6lcZvQMTjDpc1FMQtg9/UjmJ5eyHNGR+P1lWyLZ5DRhtYeuARm8WT3ff6dFp9Po8X7RxpU27cs/k9zhZCnAvkHt8g2Ffl/uOcl+snHrcAt0vO6zFQyu0GNQxFYUGAaMTHfXdMoHJUDl/70gU0NCWIhLyEw+6owxlTC3nkvsm8uuQg7Z1ppk8p4J5bx9PSluLQ4S4qRoQZX5lLQ1OcP/urN3FsTVfMvWanNZnajkk9oZtOO8TiGW68ZjR5uX7y8/yEgh4cR9PalqKjM42joDOW5hvPjuWeWQ/zi/WgtcLWJo3JEn6y/VNMzdtMnr/zxBegHiDsHAb+LUspmJu/jdGhata3zaQ5VcA9l5fz69f2k2pWkKf6nOvJlt99tPuzdtvHqs5CEk7f/uHsrx8DVjOQEyCnIo/GnfVUzB/TZ9uiE5VIJ6lpriUUCFOcV0Q0fOqjRIUQZ4cE3yAoLgpy4FAnfp9JcVGQxuYkpgEV5WEMQxGJ+rjntvHgwMyphQSD7tuulKK0uP8AlEsWlHHJgrI+x3Jz/IwdfWRqQklRiPtun8CTT28lnWgAwO8LY5JGef0ooKAgQDh45FtcUR5hX1U7SkEqbWOaBl6vgaEUXbE0j73uxdYOub4OMo6XtO1jWv4W0k4QTWe/3RO0diMl7SgStiLX62QHWKp+9/Pc6eXHDpZCf3vP6M3KjObXr8Huepg3DuK2SdTTdytZ3f2hIemYWFr1BH5fR7+qr5IpZez50w46atrIrcg/Zv2OKVtkPBlD60IWzrjk5MsQQpxV0tU5CG69vhLTdN/KSNhLUUGAihERTNNg7JhcPveJ2Vw4p5QL55X2hN5guPrSfKaWHibP73bV5YYMDB0n6LUoLwsTCXkxTQPTdP/xv/2Gsfh8Jo4Gy3K7XvNys5uxaofWeAC0g6EcSoKNXF72Fg9MeIyor5Ojl7XsvucIbldjxNMdet3P9//veJSCjKP4zUqF3wM3zlY0pAO0Wl5s7XZ12tq9x2dpRdz2cDgVpDnj42AyRFIf771V/T4KxhZh+kyadjUc/w0fgN/rx+/1EwlGuGDyPHKkxSfEOU9afINg6qQCvvK5eby7ph7bdrhgbikjR0RIZ2yCgTP3Fh/cX43fa+FTzQCMLbHQ7MfrH4XX47ZeZk0vJBpxw23CuFy+8OfT+O1jS0jV7QczgE9VAjmgTMaXdlDT1D0yUzOveA2msgmYKfptkJc9gnIni58q29Z84XHN9hrodLyk/SEOHehizIRcfroqzTd/F+c//24McyLt/Km1lKaMn8vyGrm2oIGgYeNVDgnHwwtN5QOUfvywNTwmOSPy6KhtO6X6l+QXEwq4o2nHVYw7pTKEEGeXBN8gKS8Nc+fNff/hC57hLWuKit1wiyfceXVFhbnYtg9PXh5G0MecmUXccdORfeMcx+G5J1+irbGJwjxobm4l2dhOIHcMQaODe+a9SE2hh1f3Xkx7KodcXzuFgSYMA8AEbZ10HY/ufTz6Xt+ftoHlwPf/Isp3D09k79Ym9u5sZ8SkAh5b00xpfpKmdIDvV5fgVw5KwR+aR7AnHuXhsgN4lOY7B8dTlYqcdN26RUtzaK1qJpNI4w36Tuq1sWSMUCBIUW4Ri2ZfdvwXCCGGnATfWZJMWVTXxNypBTn+QSlz3MTRjJswmiVLYyhlEAgEKR9Rwsc/cws+n7ff+VV7D1Nf1wRAKOjBVxom1tFKZegd7p+/jag/yYhgM3ML12DpED5awcpkG3rZBUcHaPkdS79NZ3v9aWv3PmDYD9uq4bm9UbRPU7WjlWDYS3tzivEzi9m2NMbarnzaLS+lvhQhw93Vflssh9UdBUwIxRgVSNBheWmxT/R97V0xRaTMvXfaVd9BfmXRwC85hq5EjLuuuIP7rr5LJrALcZ6Q4DsLVq2r54lnd5NK2RiGYtHCCu65dfxpl6uU4pGP3cELrzxBTk4ON99xNXMvmD5g6AGkUu4OgTrdgU42YTgZIipDRaSZqD87l81OY+g0wbyxaF2Kjlejk02QXQT6ZMY99j7f1pBwPCQcA7/hEFA2nbaXWGE+kckeHnupmZqGBlIJi1mXltNQ08X0C8vY+JZBkTdFwHDwKo2Nyq6C497nU2jyPGkKfBlaE25rTeHO9zt2rfo+jhRHUYai8xSCD6Aj3kEkeOotTiHE2SXBd4Z1dKb59VO7sG13rpfjaN5YephJ4/OYNa3wtMv3eEwydopRo0Zy8WVz3/PccRNH4zczJGLVRw46FhNzdqB11J08bwbRuNMzlAJ8uWQSbSidwUC7ozV7BrEoLPwYpFEDRE3vHZn+rWqKu46mL01DOkCx1ySWqiTjRJk5Lc6tM9fzt9/fj+kxaG5IMmV+GWHDxlSa+0sO82jdGPfrVRo7++f4cCcdlocd8VxaMj5G+JM42t2c1mfYNGUC2e2K3pvhMQkVRuiq7zjuuUfLWBm27t920q8TQgwdCb4zbMfu1p7Q623rjpZBCT6ALVu2sGDBguOe5/f7uOeyGC+8mqIt7sfncbh4XBVj86rBHgOeEPhyMAOF4GRwug5gZxIoJ92zTBkA2l0pTWuNdjLo7ud6rcgC7mhPy1HUpQNcV9jArniE1e0FBCklbk3A0IpMLI7XG+Qnr4GV0UQKQyQzsH11HQfXWXR1WXzvyVYevMvHW20lJByTEl+SS/Ma2ZcOsTYZIu6YeA0HA3c5sy5toB3I96RpzPReoPrYXbTRshzqt9ViZ2xMrzsXUGvN/rd3E2+JoRT4IgHyRuVTt7UGwzTwhXxMvGbaSXynhBDnAgm+MyidztBUV0c8niQQ8GP0mhOQl3NygyiOpaOjg/379/Oxj33shM4fXWbwiSu205H0EvJZeE0HJ1mE8uWiPCG8o2/EN/0vSK3/OundvyGVNvCrARbM1qCzw1SU0jjacBfgVkdC3lQQ1wYepSn3JRjhTxA2vOxqXQiYoKCtvZ2X/vhHOjo6iEYjjBxfzMQLSkg6Bj7DIfnYKv7tQwG07mBapJ00iqA/xf8m8glFO2lrCFCbClDkTaOzE9vT2sCjHPzG8Xe46JZfWUjd5mraD7dSMNbt7mw72ILWmhl3ui1pK5nBSlsUTSxFGYoDK/bStLuBGdfed8LXEUIMPQm+M6SpoYVf/Ohp2tu7SHcV094WoKAwF7/fRyTi5dILy45fyAnYvNldImvWrFkndL539I1YB14iN9i9s6vCLJhJ+PpnUUavVU/sFMoTwUfdMXZbAK0NultRGdvdHshU6eym5iaOdgibNgbQbPkATcCpcMMpk2H1unWs37iRWDzO6JEjuefOO6jXTRzKHEYpCBoWj38lh1JfHK1hdyLC8vYCrHAcp6CDQy1FNDWU42DQYvnwKYcCbxoPDgHDIdNvqbJjD8zJKc/D4/fQsr+pJ/hMr0m8JUaiNUYwP4wn4MUTOHL/1DAN8iI53JJd7k0IcX6Q4DtDXnt5GR0dXSgFlYVNNMciOJZm0VVzuOaKUYM2snPTpk0AzJ49+4TO95RcSGD+35Ha/mN0vAGzeB7+OX/TN/QAI3c82EkMA7Qz0KAWhcq27rRWZBwPQU+6z/Pdozr9hk3QsLG1oiOTj8bENBWbtmyhpLiYBfPmUTl6tLuItx0kg4HSmkV5jeR4LCyt6LI85HsyVPhT/Lx2NP6OGKlEANtyg8jRkNIGTRkfRd4UScekyx7or3fv8Ou1HJqhyBtTSGtVM47tYJgGOSPyKJ1Wzv6lu0l1piibWUH5rJEAJFpjdFZ38MqTLzNe5u8JcV6R4DtDDh2o7fncNDQl0U6gk9tvuA1/YHBCD6C6uhrTNBk5cuQJv8ZbeRveytvQ2kGpgQd/+MbdR2bfMzixalBuy05r9yae0T21QWssDc83jGJTVz7FgRjX5DcwPdKBVl46HS8hI42llTvZ3HAo8LVwMD4SDJOPPPIIfv+R98LRDjGdzC5HppgU7iLtGDSm/T1rbk4JdWLYilhHLk62lQng3uHTmFq5o0Vtz3sMbBl4xGfB2CKadtWTqo0zvXIyIeUnPqOC2qlNdKZibHtuA/mVhSjDYM8bO/ngX36IGROmn/D7LoQ4N8iSZWdIcWn/gSu5uVG8x5hqcCoOt21i98ENFBQWYBgn/63sHXpdnXHeen0lv//tq2xcux3tjRJY/BSHzGtJ2BEsx4uND2X6wAhgBEvAX8zPayfxRnsx9Rk/e+JRflQ9ju2xKAobB3i3vZCadIDmjI+YbTI7b0vPNkS9Qw/cdliN3dTz2FAGTna8qEZlp0dotOPBsT30DzBFWpu0W74TGs15tLxR+Zgek/j2NkaYRXgTJoVWlHm+KYwIFGN6TTKJDLte3cq4yycyYcLEk76GEGLoSYvvDLnm+kv55Y+fJmO5q50YSnHtTZedUkAdLWMneWr9X1HVvJqt+/eiAik217zMzBE3nVJ5nZ0xfvSdx+hod1eAWbd6K7t3VpFTPp3ntv8/RvhuZHb0NfI89RQG26gotFCeMO1p2J7y4jHSeMzuoZ7wdnsZ46K1BFSSloyPZ+pH0Jzx0Gr5+cyoPczNX8G61ktxtELj3gvUwB7rEEmdRmFgmiYbEmVc463qU9dNXXmk9HF26D1FYW+Iiy+4kHdWrKCq6gDBYJAlb72FUgrbcSgaXULTrnoysRQHVuzjd7VPkNsVPuGBRUKIc4ME3xkyeuwIPvPXH2TDmm1Yls2MOZMpH1E8KGWvPfgUVc2rAYh3WIRyTP647d+YVLIInxmis72LUDiIx3ti397Vyzf1hF63Tet34Dvk7hxRk55ETfMkACaH3uUDRU/hAZK2ckd2mn6UNwedagHDIOkpwLbc5cSuK2wgpv283pSPVzl879BExgW7GONbRogKmlKFJElwyGqm1Xa7UE3TxO/184fGIrDiXJbXhFdp1nfm8VTDiXfpnqxys4iSeRPYvmMHr7/5Jh/5wAd4+P77AbcbttpuYr9VzYRFUxhbXsmjf/d/Z6wuQogzR4LvDMovyOWq6wZ/m5qDret6Pu9ozlA+NkjaTrBm4zJWv1ZNS3M7wWCAq667+LiT2gGam1p7Ptdak05lsG0bM7cT6LvbwJ7kRagR7ejq5ynzeygPB6mnDOWNYltd4FjM8lcTUBnITnaPmDYdlhd3CrxibyLK3gREzVZCZjM+wwEzgAcvhmHi9XjwerykrTTPN1XwfNOI7NUHHGKT3SLp1BfK7hZSfnweH9defTVPPv00u/fsYdqUKYDb7ZrjCVORN4JwMMy1C64+7esJIYaG3OM7DxWERgGQSTm01KYoHhNEWyavP72NlmZ31ZVEIsnLz73J/r2Hjlte5Ti3FeU4Dk2NrTQ3tdLe2klX/Q6sWN/teq6dUYOndRUoD+mUzWXlMwl4SshkbLy+KJflNrCooKVnJruBRmkHG4WTHRyTne9AQvtptgI0OTnECWCaJiMKy7jnyrsI+UNY1vEXxTYMRcA7OIOF4jqFox3GjBrFhx9+uCf0ADQab9BHXiSXy2Zeyr1X3TUo1xRCnH3S4jsPLRjzAFtq/8CePdVoB0rHBCi3bqQq0//crRt3M3b8qPcsb+4F09m5bR9rV20mk84Aipy8KMGAideuobhyHMk0zJkaZWHyH9HpLroyYX69ciIdiRTFoTJyveVcM38mF9mb0RkTVAjbSuJoTUobFPo09WkTR2uUUnhME6UMbNvC1sqdt+cLksqkefbt52iPdTDQupp9piCg8Hq8WLbN8RhK4RynVVhrN1FuunP4Sor7d0vff8+DLJixgIBv8EblCiHOPmnxnYfygiP46CW/IS95MQAPXvcVLpv0oQHP9fmPP4rU4zF55GN3MGFSJTm5EQJRLyknSTqTxmM63H1TOV/53HyundeBstx7gav2l9CRXRRaZ2L4jQDvrouT8lZg5k7CzJuMt3A6gZzRzJ9+BdGiiYQCYfxeHz6PNxt+HgL+IH6vn/xoPmPLK2nras+G3rEcCS+lFIYy0DgoNfAUBQCfx4thGHg9x34vlFIkSXNINeDg4GSvo7P/dUbSjB8zTkJPiPcBafGdp3ICJaTqCvF6vdx46YcxDZOi4nyaGo/cr/N6PMy7cMYJlxnK99Eca+65X9YR66Akv5j8wlwAjEBJz7n1HcGez5Xh/jWyVIg2YzJB3EWblfLQ7injqdpC6tt2k7HSbovPfRbDMCjKLaC5o5XWzlaa2prJ2N3N1v6tM4W7JFomO6rT0Q4ZK4PH8GIod7siy7Z66l+YU8io0pEU5RSQG8ll5bbVVDfVHClQu4GnlMI0TSKBCMG8CC12kkDCxGub2KZDImgxffIMygsH2uxWCHG+keA7j7366qssXLgQr9dtyXz4E3ez5NUVHNhXTWFxPlcuvqhns9oTcdiuQpsOTlrjOO5cu2ZVRzjshpwRHY1n5DVYh/9EWW6cQy0RUAbK717D6/Uw6sZvYhx+FrtlCwdjJv++/BB7mzb0lBfwB5gyehI7Du4inUlxsP4QShmYhtkr9GCg5cVMNF6lyfQ6bDsOjs7gMU0MpTANH+FAmOK8Yv77M98gP5oHuIH4jce+SUNrY891DMPA5/Hy6Ts+SUlBMVv2byMnFOWa+VcSTyZ4ZdVrtHa2MXPcdG646NoTfh+FEOc2Cb7ziG3b7N5RRSqZJpzjZdOmTXzjG9/oeT4nL8od9113yuU3JRqJFzeTaVIYjknalyBjJ3n7jZVceY07OjVwwT+TKZzDpbkr2NMZpD2dC6bb/XftTZcRjBbC1I8D8OQvvk5VyxZs58g9uEQywaa9W7Btu9doTAfLfu+BLCaaXK9Fm3VkcW+P6emZF2k7Dh7TxGN6yI/mc/tlt/SEXve5f/PQF5g/aS6P/vExmtqbyQnncveiO7jnqjsBuOKoHdT/4s5PntobKYQ4p0nwnSc62jr5+Y+e7pl6sGnrKgBuvPHGQbvG+Ipx7Ny9Fyd0ZFeDkBFh3cptPcGnDA++CfdTPOF+PntFhu2b99DZEWPS1LGUlPVdraa9qx2ruxWn3ftlwJGQO+4MBLdT1FSK0YUFTKycwZqdm+iId2IaBkopIsEoeZFcygpKyQlHyY/mc+HUBVw4tf82TR7Tww0XXccNF536LwdCiPOfBN95YsmrK/rMt9uxZys50TzqD7fTWLOCWfOmnFS35kDuvfIuXnvzLeyMQyARxXQ8FIeLiceObEuUzqRZu3M9HfFOZk+Yyez5U49Z3qzxM1izYy2OtntCrzd3//QBjiuFzo7+jATCFOcX4/N4eeT6DzJ+5Ep+9cpvcLRDJBimIJqPUoqP3vxBpo6Z0q8sIYQ4mgTfeeJg1ZFBGfF4F3v2bmPy+Dm88eq7mB6Tt5es4uGP3s7EyZUnVe7unVVsWrcDj8dk3oUzuGXS7bz7zjo0YGKS7rQhO7K/rauNrz/6nzS2NQLw5JLf8dDi+6gsG0NxXhG5kdw+ZT987QO8vmYJVXUHsbXb3amUAq3duXzHaPFprTGUQVFuIQU5bphfPe9KJo4cz8SR45kzYRa/fOXXtHS0EPAHuW3hzRJ6QogTJsF3HkgmUiTiKZqb2vB4TLbtWoPt2EydMIdMOkNzYyuWbfM/33yUv/zrDzFu4ugTKnfV8o28+OySnsfrV2+lqCSfUCBEKuVuMRQI+Eml0rS1dPDS2ld6Qg+gM97Jv//mm1QUlePxeLn+gsXcd/XdPc97PV6++MDn+O7TP2D3od0YhkleJJdEKkEincRxnAFXXDENA5/Xz40XX8+kURMYVz6WyvIxPc/PGj+D//zU12nqaCY3nIN/kCawCyGGBwm+k7Rt8x7WrdqC1po5C6Yxc87kM3o9x3H4xY9+R1trO+lUmmTCYc2G5RQXlDNy5BhaWtyJ3lprOttj/Oqnz/DFv/sEkWjouOW++dq7fY9pzcGqWgqL83Fs9z6fYbqDR2KxOPtrD/Scazs2Te3NgCZjWxiGwR9W/pHJYyYxe/xMADbs3sR3n/4BWjuU5JfQ3NGC1+MlN5xDZ6ILR2u64l0k0ok+AWgaJqZh4vV4uXrelQPW3zAMSvIGZ+1TIcTwIhPYT8KadzfzxK9eYNeO/ezeWcVTv3mZFUvXHf+Fp2H3zipqqhvw+ryUlBbS1tlAW0czF86/DMd2W0yO42BlbGzb5vDBeh77+XPHXbvSsmy6uuL9jntMd46cYRo9oZeTG6G8ooRRJSPR2kZbCRLJOKBRysBrHvn9afPeLT2f/37Z82jtBmhOOMqIonJ8Hi93X3knP/nS//LFBz7H6NKRFEQLgCNz6pQyiIYizBg77bTeOyGEGIgE30l458012LZDZ0cXrS3txLoSLF2yut95Vsaiva2zZ+7a6ei9a8L+Q7t48fXHiUZyGTViIrGuOJl0Bsvq3tXA3Yx11479bF6/s19ZB/fXsPyttezddcCdcze6/4TsOQumMWf+VIzsSii5uVHue+RmDMPg2sJGovHdOJ1V+FOHCag0eZHcPlst9b7P19Da2Kdsv9eH3+fn5ktuoCi3kIUzLmbhzEsozit0y1HuupuFOfnccsmNXDBl/mm9d0KI85tS6mdKqQal1JZex55USm3IflQppTacbLnS1XkS2to6aKhtwrZtlFIkjCRdHV187z9/iZWxmDl3Mv6An2VvrKa1xV12a86CadxwyxUUFOW9Z9ldnXFMj0EwGOhzfMKkMRhKsXrDO/zh9WcoLizl6kvvICeag5GrqKtx62N6TZThLuFlZSx++ZNnKK8oZs78aVx93SU8//SfWLf6SGts0pSx3HLXNfzm57/vCdeS0kJuuPUKcvKiLL5hIbFYgtLyIgzDwGpYRfTgY/zdTFjTbNKZgRJVy7PxkXRlG5fRUJTLZ13ac40poyezfveGPl/P+IrxeLItRMMw+PgtH+G2y26hub2ZkvwS6prrKM4vlm5MIc4jf/6Eegj4OjAaOAh89YcP6McGoehfAN8HftV9QGt9f/fnSqlvAu0nW6gE3wlybIe2lk7S6b4rQVuGouZQPV6/l9f/8A7xeBLDMOjqjAHwxqsr2LvrAJ/47IOUlrsLIO/Yto9V72wgk7EYUVHCoQO1HD5Uh2EYzJwzmdvvWdyzl15OboQ9h9fz8mu/Y8LYqdx0zX0oZeIPuBO5C4ryaG5sBQ1+vw/DNOjqihMOh+ho7+LtJatobmpjw5qtdHbEyGQsvF4PWzfvZu4F0/irr3yU9au3sWHtNtKpNEvfWM0Viy8iJy9KTt6RLYmsuncACHngilK3henoPLyhMbzbXkhZQSk3XHQdeZG8ntc8sPheDjdW9wyIyQ3n8sHrH+r33pbkHQm6wpyC0/5eCSHOnmzo/QToHlgwBvjJnz+hON3w01q/rZSqHOg55S7Qex9w0nuESfCdoG2bd5OxrJ45ZuAOuzcNE8u28eIlEU+5c956bSKgtaa+ton//Ocfk5efg2XZ1NU2YmXcSdwKhekxKCpx/8HfuG47uXkRFt94GXV1dTz88MMsWbKET3zik3zx839DZ0ec3//21Z56hSNBOju60I7GsmwyiRSmYRAKB0nEk6SSad567V2SyZR7PUNh2zbpdIb9ew8zanQ5r728lETCfb6utom9uw/yF1/4AKZ5ZKdzw98/kAxlcMncG7i8/LJ+z4EbaP/2yX9iW9UObNtm+tip77lQtBDivPR1joRet1D2+GC0+o7lcqBea737ZF8owXeCaqobCAR8JBPJnuCzLBvtOFgZi3QqjTIU7lPa3SAVsG2HeNwduq+UormpFcfReDwmaEhnMngck0Q8RTjirom5deNuzECGhx56iLa2Nn7605/y0Y9+FKUUjuPw7rL11NW4rahE3K1PKBwkk8mQTjl4fF5amlpJpdJoreke56KUQjlgekwcxyGZSLJ+7bae0Ouu7+6dVfzTl7/LiJGlLFp8EVOmj8cz5lbSex5DJ49MojfyJmKWHenaHIhpmMwcN32QvgtCiHPQseZPndi8qlP3IPD4qbxQBrecoPKKEoKhAMFg4MgWONlA6eyM0dTYipWxCIeDfVpKaHcvOL/fRyadQWvQju4zeVtr7a5dCWjt8KelL7N48WJyc3NZtWoVH/vYx3quaRgGH/nkPVy5+CLGTRhNJBKiuLSQ3PwoRSUFBENBYrEEiUQKxzkSet3XcRyNlbExDYOyESUk4sk+X2dLUyuJeJJYLEH14Xqe+OULHKyqwQgUELryZ3jH3YVZNBff5A8TuvwHKCV/hYQY5g6e5PHTppTyAHcBT57K6+VfrRM0beYExk8cTX5hLsWlhYTCQYJBP6FwsKd1B3DvIzcxa+4UfD4voXAQf8CLz+8lEg3j8XgwDPdcDaDcHcRVNhjj8S4ef/onvPDy73jwwQdZs2YNM2fO7FeXYCjA1ddfyoc/eTflI0vc1iPu3LxMZoDdaI+iFNiOxjRNpkwf33M8ncqQyVgoFP6AOync0Zp1q9xBMUa4gsDcLxNa9CP8Mz6N8uWc6tsphHj/+Cpw9NyoePb4mbIY2KG1PnwqL5bgO0GmafLBj9/FAx+8ldlzp6CUwrJtUqk0Hq+H0vIiCorysC2beRdM58bbruSWO6/h5juupqikAGUoguEAPp8Pf8BHd6MxEg0z78LpWMT42WPf5lDNfn74wx/y6KOPEolE3rNOiXiS/IJc0tlVVtKpTM8alwNSbnenx+OhoDCXTeu2UzluJNffcgV+vw/QGIZBXkFOdmqEq3u6hBBCHC07gOXPgAO4v9MfAP5sMEZ1KqUeB1YAk5VSh5VSH8s+9QCn2M0JoI430fl0LViwQK9Zs+aMXuNssjIW3/zXn9LU2Epry5FRtNFomHAkhM/vw7KObLFz8cI5BMNBVr6zgVQyzZTp4xldWU59XTPBoJ/5F83g0V//ki996UuMHj2ap556isrR43h7ySrqahp77rPl9hphCe5gm6cfe4VMxqKjowsrYxGJhujsiJFOZ0gl0/3qbpgGgYCfopJ8DMMgPz+HBz58G3t2VhEMBRgxooTHfvE8HR1dfV738EdvZ/LUcYP8TgohzgVKqbVa6/7bmbyPyeCWk9TY2EosliAQ9OPz+Uin3YBJpdLkF+bS0d6Jx+PB53dHL65avpHPffmjXHXtxf3Kam5u5iMf+TAvvPACd9xxBz//+c/x+wJ8779+SVen23NQU93A7p1VfPaLH+opM5OxeO6p18lYFih3yoPWmiuuvpD62iZWrdjYJ/i6W4DBYICikvyex76Ajx9869c95xUXF3DPwzfy6ktLOXzQ3YD2imsulNATQryvSPCdpNzcCIl4ks6OGI7j4PN58fq8FJcUUldTTzIbOH6/n4KiXBygqbGVvIK+98OWLl3KQw89RH19Pd/+9rf5y7/8S5RSrHxnQ0/odWtv62T7lj09WwDV1zSSSPQdlKKU4vCBWj7w8TsBzRuvvovtOBiGgWEovB4PhUV5PaE3bsJo9u891KeMxsYW9u46yCc++yCpVBqv19NnVRYhhHg/kOA7QQf317D63U0c3F9NPJbo6c5Mpx28Pi/JRBKf39cTfKlUikQsSU5ehPKRJT3lOI7Dv/7rv/K1r32NcePGsWLFCubPP7I019GjLLvFeu2Jl1uQg2EY/ZZEKyjKw+P1cO1Nl7Nz+34S8SSZtIXX5yEYCnDPgzdSMboMr9dDc2Mr+/b0H3RVW90AkL3nJ4QQ7z8SfO/BcRyWvbGGt5es4vCBWoLhAIl4CsuyCAT8GKaBaRhYlk1DfTPa0T1z/JRSpNMZrr/lCsLhIM1NrbzwzJ/45rf/jS3b13Hbrbfz6988SjTa997d5OnjeePVd/ts0GooxZRpR7obo9EwFy2c02eB7GDQz8JFboCWlhdx6RXz3efD7vPjJ45m+uxJPSNATdPENAzso8KzbIQsFSaEeH+T4HsPb72+kjdee5emBne/u86OWM+oyVQqTdmIYlLJdM9gEKVUdiUWk0g0zNXXXcxFC+dgWTY/+M6j/OQX3+Hg4X1ce+VtzJlyJbHOZL/gKx9RzM13XsXrf3iHZDJFMBjghtsW9Vvr88bbFjFm7Ah2bttHNCfMgotm9elOvfG2RcyaO5mDVTUUlxQyfpI7l9S2bUzTJBINceW1F/OnPy7veU1hUT6XXD73DL2bQghxbpDgew9r3t3sTi63rJ7A045Gme6yZdrRxLrimKaJUu6wf6XcJcGKivNYtNgd0LLs7RV85wdfp7WtiTtv+QAzpsxFa836Ndu48bZF/a574aWzmbNgGu2tHeQX5Pas23m0aTMnMm3mxGPWv2JUGRWjygBYsXQdS5esJtaVYNzEUdx692IWLb6ICZPHsHtHFbl5UabPnoTPJ0uKCSHe3yT43kNzUxvNTa1k0hZaOxjZ7sFwOOguV6Y1mXQG23FQuMuVeb0my9e8yobd8PIbj1NQUMDKd1fS1t5CcWEZ6zYuR2uHmVPn49jHnh/n83kpLi0clK9j2+bd/OH5t3oe7919kMd+/hx/8YUP9AlHIYQ4VyilRuHuylAGOMCPtdbfUUrdC3wNmApcqLU+6fly7xl8SikT+DgwEnhFa/1Or+f+Tmv9Lyd7wXOZ1prG+hYCQT9NDS3EY4ls6LlLf9mWDR7wB/w88MD1VO09zLpVW3rm8xlKUXVoN5GcMMtXvkljYyMXX3wx8UScCeOmcM+tH+4ZValQzJw75bh1am/rZMOabaRSaabPmnhKIbVhzfZ+xxrqm6mpbqBiZOlJlyeEEL198K4v9NuW6FfPfPN0J7BbwBe01uuUUlFgrVLqNWAL7nJlPzrVgo/X4vsR7irbq4DvKqXe0lp/PvvcXcD7Jvjqa5t44lcv0tzUml2yy5ddTgwc58hAE9ty7/X94bk3MZQiGArg2A5dnTFsxyEUDFHf1sHatWv59Kc/TU1NDQ899BCZtMXTL/4cx4Z77/wAd913C6MrR7xnnTas2cbTT7wCuPcP33lzLbfdcw3zL+q/jNl7McyBV3KRqQpCiNOVDb1+2xJ98K4vcDrhp7WuBWqzn3cqpbYDFVrr14Bjr1B1Ao4XfBdqrWdlL/J94H+VUs/grop96lc9h7S2tHNgXzV/fPFtOjtjxLoSZNLumpWO7TDQwjbxWJxELIRt24SjoZ4PgCnTxnN9ySVcd911tLS08NGPfhSPx0NHRwdbt2/i+eee5/EnHmfOgi/1KXP3zip2bN1LOBxk8rTxvPjMn9i8YSfJZArTNCkoysPr9fD6H95hzoJpfRfCPo75F85g2+Y9fY5VjCylXEZwCiFO3xnflii7J99cYOVglHe84OuZzKW1toBPKKX+HlgCvPdCkueB5W+v49UX3yadsaivbQSd/S1Cud2emYzVZxeFIxSxWJz8gtyefe8ATMPgxtsX8b8/+g4tLS185zvf4Wc/+xlTp07l+uuvRynFTTffxFf/tu/arW+89i5vvLqi5/ELzywhGPT37Nln2zbtrR0UlRQQiyWIdcb7bBJ7PBOnjOXuB25g6Rur6ezoYuKUsVx/6xUn/X4JIcQAzui2REqpCPA08DmtdcdglHm84FujlLpBa/1K9wGt9T8ppWqAHwxGBYZKR1snr760FEdrjOw+erZlY5oGhmmgtXsfTg+QfFq7++kVlxbwqc89wsrla9ixfQtaZ/jWt/+d//v5z/niF7/IZz/7WX77299y5ZVXsmbNGj7+8Y+zdu1aRpRX8MLTf8IwDabPnMiyJav7lB/rimNZFl6/FyvuDoBJpzM4jkNhYR6RnPBJf72z50/tWflFCCEG0UHc7s2Bjp8WpZQXN/R+o7V+5nTL6/aewae1fuQYx38K/HSwKjEUDh+q61n5xDAM/H4vccvCtp2e3QiUUgOukAKgDIMbb1vEhvVr+eMrv8exbWrr6vj1E0/g9/l49dVXWbZsGbfeeiuf+MQn+PznP8+VV15JR3snF8+9ltXvbgJg+dtryWTcCfHdTNPEytgUFOaSTmWwbRvDMPB5vdx859Vyb04IcS75Kn3v8cEgbEuk3Jt4/wds11r/9+mUdbQTms6QHd15M1DZ+zWDXZmzqbAov8/jnNwosa4EKrt1jzuS88hKLL35/O5ee6vf3cD2HSuxMhkSiQS/f/FFQqEQH3zoIXJzc/mrv/5riord+2jf+ta30FrzzX/9KR3tR3Y/MAyDZDzVJ/giOSEyaQvTY1JSVkgykWLO/Knccd91hCNHd6ULIcTQ+dUz33zsg3d9AQZ/VOdC4APAZqXUhuyxrwJ+4HtAMfCSUmqD1vr6kyn4ROfxvQAkgc248ynOe6XlRcyaO4VN63cA7l52Pp8XFGTS1jFf5/W5b1lXZ4ztWzfi4LYO31y2jK5YjIfuvZdwKIRj26x45x1uveOOntdalt0n9MAN2dy8KF6Px91tARg7fhRXX3cJWzbuwrIsZs2d8p4T1YUQYihlQ25QBrJ001ov49iDKJ89nbJPNPhGdo/ufD+564HrmTJtHPv3Hqb6UB2HD9UBUHO4Hisz8OTy7iG0qWQaDT3doFdedhmTJkygvMydZ+c4Dg319X1e6/V6qBhZSvXhvsenz57IbXcvZs/OA4TCQcZNHIVhGH12RxdCCDE4TvRm0R+UUted0ZoMAcMwmDFnMrfefQ233rMY0zDdbXzU8d8W0zQpKy/rud8WDAYZP3Zsn7JLSvtPDr/17muI9OquzC/I5bqbryAUDjJr3hQmTB4j9/CEEOIMOtEW37vAs0opA8jgNj+11jrnvV92/qgYWcqd91/HY794nkwmM+A57qR2N5QuuWIe1918Cd/71n8POPjFMAwuWbiw3/ERI0v5/Fc/xp5dBzA9JuMnjMYwJeiEEOJsOdHg+yZwCbBZDzTa432isDiPttYOvF4vlmX1rNhimiYjRpYwdeYEAgE/8y+aQTQaZuU7Gxg1ahIHD+zAcZzsQBi3K1RbUX7xw98zefp4ps0Yz/hJR0b7erwe6cYUQoghcqLBtxvY8n4OPYA3X1/ptt6UG07uzgwOgaAP23ZwHIfrb72CuupG/ukr3yMeT+DYDoYJeYV+UBbplMbO+EkmYtTX7mH/3sOsXrGRSy6fN+BODEIIIc6uEw2+WuBNpdQfgFT3wfN5OsNAHFv3TGUA0I7GcRwSiRSZTAtv/2kVB/dVk7Fs4vGEO+nddrBtaK63eqY/KJXO/gnJZBLHcVi5bD0XXzaH/ILcIf4qhRBieDvR4Nuf/fDRaxmz95sp08exaf0O2tvcVXFs271313tdzKr91T33+Y50b4JtH2kMa+2gFGit3GXQUDjZnR8k+IQQ4sQopaqATsAGLK31gsEo94SCT2v9j4NxsXPdgotnUrXvMBvX7iCVStHe2omTbbn1Zpomtm3j2Mee0qg1KOXuq6cMhWkYlI8sOcNfgRBCnH1tPzL7bUuU90l7sOb1XaW1bhqksoDj78f3ba3155RSLzDAcs1a69uOOr+KM5DOZ4tpmtz/gVu45vpLaW/v4t2l63jjtXf7nOP1erji6gt4/ZXlxyynu7tUGYr8IreFd80NC4lGT36NTSGEOJdlQ6/ftkRtPzIZxPAbVMdr8T2a/fO/TqLMQU/ns62opICikgJGVJSwa/t+amsacRyHQMDPBZfM4v4P3kJrazsb1mxzuzo1ZLI7spuGu8i1UopFiy9i4uRKxk0cTXFJwVB/WUIIcSacyW2JNPCqUkoDP9Ja//g0ywOOv0j12uyfbymlirOfNw7Ghc8HwVCAL//Tp1i3aitNDS1Ujh/JzNmTMQyDxTcs5PCBOkyPiW05NDY0o1AUluThOJqJkyp55KN3DPWXIIQQZ9qZ3JZooda6RilVArymlNqhtX77dAs9XlenAv4B+AzuBDVDKWUB39Na/9MALzkj6TyUgsEACxfN73ns2A7PPPEKm9btIJOx6GjrIpwTYvqsSeTlR7Fth3ETR3PpFfOGsNZCCHHWnLFtibTWNdk/G5RSzwIXAmc2+IDP4a6QfYHWej+AUmoc8AOl1F9prb911Pnd6fwF4NtKqc+PHj0oexGeM1at2MiGtdsBt0UYDAWIREJ89q8/eFK7ogshxPvEmdqWKAwYWuvO7OfXAQM1uE7a8dbK+iDwYHfoAWit9wGPZJ/ro1c6fxP4D+Cnxdlted4vdm7b1+9YV1ec2sMNQ1AbIYQYWtkBLH8GHMDt9TsA/NkgDGwpBZYppTYCq4CXem+KfjqO1+LzDjRQRWvdmN0Zt8eZTOdzSWSAkZkKRTgq++QJIYanbMgN9rZE+4DZg1lmt+O1+NIn8dwZS+dzycWXz8Xj6dulOW3WBJmYLoQQ54njtfhmK6U6BjiugEDvA2cync8lFSNL+din72P52+vo6ogxccpYLr587lBXSwghxAk63nQGGa0xgIpRZdz78E1DXQ0hhBCnQDaCE0IIMaxI8AkhhBhWJPiEEEIMKxJ8QgghzklKqb9SSm1VSm1RSj2ulAoc/1XHd6L78QkhhBADuuRTV/bblmjFD948rXl9SqkK4C+BaVrrhFLqt8ADwC9Os7rS4hNCCHHqsqH3E9z1OlX2z59kj58uDxBUSnlwl0SrGYQyJfiEEEKclvfaluiUaa2rcbfEOwjUAu1a61dPp8xuEnxCCCFOxxnZlkgplQ/cDowFRgBhpdQjp1NmNwk+IYQQp+NY2w+d7rZEi4H9WutGrXUGeAa49DTLBCT4hBBCnJ6v4m5D1Ntpb0uEG5wXK6VC2b1hrwG2n2aZgASfEEKI05AdvdlvW6LTHdWptV4J/A5YB2zGzatB2dxcaa0Ho5xjWrBggV6zZs0ZvYYQQohTo5Raq7VeMNT1OJukxSeEEGJYkeATQggxrEjwCSGEGFYk+IQQQgwrEnxCCCGGFQk+IYQQw8r7Pvgcx8FxnKGuhhBCiHPE+3ZbIsd2ePXlZaxduRkrYzF99iRuvvMqgsFB2c5JCCHEeep92+J7a8kqlr+9llQqje04bFq/g+d/9/pQV0sIIcQQe98G38a12/od2755D+lUZghqI4QQ4lzxvg0+w+j/pSnDQBlqCGojhBDiXPG+Db75F83sd2zW3Ml4ve/b25pCCCFOwPs2BS69Yh6ObbP63c1k0hlmzpnMtTdfPtTVEkIIMcTet8GnlOLyqy/k8qsvHOqqCCGEOIe8b4PvWPbuPsiaFZvIZCxmzp3M7HlTh7pKQgghzqJhFXzbNu/myV+9hMbdg3DXjv20tXaw6JqLhrhmQgghzpb37eCWgSxdsron9Lotf2sttm0PUY2EEEKcbcMq+Do7Y/2OJRIprIw1BLURQggxFIZV8E2cXNnv2OjKEfgD/rNfGSGEEENiWAXftTddxpjKET2PC4vyuePea4ewRkIIIc62YTW4JRQO8rG/uJ+GumYymQwjRpailKzkIoQQw8mwCr5uJWWFQ10FIYQQQ2RYdXUKIYQQ51WL7/CBWl5/ZTkNdU1UjCpj8U0LKS0rGupqCSGEOI+cN8HX0dbJL3/yDKlUGoCd2/dx+GAtn/vyR2RU5lliNazCbliFCpbiHX0Tyhse6ioJIcRJO2+Cb+P6HT2h1y0WS7Bt8x5y86Ls3llFNCfCnPlTCYWDQ1TL96/U5u+S3vXrnsfp3b8hdOXPMAIFQ1grIYQ4eeds8FkZizdfX8m2zbvxB/wEQ4EBz1u3eisH9lf3PF7+9lo+8ZkHyMmLnq2qvu858TrSux/rc0zHasjsfRL/9E8NUa2EEOLUnLPB9/zTr7Nh7faex1bGwrJsAsEj3ZqGUhzYVw29ZiR0tHfxztvruPG2RWezuu9rTsd+0M4Ax/cNQW2EEOL0nJOjOhPxJJvW7ehzzOP1UFxaQH5+DgDFxQUsvnFhn9Dr1ljffDaqOWwYeZPB8PY/XjB9CGojhBCn55xs8VmWhaN1v+PhcJBP/dUjpNMZ/H4fyUSKN157l8xRa22OGlN+tqo6LBiBAvzTP0Vq83ePHMufgm/cvUNYKyGEODXnZPBFcyKMqRzBgaqaPsenz56EUgq/3wdAIOjnhtsW8dIzS3qCsmxEMRdfPves1/n9zjfpEczyy7AbVmEEyzDLL0Opc7LDQAgh3pPSA7SsBtOCBQv0mjVrTvp17W2dPP34K1TtO4zHYzJ3wXRuuuNKTNPsd25rSzt7dh0gGg0zaepYDEP+QRZCiBOhlFqrtV4w1PU4m87Z4OsWiyXweMyeVp4QQojBMxyD75zs6uwtLHPyhBBCDCLpExRCCDGsSPAJIYQYViT4hBBCDCsSfEIIIYYVCT4hhBDDigSfEEKIYUWCTwghxLAiwSeEEGJYkeATQggxrEjwCSGEGFYk+IQQQgwr5/xanUKIM6+hrpm1KzeTSqWZPmsiE6eMfc/zY11xvD4vPl//DYqFONdJ8AkxzB3cX8MPv/MY7W0d2LbDm6+9y+33XcdV117c79yWpjaefuIVDh2oxevxsOCSWVx/y+WyFZg4r0jwCTHMvfjsEhrqm3oed3VZPPP4K/i8HvbvPUxuXpSLL59LcUkBTz76IrU1jQBkLIsVS9eRlx/lksvnDVX1hThpEnxCDHNV+w73O9bZGeP5p/+EP+Dug7lp/Q7u+8BNPaHX25aNuyT4xHlF+ieEGOYikVCfx1pr0BqlVM+xVCrNpnU7UaijXy73+cR5R4JPiGFu8Y0L8XiPdP4o1IADV5LJFFNnju/3+osWzjnTVRRiUElXpxDD3CVXzKOjo4u3l6zCytiUVxTT1trptvx6mTi5kjkLplFQ+C7bt+wlFApwyRXzmDK9fxgKcS5TR//lHmwLFizQa9asOaPXEEKcvlQqTSKWJK8ghx1b9/Lsk38kkUgBMHPOZO5+4AYMUzqJ3m+UUmu11guGuh5nkwSfEGJA6XSG6kN15ORGKCzKH+rqiDNkOAafdHUKIQbk83kZO37UUFdDiEEn/RZCCCGGFQk+IYQQw4oEnxBCiGFFgk8IIcSwIsEnhBBiWJHgE0IIMaxI8AkhhBhWJPiEEEIMKxJ8QgghhhUJPiGEEMPKoAafUuoGpdROpdQepdSXB7NsIYQQYjAMWvAppUzgf4AbgWnAg0qpaYNVvhBCCDEYBnOR6guBPVrrfQBKqSeA2wexfCGEEOK0DWZXZwVwqNfjw9ljQgghxDljMFt8qucTpT4BfBkINzY2DuIlhBBCiNMzmMF3GBgFoLX+sVKqEKC4uPjrg3gNIYQQ4rQMZlfnamCiUmqsUsoHPAA8P4jlCyGEEKdt0Fp8WmtLKfUZ4I+ACfxMa711wYJhtaO9EEKccY7j8OZrK1m7cjOO4zB7/lQW37AQj3cwO/Hevwb1XdJavwy8PJhlCiGE6Out11fy5uvv9jxe/vY6rIzNLXddPYS1On/Iyi1CCHGeWbtqS79j69dsxXGcIajN+UeCTwghzjMDBZzWeghqcn6S4BNCiPPMnPn9F8WaNXcKhiH/pJ8IuRMqhBDnmauvvxQrY7Futdu9OWvuVG66/cqhrtZ5Q53p5vGCBQv0mjVrzug1hBBiONJao7U+rZaeUmqt1npYDb+XFp8QQpynlFIopY5/ouhDOoSFEEIMKxJ8QgghhhUJPiGEEMOKBJ8QQohhRYJPCCHEsHLGpzMopRqBAydwahHQdEYrI06HfH/OXfK9OXedD9+bMVrr4qGuxNl0xoPvRCml1gy3uSTnE/n+nLvke3Puku/NuUm6OoUQQgwrEnxCCCGGlSEPPqXUvUqprcA8pdSCo577ilJqj1Jqp1Lq+iGqonDVKqWqlVIbsh83DXWFhjul1A1KqZ3AaKXUl4e6PqIvpVQVUJb9eZF1G88h58KSZVuAu4Af9T6olJoGPABMB0YAryulJmmt7bNfRQGsBd7SWv/XUFdEgFLKBP4HuBY4DKxWSj2vtd42tDUTR5mjtT7XB7cMO0Pe4tNab9da7xzgqduBJ7TWKa31fmAPcOHZrZ0Q56wLgT1a631a6zTwBO7PjBDiOIY8+N5DBXCo1+PD2WNi6HxGKbVJKfUzpVT+UFdmmJOfj3OfBl5VSq1VSn1iqCsjjjgrXZ1KqdeBsgGe+lut9XPHetkAx86NuRfvU+/1fQJ+APwz7vfgn4FvAh89e7UTR5Gfj3PfQq11jVKqBHhNKbVDa/32UFdKnKXg01ovPoWXHQZG9Xo8EqgZnBqJgZzo90kp9RPgxTNcHfHe5OfjHKe1rsn+2aCUeha3e1qC7xxwLnd1Pg88oJTyK6XGAhOBVUNcp2FLKVXe6+GduIOSxNBZDUxUSo1VSvlwB4I9P8R1EllKqbBSKtr9OXAd8jNzzhjyUZ1KqTuB7wHFwEtKqQ1a6+u11luVUr8FtgEW8BcyonNI/YdSag5ud1oV8Mkhrc0wp7W2lFKfAf4ImMDPtNZbh7ha4ohS4NnsJrEe4DGt9StDWyXR7ZxZskwIIYQ4G87lrk4hhBBi0EnwCSGEGFYk+IQQQgwrEnxi2FNK2dn1FLcqpTYqpT6vlDKyzy1QSn33JMv7THaNWa2UKjoztRZCnCoZ3CKGPaVUl9Y6kv28BHgMeEdr/Q+nWN5coBV4E1ggazUKcW6R4BPDXu/gyz4ehztPrghYBHxRa32LUuprwFigHJgEfB64GLgRqAZu1VpnepVThQSfEOcc6eoU4iha6324PxslAzw9HrgZd0HoXwNvaK1nAonscSHEOU6CT4iBDbQWJsAfsq26zbgTx7snJW8GKs9CvYQQp0mCT4ijZLs6baBhgKdTAFprB8joI/cKHM6BlZCEEMcnwSdEL0qpYuCHwPe13AAX4n1Jgk8ICHZPZwBeB14F/vFUC1NK/aVS6jDujgmblFI/HaR6CiEGgYzqFEIIMaxIi08IIcSwIsEnhBBiWJHgE0IIMaxI8AkhhBhWJPiEEEIMKxJ8QgghhhUJPiGEEMPK/w9HafPC11X1kwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 453.6x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"st.plot_dimension_reduction(adata,color=['label'],n_components=2,show_graph=True,show_text=True)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABFkElEQVR4nO3deVzU1f748ddhWIZFBZfE3BO1FDUVU0dQ3NBupem93lIrxTZTSG3TX3W9bdp1yRbaE9Cse8uvGqJtpgjIqJjmEkoJaeWSIdedfTm/P3DmsqmAwAzwfj4ePGLOzHzmPTLN+3PO55z3UVprhBBCCHvjYOsAhBBCiPJIghJCCGGXJEEJIYSwS5KghBBC2CVJUEIIIeySY02/QPPmzXWHDh1q+mWEEELUUXv27EnXWrco3V7jCapDhw7s3r27pl9GCCFEHaWU+q28dhniE0IIYZckQQnRAJ08eZI+ffpgNBrJz88HIDQ0lMDAQKZNm0ZBQYGNIxRCEpQQDVLTpk3ZsmULAwYMAOD7778nNzeX2NhYunfvzsaNG20coRCSoIRokIxGI15eXtbbR44coWfPngDceuut7Nixw1ahCWElCUoIQdeuXYmLiwMgJiaGs2fP2jgiISRBCSEo6jX5+vpiMpn48MMPCQ8PJz8/n3379hEYGEhgYCAdO3bkjTfesHWoogGRBCVEA2I2m1m5ciXbt28vc9/8+fOJiYlh2rRpJYb7YmNjiY2NpWfPntx55521HbJowGp8HZQQwj6EhoYSGRkJgNaapk2bcunSJUaNGsXChQuZO3cuBoOB4cOH07hx4xLPzcjI4NSpU/j4+NgidNFASYISogEwm81ERkaSkZFhbVNKsWnTJkwmEwCxsbHW+zZt2lTi+V9//TWjR4+ulViFsJAhPiEagNTU1DJtWmtSUlIq9PwvvviC8ePHV3dYQlyVJCghGoDyhuYyMzPZtWsXubm5V702lZeXR3JyMr169aqNUIWwkiE+IRqAQYMGERwcTGRkJEopCgoK8Pb25t133+U///kPWVlZGAyGcq9NnTt3jmHDhtn6LYgGSGmta/QF/Pz8tBSLFcI+bN++nZSUFDp37ozJZGLJkiXMnTuX4t8D7u7uJa5NXcvJkye58847OXToEJcuXcLR0ZElS5awfv162rdvz4oVK3BycqqptyTqAaXUHq21X+l2GeITogExmUxMmTLFmnxuuOEG3NzcSjwmOzub+Pj4Ch+zdNmk06dPs3XrVhISEujZsydRUVHVFr9oWCRBCdGAlXdtqqCggGeffZYpU6bwyy+/XPMYpcsm7dq1i8DAQABGjBjBzp07qy1e0bBIghKiAbNcm3J3d8fDwwN3d3ceeughnnjiCVavXk3Xrl15+OGH+e23crfrKde5c+es66iaNGkiZZNElUmCEqKBCwsLY9OmTbz99tts2rSJjz76iKVLl3LkyBFmzJjBxx9/TOfOnZkxYwYnTpy45vE8PT25cOECABcuXMDT07OG34GoryRBCSHKXJsCaNWqFW+99Ra//PILDz74IMuXL6dTp07Mnj2bU6dOAeWXTurXr5+18OzmzZut16aEqCyZxSeEqJBff/2Vl19+mZUrV+Ls7MzNN9/Mzz//DBRNrHBycmLQoEEsXLiQ2NhYNmzYQLt27VixYgXOzs5XPG5mZiYTJkwgIyODJk2asHr1alxcXGrrbQk7cKVZfJKghBCVkpqaysyZM8uUQ6rs9HSLdevWkZSUxPz581mwYAG+vr6MHTu2OkMWdk6mmQshqoWPjw+TJk0qd3r6+vXrqexJb6dOncjJyQGKJlg0a9as2mIVdZskKCFEpfn4+KCUKtFWUFDA4sWL6dmzJ8uXLycrK6tCx+rcuTOJiYl0796d3bt3V7oHJuovSVBCiEorb3r6Y489RkREBAaDgYcffpi2bdvy3HPPXXPm38qVKxk1ahQHDx7kjjvu4JNPPqmldyHsnSQoIUSVlJ6e/u677xIcHMzevXvZunUrAQEBvPrqq3To0IFJkyaxa9euco9jqf8H0Lx5c86fP1+bb0PYMZkkIYSoMUeOHOHtt99m+fLlXLx4kQEDBjB79mzGjx/Prl27SE1Nxdvbm2XLlpGTk4OTkxOff/65NWGJhkFm8QkhbObixYusWLGCN998k19++QV3d3dyc3Ot08+Dg4MJCwuzcZTCVmQWnxDCZho1akRoaCiHDx9m0aJFZGVlkZeXR0ZGBhkZGYSHh5e7F1VFnDx5kj59+mA0GsnPz6/myIUtSYISQtQaBwcHWrZsiaura4n2rKwsZs2adcXrVFdTupq6qD8kQQkhalV5FdSdnJxITk6mf//+DBkyhI0bN1JYWFih45Wupi7qD0lQQohaVd4U9enTp/PHH3/w2muvcfToUe666y58fX2JiIiwLuIVDY9MkhBC2ETp3X0t8vLy+Pzzz1m6dCn79++nVatWPP7440yfPv2qldEDAwPZvHkzjo6OtRC9qE4ySUIIYVfKq6AORcN99913H3v37mXTpk10796d//f//h9t27bliSee4PfffwfKr6Qu6hfpQQkh7N6+fftYunQpn332GVBUv+/YsWM4ODhYF/peunSJPn36sHDhQvr372/jiEVlyDooIUSd9/vvv/P000+zevXqEu1VraQu7IMM8Qkh6rx27drxl7/8BXd39xLtOTk57Ny5s1LHSkxMxGQyERAQwJw5cwBYsmQJ/v7+TJ48mby8vGqLW1SNJCghRJ1S3jT1/Px85s2bx9y5czl37lyFjtO+fXtiYmLYtm0baWlpbNu2ja1bt5KQkEDPnj2Jioqq3sBFpVU6QSmlIpRSaUqppGJtTZVS3ymlUi7/VxYlCCFqRHnT1KdOncrEiRNZsmQJnTp1stb2uxpvb2+MRiMAjo6OHDhwgMDAQABGjBhR6R6ZqH5V6UGtAEaXapsHbNFadwa2XL4thBA1onQl9cjISFauXMkPP/yAn58fTz75JDfffDP//ve/r7ng98CBA6Snp+Pp6Unjxo0BaNKkCWfPnq2NtyKuotIJSmsdD5wp1TwWWHn595XA3dcXlhBCXF1509RvvfVWvv32WzZt2oSnpyeTJ0+mX79+bNmypdxjnDlzhpCQEMLDw/H09OTChQsAXLhw4aprrkTtqK5rUC211n8AXP5vG6XUbqXU7tOnT1fTSwghRMWMHDmSPXv2sGrVKtLT0xkxYgS33347Bw4cAIrWUEVERHDHHXewZMkSvL296devH3FxcQBs3rxZavvZgSpNM1dKdQA2aq19L98+p7X2LHb/Wa21F8g0cyGEbWVnZ/P222+zYMECzp8/T9euXfntt98oLCwkJyeHG2+8kc6dO/Pqq68SHx/Phg0baNeuHStWrLBuByJqVrWugyonQf0MBGqt/1BKtQJitdZdQRKUEMI+WIbz/vOf/5RolzVUtlfT66CigSmXf58CrK+m4wohRLVo2rQpo0aNws3NrUS7UoqUlBQbRSWupirTzP8D7AC6KqWOK6UeBP4FjFRKpQAjL98WQgi74uPjg1KqRFtubi6dO3e2UUTiaqoyi2+i1rqV1tpJa91Gax2utf6v1nq41rrz5f+WnuUnhBA2V3wNlbu7OwaDgdzcXHbs2HHN586ZM4eAgABmzZpVC5EKkEoSQogGxrKG6p133iEmJoYJEybw1FNP8corr1zxOT/88AMZGRls27aN3Nxcvv/++1qMuOGSjVOEEA2OyWSyToowmUwYjUb+8Y9/kJ2dzcsvv1xmGHDHjh2MGDEC+F+ViX79+tV63A2N9KCEEA2ao6MjK1as4KGHHmLBggU89dRTlJ7dfO7cuWqtMrFs2TL8/f0B+O677xg2bBiBgYHs2bPnuo5b30gPSgjR4Dk4OPDBBx9gNBpZtmwZ2dnZhIWF4eBQdA5fnVUmcnJy2L9/PwBZWVl88MEHfPfddxgMhut+H/WNJCghhKAoSb311lu4urqyZMkSsrOzadKkCXv27KFDhw4YjUb+/ve/s3nzZqZOnVrl11m+fDlTpkxh/vz57NixAwcHB26//XZatmzJ+++/X2YrkYZMEpQQQlymlGLRokW4urry0ksvWdvj4+MxGo0cOnSIXr16cdttt1Xp+Hl5ecTFxTFz5kzmz5/Pn3/+yR9//EFsbCwffvghH3zwAU888UR1vZ06T65BCSFEMUopMjIyyrRnZ2fTr18/3n777Sofe9WqVUyaNMl6u0mTJvj7+2MwGBg2bBjJyclVPnZ9JD0oIYQo5UrTyF9//XW++uorunXrVuKna9euuLq6XvWYZrOZtWvXkp6ezvvvv8/BgwfZs2ePNSnt27ePjh07Vvt7qcskQQkhGrTExETmzJmDwWDAz8+P119/3Tpjr7QBAwZw4403cujQIaKjoykoKACKel0dO3Ysk7huueUWPDw8CA0NJTIy0nqc4OBgLl26xD/+8Q9ef/11Bg8ejJubG//+979r5T3XFVUqFlsZUixWCGHPTp06haenJ0ajkcmTJ/PII48wZswY66w9i2bNmpGenm69nZubS0pKCocOHeLQoUMkJydz6NAhfv75Z3Jzc62Pa9myJenp6dZkBlKgtrQrFYuVHpQQokHz9va2/p6fn8+kSZPIyMigb9++ZGVl4eXlhclkYvHixSWe5+zsTPfu3enevXuJ9vz8fI4cOWJNXBs3bqT0vnhaa1JSUqqUoJYtW8a6deuIiopizJgxODk50aRJEz7//PNrDjPWNTJJQgghgG3btvHNN99w+vRpbrnlFhITEwkJCWH8+PFlktPVODo60qVLF+6++26effZZlixZUiZxZGZmsmXLljK9tGspvobKy8uLhIQE4uLi6Nu3Lxs3bqzUseoCSVBCiAbvyJEj3H777WRnZzN//nzuvPPOaptZV7xArYeHB66urnTt2pVVq1bRuXNn3n//ffLz8yt0LMsaKgCDwWBdSFxQUFAvK7JLghJCNGjp6en07t2bnJwcoqKiePTRR6t9Zp2lQO3bb7/N5s2b+emnn/j++++5+eabeeyxx+jZsydffvllmRJLxVnWUA0bNszatmvXLvz8/IiJiamXMwAlQQkhGiSz2cx7771Hr169uHDhAjfffDOLFi0iNTWVIUOGMHjwYCIjI5k+fXq1vJ7JZGLKlCnW605+fn7ExsbyxRdfkJ+fz5133snIkSOtQ3illV5DBXDbbbexe/duxo0bR0RERLXEaU9kFp8QosEJDQ0lIiKC7OxsCgsLueOOO2x6DSc3N5f333+fF198kbNnzzJ16lReeeUVbrzxRsxmM6mpqXz33XecPn0apRSJiYm88MIL1r2pPvroIwoKCqotmda2K83ikwQlhGhQzGYzQUFBZGZmWtvsZdr32bNnWbhwIW+99RaOjo50796dgwcPWrf/CA4OJiwsDH9/f5YtW8bTTz+Ng4MDTZs2ZdWqVWW2s68rrpSgZIhPNEgnT56kT58+GI1G8vPzKSws5L777mPIkCGMGDGixHqX8uTn53PvvfcydOhQnnnmmVqKWlSH1NRU8vLySrQppUhJSbFRRP/j5eXFkiVLSE5OZsCAAXz//fdkZmaSkZFBRkYGkZGRbN++nYSEBG677Tbi4uLYunUra9eurbPJ6WokQdkhy14x+/btIzAwkMDAQDp27Mgbb7xh69DqjaZNm7JlyxYGDBgAFF0Md3Z2Ji4ujuDgYD799NOrPv+LL76gV69ebN26laysrCteNxC2V/pkJCkpqUyC0lrb1Sy4m266iQceeKDM9HR7SaS1RRKUnSm+zuHWW28lNjaW2NhYevbsyZ133mnj6OoPo9GIl5eX9Xbr1q2twyjnzp2jWbNmV33+kSNH6NmzJ1D0d9qxY0elY0hKSsJkMhEQEEBwcDBaa5YsWYK/vz+TJ08u8yUqqqb4yUhcXByvv/46bm5uuLm54eHhgbu7O9OmTbP58F5pPj4+1mnkFvn5+XaVSGuaJCg7U3ydg0VGRganTp3Cx8fnms8vvlNnkyZNrD2wM2fO1Ei8tvDNN99Y31erVq2Iioq67mM2b96cnJwcbrnlFt577z3Gjx9/1cd37dqVuLg4ALZu3VqlHVa7du3K9u3b2bZtGwC7d+9m69atJCQk0LNnzwq/r/ISnezS+j+Wk5Hs7GwmTJhA69atCQoKonv37vTo0YP169fz1ltv2TrMMoqvn3J3d0cpRUFBAY0aNbJ1aLVGEpQdKW+dA8DXX3/N6NGjr/n84r0vgB49elh7YE2bNq32eG1l9OjR1vfVrl07RowYcd3H3LRpE02aNCE5OZkXXniBpUuXXvXxd911F1lZWQwfPhwXFxdatmxZ6dd0cnKy/u7i4sLhw4cJDAwEYMSIEezcubNCxymd6BISEqy7tMbGxtK3b99Kx1bfXLhwgR9//BGtNbNnzyY9PZ0dO3Zw//332/XwrGX91DvvvMPatWtp0aIFd9xxBydPnrR1aLVCEpQdKW+dAxRd77jWGT2U7X0lJycTEBDAvHnzrroAsK46cuQILVu2xMPDo8LPMZvNrFy5ku3bt5do11pbk3jz5s05f/78VY9jMBgICwtjy5YtGAwGgoKCKv8GgOjoaHx9fUlLSyM/P99aRbtJkyYV7pWVTnTHjh2z7tJ6//33l7u3UUNSUFDA5MmTyczMZPXq1XTt2rVO7cFkWT81btw4Nm7cyJkzZ7jrrru4dOlSuY8vr0cdGhpKYGAg06ZNK1G01t5JgrIjP//8M++99x6jR4/m4MGDhIWFkZeXR3JyMr169brqc8vrfaWkpBAfH8/Zs2fZsGFDTYdf69atW8e4ceMq/PjQ0FBGjRrFzJkzGTlyJG3btmX//v2MGjWKZs2akZycTGBgIPPnz2fGjBlXPI7ZbOaNN96gT58+DBs2DJPJRJs2bar0HsaMGUNSUhKtW7fG0dHRWpvtwoULeHp6Vvg4xRNdQUEBf/zxB19//TUmk4kPPvigUjFZhonz8vIYOHAgHh4epKamVuoY9sByMjJlyhQ2btyIj48PQ4cOpV+/fnV2D6bevXuzevVq9u3bx8SJE8tNNuUNHefm5hIbG0v37t3rVM0+qWZuJ8xmM926dWPs2LGYTCb8/f0JDQ3l22+/LTPkV57yel+WHsHdd9/N3r17GTNmzBWfb6mQnJCQAMDatWuZPXs2x44du453dWUff/wxK1eupKCggE8//ZTWrVtX+hgbNmxg3bp1FXpsQkICERERJda+FBYWsnTpUnr06EFubi6zZs1CKYVSij///JM///zTetsygeK1115jw4YN1ovX06ZNY+rUqZWO3Ww2k5ycTLdu3TCZTDRu3JiCggLi4uJ45pln2Lx5s3WGYUWMGTOGMWPGEBoaioODQ4kewrWGK4srPkzs6OhIVFQUc+fOrfT7szXL/kv5+fnk5OTg7u5Oeno6o0aNYuHChdZKEXVxD6a//OUvhIWFMXPmTGbNmkVYWJj18wlle9SHDh0qMaHnu+++Y+zYsbUed1VIgrIDoaGhhIeHW7/0goODrYli1KhRjBo16prH+Pnnn9m3b591p84333yTkJAQDAYDZrOZHj16XPG5pa9dAaxZs4a2bdtex7u6shMnThAXF8eWLVsq9TzLivrOnTtz00034ezsXGa2XUZGBqmpqfz8888cPnzY+vPjjz+WSE5QtIV3SEjIdb2Xt99+m9WrV9OmTRtuuOEGWrRoQYsWLcr9/YYbbsDd3Z3HH3/c+uWZl5eHt7c3t99+Oy+//DJ//PEH/v7+tGvXjtmzZ1fo36N9+/bWa1eNGzemsLCwyj0EyzDx/PnzUUpV6dqarZnNZiIjI0sMbWqt+fLLL60z9fr378+cOXNsFeJ1mzFjBkeOHOG1116jU6dOZd5LdHQ0zz77LF26dKFbt24sWbKEmTNnEhMTU6UJPbYiCcrGLP8zZWVlWdveffddUlNTGThwID4+PnTq1IlOnTrRrFmzEmdKluenpqYyduxYFi1aBIC/vz9DhgyhX79+uLu7c9NNN/Hiiy9eMYbiX0oAX375JSNHjqyx2l7ffvstBQUFDB8+nG7duvHGG29gMBiu+pziO5JqrfH19aV37968/vrrJRLR8ePHSzyvTZs2dO3alaCgIL766qsSG8kZjUYWL15Mt27drMe1/JS+rbVm8+bNvPfee2RnZ1uP4eTkROfOnWnSpAmnT58mOTmZtLS0En/P4pydncnLyytxTTAtLY3c3Fxee+01mjVrxpw5c2jatCmHDh3Cy8sLLy8vGjVqVOJvX/zfIz8/n2bNmuHj40Pnzp15+eWXSU9Pr3QPwTJMPHPmTOtnoa4oPgLwz3/+s8zJiIODQ5X3X7JXixcv5tdff+XJJ5+kQ4cOJYa7i/eojx8/jq+vL0OHDsXX17dunXSU/p+wun/69u2rxZWtWLFCu7u7a8D64+DgoL28vEq0Abpx48a6T58+esKECXrevHl66NCh2mg0ajc3N+3u7q5DQkIq/fq5ubl6woQJWmutBw0apLXWesKECTonJ8d6u7otXLhQT5w4UWut9TPPPKPXrl17xccWFhbqTz75RDs7O5f597D8eHl56QEDBugHHnhAv/LKK3r16tV63759+tKlSyWOFRISot3d3bWHh4d2d3fXoaGhlYo7ISGhzN/K3d1dm83mMo+9dOmSPnr0qN61a5feuHGjjoyM1IsWLdKjR4/Wjo6OZd6Dg4PDFd8foA0Gg27evLnu3LmzvuWWW7TBYChxv9Fo1Bs3bqzU+yktPDxcf/HFF1prXeJvP2XKFJ2SknJdx65J2dnZ+oEHHtCDBg3SiYmJ+pZbbinz73elv1Ndl5mZqfv3769dXV31hx9+qFesWKG3bt1qvf/ZZ5/VX3/9tfX2P//5T71z504bRHp1wG5dTv6QHpSNlbe2ydXVlY0bN9K7d2+OHj3KL7/8wi+//EJqaiq//PIL+/btY926dWUukL7//vt4e3vz2GOPVXhaeelrVzExMZhMJpydna/vjV1FkyZNGDJkCADDhg2jeK3G/Px89u7dy7Zt29i2bRsJCQnllh1ycXHh6aefZvbs2ddcVGsRFhbGxIkTSUlJoXPnzpU+m7asS4mMjEQphdb6igs8LWtXOnToUOYY27ZtK7H/j7u7O99++y09e/bk7NmznD17ljNnzlh/L307KSmpzKzM7Oxs7rzzTpo3b27d5bVbt27W31u0aHHF92XphcfExHD69GnrMHFYWBihoaGV+jeCosoNd955J4cOHeLSpUscO3aMBx54AKUUbdq0YdWqVdfsMVeGZQTgH//4B8899xzJycl06dKF3377jcLCQpydne1yIW51cHV1JTo6Gh8fHx555BHc3NwoKCgo0aMOCgoiMDAQg8HA8OHD6d+/v63DrrjyslZ1/kgP6tqqcmYfHh6u3dzcyj3bVkppPz8/PW/ePL1lyxadlZVV5vkJCQl6xYoVevLkyTooKEiPGjVKe3p66jfeeEMPHTrUevu5554r9/V//PFHPXDgQO3v76+nTp2qCwsLrxmz5TUjIyP1jBkztNZav/zyy/q5557TL730kh45cqT28PCwvo+bbrpJT506Vc+bN0+7urrazRmx2WzWK1asqPLr10RPzmg06tDQUP3ggw/qgQMH6saNG5e4v0WLFnrIkCF6xowZ+p133tGxsbH69OnT1lgsP5ZeePHedKtWrbTJZNJRUVEVii8rK0ufOXNGDxkyROfl5ekzZ87os2fPaq2Lzuijo6Mr9X6vxjICcOnSJeuow80336wLCgr0Aw88oAMDA+tlz6m4hIQEu/r/oyq4Qg9KEpSdqOyXXnlfUm5ubvq9997TL7zwgvb397cOJRmNRj1y5Ei9aNEivWfPHj1z5syrfilZXG2ILzc31/r71KlT9a5du64ab/EvQhcXF33DDTfoxo0ba6WUNan27NlTz5w5U3/22Wf6xIkT5T6/ql/q9qamk1xhYaE+duyY/uabb/SyZcv0gw8+qAcMGKAbNWp01aFENze3avtisySo4ubPn6+//PLLajm+1kUnapGRkdrPz08D+t1339UvvviiDgwM1CEhIfof//hHtb2WvSrvMoGHh4desWKFrUOrMElQ9dC1vqQuXLigN27cqGfPnq19fX2v+KV0vWdbjz76qP7jjz+ueP+3335b7jUkX19f/cwzz+iNGzfqM2fOXPN1rvdLvb6pyr9H8cR17733lns9rEePHvrNN9/UP//8c4V6xldSOkGdOHFCm0ymMkmrKiy98bvuuku7urpqBwcH7e7urt966y3rY+z1ekt1q8y1UXslCaqeqsyX1MmTJ/UjjzxS5kvJYDDoRx99VF+8eLFSr71+/XrdvXt3PW7cuBI9Kq2LelgbNmzQ99xzj3Zycio3KdalM7z6qLwvNkdHR922bVvr7Y4dO+rHHntMr1+/vtKfj+IJKjs7W48YMUIfPHjwuuO2nJhZhrWMRqNOTEzUgwYN0gUFBXrIkCF62LBhesGCBdf9WnWF5d/EaDRqQAcFBdk6pEqRBCW01uV/KVmG2dzc3PTEiRN1dHS0zsnJqfAxQ0JC9Lp163RhYaHevn27njlzpm7WrJkGdLNmzfT48eOt/+PU1TO8+upKvfBffvlFv/vuu3rMmDHWz4uTk5MeOnSoXrx4sT5w4ECZ3pWlV2P5uxZPUA888IBet25dheM6ceKE7t27t3ZxcSnR43rllVesn1fLj6urq3yWdNHJakREhO7QoYPu2bPndfV+a5skKGFV+kspJCREx8fH6+nTp1sTi5eXl37kkUd0bGysLigosD73ySef1IMHD9Zz5syxtk2fPl1PmjRJd+rUyXpGe8899+gNGzZYe1b17RpSfXKtXnh2draOiYnRzzzzjO7Zs6c1Mdx444162rRpevXq1frhhx+2XmN0c3PTbdq00Z6ennrYsGE6NjZWe3h46CFDhughQ4ZUKFGVnmhh0a9fvzK98bp2vaWmrVixQgP6q6++snUoFSYJSpRwpS+l3Nxc/eWXX+rJkydbz5xbt26tn3zySd2kSZMya3eKX3QfMWKEjoyM1OfPn6/Ua4q65fjx4zo8PFxPmDBBe3p61sh1TYviCeq9997TzZs3bzBrnKoqJydHt2nTRg8ePNjWoVSYJChRaZcuXdKfffaZHjNmzBUXkt5www166dKl+vjx47YOV9hAXl6efu6558pcZ1RK6dtvv10nJCTo/Pz8Kh/fkqA+/vhjbTAYdLNmzbSXl5f0xq9h2bJlGtA7duywtl1paciaNWt0mzZtbBWq1loSlLhOAwcOLDdB1aWzNFEzyruuaTAYrNUuWrRooadNm6ajo6N1ZmZmpY7t7++vp0yZoi3r4o4fP64HDRokvfFruHjxovby8tJ33323te1KS0PuvfdePXDgwFqPsbgrJSjZbkNUyJVW4depVemiRhTf+dWyhfqMGTP473//y2effcaIESNYu3YtY8aMoXnz5owbN46VK1eWWyGkuIMHD/LDDz+wcuVKgoKCaNeuHQ8++CAHDx7kq6++YsqUKfWyOkR18PDwICQkhKioKGvh4NJVztu2bWutu1l6a3m7UV7Wqs4f6UHVH5YJFJafZs2a2TokYUeu1qvJycnRmzZt0jNnztRt2rSxXsMcPHiwfu2113RqaqrW+n+TcIKCgrSDg4NWSulbb721xHqmmqoRWd+kpaVpV1dXHRwcbG0rvTSkputuVhRX6EGpovtqjp+fny5ea03UbY0bN8ZgMODm5sZNN92En58fr7/+uq3DEnWI1pq9e/cSFRXF+vXrOXDgAFBUcbywsND6OEdHR37//XdatWplq1DrvNDQUD744AOOHDlSYlNNyw67x44dY/bs2fj7+1u3+LEFpdQerbVf6XY77dcJe6S1Jicnh4kTJ/LLL7+wbds20tLS+PHHH20dmqhDlFL06dOHl156if3793PkyBECAwNLJCcoKhwsJz/X58knn6SwsJCnnnqK5cuXs337dqDoRPPEiRNER0dbd/B+/vnnbRxtWVLNXFTY2bNnyc3NpXPnzhiNRqDoLLc6K1OLhqdjx45lkpNFYmJiLUdTv3To0IFOnTrx+eefExUVVWaDzMcffxwo2kPulVdesXG0ZUkPSlTYH3/8AWAdcjlw4ADp6enWDf+EqKp+/fqV2y6TcK6P2Wzm2LFjQNHO2YWFhZw/f55p06aVmBhhy+G9q5EEJSqseII6c+YMISEhhIeH2zgqUR8sXbq03H296vK27PYgNTW1zAw9pRQpKSk2iqhyJEGJCouLiwPg+PHj3HfffSxZsgRvb28bRyXqi/T0dJ5++mkGDx7Mgw8+iIuLi3UISlRNeRuiaq3p3LmzDaKpgvKm9lXnj0wzrx9CQkKs1QKcnZ210Wi01lbbvn27rcMT9dCCBQs0oNevX1/mvp07d1qrIsyePVvv3bvX+nns0KGDfv3112s/YDtlqYNpmbY/c+ZMW4dUBlJJQlRVfdhvRtQ9ubm52tfXV7dp06ZMfcc//vjDulP0pEmT9IEDB6z3jRkzRqekpNRqrPbObDbrWbNmaUB/+umntg6njCslKBniE9eUmppapq0ujWOLusnJyYnly5dz4sQJnnvuuRL3eXt7lzuTNCMjg1OnTpU7tNWQmUwmli1bRrdu3fjXv/5V1DupAyRBiWuq8+PYos7q378/ISEhvPPOO+zcubPM/aVnkn799deMHj26tsOsExwcHHjmmWf48ccf+frrr20dToVIghLXZKm1ppTCYDDg7u7OtGnTpA6aqBULFiygdevWPPzww+Tm5lrby5tJ+sUXXzB+/HhbhFknTJw4kbZt27Jo0aIS7UlJSZhMJgICAggODiYvL4+BAwfi4eFR7ghKbZEEJSokLCwMV1dXTCYTrVu35sMPPyQ/P99uPsii/mrUqBHvvvsuSUlJhISEsHLlSuLj48vMJM3LyyM5OZlevXrZOGL75ezszJNPPkl8fLy1qgRA165d2b59O9u2bQNg3759REVF8be//c1WoQJSSUJUUEZGBpmZmYwcOZKQkBDGjRsHFI3/R0VFMXfuXBtHKOqzu+66Cx8fHz766CM+/fRTCgoKUEqRmZkJwKuvvsqFCxcYNmyYjSO1fw899BAvvfQSixYtYv369UD5lc5btmxpqxCtpAclKsSySLddu3Z4eXlZ25VSdvFBFvWb2Wzm5MmTAGRmZpKTk4PBYGDhwoXExsYycOBARo0axdKlS20cqf1zd3cnNDSU6OhoDh06ZG2Pjo7G19eXtLS0chdN24IkKFEhp06dApDK0sImUlNTUUqVaJOZpFUXEhKCm5sbixcvtraNGTOGpKQkWrduzcaNG20Y3f/IEJ+okNJ1+ISoTT4+PuTl5ZVok5mkVde8eXMeeugh3nnnHXr27EmfPn0IDAwEiiqdu7q62jbAyyRBiQoxm80AHDt2jB49etg4GtHQDBgwAKPRSH5+Pm5ubmitZSbpdTp//jwFBQXMmzcPBwcHmjVrho+PD507dyYoKIi///3vJCQkkJKSwjPPPMPYsWNrP8jyVu9W549Ukqj7ipc5cnV11W3atNGenp562LBheufOnXrChAm6VatW2mQy6aioKFuHK+qhtWvXakC//PLLV9y1V1ScvVWH4QqVJKQHJa7KbDYTGRlpHV7Jysri7NmzbNq0yXr2unr1aluGKOqxxMRE5syZQ1JSEo0bN2bu3LkEBwcTERGBk5MTn332Gc2bN7d1mHXO1arD2FOvVCZJiKuSMkfCltq3b88rr7zCxYsX6dKlC9u3b8fZ2Zm4uDiCg4P59NNPbR1inVRXqsNIghJXVVc+yKJ+8vb2JiwsjKZNm9KlSxcA62y+c+fO2c106LrGUh3G3d0dg8GAUsour+lJghJXZfkgQ9FiPilzJGrT4cOHWb9+PX/96185d+4c/v7+5OTkcMstt/Dee+9JWaPrEBYWxqZNm7j33nvRWtvl5pCSoMQ1vfbaawAMHz68RJmj9PR0TCYTQ4YMYcyYMWRlZdk4UlHfLFu2DCcnJ3788UfCw8PZtGkTTZo0ITk5mRdeeEEW5l4nk8nE888/D8B3331n42jKkgQlrsmySPeuu+5i586dDBgwAAAvLy8SEhKIi4ujb9++drO4T9QPGzduZPny5Xh6evLGG2/g7e2N1pqmTZsCRWt5zp8/b+Mo676uXbvStm1bNm3aZOtQyrhqglJKGZRSjyqlXlZKDSp13/M1G5qwF5ZFuu3bty9R5shgMODgUPQRKigokOtSotqEhoYyfvx4CgoKSEtLY/z48QQGBtKoUSOSk5MJDAxk/vz5zJgxw9ah1nlKKUaOHMmWLVsoKCgocd+yZcvw9/e3UWTX7kF9AAwB/gu8pZRaVuw+GfxtIK5WRWLXrl34+fkRExNDx44dazs0UQ+ZzWYiIiJKVI44f/48CxcuJCAggDVr1hAbG0t8fDydOnWyYaT1x8iRIzl37hy7d++2tuXk5LB//34bRnXtBHWb1nqS1voNoD/goZRap5RyAdTVnyrqC0uRzvIS1G233cbu3bsZN24cERERtR2aqId++uknsrOzS7TJ0oaaNWLECJRSJa5DLV++nClTptgwqmsnKGfLL1rrfK31I8A+IAbwqMG4hB3ZtWsXSqkya6KKbx5nT/W7RN22YcMGCgsLS7TJ0oaa1bx5c3r37m29DpWXl0dcXJzNty+5VoLarZQqsX+y1volIBLoUFNBCfsRGhpqXQw5evRo2rZty/79+xk1ahR79+5lyJAhDB06lG+++YYHHnjAxtGKuu6DDz5g/fr19O3bF3d3dzw8PGRpQy0JCgpix44dXLx4kVWrVjFp0iRbh4QqKoNUc/z8/HTxcU1Rd5jNZkaNGkVGRoa1zd3dvUSZIyGqKikpiUceeQSDwYCPjw/jx49n7NixeHp6MmjQIJ544gl+//13OnfuLJ+3WhATE8Pw4cOZNWsW6enpnD59GqUUiYmJvPTSS4SGhtbYayul9mit/Uq3V2ia+eXZfGOUUo8rpZ6w/FR/mMKeSJkjUZOKbzOekZHB1KlT6dSpE0eOHMHPz4/09HSmTJkiyamWrFmzBoB3332XqKgounTpwjfffEP37t1rNDldTUXXQW0ApgLNgEbFfkQ95uPjQ+ketlwLEJWRlJSEyWQiICCA4OBg9u7dS2BgIIGBgXTp0oU33niD7OxsYmNjycnJITo6Gk9PT1m2UMvMZjMff/wxUHT9KSMjg8jISLZv305CQoLN4qpoNfM2WuueNRqJsDuDBg0iMDCQr776CldXVxwcHORagKgUSy8JIDg4mPz8fGJjYwEYO3YsRqORVq1ace7cOdasWcPFixfx8/PDaDTy5JNP2jDyhsVeq5tXtAf1tVIqqEYjEXbJUoyzdevW3HHHHbz22msMHDgQDw+Pcj/UQhTn5ORk/d3FxYW2bdsCkJGRwalTp8jJyeHcuXPcdtttODg4yLIFG7HXotAVTVA7gS+UUllKqQtKqYtKqQs1GZiwDykpKfj5+ZGSkoKjoyM//fQTUVFR/O1vf7N1aKKOiI6OxtfXl7S0NOsJz+uvv46DgwNPPPEEd999N8OHD8dgMFifI8sWalfp6uaAXVz/q2iCeg0YCLhprRtrrRtprRvXYFzCDuTl5bF//34GDSqqcuXo6IjBYKBly5Y2jkzUJWPGjCEpKYnWrVuzceNGQkNDeeGFF9i5cyeFhYUkJiaSlpaGt7e3LFuwIUt181mzZgEwdOhQG0dU8WtQKUCSruk56cKuHDhwgKysLAYMGMCBAwdIT0+nW7dutg5L1BFms5nk5GS6deuGyWSicePG7N69m/fff79EzbcLFy4wbdo0brvtNuLi4mwYsTCZTPTv35/Vq1cTHh5u85GSiiaoP4BYpdTXQI6lUWu97MpPEXXdjh07ALjlllsICQmRrd1FhYWGhhIZGUl+fj55eXk0atQIo9HIn3/+Weax9nAxXvyPwWAgODiYV155hd9//5127doB8Ouvv9K/f39uueUWnJ2da6X6eUWH+I4CWygqfSTTzBuI6OhoGjduzPTp01myZAne3t62DknUAZZirxkZGeTk5FBYWMj58+cxGo08+uijZa4t2cPFeFFScHAwWmtWrFhRon3kyJHExsbW3tYcWutq+wHmAAeBJOA/gLFv375a1D0hISFaKaWVUhrQN954ox4yZIjevn27njBhgm7VqpU2mUw6KirK1qEKO7NixQrt5uamAeuPq6urjoyM1FoXfbbc3d21h4eHdnd316GhobYNWJRr+PDhukOHDrqgoEBrrfXRo0f1jTfeqP39/fWyZcuq9bWA3bqcnHLVIT6l1Bta69lKqQ2XP2ilk9uYYo9tDTwOdNNaZymlVgP3VksWFbXKcgasi11ytGx3MHDgQAYOHGjD6IS98/HxQamSmx04ODjQpUsXoOhi/MSJE0lJSZEyRnbswQcfZNKkScTExDBixAhatWrF4cOHcXFxYezYsQwfPpyePWt2eey1rkGtuvzfiu6r7Ai4KqXyADfgZFUDE7aTmppapoKEXCcQFWWZshwZGYlSCq11mQXeJpNJPkt2bty4cXh5eREeHs6IESNwcXHBxcUFgDvvvJOkpCTbJiit9Z7L/41TSrW4/PvpKzz2hFJqKfA7Rb2tXMD79OlyHy7smI+Pj2x3IK6L9JLqPqPRyOTJk3n//ffx9/enS5cujBw5EigaZamN+nzXGuJTwD+BEIo2KHRQSuUDYbpo243ij/UCxgIdgXPA/wFrWrRosQpRpwwaNIh+/fqRkJCAu7s7gJQ4EpUmvaS6Lz09nfz8fJ544gmUUjRu3BgfHx/8/f3p379/jb/+tWbxzQYGAf201s201l4U7aw7SCk1p9RjRwBHtdantdZ5wDpAPp111KBBg3BwcMDb25tOnTphMBg4evQoAQEBDB48mEmTJpVYyyKEqF/MZjMbNmwAijYnzcnJITMzk6VLl7J48WLr406ePEmfPn0wGo3k5+cD0KRJE2tR4DNnzlQ5hmslqAeAiVrro5YGrfUR4L7L9xX3OzBAKeV2uec1HEiucmTCpk6dOoW3tzdJSUns37+ftLQ0jh8/zoYNG4iPj6djx4589dVXtg5TCFFDKrrdTtOmTdmyZQsDBgywtvXo0YPY2FhiY2Np2rRplWO4VoJy0lqnl268fB3KqVRbIrAG+AH48fKxP6xyZMKmTp06RevWrTEajUBRmaNmzZrh6elpvV28dpoQon4pr4BsedugGI1GvLy8SrQlJycTEBDAvHnzyky4qoxrJajcytyntf6n1vpmrbWv1vp+rXVOeU8U9s/SgwLKlDk6efIkmzdvJihICtwLUV8VLyDr7u6OUgoXFxd69OhxzeempKQQHx/P2bNnrcOEVXGtBNXrcvXy0j8XgWtHKeqsP//8k5YtW3LmzBlCQkIIDw8HICcnhylTpvDRRx/h6FjRSllCiLrIUkD2nXfeISwsjAsXLjB9+vRr9oqaNm2KUoq7776bpKSkKr/+taaZyxhOAxQfH8+ff/5JTk4O9913X4kyR4888ggzZsyQorFCNBDFZ2OeO3eO559/nsDAQB5++OFyH5+RkYHRaMRgMGA2myvU47oSdT3jgxXh5+end+/eXaOvIapPaGgoERERZGZmYjAYcHJysk4nffXVVwkKCqJv374AzJo1i3HjxtkyXCFELSosLGT06NHEx8fz/vvvo5SiY8eOvPTSS+zZs4c+ffqwcOFCHnvsMdzd3bnpppuIiIi45vVqpdQerbVfmXZJUMLCbDYzatQoMjIyrG3u7u5s2rRJ1rMIIQBIS0ujY8eOZGVl4ebmBhQVlw0LC6vyMa+UoCpazVw0ABWdViqEaLhSUlIoLCxEa01GRgYZGRlERkayffv2an8tSVDCqrxppVLiSAhRXGpqapkhu5o6kZUEJaws00oNBgMODg64u7tLiSMhRAm1eSIrCUqU8NZbb+Hi4oKHh4e1xFF6ejomk4khQ4YwZswYsrKybB2mEMJGiq+P8vDwqNETWUlQooSjR4+SmZnJggULrCWOTpw4QUJCAnFxcfTt25eNGzfaOkwhhA1Z1ke9/fbbbNq0ibfeeqtGXkdWWooSvv/+ewDr2ZCjoyNOTk44OBSdy5RX6kQI0fDURrV66UGJEr7//ntcXFzw9fUtUeJo165d+Pn5ERMTQ8eOHW0dphCiAZAEJUr4/vvv6dWrF5cuXSpR4ui2225j9+7djBs3joiICBtHKYRoCCRBCav4+HgSExO58cYbS5Q4ys39X13gxo0b4+rqasMohRANhVyDEkBRiaPw8HBycnLYsGEDTk5OZGZmAvDiiy8yf/58HBwcaNq0KatWySbJQoiaJwlKYDabiYyMtE4fLygowGg0snDhQutF0Li4OFuGKIRogGSIT0iJIyGEXZIEJfDx8Smzv4uUOBJC2JokKMGgQYMYPHgwULR9s5Q4EkLYA0lQgsTERHbt2oWjoyMBAQHWleFr166lbdu2tg5PCNFAySQJgZeXF5cuXWLGjBmkp6fTqFEjANasWSMJSghhM9KDEmzfvp3c3FwmTpyIo6MjBoOBL7/8kpEjR1pLHAkhRG2Tbx/Bf/7zHzp27Iirq6u1tNHKlSu57777bB2aEKIBkwTVwP35559s3ryZu+++27pYNyYmBpPJhLOzs63DE0I0YJKgGjCz2cxTTz1FYWEhu3fvtpY2SkpKIjo6mtGjR3Pw4EGef/55W4cqhGiAVOn1L9XNz89P7969u0ZfQ1ReaGiotXpEYWEhRqOR/v37A/Dqq68ycOBAAPz9/UlISLBlqEKIek4ptUdr7Ve6XWbxNUCW0kYZGRnWNoPBUKK0kYUkJyGErcgQXwMkpY2EEHWBJKgGSEobCSHqAklQDdCgQYPo3r07AG5ublLaSAhhlyRBNTCJiYn079+fvXv3cuONN/Luu+8CcODAAQIDAzlz5oyNIxRCiCIySaKBad++PXfddRe7du2iR48e9OnTh1tvvZXY2FhbhyaEECVID6qBadKkCWFhYQQFBdGyZUsMBgPJyckEBAQwb968MtemhBDCViRBNTDLly8nLS2NiRMnWssapaSkEB8fz9mzZ9mwYYOtQxRCCEASVIOSm5vL4sWLGTBgABEREYSHhwPQtGlTlFLcfffdJCUl2ThKIYQoIgmqgTCbzUyfPp3jx49TUFBgLWuUkZFBQUGB9TGdOnWycaRCCFFEElQDEBoaSlBQECtWrEApxY8//sjcuXMJDAzkwIED9OvXj4CAAI4dO8bf/vY3W4crhBCAzOKr9yxljTIzM61tpcsa/fDDD7YKTwghrkh6UHVcYmIiJpOJgIAA5syZAxT1mAIDA5k2bRp79uwhOzu7xHOkrJEQoi6QBFXHtW/fnpiYGLZt20ZaWhrbtm0jNzeX2NhYDAYDzz33nPUak4WUNRJC1AWSoOo4b29vjEYjAI6OjsTExHDzzTfz+OOPs3z5coxGI/feey/u7u54eHhIWSMhRJ0h16DqiQMHDpCens5f/vIXHn74YS5evEi/fv3o2bMny5cvZ/v27aSkpNC5c2dJTkKIOkESVD1w5swZZs6cydChQ7n//vtxcXGhV69e9O/fHy8vLwBMJpMkJiFEnSJDfHWY2WwmIiKCESNGkJmZycsvv8xdd93Fr7/+yr59+2jWrBl33HGHrcMUQogqkR5UHWXZsj0nJ4f8/HyUUnTt2pU5c+bw17/+FYPBwPDhw63buAshRF0jCaoOsvSciq9tMhqNREREYDKZpDK5EKJekCE+O5OUlGRd1xQcHMzRo0cJCAhg8ODBTJo0iby8vDILb6Fo8a2sbRJC1CeSoOxM165d2b59O9u2bQMgPT2dDRs2EB8fj4eHB7feeivh4eE4OJT808naJiFEfSNDfHbGycnJ+ruLiwtt27bFycmJefPmsXz5ctzd3QkPD+eHH36w1tbTWsvaJiFEvSMJyg5FR0fz7LPP0qVLF3bu3Mns2bP57bffuOGGG9i/fz/e3t5MmzaNSZMmydomIUS9pWp6B1U/Pz+9e/fuGn2N+ujYsWMEBgZy5MgRbr75Ztzd3fn444/p1q2brUMTQohqpZTao7X2K90uPSg7YTabSU1NpXXr1hw4cID58+eTk5PD1KlTyc/PZ/z48ZKchBANiiQoO2BZ01RYWEhWVhZQtMvtHXfcwUMPPcTo0aM5duwYb775JrNmzWLcuHE2jlgIIWqeJKgalJSUxCOPPILBYMDHx4eIiAg8PT3p3bs3AOvWrSM5ObnMmiYXFxeio6MZNGgQABcvXrRJ/EIIYUsyzbwGlZ4yvnv3bnr06EFsbCyxsbF4eXnxySefWHtNFk5OTqSmptoiZCGEsBvSg6pB5U0ZT05OJiAggG7dunH06FG+++47HBwcKD5ZRdY0CSGE9KBqXHR0NL6+vqSlpdGsWTMOHjzI6NGjCQ8PJyEhgbCwMB577DHZr0kIIUqRaea1JDQ0lFatWvHpp59y6NAhBg0ahL+/P//6178AZL8mIUSDJdPMbSAnJwcXFxfOnDlDQkIC+/bto23btmzYsIGdO3fSo0cP62NlvyYhhChJhvhqiNls5umnn6ZDhw54e3uzf/9+7r//fpo2bcqiRYs4duwYf/vb32wdphBC2C3pQdWA0NBQwsPDyc3NpaCggJYtW/Ltt9/Sq1cvW4cmhBB1hiSoSii9rmn58uVMmTKFY8eO4eTkxGeffcaBAwf44IMPyMvLsz7v0qVLZGRk2DByIYSoe2SIrxLKW9fk7OxMXFwcwcHBPPvss9xzzz0lkhOAUkr2ahJCiEqSHlQllF7X5O3tjVKKo0eP8q9//YukpCQ6dOjApUuXyM7Otj5W1jUJIUTlSQ+qkoqva/L09GT37t106tSJgwcPsmDBAg4fPsxDDz0k65qEEOI6yTqoKhozZgyJiYmkpaVxzz33MHToUP7880/mz58PyLomIYSoKFkHdR0sW2G0b9+eDh06MGfOHDZs2ECbNm2YPHkyn3zyCbGxsRw+fNj6HFnXJIQQ10cS1DVYtsIAyM7OpqCgAAcHB/z8/Ni6dStTp04lMDCQwsJC6+OEEEJcP0lQV2E2m4mMjCwxRdxgMPB///d/1j2Z1qxZY6vwhBCiXpNJElfx008/kZubW6LN1dWVCxcu2CgiIYRoOKQHBSxbtox169aRkJDAkiVLWL9+Pc2bNyclJaXMmiaZMi6EELWjwfegcnJy2L9/PwCnT59m69atPP7443z77bccPXqUoKAgmTIuhBA20OB7UJZyRfPnzyc+Pp709HTuuecefH196d+/P8uXL5cp40IIYQMNugeVl5dHXFwcw4YNIyMjg9DQUL7//nueffZZVq9eTWFhIVA0ZXzKlCmSnIQQohY16AS1atUqJk6cSFhYGPv37yc7O5uHH36YBQsWkJWVhaenp61DFEKIBqtBDvFZFt5+9dVXxMfHc/r0aRwdHXnooYc4ePAgAJs3b2bAgAE2jlQIIRquBpegLAtvCwsLyc7ORinFm2++yerVq1m8eDGLFi3C39+fdu3aMXv2bFuHK4QQDVaDqsVnNpsZNWpUiYW3rq6ubN68Wa4vCSGEjVypFl+DugaVkpJSZuGtwWCQvZqEEMIO1dshPsvi21WrVvHAAw8AcOTIEVl4K4QQdUS97EEVX3zr6enJ6tWrad68OSdPnqRTp06y8FYIIeqAau1BKaU8geWAL6CBaX379q3Ol6iQ4otvlVLcc889JCQkMHr0aEJDQ/H09JSFt0IIYeequwf1JvCN1vpmoBeQXM3Hv6bii29zc3MZPHgwO3fu5O233+bChQsEBQXJwlshhKgDqi1BKaUaA4OBcACtda7W+lx1Hb+iVq1axaRJkzh8+DAHDhzg6NGjREVF8cUXX/DRRx/h6FhvL7sJIUS9Up3f1jcBp4FIpdQwwBU41q5du2p8iaszm82sXbuW3377jcOHD5Ofn09oaCiff/45M2bMoFu3brUWixBCiOtTnUN8jkAf4D2tdTvg38CXLVq0qMaXuLLQ0FBGjRpFTEwMBw8exGg00rt3b8aPH8+6det48803CQwM5IsvvqiVeIQQQlyf6uxBHQeOa60TL99eA8yrxuNfUXk73xYUFBAWFsbAgQO5ePFibYQhhBCiGlVbD0prfQo4ppTqerlpOHCouo5/NampqeTn55doc3BwkAW4QghRh1X3LL5Q4FOl1AHgVmBhNR+/XGlpaeTk5JRokwW4QghRt1VrgtJa79Na+2mte2qt79Zan63O41ssW7YMf39/CgsLGTFiBHPnzsXJyQlXV1dZgCuEEPVEnZtzXbxKRGRkJLGxsfj6+jJjxgx++uknevfuLQtwhRCiHqhzpY4sVSIuXbrErFmz8PDw4LvvvqOgoAA/Pz9ZgCuEEPVEnepBWapEBAQEkJSURNu2benduzeBgYEYDAZ27dpl6xCFEEJUkzrVg1q1ahWDBw9mxIgRGAwG5s+fT6tWrUhOTuaFF15g6dKltg5RCCFENakTPSjLFu3r16/n22+/RWuN0WjkwoULNG3aFIDmzZtz/vx5G0cqhBCiuth9grJs0a61JisrC2dnZ/bs2cP06dOZOXMm9957L4GBgRQWFhIZGWnrcIUQQlQTu05Q5VWIcHBw4MKFCyQkJACwZs0aW4UnhBCiBtn1NajU1NQybbJFuxBCNAx2naB8fHzKtEmFCCGEaBjsOkENGjSI4OBg2aJdCCEaILu+BgUQFhbGxIkTZYt2IYRoYOw+QQGYTCZJTEII0cDY9RCfEEKIhksSlBBCCLskCUoIIYRdkgQlhBDCLkmCEkIIYZckQQkhhLBLSmtdsy+g1Gngtxp9EWEvmgPptg5C2Iz8/Ru26/n7t9datyjdWOMJSjQcSqndWms/W8chbEP+/g1bTfz9ZYhPCCGEXZIEJYQQwi5JghLV6UMApVSoUupnpdRBpdRiWwclas2Hll+UUk8ppbRSqrktAxK16kOl1BKl1E9KqQNKqS+UUp7Xc0C5BiWqlVJqKPAccIfWOkcpdYPWOs3WcYnao5RqCywHbgb6aq1l4kQDoZQKAmK01vlKqUUAWuu5VT2e9KBEdXsM+JfWOgdAklOD9DrwDCBnvw2M1nqT1jr/8s2dQJvrOZ4kKFHdugABSqlEpVScUqqfrQMStUcpNQY4obXeb+tYhM1NA76+ngPUie02hH1RSm0GvMu56zmKPlNewACgH7BaKXWTlrHkeuMaf/9ngaDajUjUpqv9/bXW6y8/5jkgH/j0ul5LvjdEdVJKfUPREF/s5du/AAO01qdtGpiocUqpHsAWIPNyUxvgJHCb1vqUzQITtUopNQWYDgzXWmde6/FXIz0oUd2igGFArFKqC+CMVBdoELTWPwI3WG4rpX4F/GSSRMOhlBoNzAWGXG9yAulBiWqmlHIGIoBbgVzgKa11jE2DEjYhCarhUUqlAi7Afy837dRaT6/y8SRBCSGEsEcyi08IIYRdkgQlhBDCLkmCEkIIYZckQQlxnZRSBUqpfZdrD+5XSj2hlHK4fJ+fUuqtSh4vRCmVKrXsREMnkySEuE5KqUtaa4/Lv98A/Bswa63/WcXj9QbOArHILDjRgEmCEuI6FU9Ql2/fBHxP0Q6jQyiaan+nUuoFoCPQiqKSUE9QVHHjduAEcJfWOq/YcX5FEpRowGSIT4hqprU+QtH/WzeUc3cn4A5gLPAJsFVr3QPIutwuhLhMEpQQNUNdof3ry72kHwED8M3l9h+BDrUQlxB1hiQoIarZ5SG+AqC8rUYs25AUAnnFiugWIqXHhChBEpQQ1Ugp1QJ4H3hbKrgLcX0kQQlx/Vwt08yBzcAm4MWqHkwp9bhS6jhF1cAPKKWWV1OcQtQpMotPCCGEXZIelBBCCLskCUoIIYRdkgQlhBDCLkmCEkIIYZckQQkhhLBLkqCEEELYJUlQQggh7NL/B6vwp5FiobtdAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"st.plot_branches(adata,show_text=True)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"st.plot_dimension_reduction(adata,color=['label'],n_components=2,show_graph=True,show_text=True, save_fig = True)"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['label','FCGR3A','GZMB', 'GZMK', 'GZMH'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True)"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['PRF1'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 4)\n"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['GZMB'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 6.5)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['FCGR3A'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 2.5)"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['GZMH'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 3)"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['GZMK'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 4)"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['KIR2DL3'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 1.25)"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['CCL3'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 8)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['CCL4'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 12)"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['OASL'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 2)"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream_sc(adata,root='S7',color=['IFIT3'],\n",
" show_graph=True,show_text=True, dist_scale= 0.1, save_fig = True, vmin = 0, vmax= 3)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream(adata,root='S7',color=['label','FCGR3A','PRF1', 'GZMB','GZMK', \"GZMH\",\"PRF1\", 'KIR2DL3'], factor_num_win=5, save_fig = True)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"st.plot_stream(adata,root='S7',color=['CCL3', 'CCL4', 'OASL', 'IFIT3'], factor_num_win=5 , save_fig = True)\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAE8CAYAAAA/huMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABCAElEQVR4nO3dd3hUZdoG8Pudkt57SEIagST03puKImLvrn0tW3Rtu7p2V1dXV3Rdvy2K4lp37QVFQUQBEZAaakIJISG9l0mmz/v9MUMISiaTZGbOTHL/rutc086c8ySQeeYt53mFlBJERETkX1RKB0BERES9xwRORETkh5jAiYiI/BATOBERkR9iAiciIvJDTOBERER+iAmciIjIDzGBE3mBEELXZbMJIfRdHv9CCPGYEEIKIS7t8h6N47kMx+PXhRCmnxzrcsV+KCJSFBM4kRdIKcOObwDKAJzb5bl3HLs1AnhcCKF2cqi/dj2WlPI9jwdPRD6JCZzId6wEYAJwtdKBEJHvYwIn8h0SwMMAHhVCaJUOhoh8GxM4kQ+RUi4HUAfgpm52+b0Qotmx1XsxNCLyMUzgRL7nIQAPAgg6xWtLpJRRji3Oy3ERkQ9hAifyMVLK1QAOA/iN0rEQke/SKB0AEZ3SgwA+UzoIIvJdbIET+SAp5Q8AtigdBxH5LiGlVDoGIiIi6iW2wImIiPwQEzgREZEfYgInIiLyQ0zgREREfqg3l5FxthsREQ0kwl0HOmt+qGxotDrdZ/tu4yop5UJ3nZPXgRMREfVTfaMVP65KdbqPNrnYrdUTmcCJiIj6TcIqbV49IxM4ERFRP0kANi+PNDOBExERuYEN3m2BcxY6ERGRH2ILnIiIqJ8kJKxeLk3OBE5EROQGHAMnIiLyMxKAlQmciIjI/7AFTkRE5GckwDFwIiIif+Tdi8iYwImIiPpNQnIMnIiIyO9IwOrlJb+YwImIiPrJXkrVu5jAiYiI+k3A6r7VSV3CBE5ERNRPEoCNXehERET+hy1wIiIiP2OvxMYETkRE5HdskgmciIjIr7AFTkRE5IckBKxQefWcTOBE1C9SSmxfvRur31qP6qN1SBwaiwXXzMWks8ZCCO+2SIiUxC50IvIb+nYDnrvpJaz7YHPnc/s32vDduz9g4oKx+M0L12NoboqCERJ5hxJd6N5t7xPRgKHXGfDg4qdPSt5dbV+9C7eM/T1e/sObaG/t8HJ0RN4mYJUqp5u7MYETUa/pdQY8eN4z2PvDAaf7WS1WfPj8F7gx706sfnMdbDZvF5sk8g57KVWV083dmMCJqFf07QY8dP4z2LuhyOX3NFY34683/BN3zX4YB7cXezA6IuVYHeVUu9vcjQmciFymbzfg4fP/ij3fu568u9q/6SBum3I//nbLS2ipb3VzdETKkZJd6ETko/TtBjxy4RLsXl/Yr+NIKfHlq2tw/fDf4ZMXv4TFbHFThETKskE43dyNCZyIemToMOKRi57DrnX9S95d6Zrb8a87/4Nfjf8Ddnyz223HJVKCfRa6yunmbkzgROSUocOIRy58DrvW7vfI8Uv3l+O+M5/Aqte/88jxibzD+13ovA6ciLpl1Jvw6EXPoWDtPo+fq6m62ePnIPKU47PQvYkJnIhOyag34ZFLnsfO7zyfvIkGAisrsRGR0gwdRjx22d+w89u9SodC5BdYC52IPKK9tQPaQC0CArU97ttU04LHr/w79m066IXIiAYOmwfGuZ1hAicawKxWG17+w1v49P9WQhOgxrDxmcifPhyjZuYif1oOYpKiOvc16k1Y898N+M+fPkRLHa/RJuqN47PQvYkJnGgAe/3h9/DJi18BACxmK4q2HEbRlsP4+MWVAIDkzASkDE+CocOE4l2lMLQbIaVUMmQivyQhOAZORO5xcPsRvPfscqf7VJXUoqq0rvMxl/8k6jvOQicit1h2/ztsTRN5iZTwyLXezjCBEw1AB7cfwY41ewDBWk1E3uGZcqnOMIETDUCf/3uV0iEQDSoSbIETUT/pdQasfW+j0mEQDTqchU5E/bJp+TYYOoxKh0E0qEgI2DgLnYj6Y/2Hm5QOgWhQYguciPrM0GHEtq93KR0G0aAjwUpsRNQPO77ZA6PepHQYRIOQgJWz0Imor7Z8tUPpEIgGJbbAiajPpJTY8uVOpcMgGrTYAieiPinZU4a68galwyAalKQUXm+Bs0wT0QDx45fsPicaTNgCJxogmMCJlMVKbETUa62NOhRuOqh0GESDlgRYC52Iem/bqgLYbFx5jEg5gi1wIuq9Lew+J1KU/TIytsCJqBesVhu2rmL1NSKlsZQqEfXKgS2H0drQpnQYRIMaFzMhol7j7HMi32BjC5yIeoMJnEh5UgJWtsCJyFX1FY0oLjiqdBhEBE5iI6Je4OxzIt9gHwNnFzoRuYjd50S+g4uZEJFLTEYzdqzZ06f3RsaFI3/6cIycloMhOUkw6c3Yv/kQvnt/I9qa2t0cKdHAx+vAichle9YXwtBudGnf8JgwzLxgMkbNHIGR00cgJScJQpz8YXPaFTNw/WOX4JUH38VXr33niZCJBjB2oRORizav2O7SfpMXjsMDb9+OsKjQHvcNiwrFXf/8JYZPyMSLt/8HUrI8K5GrWAudiHokpcTmL3pO4PnTcvDYR/cgIFDbq+Of88vTEBCkxZKbl0KCSZyoJ7yMjIhccnTfMVSX1DrdJyg0EPe/fXuvk/dxC34xG1JKPHfTUrbEiVzALnQi6tGGj3/scZ8r778QSRkJ/TrPmVfPgbRKPH/rK0ziRE6wlCoRuWT9h5ucvh6VEImL7jjHLec667q5kFLib7961WNJPC03BZPPHu+RYxN5C8fAicipkr1lOLr3GCC6/7C46I5FCAoJdNs5F14/D1ICf/vVK247JgCERATjmkcuxQW3nw2Nlh9H5L94GRkR9eibt9Y7fT0gSItzblng9vOefcM8QEr87VdL+30sIQQW3ngabnjySkQnRPb7eES+gGPgRNQti9mCb952nsDnXDIdETFhHjn/2TfOh5Q2vPDrV/t8jNypObjtxRsxYvIwN0ZGpDDJMXAicmLT59vRWNXkdJ+FN8z3aAyLfnk6bDaJF3+7rFfvi06MxC+fugoLrp0Llcq7LRUiT5PgGDgRObH+g41OX49Pi8XoOXkej2PxzWcAUuLF217rcV+1Ro0LbluIax65FKGRIR6PjUgp/W2BCyHSALwJIAmADcBSKeXfu9ufCZzIT5QfqsLGz7Y63Wf+5TO91rpd7Bhnf/G3r3U7O3386aPx2xduQHp+qldiIlKKmyaxWQDcI6XcIYQIB7BdCLFaSrn/VDszgRP5ASkl/v6rl2EymJ3uN+/yGV6KyG7xLQuQnJmIF29bhsrims7nkzITcMtfr8GsC6f8rOY60UDV3wQupawCUOW43yaEKASQAoAJnMhfff/RZhR8t8/pPqnDkzFsfKaXIjph4oIxeG3/37DvhwOoKa1DwtA4jJo5AmqN2uuxECnFxUIucUKIbV0eL5VSnvKyDiFEBoDxALqt2sQETuTjGqub8I/be54wNveyGYq1dtVqFcbMyQPg+fF3Il/lwiS2einlpJ52EkKEAfgIwJ1Sytbu9mMCJ/JhHW16PHrhs2iqaelx3/le7j4noi6kewq5CCG0sCfvd6SUHzvblwmcyEfpmtvx4DlPoejHQz3umzUmHen5aV6IiohOxR2T2IS9C20ZgEIp5fM97c8EToOSUW9ES10rmutaO29b69vQXNcKfZse2kAtYpKikDEqDSNn5iIkPNir8TXXteD+hU/i8M4Sl/afe9l0D0dERD1xQwt8JoBrAOwRQhQ4nntASvnlqXZmAqcBw2Q0o6m6GY3VzWiqbkZDVdOJxzX2rbm2Fc21LdDrDC4fV6NVY8KCMVh00xmYtniixydn1Vc24r4Fj6OssMLl98y/fKYHIyKinrhjNTIp5QbA9WowTODkM9pbO9BY1YTm2la0NerQ0aaHscMIY4cJ+nZD531DuwEdOgPaWzqga9KhtUGHlrpW6JrbPRKXxWzFli93YsuXOxE7JBqLbjoDZ990OuJTY91+rqqSGty34AlUHanpeWeHEZOzkZyV6PZYiKh3JEup0kCma25HxaEqHDtQifKDlag4VIXyg1WoOlKD9pYOpcPrUUNlE956/AO88+RHmLZ4IhbfugATzxzrluIpZUUVuG/B46ivaOzV++ax9U3kE1hKlfyWzWZDa4MOjVVNaKhsQl1FI2rL6lFTWofK4mpUHqpCc12XKyI8tLa0N9isNmz8bCs2frYVienxmH/FTMy6eBpyJmT2KZnvXr8fj1+yBC31bb16nxAC8zj+TaQ46aZZ6L3BBE7dklKio00PXVM7Wht0aG1oQ0tDG1rqWtFU04Km2hb7GHNNS2fXt9Vi7eZgNu8G70U1pXV495lP8e4znyIyLhwjZ+YiZ0IWhualICUnGUOGJSE4NOiU721tbMO7f/kEH/3tC9hsvf9CM2p2LuJS3N+VT0S9xy508oqm2haU7S9HxaEqVJfWob68wT723KRDW3MH2hrboWtuh806cBOvJ7TUt3W2zLuKHRKNlJxkpAxLRmJ6PKwWK47sKcW2lQUw6k19Ph8nrxH5Ci4nSm5ms9lQebgaxQVHcbjgKA7vLEHxrqPOC4MILvXobg2V9mGF3etOWdK4T1QqgdkXT3Xb8Yiof9gCpz4xGc2oLa1D1ZFaHDtYibL95SjZdwwlu0t7dckU+Y8JZ4xGVHyk0mEQEdy2GlmvMIG7kdViRcG6QqjUKoSEByE4LAih4cEIiQhGUGhgr+tUSylh6DCivaUDbQ06NNW0oKGqCXXlDaivaERdeSMaKu23zbWOFvUAHmumk3H2OZEPkd6fl8sE7iZSSjx1w0vY8OnW408ANlvnOskqAIHBWgQEB0CtVkGtUUMI+2xmq1Xaby3WzlurxQaz0fnSkTR4BQRpMesidp8T+RJeRuan1n+yFRuWb+/2dZtNQq8zQK8zQPZhtjFRV1MXT0RoRIjSYRCRgwTHwP2SlBL/W/KF0mHQIDL/illKh0BEJ+EsdL9UuKUYR/e7XreaqD9CIoIxddF4pcMgop/gGLgf+vaDzUqHQIPIrIumIiAoQOkwiOgnvN2Fzgt++8lms2HTVwVKh0GDCLvPiQhgC7zfineXoaGqWekwaJCISojE+NNGKR0GKej45aW6pna0NerQ3tKBjjY9THoTzCZLZ/VElVoFtVplv9WqO+9rAjQICApAUGgggsOCEBYVitCoEKjVnl0md6CTkpPY/M7OdYVKh0CDyOyLpnp8PfKBpqyoAl8uXY3mulakDh+CYeMzkT0uA3EpMb2uzeApFrMFjVVNqCtvRH2Fvb5DU00Lmmua0VzfitYGHdoa7Vt7czvMJotbzy+EQHhMGCLjIxAVH4HI+AhExoYjKiESUQmRiEmOQlxKDOLT4hCTHMVk3w1OYvMzBeuLlA6BBpHcqTlKh+BXvn5jLf52y0uwmH++yE5UfASyxmUge0w60kemISXHXqc+OjESGm3/PhqtVhv0bXp0tOrt69Y3t9sXA6pvQ1NNs2PFPnsRpvryBjTVtHTWjFCClBKtDW1obWjDsSLnE3LVGjUS0+OQnJ2E5MwEDMlOQnJ2ov02KwHBYcFeitr3cBKbH7FarCjceljpMGgQ0TW1Kx2C3/jh0y1YcuO/uk2MzXWt2LF6N3as3v2z14LDghAUGghtoNaxaTrvBwRqoHK0QG1Swmw0w2Qw2xN2mwEdrR0wtBu7D8yPl9EF7J97lcU1qCyuOeXrMcnRGJo7BOn5acgcnY7scRnIGjO03xMv6ysbUbilGIU/HkLR1mKUH6qCSW9GVHwEhk/MxOwLp2D64gn9/vLVH+xC9yNHCyuh1zn5QyVys+8/3oyL7jxH6TB8Xu2xevz1+n/0uVV7vOhSt3yk690XNVY1obGqCQXf7ev8Pam1WmSMSsOISVnImZiN4ROzkDkqDdqAU6cgk8GEw7vKULjlMAp/PIzCrcWor2gEbD8vFa3XGVBVUot1H/6IpIx43Pj4ZZhz8VSvD49ICCZwf1K4tVjpEGiQ2buhCKWF5UjPS1U6FJ/2z9+9ho5WvdJhkIPVYsWR3aU4srsUX/1nHQBAG6TF0NwUJGcmICwmDFJKtDd3oOpoHcqKKk457NGTqpJaPHnNP/DJP1fh1md+gbwpw9z9ozjl7b4VJvB+OFhQetLjoNBALLxmFmISIhESHty5oElIRDBCwoMRFBKAwOAAaAI0UKlVEEJA2mywWm2wWey3x+ug2yxWmAxmGNoNaG/Vo7WhrXMxk3rHRJe6ikY0VTcrOnZG3rdy2be4dcm1Sofhs3at3fez9djJ95hNFhzZU4Yje8oAlXuvaN6/+RDumPsY5l86DTc+cTkS0+PdevxT4ix0/3KoSwIXQuDx9+7A2Nm5Xo3BPnu1GbXHGlBTWofK4mpUHKxEaWEFygrLYTJwQZSBZvWba3HDk1ciIFCrdCg+R0qJ/zz8P6XDIB/x3XubsOHTbbjodwtxxb3neX79AE5i8w8mgxmlRZWdjxfdMNfryRsANFoNEobGIWFoHEbNHHHSa1aLFeUHq3B4ZwkOF5SgeFcpiguOorWhzetxkvu01Ldh02dbMfeyGUqH4nN2rd2HfT8cUDoM8iFmoxnvPfs5Vr2xDtc+cjHOvmG+xy7FZAvcT5QWVZ5UMOHyuxYpHNHPqTVqpOenIj0/Faf/YjYAewulrrwBR3aVoqyoAhWHqlB9tK7zulNdkw5cLM0zgkIDkZKTjPi0WNisNpTsLkNdeUOfjvXlsjVM4Kfw9hMfKh0C+ajm2la8+Ntl+PT/VuKXT12JaedMcPtEN15G5ieO7DvWeX/KgtFISItVMBrXCSGQkBaHhLQ4TFs88WevSynR0apHa6POXumpSYc2R8Wn1oY2tNa3obm+Fc21rfbrWatb0FLXynH4LmKHRCNnYhaG5qYiJScZKTlJSMlJRmxy9EkfGFJK7PuhCK8/8h52rd3Xq3PsWL0bVUdqkJyV6O7w/dae7wt7/XukwaesqAKPXrQEY+bkYck3j7jtuFxO1I+U7HMUO7BJnH7pVGWDcSMhBEIjQxAaGQJkuvYeq8WK5rpWNFY1o7G6GU01zaivaER9ZRNqS+tQXVqH6iM1MBsH5ni8SiUw7rRRmHXhVEw6a5zLSVUIgVGz8vDsmkfxyYtf4uXfv9nZq+OKL19dg18+dVVfwx5w3n7iA6VDID+ye72bq2hKAEzg/qHsgH38OzAkAJPPGqtwNMpSa9SITY5GbHJ0t/vYbDbUlzei/GAljh2sRMWhapQfqED5wSrUHK2FzQ/77ePTYrHopjOw8Mb5iEvpew+MEAIX3XEOkrMS8cRlz7v8RefrN9bi+scvZ2lVAPs3HcCOb/YoHQYNcuxC9xOlRVUAgPFz8xEUEqhwNL5PpVJ1TrabcMaYk14zm8yoKa1HbVk9Giob0VLXCl1TOzra9DC0G2HUG2FoN8LQYYSxw35f32YvUdnW1N6rVmt/CSEw+exxWHzrmZiyaLxba0JPP3cSnlxxPx45/xnnlbwcGquasHVlwSmHQgabt//8kdIhEHEWuj/QtXSgoboZADDpDK4M1V/aAC1Sc5KRmpPc6/fax+w70FTbiuYaexd+Y7W91nRTdTMaa5rtt9XNaK5thdXS++IQABCTFIUzr5+Pc245A0kZCX06hivGnzYaz6x+BA+c/STaWzp63P+rZWsGfQI/sK0YW7/aqXQYNOixEptfKDtQ1Xl/3Nw8BSMh+5h9KEIjQ3v8AiClRFujDk219ol3LXWtaHbcttQ7trpWdLQZoA3QICY5Cpmj0jFmbj7yZwz32gpM+dOGY8l3j+H+s/6M5rpWp/tu/mI7GqubEJPU/fDFQPfOnznznHwEW+C+r9Qx/h2dEI6UbM4C9hdCCETEhiMiNhzw8e9dw8ZlYsnaP+GPZz5hrwHdDZvVhtVvrsfl957vxeh8x+GCEmxavk3pMIgUqcTm3vp1g8TxAi6jp+X4zHrCNPCk56XiubV/QuwQ563rla+tGbSX8b3DsW/yJbKHzc2YwPug7KC9Cz13kovXWRH10ZDsJDy54gEEBHVfNrX8YBX2/TD41qUv2VOGDR//qHQYRF2IHjb3YgLvg9KiKsBqRd7kbKVDoUEge2wGbnzS+fXeXy5b46VofMcbj72vdAhEJ2ML3Lcdn4Gu0aqRPTZd6XBokLjg9rOROXpot69//8FmtLf2PGt9oDiw9TB++HSL0mGQH8scleb+gzKB+7bjM9DT81K4GhR5jVqjxj3LfgOV+tR/soYOI9a9t9HLUSlDSolX739H6TDIT8WlxOCeV27Fv7Y+7d4DH6/E5mxzMybwXjo+A30YW9/kZSMmZWP6ud1f8/3VIOlG3/T5dhR8x5rn1DvBYUG44fHL8dq+53HWdfOg7ubLcH9I6XxzNybwXio7UAXYJLLHeKD7hagHcy+b2e1rRVsOo2RvmRej8T6r1YaX//Cm0mGQH1GpBM6+cR7+s+85XPnHCzxbOZNd6L6t9EAlIG3IzEtROhQahGZdNAXRiZHdvr5y2bdejMb71ry9HpWHq5UOg/zEhNNH4d9bn8Jd/74ZMUlRnj+hl7vQWcill0qL7C1wj0yAIOqBNkCLM6+bh/f++tkpX1/91jrc+NSVCAweePX5i3cdxd9/84rSYZAbxaXEICkjHmHRoYAQaGtsR01pHeorm/p13KG5Q3DLX67C5LPGerVWh2AlNt91fAZ6fGoMwqJClQ6HBqkzr5/fbQJva9Rh7Xsbcdb1870clWeZDCY8c90/YDIMzCVpB4O41BgMn5CF4ZOy7bcTM+1VEU+hubYVRduKsX/LYRRtKcaB7UdcWuAnMj4C1zx4Ic755WneX6XPQ93kzjCB98LxCmxZI9n6JuUMzU3B8EnZOLit+JSvf/j851hw7VyoVANnhOyle95EyR7vju+r1CoEBGmhDdRCG6Cx3wbab1UaNYQQsFltMJssMOlN0OsM6GjtgMXctwVzBgptoBapw5ORPjINmaOHIntsBoZPzEJ0YpTLx4hKiMC0ReMxbdF4APa5D0f3l6Nw8yEUbT2Moq1HUHG4GjarDSERwRg+MQuzL5iM06+aieDQIA/9ZD3xTDe5M0zgvXC8AlvmqFSFI6HBbt5lM7pN4Ef3HsOGj3/EnEumezkqz1j52rf4/KWv3X5cbYAG6SPTkD02A+kj05CSk4SEoXGISYpCWHRYny4TlVLCbDSjvVWPjlY9Olo70NGqR1tTO9oadWipb3WsjteEhsom1JU3oKGiEWaTxe0/nyeFRYUiOSsBydlJSM5MwJDsJCRnJ2JIdhLiUmPcvvCPWq1C9uihyB49FItvPh0AYLPZYDFbfetyXrbAfVep4xrwDE5gI4XNvmQalt77Vrevv3Lf25iyaILfr1W/5/tCt4x7q1QCuVNzMGLyMGSPy8Cw8ZkYmpcCbYB7P/yFEAgICkBAUACiE7qfbNiVlBLNda2oL29AfUUj6isa0VDZiKbqZvvKefVtaK1vRVujDm1N7bBZbW6N+TiVSiA8JgyR8RGIjI9AVHwEIuMiEJ0YheikKMSlxCA+LRaJ6fEIjw7zSAy9i1eFgEAf62ViAvddxy8hy+IENlJYUkYCho3PxOGdJad8vbqkFkv/8BZ+98+buj2G1WLF3g1F2L56F47sLkVjdTMgJaISIpE5aijGzh+FMXPzFfsSUFlcjccuXtLvLukzr5+H6x67DAlD490UmXsJIRCdEInohEjkTMhyuq+UEnqdwZHMdWhr1KG9pQN6nQHGDhMsJktnglepVVCpVVBrVFBr1I77ami0amiDtAgKCURIRDDCokIRERuO0KgQry2ZO2Axgfuu0gOV0GoEUoZxCVFS3swLpnSbwAHg83+vQuyQaFz1wEWdM3H17QZs/3oXNi7fis2fb0dbo+6U7926sgDvL1kObaAWo2blYvLCcZh05jhkjErzyqxeXXM7HjrvGbQ2tPX5GEEhgbjvrdsx68KpboxMWUIIhIQHIyQ8GInpvvmFZNA6XonNi5jAXWSfgd6C7Nwh3p/dSHQK08+bhDcefc/pPq8//C42f74NY+aORFlhOXZ8s7tXM7nNRjN2rtmDnd/uxdJ730ZMcjQmnTkWExeMwcQFYxAZF9HfH+NnLGYLHr/seRwrqujzMYJCA/GXlQ9h1MxcN0ZG5BwvI/NRnRPYRnICG/mGrDHpSBgah9qyeqf7FW05jKIth91yzsaqJnz9xlp8/cZaCCEwYsowTFs8ETPOm4SMkf1vnUsp8Y/bX8PONXv6fAyVSuDh9+9h8ibv83IC97EZAL6rtMiewDn+Tb5CCIFpi7uvje5pUkoU/XgIrz/8Lm4Z+3vcmH8nXn/kXZTuL+/zMT96YQVWvPJNv+K6/okrMeXs8f06BpE/YAJ30fEZ6GyBky+Zft5kpUPoVH6wCu88+TFuGn03bp3wB7y/ZDlqjznvHehq3fsbsfQP3c+sd8XEM8fi8vvO79cxiPpKSOebu7EL3UVlByoBKZnAyaeMmZuPkPBgdLTplQ7lJEd2leLIrlK8+sd3MHpOHk6/chZmXzLtlJcfSSnx5Str8OJtr0L2Y8mm6MRI3PfGbQOqgA35GU5i802lByoRHReGqHj3T9oh6quAQC0mLRyH9R9sUjqUU5JSYve6/di9bj/+8bvXMHnhOJx25SyMmTcS2gANirYcxscvrMDWVQX9Oo8QAn9863e9qvZF5FYspeqbjs9AnzAzR+lQiH5m+rmTfDaBd2U2WbBx+TZsXL7N7ce+/L4LMOGMMW4/LlGvMIH7nuMz0DPy2X1OvmfKovFQqVUeq9Dl6/JnjMB1f7pM6TCIvH4ZGQeLXNA5A300Z6CT74mICceoWYPzkqmwqFA88M4d0GjZFiEfIHvY3IwJ3AVlB6sBcAY6+a7p505SOgTvkxJ3v/prViQj38EE7ntKD1RCDYm04clKh0J0StMGYQK/4PazMfuigVMmlfxbT5eQeaJ7nQncBaUHqpCaneBby9YRdZGak4y03MGzSt7wiVm45dlrlA6DSFFM4D04PgM9M3/wfDiSf5px3uBohYdEBOOhd+9y+1KgRP0mhfPNzZjAe3Bi/JsT2Mi3DZZu9LuX/grJWVwRkHwQx8B9SykXMSE/kTctB5Fx4UqH4VFhUaGYxXFv8lEcA/cxJYX2JQ2zRg9VOBIi59RqNaYquLiJN+ia2/Hu058oHQbRqflzC/zwzhJ89Pcv8eELK3Bwe7E7D62Ykn0VCI8MQmxylNKhEPVoMFxO9uZj72PHN7uVDoPoZArMQndL9YN9Gw/gzSc+xM41e096ftJZY3HP0lsRmxztjtN4nZQSR/aWI2t4Ur/XOSbyholnjkVAkBYmg1npUDzGZpP4y9Uv4l/bnkF8aqzS4RCd4E+V2PZtPIA/LnoKd8177GfJGwC2rdqF22c+hIrD1f05jWJqyhvR3qpH1kjOQCf/EBwahMkLxykdhsc117Xiicufh9k0cL+okB/yhy70/ZsO4o9nP4U75zyKHd/scbpvfXkj7j/nL2ioaupTgEo6tKsUACewkX+Zd/lMpUPwisLNh/DKfe8oHQZRJ5+exHY8cd8x+xFsX+36GFR1SS0eXPw0dM3tvQ5QSYd2lQEAMpjAyY9MO3cSgsOClA7DKz558Uus/3Cz0mEQKcLlBP7mnz7odeLu6sieMjx68RKYDKY+vV8JB3aWQgjBVcjIrwSFBGL+FYOjFQ4Az938b78dpqMBxle70OvKG/p9sj3fF+Gpq/8PVou138fyNKvFiqIdRzEkKx5BIYFKh0PUK+f++iylQ3AqJikKCUPj3DI5tKNVjycuf96vGgc0AA2GWugbl2/Di7ctg5Renq7XSyWFlTDqTcgcnqR0KES9Nmx8JsbOG6l0GCcZMiwJVz98CZbt+xveq1iKd0r+hf8dewmX/eE8qNT9+ygqLjiKf935unsCJeorL7fAFVlE96vXvkNUQiRuePxyJU7vkj2bDgE2iYwRTODkn65++BLsWrtP0RiiEyMx97IZOP2q2RgxOftnLe7Y5Gjc/PTVmHbORDxywV/7NU9mxSvfYPTsPJz+i9n9DZuob/zpMrL++N/Tn+LDF1YodfoeFWw4CADIGsUa6OSfxs0fhWnner8yW3BYEBZcMwdPffkA/lf2En77wg3InTLMaXf56Nl5eHrlgwgK7d9w1Qu/WorS/cf6dQyivhAYBF3oXS299228+9fPfK473WQ021vgYAlV8m+/++fNiIj1fH30oJBAzLlkGh5+7258UP0q7n39Nkw+axzUGrXLxxgxeRgeeOeOfo2LGzqMeOyiZ9Ha2NbnYxD1ma9OYvOU1x56Fy/etgxmk0XpUDrt+7EY+nYjgkMDkTCUlZ7If8WnxuKJ5fchLCrUI8c+5+Yz8Pin9+LD2mV4+L27MeeSaQgMDujzMaefO6nf63yXH6rGQ+c+jfYW/7pslfycv5ZS7a8Vr6zBwe1H8Idlv0aGDyzb+cNXuyClRGZuMlQqxb/jEPVL/vQReGXv81jx8mr88OkWlOwp69NxAoK0GDMnH5POGotJZ47D0LwUj5QYvvjOc1B+oBIrXvmmz8co3HwId8x8CA++excyR7EXjbzEy53JPpHAAeDQjhL8evL9WHTTabjsnnORmB6vSBwWsxXff74TAJAxnGsO08AQNyQG1/3pclz3p8tRdaQGP3y6BRuXb8W+DUWw2br/1MkYlYaJC8Zi0lnjMHp2Xr9a164SQuC2/7sRlUdqsHON80qPzpTuL8evJ9yL034xC7MunIrYITEw6Axoa9JB19SOtkZd531DhxFWixUqtQqBQQEIjQpFTFIU4lJiEJsSg/jUWMQOiYZG6zMfmeSLBmsCB+zXXn/+0mqsWPoNZpw/GRfefjZGzRzh1YVEfviyAK2NOgBAZh5roNPAk5yViEvuPheX3H0uWupbUfDtXhTvOorGqmZISETFRyJz9FCMmz8ScSnKDCFptBo8/N5duGPWwzhWVNHn41gtVqx+Yx1Wv7Gu3zEJIRCdGIn4tFgkZSYgZVgy0vNTkTU2A2m5Q6BWuz7eTwOTJ7rJnfGpBH6czSax4ZMt2PDJFgwbl4ELbluIeZfPQECg1sPnteGDf67ufJw1hl1vNLBFxkVg7mUzMPeyGUqH8jPh0WH48/L7cPv0B9HaoPykNCklGqub0VjdjANbT14uOSg0ELlThmHkjFzkzxiB/OnDPTLvoCfNrR34fnsxdhysQGl9E3RmEwKDtUhLjMK4YSmYlZ+JITERXo9r0GACP9nhgqNYctNLePWB/+LsG0/DwhvmIzkzwSPnWvHG9yjeW975mCVUiZQ1JDsJD793F+4768+wWW1Kh9MtQ7sRBd/tQ8F39uvuhRDIGJWGkTNGIH/GCIyenYfE9HiP9CY2N3fg+40H8d2mA9hWVA6zGrBqAZtWwKYBpBrYU1aNFTsOQKqA7JRYzBmZiTl5mRg7dAg0/SyiQw4emmnujHD1Eq7nbn5JrvzP2p8fQOX9dbLzZ4zArAumYMrZ45A2PLlffxRSShTvLcf6z3fgo3+v6fyQSEiNwRtbHndXyETUDx88txxL7327d2/ypctThUBcSgxGzczF6Dl5GD07D+n5qX2eJNvc2I4Nawuxfv0B7Nh7DBaNgE0rYA1Q2W9/ksClCpBq4bhF5214aCBmjcjAnBGZmJWTgZiQYDf/4D7PbQksOClNZl97t9N99j1793Yp5SR3ndPnW+Cnsn/TIez/8TBeeeB/iBkSg7ypOcibmo3cSdnIGZveYzEIg96Egg0HsWX1XmxZsxcN1S32F7r8wWeMSPbkj0BEvXDxXYux7evd2PFN3xZT8gX1FY1Y+/5GrH1/IwAgPCYMo2flYszcfIyenY/sselOr5tvbtBh46o9WL96H3btKoNVo4YtwL71NQ+16o1YsfsAvth7AEIjMDYtCXOGZ2LesEzkJXimx2BAYxd67zTWtOCHL3Zg41cFgFBBpVUjc2QaRkzMRGZ+CmISI6HWqNHRpkfl0Xoc2FmK3ZsOw2Q0A7ZTd8lJKZHFEqpEPkOlUuH3y36N30y6D811rUqH4xZtjTpsXL4NG5dvAwCEhAdj5MxcjJicjcR0+yJK+nYjKo7Wo3BnKYp2l8Om0UAGaCED3f/RbZMSO8qrsL2qEs9//wMSIkJx9ahx+M2cqW4/10DFSWz9ZLPaULy3HMX7KyBUKkClAoTodXdaZv4QD0VIRH0RnxqLe9+4DQ8sekrpUDyio02PrSt3YuvKnZ3PCY0WIigQIjAAItC7qyLW6NrxffFRJvDeGCy10H2aTfpEQRkiOtmkM8ciZ2KW0mEQ/VxPZVQHYilVXxQQpEXKMHahE/kaIQR+/dx1SodB9DPChc3dBlwXOgCERYUgd2ImMvJSEJsUCbVWg/aWDlSV1qNoZymOHa5x+v70EclQ89IKIp80enYeZp4/GT98tlXpUIhO1s9WthDiNQCLAdRKKUf1tL/fJ3CVWoWsMenImzoMuROzkDs5CylZCU5nT9Yca8Dmb/Zhy+o92L3pMCw/WUglNZslVIl82Q1/vhIbl2/zuZUMaXBzwyS21wH8A8Cbruzslwk8LjUGM8+fjCkLx2H0zBG9XkM4MS0W598wB+ffMAcdOgN2ri/ChhUFWPuJfTZofVWTJ8ImIjdJz0/F/Ctm4tv/bVA6FKIT+pnApZTrhRAZru7vNwlcG6DBnEumYeEN8zF6dq7bVgkLCQvCzEXjMHPROGTkJuP1v3yOI/sqIKXkNZBEPuwXD12M7979ga1w8h09/1eME0Js6/J4qZRyaV9P5/MJPDoxEufeugDn3Hw6ohOjPHquS36zABu+KMCh3WWoLWtAYnqcR89HRH03NDcFcy+d3lkYhUhRrq35Xe/OSmw+O1MrZ0Im7v3Pb/B28T9w9UMXezx5A4BarcIv7j4bAFBSWN7D3kSktCvvv1DpEIhO8PJlZD7XAp+6aAKuuPc85E8frkgX9pQFo5CYFouSwkpMWzjO6+cnItdljUnHtMUTsfmL7UqHQjR4K7ElDI3DXS/djIlnjFE0DpVKhTMunYKS/ZWKxkFErrnqgYuYwMk39P8ysv8BmAf7WHk5gEellMu6298nutCnLhqPf2/9i+LJ+7jZi8fjyP4KpcMgIhfkTc3BhNNHKx0GEYR0vvVESnmllDJZSqmVUqY6S96ADyTwxbeegcc++j3Co8OUDqVTeq69DrpRb1I4EiJyxVUPXKR0CDTYDbZSqhfevhC3v3ijz1U9E0JgwpxclO7nRDYifzBmbj7yZ4xQOgwa7AZLAl9wzRz8asm1Pnut9cT5+Tiy95jSYRCRC4QQuIoz0klBAv3vQu8tRRL41EXjcffLt/hs8gaAUdOGoexQtdJhEJGLppw9HsPGZyodBg1mA70Fnj99OB787x1Qa9TePnWvhEYEQ6h9O0YiOoGtcFKakNLp5m4uJ/CgsKB+nyw9PxWPf/IHBIV4d2H6vgoJD2aZRiI/MvPCKRial6J0GDQY+fIktl8/dy0e/O/vkJ6f2qcTJQyNw19W3I+IGN+Zbd6TIVkJqK/gwiZE/kKlUuEXD16sdBj9FhoZgpjkaAS7oeFE3uPtMXCXC7moVCrMu2wGZl88Des+2IS3//wRjhW5VuwkIjYMT33xR8SlxPQ5UCXkTcxEyd4yxKf6V9xEg9ncy2bg/SXLUbyzROlQXKIN1CJ3yjCMmZOH0bPzMWJyNsKiQjtfb6ptwb4tR7B5zT5s/q4IOqPVo/FoVCpMGDoEc7MzceawYR49F/VPryuxqdUqnHbFTMy9dDrWvb8R7zz1CY4d6D6Rh0aG4M/L78PQXP/r1kocGoud6/YrHQYR9YJarcJvX7gBd899ROlQTikoJBB504d3Juy8qcMQEBTQ7f7RCZGYtXg8Zi0eD7PJgh0bD+P7Nfvxww8H0WayuCWm2NAQzMnNwNycTMzMSkd4kH8Mc/ocfymlqlarcNqVszD3shlY9/4mvP3kxyg/eHIizxiZhgfevh0ZI9P6HagShBBQa3ym2iwRuWj07Dyc/9uF+OyfK5UOBZFx4Rg1Kw8jZ+Vi9Kw8DBufAY22b58r2gANps7LxdR5ubjDbMWObSVYu74I3289jFZj7wpPjUxNxJzcTMzJzcSoIYlQqXz3qiB/4Xe10O2JfCbmXjYdmz7fjj3f74fNJjF6Vh5mnj/J52eb90QT4N/xEw1Wtzx7DQ7tLMH+jQe8et603BSMnDECI2fmYtTMEUjJSfbIJbNarRpTpw/D1OnDcLfZiu27SrFm8wGs23kEzSbDz/YPDQzA1LyhmDMyE7PzMhEXEXqKo1K/eDmBi17Msh6U07E3fLEDU84Y5bSLi4h8U1uTDo9e+FfsWV/okeNHJUQia2w6hk/MRv704cifPhyRcREeOZerLFYbjpTXo6y2GTqjCcFBWqQlRCEnJQ5aXhr7U277ZhUamyZHnXOX0322vHXPdneuB87+4R6kjxiC0sJK5IzPUDoUIuql8OgwPPvNo1j1+lps/GwLGiqboGvSobVRh45WvdP3qlQC0UlRiE+NRWxKDOJTYhGXGov4tFgkZcQjdfgQRMSGe+kncZ1GrcLw9AQMT09QOpTBx9+60Ae6IZnx+P7TrUzgRH5KrVFj0U2nY9FNp5/0vNViha65HbrmdhjajbCYrVCrVQgIDkB4dCgiYsP9fgiQvOd4KVVvYgLvgVqjhrQNytEDogFNrVEjMi5C8S5vGkC8XPiLCdwVPlyznYiIfANb4L5ICEgpfXrxFSIiUpCHyqU641sLcfuomKRINFa3KB0GERH5MGFzvrkbE7gLMvNTcWRPmdJhEBGRL/PyYibsQndBREwY2pp0SodBREQ+jGPgRERE/kaCs9B9FiewERGRE95ugXMM3EXaQC1MRrPSYRARka/y8hg4E7iLho4Y4nTZVCIiGryOV2JztrkbE7iLUoclovxQtdJhEBGRL5Ky583NOAbuIrVGDavFqnQYRETkozgL3ZdxIhsREXWHCZyIiMj/cBa6D4tOiERTDUuqEhHRT0gANul8czMm8F7IHJmKI3tZUpWIiE6BpVR9V1R8BFrq2pQOg4iIfBAnsREREfkjllL1bZyITkREp8JJbD5OE6CBxWxROgwiIvIlPY1/sxKb8tKGD8Gxg1VKh0FERD7EXkpVOt3cjQm8l1KHJ+FYEWuiExHRT9h62NyMY+C9pNFqWFKViIh+xhOtbGeYwPtAevkfiYiIfJyHxrmdYQLvE05FJyKirjyz4pgzHAPvg8j4cDTXtSodBhER+RCuB+4HskYNRQlLqhIRUVdeXg+cCbwPohMj0VTNRU2IiMhBAsLmfHM3joH3kc3qgX8NIiLyX5yF7h+sVl5KRkREXbCUqn8IDAmEXmdQOgwiIvIRrMTmJ7LHpOPA1mKlwyAiIl/BSWz+ISUnCaWF5UqHQUREvkCCpVT9hUqlgtXMcXAiIgIEPNNN7gwTeD9YrTZYrTao1ezIICIa9FiJzX9kjExFccFRpcMgIiJfwDFw/zFyxgjsWrtX6TCIiEhpHAP3LyHhwWiuZU10IiLicqJ+Jzg8CE21LYhOiFQ6FKIBq7muBaX7y9FQ2YTWhjbYrDYEBgcgOCwIQaFBCAoLQkh4EILD7FuQ43ltgAZCcPVAGpiYwPtp4oKx2PDxjzj3V2cqHQrRgKFrbseOb3Zj68oCFHy3F9UltX06jlqjtid1R3IPCg3C06seQnh0mJsjJgJLqfqbEZOz8f6znzGBE/WDzWbDoR0l2LayAFtX7UTh5kNuWW/AarFC19wOXXN753MWXv5JHuH99cCZwPtJpVIhcWgc9m86gPzpI5QOh5yQUqKjzQBdqx5mowUAoNaooFKroFIJqDVqqDUqaAM0CAoJgErFOZ6e1FTTjG1f78K2VQXY/vUutNS3KR0SUd9JMIH7o7NvOh3/d9syPLvmUY63+YjWRh0O7jyKQwWlKN5XjrJDNaitaILRkbidUtmTelRsGJJSo5E6LBHZI1ORPykTmfkpUGvUnv8BBhgpJZprW3Bw+xHs/b4Q21fvwqEdJUqHReReXl6kkgncDdLz0xAYEoA3HnkP1/7pMrbcvMhms6GhsgmlhRU4srsMB3eW4GBBKWqONUKoVYBQAY5b+2PXvmDZrDY01raisboZ+7YUAzYJ2KwICtIgd0Im8qdkY+TUYcidko3QiBAP/5Q9s1pt0OsM6GgzwNBhhFFvgtVshdVi7y4WQth7G1Sqk3odVGoVhBCQUsJmtcFissBkMMGoN8HQboSxw3jitsMEo+PYZoMJJqMFFpMFVqv9PFaLDVaLFTarDTar/b5Jb0Jrgw51x+rR1tTew09B5N84C91P3fT01fjNxHvx1WvfIiwqBNpArWPTQBuoRUCgFpoAjX3TqqHRqKHWaqBSq6BWn/hQVWvUnbcn7js+cLu+rlZBpVGf9F6hUnXmJykBaTv+QWqvGGezWO23jg/X4x+4Vo0W5qBA6IM0aA+SaA+yoiPECn2ICeqQdsSHNiI9uAojgkqRo2lDuEoLV79q6m1mlFk12G9MxcGOFFToYtHWFgp1awCC29QI0gmE6ICgFjM0Le2wtbbBZjYDUp4iZvutxWyBQWdAa4MOjVVNMJutEGo1oFbbe0DUasBDX6IM7UYUrCvEzm/3AlYrhADScpKQMTINKdkJSEiLQ0RcOILDgn7yb3ni306lEpDS/uXDarEnTaPBDKPeBKPeDIPeZH9ssHTeN+jN0DuSakebAR2tenS0Hd/sSRs2CUib/R//+H2bhLSfzPG8zfHY/rrs+h4i6h8mcP+UOWooHvjvnXjlvrdh7DB1tkK6blqLo6USoIFFo4bGYoVare6SnE8kaXWXhO00kWtOvF+lEhAqewaXNgmbTXYm666tos6kbrHCYrHCppUwQw2jkDCqAYPGCr3ZCr3FDI3VDKPNBIs0wiaNkFIPSAscAz5OfiOOOKQZNqmGRRphtplgsJphsJqhtqgAs4QwC6iNEsJohlVvgk1vgjSbYbPZusRsOyl+i9na2RpUekKSzSbtibfDCJPeBEOHEUH6wBMt3c4vWSf+DYVKBSklpE3CarHCbLLAZLTA2GHqkrztCdyoN8HguLUncvs+Bkcr2ag3wWQwK/o7ICI4Crkwgfut2RdPw+yLpykdhk8JAzDSsXmCyWhGbWkdSgsrULynDId2HMWhXaVoqtd55HzaAA2GjRmK/MlZGDktB/nTchAVH+GRc7nKZrPBqDehvdUAve5EF7rFZIHNaoOUsHeXq+zd6PYvjQJqR6+NSiUcvQH2L0dmoxlGxxckQ7sRhnbDie5zx7FNBjPMJjOsZissZsspu8+tFntcbY32LnR+0aCBjbPQiXolIFCL1OFDkDp8CGaePxmAfcJUXUUTDhUcxaFdZSjeewylh2rQUN3Sqy/IYZHBSBgSjbRhCRg2KhW5EzIxfFw6AoK0Hvpp+kalUiE4NAjBoUFKh9Itm82GmtI6HN5Rgt3r92P76t04VlShdFhE7sUETtQ/QggkpMYgITUGMxdP6HzearGipUHXeRmZEDgxJNFlGEMboEFoeLDPJWp/plKpkJyZiOTMxM5eqprSOmxdWYBtq3Zi55q96GjTKxwlUT8xgRN5hlqjRkxiJGISWfbWFySmx2PxrQuw+NYFsJgt2L/poCOhF+DwTl5iRn6GY+BENBhptBqMmZOPMXPy8cunrrIXeVm1C1tX7UTBt3vRVNPS52NrAzQIDg/urJOu1vAyT/IExxUdXsQETkQ+JzoxCguunYsF186FlBK1ZfWOxUwa0dqg61zMJOj44iWhgQgJD+58HNzleY2WH3PkJexCJyI6QQiBxPR4JKbHKx0KUffYhU5EROSn2AInIiLyQ0zgRERE/oaFXIiIiPyPhH3NAS9iAiciInIHtsCJiIj8EBM4ERGRv5G8jIyIiMjvSECyEhsREZEfYguciIjID3EMnIiIyM9IycvIiIiI/BJb4ERERP5HsgVORETkb1hKlYiIyP9wOVEiIqL+s1gs0Gi8nOK8fB24yqtnIyIi8oJZs2Zh8uTJWLFiBWxeGJuWAKRNOt3cjQmciIgGnBkzZmDHjh244oorkJGRgZdffhkGg8FzJ5TS3gJ3trlACLFQCHFACHFYCPFHZ/sygRMR0YBzzz33ICAgADqdDseOHcM999yDxMREPPzww6irq/PIOfvbAhdCqAH8E8DZAPIBXCmEyO9uf5cHCNatW4cDBw64ujsREZGiNBoNhBCQUqK9vR0AsGTJEixZsgSXXnop3nrrrUwpZYnbTtj/MfApAA5LKY8AgBDiXQDnA9h/qp2FdGHauxBCA8AEQPQ3OiIiIh9RJKXMc8eBhBArAcT1sFsQgK79+EullEu7HOMSAAullDc5Hl8DYKqU8rZTHcylFriU0iKE2CGlnOTK/gOdEGIbfxd2/F2cwN/FCfxdnMDfxQne/F0IIQSAwwCyujxtAmADsBLAn6WU2911PinlQjcc5lSN5G5b2byMjIiIBqLTACQ47nc4bl8B8JyU8pgyIfWoHEBal8epACq725kJnIiIBqJHAYQAqAPwNIBXpJRtyobUo60AcoQQmQAqAFwB4KrudnZpFroQYiGAVFemtQ9kQojXhBC1AJKVjkVpQog0IcR3AFKEEPuEEHcoHZNShBBBQogtABIdv4s/KR2TD3hFCLFTCPGF0oEoSQhxFECSEKJACLFN6XiUJISIst+IIiFEoRBiuodP+TGAKwEMkVI+7wfJG1JKC4DbAKwCUAjgfSnlvu7273ESm2Na+0EAC2Bv3m8FcKWU8pSz4gYyIcQcADoAb0opRykdj5KEEMkAkqWUO4QQ4QC2A7hgkP6/EABCpZQ6IYQWwAYAd0gpNyscmmKEEHcDmAQgQkq5WOl4lOJI4JOklPVKx6I0IcQbAL6XUr4qhAgAECKlbFY4LL/mSgu8c1q7lNIE4Pi09kFHSrkeQKPScfgCKWWVlHKH434b7N8WU5SNShnSTud4qHVs3i2K7EOEEKkAzgHwqtKxkG8QQkQAmANgGQBIKU1M3v3nSgJPAdB1wL8cg/SDmk5NCJEBYDyAHxUORTFCCLUQogBALYDVUspB+7sA8AKAe2Gf7TvYSQBfCyG2CyFuUToYBWXBPhb9H8fQyqtCiFClg/J3riTwXk1rp8FFCBEG4CMAd0opW5WORylSSquUchzss0anCCEG5RCLEGIxgFp3Xp7j52ZKKSfAXlnrt45huMFIA2ACgH9LKccDaAcwaOdTuYsrCbxX09pp8HCM934E4B0p5cdKx+MLHN2CawG445pQfzQTwHmOsd93AZwmhHhb2ZCUI6WsdNzWAvgE9iHJwagcQHmXnqkPYU/o1A+uJPDOae2OiQdXAFju2bDI1zkmbi0DUCilfF7peJQkhIh3zLCFECIYwBkAihQNSiFSyvullKlSygzYPyu+lVJerXBYihBChDomeMLRXXwmgL3KRqUMKWU1gGNCiBGOp05HN+VByXU9XgfuqMJ2fFq7GsBrzqa1D2RCiP8BmAcgTghRDuBRKeUyZaNSzEwA1wDY4xj7BYAHpJRfKheSYpIBvOG4YkMF+6Ufg/ryKQIAJAL4xP5dFxoA/5VSrlQ2JEXdDuAdR0PwCIAbFI7H77lUC52IiIh8C5cTJSIi8kNM4ERERH6ICZyIiMgPMYET+RAhxGNCiN/3sM/1QoghXR6/KoTI93x0RORLuBoZkf+5HvbLkY5fY3yTotEQkSLYAifqgRAiw7GC0htCiN1CiA+FECFCiKeFEPsdzy1x7BsvhPhICLHVsc10PH9Sy1oIsddRghZCiAeFEAeEEN8AGNFln3FCiM2O438ihIgWQlwC+yIh7zhWuAoWQqwVQkxyvEcnhHjGUbrzGyHEFMfrR4QQ5zn2UQshnnXEt1sIcau3fpdE5D5M4ESuGQFgqZRyDIBW2Jf8uxDASMdzf3bs93cAf5NSTgZwMXpY0EMIMRH2gifjAVwEYHKXl98EcJ/j+HtgrzvwIYBtAH4hpRwnpdT/5JChANZKKScCaHPEtcAR6+OOfX4JoMUR42QANzvWHyYiP8IudCLXHJNS/uC4/zaAuwEYALwqhFgB4HjhljMA5DuKdwBAxPFqXN2YDeATKWUHAAghljtuIwFESSnXOfZ7A8AHLsRpAnC8WMgeAEYppVkIsQdAhuP5MwGMcbTmASASQA6AEheOT0Q+ggmcyDU/rXhkhr2u9emwt6BvA3Aa7L1a03/aMhZCWHByj1eQk2P3h1meqM5kA2AEACmlTQhx/O9dALhdSrnKjeclIi9jFzqRa4YKIaY77l8JoABApKN07J0Axjle+xr2ZA7APo7tuHsUjsUbhBATABzvsl4P4ELHWHY4gHMBQErZAqBJCDHbsd81AI63xtsAOGvV92QVgF87FqOBEGI4l3Yk8j9sgRO5phDAdUKIlwEcAvAYgC+EEEGwt2jvcuz3OwD/FELshv3vaz2AX8G+atu1jrrxWwEcBAAp5Q4hxHuwfyEoBfB9l3NeB+AlIUQITq4d/brjeT2A6ei9V2HvTt/hWJSmDsAFfTgOESmItdCJeuCYLf6FlHJQrvFNRL6JXehERER+iC1wIiIiP8QWOBERkR9iAiciIvJDTOBERER+iAmciIjIDzGBExER+aH/B2m7jj0xAFA8AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 504x324 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAE8CAYAAAA/huMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABDUklEQVR4nO3deXhU5fk38O8zS/Z9JSSBJBAgISAQ9k1AUVC0oHVr6261Vm2tvlXrbl1q61bb+quiaN33XQRFEUFkh7CGLQkBQkLWSTKZfeZ5/5hJCJBMJsnMnJnk+7mucyWZOXPOnShzz7Pdj5BSgoiIiIKLSukAiIiIqPuYwImIiIIQEzgREVEQYgInIiIKQkzgREREQYgJnIiIKAgxgRMREQUhJnAiHxJCHBJCnC2EuEYIYRdC6Nsd/3Gd8z8hhBRCTGz3uqFCCHnKteYKIX4QQjQLIeqEEEVCiLuFEGH+/r2ISHlM4ET+s05KGdXuuLXdc/UAHuvshUKISwB8BOAdAIOllIkALgOQASDTl0ETUWBiAicKDK8DGC2EOPPUJ4QQAsCzAP4qpXxZSlkPAFLKfVLK26SUB/wcKxEFACZwosBgAPAEgMc7eG44nC3tj/0aEREFNCZwIv+ZLITQtTsmn/L8SwAGCSHmn/J4kutrVesDQoj3XNcwCCGu9GXQRBSYmMCJ/Ge9lDKu3bG+/ZNSSjOAR12HaPdUnetrWrtzL5dSxgHYCkDt27CJKBAxgRMFltcAxAJY1O6xvQAqAFykSEREFJA0SgdARCdIKW1CiIcB/KvdY1IIcSeAl4UQTXDORtcBGAogVYk4iUh5bIETBZ53AVS2f0BK+T6ASwH8BsARALUAPgCwGMCH/g6QiJQnpJRdn0VEREQBhS1wIiKiIMQETkREFISYwImIiIIQEzgREVEQ6s4yMs52IyKivkR0fYpnzp0dKevq7W7P2bLD/I2Ucp637sl14ERERL1UW2/Hhm8y3J6jTStJcntCNzGBExER9ZqEXTr8ekcmcCIiol6SABx+HmlmAiciIvICB/zbAucsdCIioiDEFjgREVEvSUjY/VyanAmciIjICzgGTkREFGQkADsTOBERUfBhC5yIiCjISIBj4ERERMHIv4vImMCJiIh6TUJyDJyIiCjoSMDu5y2/mMCJiIh6yVlK1b+YwImIiHpNwO693Uk9wgRORETUSxKAg13oREREwYctcCIioiDjrMTGBE5ERBR0HJIJnIiIKKiwBU5ERBSEJATsUPn1nkzgRNQrUkps+W4nVry5GsfLa5A6KAln/2YGxp9zBoTwb4uESEnsQieioGFsMeHZ376EHz9a3/bYnnX78cP7P6Nw7mjc/MxVGDQiXcEIifxDiS50/7b3iajPMOpNuG/Bkycl7/a2rNiBm8bdjcV3v4WWJoOfoyPyNwG7VLk9vI0JnIi6zag34b4L/45da/e5Pc9us+Oj55bi+oI7seLN1XA4/F1sksg/nKVUVW4Pb2MCJ6JuMbaYcP8v/o5dP+31+DX1VTo8df1/ccesh7F/a6kPoyNSjt1VTrWzw9uYwInIY8YWEx74xT+wc43nybu9PesP4LYp9+O5m19GY22Tl6MjUo6U7EInogBlbDHhwYVPYcfq4l5dR0qJZUtW4tr8O/Dpf5bDZrV5KUIiZTkg3B5dEUKECSE2CiG2CyF2CyEecXc+EzgRdclkMOPBRU9h+497vHZNva4F/73jddw8/h5s/X6n165LpATnLHSV28MDZgBzpJRnABgDYJ4QYnJnJzOBE5FbzuT9DLav8l7ybq+8uAL3zH8C377xo0+uT+Qfve9Cl056149a19HpHmdM4ETUKbPRgocuegZFq3b7/F71VTqf34PIVzychZ4khNjc7rjx1OsIIdRCiCIA1QBWSCk3dHZPFnIhog6ZjRY8eNEz2PaD75M3UV9g77oSW62Ucry7E6SUdgBjhBBxAD4VQhRIKXd1dC5b4ER0GpPBjIcufgbbVnb4vkFEp2ithd7LMfAT15NSB2AVgHmdncMETtQPtDQZYDFbPTq34Xgj/nL+k9j6PZM3UXc4pMrt0RUhRLKr5Q0hRDiAswF0umaTXehEfZjd7sDiu9/GZ//3LdQaFYaOyUL+5FwUTB2O/Mm5SBgQ13au2WjBd2//hP89/CEaa7hGm6g7Wmeh91IagNeFEGo4G9gfSCm/6uxkJnCiPux/D3+IT1/4BgBgs9qxd1MJ9m4qwSfPLwMApGWnIH3oAJiMZpQUlcOoNykZLlHQkhCejIG7v4aUOwCM9fR8JnCiPmr/1jJ88EynH94BAJVl1agsq/ZTRER9my/qnbvDBE7URy154H1I2ekSUiLyIinhk3Kp7jCBE/VB+7eWcQY5kV95Vi7Vm5jAifqgLxd/p3QIRP2KBFvgRNRLRr0Jqz5cr3QYRP2OF2ahdwsTOFEfs+6rrTAbzEqHQdSvSAg4ejkLvbuYwIn6mNWfdFo6mYh8iC1wIuoxk8GMLd9xa04if5OAR9XWvIkJnKgP2bZyF8xGi9JhEPVDAnbOQieintr4zXalQyDql9gCJ6Iek1Jiw7IipcMg6rfYAieiHinbdQS1FfVKh0HUL0kp/N4C53aiRH3EhuVFSodARH7EFjhRH7GR3edEimIlNiLqtqZ6PYo3HFA6DKJ+SwKshU5E3bdlxQ44HNx5jEg5gi1wIuo+jn8TKcu5jIwtcCLqBrvdgc0rdigdBlG/x1KqRNQt+zaVoKlOr3QYRP0aNzMhom7bsGyb0iEQEQAHW+BE1B1cPkakPCkBO1vgROSp2op6lGwvB1T+feMgotOxC52IPLaRs8+JAoJzDJxd6ETkIW5eQhQ4uJkJEXnEYrZi28pdPXptbFI08qcMw8jJuRiYOwAWowV71h3AyvfWQq8zeDlSor6P68CJyGM71+yFqcXs0bnRCVGYekEhCqYOw8gpw5A+dACEOPnNZs7l03DNI5fg5b+8i2Wv/uCLkIn6MHahE5GHNnzt2fKxCeeegb/87/eIiovs8tyouEj86b83YFhhDv5166uQkuVZiTzFWuhE1CUpJdYv3drlefmTcvHQ+7cjJFTbreuff8MchIRp8fQNLzGJE3mAy8iIyCOH9hxF1aEat+eERYbintd/3+3k3Wrub2ZASolnfruYSZzIA+xCJ6Iurf1sU5fnXHHXhRgwOLlX9znnypmQDolnb3oZzOFEnWMpVSLyyOqPN7h9Pi4lBotuneeVe5179ZmQUuK5m3zXEs8cPhATzh3jk2sT+QvHwInIrbLdR3Bo91G35yy6dR7CIkK9ds9518xqS+LeFBETjt/cfzEW3nIuNFq+HVHw4jIyIurS92//5Pb5kDAtzr9+jtfvO//a2YCUeO53L/f6WkIIzLt2Fq7562WIT4ntfXBEAYBj4ETUKZvVhu/ecZ/AZy6aiJiEKJ/cf/51cyClxD9vfqXH1xgxcShu+ec1GD5+iBcjI1KY5Bg4Ebmxfuk21Ffq3J5z7lUzfRrDedefBYdD4l+3LOnW6+JTY3H941fg7N/MgErl35YKka9JcAyciNz48aP1bp9PTk/AqJl5Po9jwW/PBqTEv259tctz1Ro1fnHLubjy/osRGRvh89iIlMIWOBF1qOJAFdZ9uaXzExwSsy+Z7LfW7YIb5wIA/n3ba53OTh87pwC/f/ZqDM7P8EtMRErhJDYi6pCUEv+8dQksJqvb8868ZIqfInJacONcpOWk4t+3vYpjJcfbHh+QnYIbn/w1pi2ccFrNdaK+igmciE6z5tON2L5qj9tzMnLTMHRsln8Caqfw7NFYsutZ7P55H44fqkHq4CSMnDocao3a77EQKYWFXIjoNPVVOrxw++vuT3JInHnJZMVau2q1CqNn5AEzfD/+ThSoOImNiNoYmo14+JfPoOF4Y5fnzrpksh8iIqIOSXahE5GLXteC+y/8O/ZuPAgI9xPTckYN4kQxIgVxEhuRn5iNFjTWNkFX04zG2iY01ja7jiYYm03QhmoRnxqLrJEZGDllGCKiw/0an66mCfee/zccLDrk0fln/nKSbwMioi4xgRP1kMVsRUNVI+qP69BwvBH1Va6vxxvRcFwHXXUTdDXOw6g3AYBHm3No1CqMO2sU5l83G5PPH+vzyVl1x+px97wncHhvhcevmXWpf2efE9HJOImN+rWWJgPqK3XQ1TShuV4Pg94Es8ECs8EMk8EMs9ECk8ECk8EMY7MRLU1G6Bta0FSvR2NtE/Q6w0nX89aELpvVjo3Li7BxeRESB8Zj/nWzMf/aWUjOSPTK9durLKvGPfMfR2VptcevGT4+B2k5qV6PhYi6RzKBU1+m17Wg4mAVjhyoRMWBKhw9UIWK/ZWoLKtGS6PB/YtVyq8nrjvWgLce+wTv/O0zTJo/BgtuPAuFc0d7pXjK4b0VuGf+E6itqO/W6/y99puIOsZZ6BS0HA4Hmur0qK/Soa5Sh9qKelQfqcPxwzU4VnIcFSXH0VjT1MELfbPHtC857A6s+3Iz1n25GamDkzDr0qmYcdFEDB2b3aNkvmNNMR697Dk01jZ363VCCM4+JwoAkrPQKZBIKWFoPtFN3VSnR1Nds3McuboJDTWNbWPMrV3fdpsdwOnd156MNQer4+W1eP+pL/D+U18gNika+VOGI3dcNgaNSEf60AEYODQV4ZFhHb62qV6P9578DJ/862s4evBBpmD6cCSlJ/T2VyAiL2AXOvlFQ3UjDu85iooDlagqr0Ht0TroaprRXK9Hs64FzfUtaGkywGF3OF/Q0TKmAOjSDjSNtc1tLfNW0iGRODAe6UMHID03DamDkmC32VG68zA2f7MdZqMFood/y9mXsvVNFBg4iY28zOFw4NjBKpQUHcLBokM4uK0MJdsPdVwY5JQk3dOkQqerO9aAumMN2LG62GvXVKlVmL6Iy8eIAgVb4NQjFrMV1eU1qCytxpH9x3B4z1GU7T6Csh3lbUumqG8ZNycfcckxSodBRGAhl6Bnt9lR9GMxVGoVIqLDEB4VhsiYcEREhyMsMrTby5qklDAZzDA0GtBUp0dDdSPqjjWgtqIeNUfrUHO0HnXH6lFztB666kZAOnz0m1Eg4uxzogAinRPZ/IkJ3EuklHjimv/ip883tz5w0vMqSIRGhCIkXAuNRgOVWkAIAbvdAYfdAYfDAbvFDofdAbvNDrvNAavZtXVkB4lZBuHMbfKekFA1pi+aqHQYRNQOl5EFqR8/2XgieXfA4ZAw6k3uK4AxKZOHJp03DpExEUqHQUQuEhwDD0pSSrz7jy+VDoP6kdmXTVU6BCI6CWehB6U9G0twaM9RpcOgfiIiOhQT549ROgwiOgXHwIPQyvfXKR0C9SPTF05ESFiI0mEQ0Sn83YXe+wLO/ZzD4cC6r7cpHQb1I9x5jIgAtsB7rWT7YdRV6pQOg/qJuOQojJ1ToHQYpCApJcwGi7Nioq4FhiYjDHoTLEYrrFabq3qigEqtglqtgkoloNaqoVKroVYLaEI0CAnVIiwiBGGRYYiKDUdkbATUarbnekNKTmILOltX7VE6BOpHpi+c6PP9yPuaIweq8PUba6CrbUbG0FQMHZWJnIJMJKXFeW3L2d6yWe2oP96I2mMNqD3W4NzLvroRDdVNaKxtRnNDS9vR0miA1WJzvrCzaondLH0shEB0bDhiE6MRmxSN2MQoxCRGIS4xGnHJ0UhIjUViWjyS0+ORMCCOyb4TnMQWZLZ7sTQmUVdGTByqdAhBZcV76/D8HW/CZju9lkJsUjSGjMxA9sgMDB6RhvTsFKRkJiI+OQYabe8+JNntDhhbzDA0m9DSbERLoxFNrk2BGmqaUH+8EXWVjag5Vo/ainroqpucS0sd8kTdBz8uK5VSoqm+BU31LThyoKrdE6f83RwSKrUKKZmJGJiVhAFZyUjLTsbA7BSkuY7wqI437ukPOIktiNhtduzZeFDpMKgf0Te0KB1C0Pj56yI8+8c3IB0OoIOWdmNtM7b+WIytP57yIVyoEO6qpKgNC4E2VOs8wjTOryEaCK0GEM6CShazDTaTFYYWM4x6EwzNRphazM5rOWRr36rrZwcg5Yk6EK0JO4h267Pb7Kgsq0ZliSvRt//dAMSnxiJz+EBk5aUjqyATQ0YPRs6ozF5PvKw91oDiTSUo3liCfVvLcPRAFSwWK+KSYjBsbBam/2I8psw/AxqtcmmNXehB5NCeozDqzUqHQf3IT59txEV/PE/pMAJeTUU9nr7tfz3extbYYobJaAVUKmfyF8LZBe36XqpVJz4USAnR2lqWCtTTDDD1VTrUV+mw/ccTw4tqjRqD89MxvDAHueOyMWxcDrILMqEN6TgFWUwWHNx+GMUbDzqPTaWobTfXqG3oQyVg1Neg8lANfvxsC9KyknDtAxdhxi8K/T48IiGYwIPJno0lSodA/cyutftQXlyBwXnpSocS0P7v3g9gaOYmPoHCbrOjdMdhlO44jGWvrQIAaEM0yBwxEAOzUxEVFwEpgZZGAyrLa3F4bwVsVvvJPSeqrsfdKw/V4onfvoz8xStx46OXYERhto9+o475+6MbE3gvHNhadtLPYZGhmHf1TCSkxCIiOhwRMWEIj3JuZhIZHYbQyFCEhodAoz1RC1065In653YHHLbW7+2wmKwwtZjR0mhAU30zGo43or6yATVH61F7tB41FfVoqNL1uJVBQUiosPzVlbjpqSuVjiRgbV+7H+uW71A6DOqC1WJD6Y7DKNt55OQnPEjUXdmzqQS3z/87Zl00AdfetxCpmYm9vmaXOAs9uOzfdqjteyEE/vrh7ThjRp5fY7BZbaiv1KH6SB2OH6rGsdLjqNh/DOXFFThcfBQWk9Wv8ZDvfff2Glz72OUICdUqHUrAkVLi9SdZ1picVn2yCWuXbsOim87GZX88F5HR4b69ISexBQeLyYLy4oq2n8+7bpbfkzcAaLQapAxKQsqgJBRMG37Sc3abHUf3V+LgtjIcLCpDyfZylBQdQlNds9/jJO9prG3Gui82czvRDuz4+QCHtugkVrMNH/z7W3z77jpcefcCzPvVVJ8txWQLPEiUFx9zFkxQqaBSq3D5nQuUDuk0zokjGRicn4Gzfj0DgLOFUnO0DqXby3F4bwUqDlSi6lAN6o7Vo6G6GfoGPRzcFc0nwiJDkZ6bhuSMRDjsDpTtLEfN0foeXWvZaz8wgXfg7We/VjoEClC62mb8++738Pkrq3Dd/QsxaW6B1ye6cRlZkCjdedj5jcOBSfPPQIo/xli8QAiBlMwkpGQmYfKCwtOel1LC0GREU70eel0L9A0taK7Xo8n1tbG2GY21TdBVN7nWs+rQWNPMcfh2EgfGI3dsNgaNSEd67gAMHDIA6bkDkJgWf9IbhpQSu9fuw/8e+gA71nSvnsDW73aisvQ40nJSvR1+0Nq1/iB2/HxA6TAowB0+UIVHrnkJo6YMxT8+vt1r1/XGdqJCiEwAbwAYAMABYLGU8vnOzmcC76HS3ScmXpx1Wd9pCQkhEBkbgchYz/eattvs0NU0OatHHW90FqlwVZSqPlyL44drUVlWDau5b47Hq1QCZ8weiekLJ2L83NEeJ1UhBAqmj8BT3z2Az/6zHC/d9ZarDKZnvl6yEtc/fkVPw+5z3n5umdIhUBDZuc7LNTwkgN53odsA3Cml3CqEiAawRQixQkrZYclPJvAeOrz3GAAgNFyLCeeeoXA0ylJr1EhMi0diWnyn5zgcDtQercfRg1U4ur8SFQercORAJSoOVOF4WXVQdtsnZyZi/nVzMO+aWUhKT+jxdYQQWHTbfAzITsFjVzzv8QedFW+txjWPXMrSqgCKN5di2+q9SodB/VxvOyKllJUAKl3fNwshigGkA2AC96bWCWxjZ49EWESowtEEPpVK1TbZbtwpm3FYLTZUl9ei+kgt6ioboKtphl7XAmOzCSaDCSaDBaYWM8wmC8wGC0wGM4zNRrQ0GdHc0NKtVmtvCSEw4dwzcP5vz8LE+WO8WhN6yoJCPPbFXXjooqdPVPJyo75Sh03LizocCulv3vnncqVDIPJkFnqSEGJzu58XSykXd3SiECILwFgAGzq7GBN4D+h1LW07kI0/e5SywfQB2hAN0nOd48Td1Tpmr6tpauu+bziua+vOP/FYI3Q1TbDb7D2KMWFAHM65aibOu34OBmQl9+ganhg7uwB/X34f7l3wJFoaDV2ev+zVH/p9At+/vRybV3JTIVKaR5XYaqWU47u8khBRAD4GcLuUsqmz85jAe6Dc1X0OAGNnjVQwEmo/Zp8+1P0HACklmuv10NU4d3jS1TajsaYJutomNNU2tz1mbDZCE6JB4oA4ZBVkYvT0EcifMsxvOzDlTcrF0ysewD3n/w2NNZ3+2wUAbFi2DfVVOiQMiPNLbIHo3efY+qYA4YWRQCGEFs7k/baU8hN35zKB90Br93lCaizSh3IWcLAQQiAmMRoxidFKh9KlIWOy8Mx3D+Ke855AbUXnS80cdgdWvLkal/35Qj9GFzhKdh3F+m93Kh0GkVcqsQnnMpUlAIqllM92dT43de2B8r3OBF4wdVjA7CdMfc+gvHQ8/d2DSBzY+eRAAFj+2g/9dhnfu8+z9U0BRHZxdG0agCsBzBFCFLmOTncvYgLvgdYZ6HkThigcCfV1A4ek4rHP70ZIWOdlU4/ur8Tutfv8GFVgKCs+hrVfb1c6DKJ2RBeHe1LKn6SUQko5Wko5xnV0Wp2ICbwHyosrACmRN5EJnHxvyBmDce1fL+v0eaES+PrVlX6MKDC89SzXfVOA6X0LvFuYwLupdQa6Ri0wZEyW0uFQP7HwlnOQXZDZ6fNrPtqAlqauZ633FfuKyvEzdxyjXsjKG+j9izKBB7bWGehZ+RncDYr8Rq1R487FN0LVyUx4k8GMH9//2c9RKUNKidf+xh3HqGeS0uLwp2d/jf98e493L9xaic3d4WVM4N3UOgN9KFvf5GfDCnMw+fxxnT6/7NUf/BiNcjas2I3trHlO3RQeGYpr7rkAr/z0EM65fIpPloVK6f7wNibwbjq8z9kCH3LGYIUjof7ozEsmd/rc3k0lKNt12I/R+J/d7sDLj32mdBgURFQqgXm/noYl6x/G5X+ch7CIEN/djF3oga11Apu78UgiX5m+cALiU2M7fX55H5/MtvKTzTh2qFbpMChIjDszDy+svB+3P/trJKR0/u/Ga/zchc5CLt1UXlwBOBxM4KQIbYgG51x5Jt5/+osOn1/x1k+47vFfITTch60MhZTuqcB/7v1Q6TDIi5LSE5CWnYKo2AhACDQ36HH8cB1qjzX06rqDhqXhhkcuxoSzvL/ntzuC+4EHrtYZ6MkZiYiKi1Q6HOqn5l41s9ME3lyvx6r3f8a518zyb1A+ZjFZ8dTtb8HSR7ek7Q+S0hMwbFw2hhXmOL+Oy+60KqKuugl7N5dgz8YS7N1Ugn1bSmEydv3fPjYpGr+5+wKcd9UM/+/S56NucneYwLuhvNg5/p0ziq1vUs6gEekYVpiD/VtKO3z+o38uxdyrZkKl6jsjZIsf/QyH9lb69Z4qtQoh4SHQhmqhCdFAG6aFNtR5qLRqQCXgsEvYLDZYjM5d8gzNJtgsNr/GGWi0oVpk5A7A4Lx0ZBdkYsjowcgdm+126OdUcSkxmHzeWEw+bywA59yHQ3uOonhjCfZuLsW+LWWoKDkOh5SIiA7HsHFZmHHheJx16WSERSq1O6RvusndYQLvhtYSqtkFgxSOhPq7My+Z0mkCP7TrCH76dCNmXtz5hLdg8s1767H0zbVev642RINBw9MwpCATg4enYWBOClLSExCfGoOo2IgeLROVUsJqscHQbIJBb2r72qwzQN9oQGNtMxpqmlF/vBF1VTrUVjSgrrLB4z3gA0VUbAQGDE5EWnYK0rKSkZadgoHZyUjLSUVSeoLXZ3ir1SoMGTUIQ0YNwoLrZwMAHA4HbFZ7YC3nZQs8cJ1I4BkKR0L93YyLJuHle97u9PmX73kHE+ePDfq96ndtOIj/3PtBr6+jUgkMH5eN4eOykFOQgaEFg5A5bAC0Id59CxRCICRUi5BQLeKSPNs0R0qJxtpm1BzToa6ywXW4tsOtbkJTvR6Ndc3QN7SgWWeAw+7wasytVCqB6PhIxCZGIzYpyvk1MRJxyTFISI1FYlockgcmICUzEdHxyg8hqlQqhIQGWC8TE3jgOrz3GCAlctgCJ4UNyErG0DFZOFh0qMPnq8qqsfiuN/GH/9zQ6TXsNjt2rd2Hrd/tROnOctRX6SAlEJcSi+yCTJxxZj5Gz8xT7EPAsUM1ePT6V2Cz2oFeTESae/kUXHn3hUjJSPBidN4jhEBccgzikmOQe4b79xYpJYx6E5obWqDXGdCsa0FLkxHGFjPMRgtsFpszwQsBlUoFlVoFtcZ5qNRqqDUqaDRqaMO0CA0PQWR0GCJjIxATH4nI2Ai/bZnbZzGBB67y4gpotWqk57rfd5rIH6b+YkKnCRwAvvzvt0gcmIBf/WVR20xcY4sJW1bswM9fbMaGr7ehuV5/+guFCpu/3YEPn10KbXgICqYOw/i5ozF+7mhkjczwy6xefaMBD1/1IpoaWoAejuWHRoTgrheuxbTzx3o5OuUIIRARHY6I6HCksh0RWForsfkRE7iHWmegDxmV4f/ZjUQdmLKgEG884n5Z1f8eeA/rv9yC0Wfm43BxBbZ+vxMWk3O8Vai6frOxmq3Y9sNubPthN16+910kpsWj8OxRKDx7FMbNKUCsh93E3WGz2vH4b5fgyMHjPW55h4Vr8fj7t2HkpKFejo6oc1xGFqBaa6Bnj+QMdAoMOaMHIWVQEqoPuy9ssneTcymON9RX6bDirTVY8dYaCLUaw8fnYNL8MZh6/jgMzk/vdetcSokX7n0fRT/1fHtUlZC47+XrmbzJ//ycwDng4aHWGug5o9hvRYFBCOG2NrqvSSmxd1MJXv/rx7hp0n24Ydxf8PqjH7dN9uyJT15aiWVv9W7G+VX3XIgJc0f36hpEwYAJ3EOtb0pcA06BZPKCQqVDaHP0YBXe+ceXuHHSA7h5+kP48PllqDla7/HrV3++Ba88/EmvYhg3cwQu/cO5vboGUU8J6f7wNnahe6h1BnoWu9ApgIyemYeI6HC0NAbWXuClO4+gdOcRvPrwxyiYOgxzLp2E6b8Yj+gOKhhKKbHszZ/wn3veh5Syx+Pe8cnR+PO/r+5TBWwoyHASW2AqL65AQnI04v1REJ/IQyGhWow/ZzR+/HC90qF0SEqJnWv3Yefaffi/u9/F+LMLMPviSRg9fTg0IRrs23oIn774HTb/sAcQPU+8Qgj8+d9XIz4lxovRE3UDS6kGJr2uBXXHGjBudr7SoRCdZvKCwoBN4O1ZLTas+7oI674uOpGsW2fC93Ly2yW/PwvjzszrXYBEvcUEHng4A50C2cT5Y6FSq3xWoSvQ5Y3PxpV3LVA6DCK/LyPjYJEH2magj+YMdAo8MQlRKJg2XOkwFBEVE4a7/3M1NFq2RSgAyC4OL2MC98DhthrobIFTYJpywXilQ/A/hwN//McVSB2UpHQkRE5M4IGnvLgCapVA5vCBSodC1KHJC5RbD66UC6+ZjukX9L/fmwJTV0vIfNG9zgTugfLiCmQMTQ2sbeuI2snITUPmiH7yAVNKDM1Pww0PXax0JESKYgLvQmsN9GxWYKMAN7WfdKNHRIfh3hev8/pWoES9JoX7w8uYwLvQOgOdJVQp0AVSVTZfuv0flyMtO0XpMIhOxzHwwNI2gY1LyCjA5U3O9cnuYIEkKiYcU+efoXQYRB3iGHiAKdt1FACXkFHgU6tVmKTg5ib+oG8y4oMXvlM6DKKOBXML/OC2Mnz8z6/w0XNfYd9m72xfqLTSnYcRnRCJxIHxSodC1KUpF/T9bvS3nl2Gbav3Kh0G0ckUmIXulVkgu9buxZuPfICt3+866fEJ547BnUtuRmJacCY/KSVKdx1Bjhf2OSbyh8K5oxESpoXFZFU6FJ9xOCT+/se38O+ldyKZH6wpkARTJbbdP+/D3ec+ij/NeABbv9t52vObvinCbZPvRcXBqt7cRjHHD9eipdHALUQpaIRHhmHCuWOUDsPnGuv0eOL3/4PVYlM6FKITgqELfc+6fbhn3mO4ffr92Lpih9tza47W4Z55j6GusqFHASrpwNZDAMAlZBRUZl02RekQfE8I7N12GEue+ELpSIjaBPQkttbE/cdp92PLt9s9fl1VWTXuPe8J6HUt3Q5QSfu3lQFgCVUKLpMXFCI8KkzpMPzi89fWYM3SIqXDIFKExwn8jYc/6Hbibq90RzkeXPQPWEyWHr1eCfs2l0IIgSwuIaMgEhYRitmXT1U6DL/5593v41hZjdJhEAVuF3rNkdpe32zn6mI88avnYbfZe30tX7Pb7Ni7uQTpQ1MRFhGqdDhE3XLBTXOVDsGt+NQYpGQkeGVyqKHZhMd//3qfnrhHQaA/1EJf+/kmPH/LEkjp5+l63VS2+yjMBgsG95f60tSnDB2bjTNmjVQ6jJMMzEnBr/98AV5e/yje3fM03tj+JN7a8Xdccts5UKl791ZUuqcCLz7yqZciJeohP7fAFSkmvGzJSsSnxOLaRy9T4vYe2bGmGACQnZ+ucCREPfOb+y/G9lW7FY0hPiUGMxdNwJxLJ2PYuOzTWtyJA2Jx/YMXY9I5o/HwVS9C32js8b2WvbMOBROHYM6ivr8WngKUn9uliu0G8M7fPkV0QhR++afzlQrBraIfnQk8Z/RghSMh6pkxswsweUEh1i/d5tf7hkeFYtoFhZj9y8kYOysPao26y9cUTM7F4+/fhrsveh6mXsyT+ddfPsCQkQMxeFhaj69B1BMCvukmd0fRUqov/flNvPf3zwOuO91itmLHGmelJyZwCmZ/eOEGxCT6vj56aEQIZiyagPvfvAXvH3wef37xBow/u8Cj5N1q+Ngs3PPitb0aFzcbLXj0xlfR3BBcK16ojwjUSWy+suS+d/H8LUsCqiDDrp/3w6g3ITwqDKmDk5QOh6jHkjMS8ehnf0ZUXKTXr52UnoDzrp2FRz64HR+Wv4D737gFMxZOQGh4SI+vOfnc0bjhwUW9iquirBYPXvsyWpp63h1P1G3BWkq1t5Yu/g77t5TirldvDoglW2s/3wwAyMobCJVK8c84RL2SP2UYXt7xFJYu/h5rP9+Esp2He3SdkDAtRs/Iw/i5o1B49mgMGjHQJyWGL7ppDipKq7HsrbU9vsbebeW445f/wl/+fRWyhrM7nfykv4yBn+rAllL8rvAenPfbs3DZ/7sAqYOTFYnDZrVhzaebAIcDOSMzFImByNuSBibg6ocvwdUPX4LK0uNY+/lmrPtqM3av3QeHo/N3nayRGSg8axQK547GqGnDe9W69pQQAr9//FJUHqpF0dr9Pb7O4QPHceuCZzD7wnGYNm80ElJjYGqxoLnRAH2jAc06A/SNRugbDTAZzLDbHFCrVQgJ0yIyJhwJKTFIHBCLxNRYJKXFITE1Fhqt50MC1A/11wQOONdef/nfb7H0pRWYtnACFt02HwXTR/h1I5GfPt+CxrpmAAiI3gAib0vLScUv/3Q+fvmn89FY24SiH3ajdMdh1Fc1QEogLiUWWQWZGHNmPpLSExSJUaNV497F1+POXzyLI6U9L9Jitznw3Ueb8N1Hm05+4tR5N6f+3Pqe0+69R6hViEuKQnJaHAYMSsTArGQMGpqKnLyByBiSAnUvl8JR8PP3JLaASuCtHA6JNZ9sxJpPNmLo2Cwsum0+Zl02FSGhWh/f14EPn1va9jMnsFFfF5sUgzMvmYIzLwm8+unRcRF4+PWb8KcLn0OTzqB0OJBSoqGmGQ01zdi/8+hJz4VFhGD4GYOQX5iFvHHOIyom3O8xNtbrsX7FLuzaUIKK0moY9WaERoRgYHYyRo7PwfjZeUjNUOZDWb/ABH6yg9sO4anr/ouX73kH510/B/Oum4207BSf3Ourxd/j4Pbytp9ZA51IWQOzknHvi9fi3l//Fw67Q+lwOmUyWLB93UFsX3cQgHMYYPCwAcgvzEJ+YTYKJmQjJT3eJ72Jujo9fl6+Az8tLcL2dQdP/J1aexWEwL6iw/jh0y0AgKzhaZgwJx8T5+QjrzCrWysFyA0fzTR3R3i6hOuZ6/9PLn/thy6u5uH/nKJ3XU35U4Zh+qKJmHTeWGQO791EGiklDhYdwuqPN+Cj55ehdTgwNTMBbxQ/16s4icg7PnppJZY83m7nMU/+zatc53Q0xt+DLvS263l6/1POTRwQi5GF2Rg1IRsFE3MwKDe1x5Nk25L219ux/ecDHX+4aZfAOxMVF4nxZ47AhNl5KJw1ArEJUT2KJ4h57RNV+IBMOeSqO9yes/upO7ZIKcd7654B3wLvyJ51+7Fn3X4svustJAyIQ96kocibnIu8SbnILcxBeKT7nZhMBjO2rdyFDV8XYcOybair0gFwfmqG6x9UNse/iQLGRb+dha2r92Hbmn1Kh9JjdVWNWL20CKu/chbWiY6LQMGEbIyaOAQFE3OQkzfQbWu4NWmvWVqEHesOnph82Is6GvpGA1Z9sRWrvtgKlUpgxNjBGD/b2TrPyffNKoM+jV3o3VNfpcPazzZi7WcbAQAqtQrZBZkYMTEX2aMGISEtHhqtGi2NBhwrqcLejSXY/uMe57rz1p4A1Sn/kzoc7D4nCiAqlQp/evoK3Hbe02is0ysdjlc06wxYt2I31q1wlrsNjwrFyMIsDBs9CKkZCQgN18KoN6PiUA2KtxxC8eYytysGesvhkNiz5RD2bDmEN57+GolpsTj/V1NxxR/O8dk9+xpOYuslh92BkqJDKCk6dPqTQrQlbXFq0j4FEzhRYElOi8Of//lr3H/lS0qH4hNGvRmbV+3F5lV7Oz7Bh8m7I3XHm7B5VTETeHf0p1KqgYwJnCjwjJs5Armj+G+TAlBXZVT7YinVQBQSpkV6Lqs3EQUaIQRufHCh0mEQnUZ4cHhbn+tCB4Do+EiMmJSLrJGZSByYALVWjRadAcdKj6N440Ec2XvM7esH52WwKANRgCqYNARTzh2Fdd/sVDoUopNxDLx7VGoVhowejBGTcpE3MRd5k3ORnpvmdvZk1aFqrF+6FRu+LsKO1cWw2uwnPZ8xbICvwyaiXrj6/52H9d/uCridDKl/4yQ2DyRnJGDawomYOG8MCmaM6HLZ2KkGZKVg4S3zsPCWeTA0G7H1+11Y8+lGrPpwPQCgtqLeF2ETkZcMHjYAZ144Fqs+36p0KEQnMIF3TBuiwcxLJmP+tbMxamae13YJi4gOx/SFEzB94QRkF2TitUc+RunOI5BScg0kUQD71R/OwY9fbGMrnAIHE/jJ4lNjccHvzsGCG89CfGqcT+91yR0LsObzzTi4tQzVh2sV2xGNiLqWOTQVMxaMweovtykdClHbfuD+FLAztXILc3D367fg7bIXcOUDF/s8eQOAWq3Cb/6yEABQtuuIz+9HRL1z+S1nKx0C0Ql+XkYWcC3wyeePw2V3/QIjpw5TpAt70vwxSM1KQemuI5h8/ji/35+IPJedNxCTzh6JDd/tVjoUov47iS1lUBLueOlGFM4drWgcKpUKZ18xlS1woiBx+a1zmcApMPTHLvRJ543Fi1ueVDx5t5px0USU7jysdBhE5IERYwdj7PRhSodBBCHdH96meAK/4Hdz8cinf0Z0fOBsY5eVnwEAMBstCkdCRJ64/Na5SodA/V1/K6W66A/zcdu/rwu4qmdCCIybU4BDu9mNThQMRk0egvzCLKXDoP6uvyTwuVfNxM3PXBWwa60Lzx7FbnSiICGEwGVshZOCBPpJF/qk88bizsU3BWzyBoBR04bjcHGF0mEQkYcmzM7DkJHpSodB/Vlfb4HnTx2O+9+7HWqN2t+37pbI2AgIL1V7IyLfE0JwLJwUJaR0e3ibxxkqLKp79cY7kjUyE49+fjfCIkJ7fS1/iIgJZ5lGoiAydd4oZA5NVToM6o8CeRLbzc9dg/vevR2DXTO0uytlUBL+tuw+xCQEzmzzrqQPSeXGJkRBRKVS4Vd/OEfpMHotMjoMCSkxCI8MjsYOOfl7DNzjQi4qlQqzLpuGGb+cjB8/WIe3Hv0IR/Z6NkYckxiNvy27D0npCT0OVAkjJg1F6Y7DSM5IVDoUIvLQjAVj8OGLK1G695jSoXhEG6LB8DMGYdSkHBRMyMGwMwYhKia87fmGmmbs2VKGdd/uxPoVu9DSZPJpPGqNCiPH52DCnDxMOWeUT+9FJxNCvApgAYBqKWVBl+d3o4v4pBPtdjt+fP9nvPXYxycSeQeT0iJjI/Dk8vsxYuJQT+8TMKSUWP7aKsy/brbSoRBRN+zaWII/X/aC8wdHB+9xp77vnfpz63tZ+/c0lTj9eU+ccm5omBZ5Ywdj1KQhKJiYgxFjBiEkVOvRpawWG7at2Yc1X2/Hum93OpN5Z+/hrY+7i9X1XFxSFCbMzseE2XkYN2M4Itt9gOjjvDaTOjIpU+Zf8Ce352z+351bpJTjOw1GiJkA9ADe8CSB97iUqlqtxpxfzcCZl011JvJHP8KR/ZUnnZNVkIn73rkdWSMze3obRQkhoNYG9mQ7IjpdwcQhuOCq6fjyjZ+UDgUxCZEYWZiNkeOzUDAhB0Py06Hp4fuKNkSDiWeNxMSzRjqT+U/78dPSIqz7Zif0TcZuXSt3dCYmnjUSE2bnIXd0pte2aO7PettNLqVcLYTI8vT8XtdCb5/I132xBTtW74F0ODBqRj6mLZwQ8LPNuxLs8RP1VzfcewFKdh/Fnk1lfr1v5pAU5BdmIb8wG/mF2UjPTvLJklltiAYT5+Rj4px8WP9mQ9Ha/VjzVRHWfbsL+kbDaeeHR4Vi3IzhmDAnHxNm5yMhJcbrMfV7XSfwJCHE5nY/L5ZSLu7p7by2mYlarcb0RRMxfdFEb10yIISGh8BisiAkLETpUIioG0JCtXh4yQ34629fxa4NJT65R1xiFLLzBmLYqEyMGDcYeWMHI1aBibraEI2rCzwfdpsd5furUFFaDYPejLCIEAzMSkZ23sAet/zJA55NVKt114XeXQGzG1mgGpSXjvI9Fcgdl610KETUTdGxEXjynZux4sNNWPftTtQdb4S+0YhmXQsMze4ng6lUAvEpsUhKi0ViaiySBsYhaUAckgfGITUjAenZyYiJj/TTb+I5tUaNnPx05OSzqI3f9dftRANV+pBUrPlkAxM4UZBSa9SYd8VkzLti8kmP22126JuMaGkywmSwwGa1Q6VWITRMi6jYCMTER3AIjTzWWkrVn5jAu6DWqCE7msVKREFNrVEjNiFKkS5v6qN6WfhLCPEugFlwjpUfBfCQlHJJZ+czgXuA6ZuIiLrihVnoV3TnfCZwD0kpA3rzFSIiUpCPyqW6w4V/HkhMi0d9lU7pMIiIKIAJh/vD25jAPZBdkInS7eVKh0FERIHMz5uZsAvdAzGJ0Whu0CsdBhERBTDOQiciIgo2Er2ehd5dTOAe4wQ2IiLqnL9b4BwD95AmVAOL2ap0GEREFKj8PAbOBO6hwXnpOBIk+wsTEZF/tVZic3d4GxO4hzJy03B0PxM4ERF1QMquDy/jGLiH1Bo17Da70mEQEVGA4ix0IiKiYMQEHsg4E52IiDrGWegBLD41Fg3HdUqHQUREgUYCcEj3h5cxgXdD9qhBKN1xWOkwiIgoELGUauCKS45BY22T0mEQEVEA4iQ2IiKiYMRSqgGOe4ITEVEHOIktwGm0atisNqXDICKiQNLV+DcrsSkvc3g6juxjRTYiIjrBWUpVuj28jQm8mzKHp+FwcYXSYRARUaBxdHF4GcfAu0mj1bCkKhERncYXrWx3mMCJiIh6y0fj3O4wgRMREfWab3Ycc4dj4D0QmxQDXQ0LuhAR0QncDzwI5IwehLKdLKlKRETt+Hk/cCbwHohPjUNDlU7pMIiIKFBIQDjcH97GMfAestt98F+DiIiCF2ehBwcuJSMiopOwlGpwCIsIhVFvVDoMIiIKEKzEFiSGjMnCvk0lSodBRESBgpPYgkN67gCUFx9VOgwiIgoEEiylGixUKhXsVo6DExERIOCbbnJ3mMB7wW53wG63Q61WKx0KEREpjZXYgkdWfiZKig4pHQYREQUCjoEHj5HThmP7D7uVDoOIiJTGMfDgEhEdDl11o9JhEBFRAOAYeJAJjw5HQ3Uj4lNilQ6FqM/S1TSifM9R1B1rQFNdMxx2B0LDQxAeFYawyDCERYUhIjoM4VHOI8z1uDZEAyGE0uET+QQTeC8VnnMGfvpkAy743TlKh0LUZ+h1Ldj63Q5sWl6Eoh92oaqsukfXUWvUzqTuSu5hkWF48pv7ER0f5eWIicBSqsFm+IQh+OCpz5nAiXrB4XDgwNYybF5ehE3fbEPx+gNweGG/AbvNDr2uBXpdS9tjNi7/JJ/w/37gTOC9pFKpkDooCXvW7UP+lOFKh0NuSClhaDJCr2uB1WwDAKg1KqjUzkOtUUOtUUEbqkVYZChUKs7x9KWG4zps/nY7Nn9ThC3fbkdjbbPSIRH1nAQTeDCaf8NZ+PetS/DU9w9xvC1ANNU1Y9/mUuzfUoqSojIc3nsMx8trYDZaPHq9Sq1CXEoMBmSlYNCIdAwdk4X8ybnIHjUIag3X/XeXlBK66kbs31KKXWuKsWXFdhzYWqZ0WETe5edNKpnAvWBwfiZCI0Lw+oPv46pHLmXLzY8cDgfqjjWgfM9RlGw/hP2bS7B/cwmqDtUA4sR/B6Hq3gcrh92B+kod6it12LNuPwBAOiTCIkORNykXI6cOw8ipw5E3OReRMRFe/Z16wm63w9hsgqHJAGOLGRajBTarvW3XPJVKQK1Rt/U0tPY6qNQqCOFsODjsDtgsNlhMFpiNFphazDAbzCe+GiwwG8wwGy2wmiywmG2wWWyw2533sdscsNvscNgdcNid31uMFjTV6VFzpBbNDS1d/BZEwY2z0IPUDU/+Br8vvAvLXl2JqLgIaEO1rkMDbagWIaFaaEI0zkOrhkajhlqrcb6hqlVtXbnt32RPfH9yN2/ra1Qa9UmvFSrnmzHgqhvgaH0jdcBud8Bhszu/ut5cW99w7RotrGGhMIZp0BIm0RJmhyHCDmOEBeqIFiRH1mNweCWGh5UjV9OMaJUWnn7UNDqsOGzXYI85A/sN6ajQJ6K5ORLqphCEN6sRpheI0ANhjVZoGlvgaGqGw2oFpOwgZudXm9UGk96Epjo96isbYLU4u8Phh94PU4sZ21buwrbvdwBwJsZBI9KRNWoQ0ocOQEpmEmKSohEeFXbKf8t2iVMlnAnT4fydrGYrLEYLTAYzzAYLTC0m51eDGaYWE0wtZtdhglHvTNItTUYYm40wNDkPk8Hs89+diLrABB6csgsG4d53bsfLd78Fs8HS1gppf2htrpZKiAY2jRoam7MM64nk3G4s9qRxWTeJvH1rSiXaWprSIeFwyLZk3b5V1JbUbXbYbHY4tBJWqGEWEmY1YNLYYbTaYbRZobFbYXZYYJNmOKQZUhoBaYNrwMfNX8QVh7TCIdWwSTOsDgtMditMdivUNhVglRBWAbVZQpitsBstcBgtkFYrHA5Hu5gdJ8Vvs9rbWoNKT0hyOKQr8ZrbknCY0Tl+rta0/5B14r+hUKkgpYR0SNhtdmcCN1lPS95mV0J3tnrNzoTeviXcep6HwwJE5EMSgIMJPGjNuHgyZlw8WekwAkoUgJGuwxcsZiuqy2vadaGXYv+WEjQc902BHW2IBrnjsjFy6jAUTBuB/KnDEZcc45N7ecrhcMBsMKOl0QBDswmmFhMsRgusFlvbTG6hatfT0+5DhVAJqFQCDteHCZvV+YGi9YNDa8v/xIcG5wcGi8kKq8UKu9UOm9XWYfe53eaA2WhBc72zC91isir6dyLyLc5CJ+qWkFAtMoYNRMawgZi2cCIA54SpmqN12L+lFAe2lOHAtjIc2VeBmiN1cHTjE3JUXCRSByc5J7GNzUbexKEYNj4HIWEhvvp1ekSlUiE8KhzhUeFKh9Iph8OB4+U1OLi1DDtW78GWFTtwZG+F0mEReRcTOFHvCCGQkpmElMwkTHcldcC5JlhX04QWnQFWsxUQosM5CNpQDSJjIwIuUQczlUqFtOxUpGWntvVSHS+vwablRdj8zTZs+34XDM1GhaMk6iUmcCLfUGvUSEyLR2JavNKhEIDUwclYcNNcLLhpLmxWG/as2+9K6EU4uI1LzCjIcAyciPojjVaD0TPzMXpmPq5/4lfOIi/fbMemb7ahaOWuXs1p0IZoEB4d3lYnXa3hMk/yBQlI/y4EZwInooATnxqHuVediblXnQkpJaoP17o2M6lHU52+bTOTsNbNSyJDEREd3vZzeLvHNVq+zZGfsAudiOgEIQRSBycjdXCy0qEQdY5d6EREREGKLXAiIqIgxAROREQUbFjIhYiIKPhIAA7OQiciIgo+bIETEREFISZwIiKiYCO5jIyIiCjoSECyEhsREVEQYguciIgoCHEMnIiIKMhIyWVkREREQYktcCIiouAj2QInIiIKNiylSkREFHy4nSgREVHv2Ww2aDR+TnF+Xgeu8uvdiIiI/GD69OmYMGECli5dCocfxqYlAOmQbg9vYwInIqI+Z+rUqdi6dSsuv/xyZGVl4aWXXoLJZPLdDaV0tsDdHR4QQswTQuwTQhwUQtzj7lwmcCIi6nPuvPNOhISEQK/X48iRI7jzzjuRmpqKBx54ADU1NT65Z29b4EIINYAXAMwHkA/gCiFEfmfnezxA8OOPP2Lfvn2enk5ERKQojUYDIQSklGhpaQEAPP3003j66adxySWX4M0338yWUpZ57Ya9HwOfCOCglLIUAIQQ7wH4BYA9HZ0spAfT3oUQGgAWAKK30REREQWIvVLKPG9cSAixHEBSF6eFAWjfj79YSrm43TV+CWCelPIG189XApgkpby1o4t51AKXUtqEEFullOM9Ob+vE0Js5t/CiX+LE/i3OIF/ixP4tzjBn38LIYQAcBBATruHLQAcAJYDeExKucVb95NSzvPCZTpqJHfayuYyMiIi6ovmAEhxfW9wfX0ZwDNSyiPKhNSlowAy2/2cAeBYZyczgRMRUV/0EIAIADUAngTwspSyWdmQurQJQK4QIhtABYDLAfyqs5M9moUuhJgHIMOTae19mRDiVSFENYA0pWNRmhAiUwjxA4B0IcRuIcQflY5JKUKIMCHERgCprr/FI0rHFABeFkJsE0J8pXQgShJCHAIwQAhRJITYrHQ8ShJCxDm/iL1CiGIhxBQf3/ITAFcAGCilfDYIkjeklDYAtwL4BkAxgA+klLs7O7/LSWyuae37AcyFs3m/CcAVUsoOZ8X1ZUKImQD0AN6QUhYoHY+ShBBpANKklFuFENEAtgBY2E//vxAAIqWUeiGEFsBPAP4opVyvcGiKEULcAWA8gBgp5QKl41GKK4GPl1LWKh2L0oQQrwNYI6V8RQgRAiBCSqlTOKyg5kkLvG1au5TSAqB1Wnu/I6VcDaBe6TgCgZSyUkq51fV9M5yfFtOVjUoZ0knv+lHrOvxbFDmACCEyAJwP4BWlY6HAIISIATATwBIAkFJamLx7z5MEng6g/YD/UfTTN2rqmBAiC8BYABsUDkUxQgi1EKIIQDWAFVLKfvu3APBPAHfBOdu3v5MAvhVCbBFC3Kh0MArKgXMs+jXX0MorQohIpYMKdp4k8G5Na6f+RQgRBeBjALdLKZuUjkcpUkq7lHIMnLNGJwoh+uUQixBiAYBqby7PCXLTpJTj4KysdYtrGK4/0gAYB+C/UsqxAFoA9Nv5VN7iSQLv1rR26j9c470fA3hbSvmJ0vEEAle34CoA3lgTGoymAbjQNfb7HoA5Qoi3lA1JOVLKY66v1QA+hXNIsj86CuBou56pj+BM6NQLniTwtmntrokHlwP4wrdhUaBzTdxaAqBYSvms0vEoSQiR7JphCyFEOICzAexVNCiFSCn/IqXMkFJmwflesVJK+RuFw1KEECLSNcETru7icwDsUjYqZUgpqwAcEUIMdz10FjopD0qe63IduKsKW+u0djWAV91Na+/LhBDvApgFIEkIcRTAQ1LKJcpGpZhpAK4EsNM19gsA90opv1YuJMWkAXjdtWJDBefSj369fIoAAKkAPnV+1oUGwDtSyuXKhqSo2wC87WoIlgK4VuF4gp5HtdCJiIgosHA7USIioiDEBE5ERBSEmMCJiIiCEBM4UQARQjwshPh/XZxzjRBiYLufXxFC5Ps+OiIKJNyNjCj4XAPncqTWNcY3KBoNESmCLXCiLgghslw7KL0uhNghhPhICBEhhHhSCLHH9djTrnOThRAfCyE2uY5prsdPalkLIXa5StBCCHGfEGKfEOI7AMPbnTNGCLHedf1PhRDxQohfwrlJyNuuHa7ChRCrhBDjXa/RCyH+7ird+Z0QYqLr+VIhxIWuc9RCiKdc8e0QQtzkr78lEXkPEziRZ4YDWCylHA2gCc4t/xYBGOl67DHXec8DeE5KOQHAxehiQw8hRCGcBU/GArgIwIR2T78B4G7X9XfCWXfgIwCbAfxaSjlGSmk85ZKRAFZJKQsBNLvimuuK9a+uc64H0OiKcQKA37r2HyaiIMIudCLPHJFSrnV9/xaAOwCYALwihFgKoLVwy9kA8l3FOwAgprUaVydmAPhUSmkAACHEF66vsQDipJQ/us57HcCHHsRpAdBaLGQnALOU0iqE2Akgy/X4OQBGu1rzABALIBdAmQfXJ6IAwQRO5JlTKx5Z4axrfRacLehbAcyBs1dryqktYyGEDSf3eIW5uXZvWOWJ6kwOAGYAkFI6hBCt/94FgNuklN948b5E5GfsQifyzCAhxBTX91cAKAIQ6yodezuAMa7nvoUzmQNwjmO7vj0E1+YNQohxAFq7rFcDWOQay44GcAEASCkbATQIIWa4zrsSQGtrvBmAu1Z9V74BcLNrMxoIIYZxa0ei4MMWOJFnigFcLYR4CcABAA8D+EoIEQZni/ZPrvP+AOAFIcQOOP99rQbwOzh3bbvKVTd+E4D9ACCl3CqEeB/ODwTlANa0u+fVAF4UQkTg5NrR/3M9bgQwBd33Cpzd6Vtdm9LUAFjYg+sQkYJYC52oC67Z4l9JKfvlHt9EFJjYhU5ERBSE2AInIiIKQmyBExERBSEmcCIioiDEBE5ERBSEmMCJiIiCEBM4ERFREPr/HuINmc5kHPQAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 504x324 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAE8CAYAAAA/huMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABFQUlEQVR4nO3dd3xc1Z3//9eZGXWrW5JlWbbcOxhcsbEB0zGhhGRDEpIQNmSzEFJIfknY9Gw2m03PpnwTShJCWEKAEAgkmI6pBnfjhqtsy0W9lyn3/P6YkbHBkkbSaO6M9X7yuA+VOXPvRzKaz5xzz/kcY61FREREkovH7QBERESk/5TARUREkpASuIiISBJSAhcREUlCSuAiIiJJSAlcREQkCSmBi4iIJCElcJEhZIz5kDFmjTGm1Rhz2BjzT2PM2ZHHphhjHjDG1Bpjmowxm4wxtxpjvMaYCmOMNcb4TnLOa40xOyLPqTbG3G2MyYn/TyciblICFxkixphbgZ8B3wNKgLHAr4ErjTETgdXAAWC2tTYXeD8wD8ju49QvA0siz5kA+IDvDsXPICKJy6gSm0jsGWNygSrg49baB07y+J+AfGvtih6eXwHsBVKstcFerjOC8JuCkdbay2IRu4gkh3cNz4lITJwFpAMP9/D4BcBtAz15ZBj+cSAHaAeuHui5RCQ5KYGLDI1CoLaX3nMhcHigJ7fWvgTkGmPKgBuBfQM9l4gkJ90DFxkadcDIk01CO+7x0sFexFpbBTwB/Hmw5xKR5KIELjI0XgU6gat6ePxp4JoYXcsHTIzRuUQkSSiBiwwBa20T8A3gV8aYq4wxmcaYFGPMpcaYHwDfBBYbY35ojBkFYIyZZIz5kzEm77hTpRlj0o87PMaYDxtjxpqwccB/Ac/E+2cUEXcpgYsMEWvtT4Bbga8BNYSXjH0a+Ju1djfhiW4VwBZjTBPwELAGaDnuNK1Ax3HHcmAG8ErksZeBHYTvg4vIMKJlZCIiIklIPXAREZEkpAQuIiKShJTARUREkpASuIiISBLqTyU2zXYTEZFTiYnViS4+L8vW1Yd6bbN2U9dKa+0lsbqmSqmKiIgMUm19iNUrx/TaJqV098hYXlMJXEREZNAsIevE9Yq6By4iIjJIFnCwvR7RMMZ83hizxRjzpjHmPmNMek9tlcBFRERiwOnjv75Edhf8DDDPWjsL8ALX9tReCVxERCRx+ICMyE6GmcChnhoqgYuIiAySxRKyvR99niO8PfCPgP3AYaDJWvtkT+2VwEVERGIginvgI40xa447Pnn8840x+cCVwHhgNJBljLmup+tpFrqIiMggWSDU90S1WmvtvF4evwDYa62tATDG/BVYDPzpZI2VwEVERGIg2pnmvdgPLDLGZBLePvh8wlsMn5QSuIiIyCBZiOo+d6/nsHa1MeZBYB0QBNYDt/fUXglcREQkBmJRxsVa+03gm9G0VQIXEREZJIuN5h54TCmBi4iIDJaFUJy3/FICFxERGaRwKdX4UgIXEREZNEModruTRkUJXEREZJAs4GgIXUREJPmoBy4iIpJkwpXYlMBFRESSjmOVwEVERJKKeuAiIiJJyGIIxXmDTyVwERkUay3rnt3CU/e9wtF91RSPHckFH1zMvAtmY0x8eyQibtIQuogkjc62Ln588+9Y9fAb4W84DltX7+L5B15j7vmz+NT/fIixU0e7G6RIHLgxhB7f/r6InDI6Wjv56vt++nbyfoe1z7zJpxZ+jdv/4z7amjviHJ1IvBlC1tPrEWtK4CLSbx2tnXz9/T9jy6s7e20XCoZ46H+f4BNnfJmn/u8lHCfexSZF4iNcStXT6xFrSuAi0i+dbV1849r/5c0+kvfx6o828aNP3sGt5/8nO9ftHcLoRNwTipRT7emINSVwEYlaZ1sXX7/252x+5a0BPX/b6l3csvSb/Ozmu2iqbYlxdCLusVZD6CKSoDrbuvjGB/+XzS8PLHl3s9byz98/zw2nfZGHf7WSYCAYowhF3OVgej1iTQlcRPrU2d7FNz/0Sza9tCNm52xtbOf/ffEe/n3hV1n37JsxO6+IG8Kz0D29HrGmBC4iveps9/OtD/2KjTFM3ser3FbFV1Z8nyf/+MKQnF8kPuI/hK514CLSo64OP9/6yK/Y8OL2Ib9W/dGmIb+GyFDpnoUeT0rgInJS4eT9azasGvrkLXIqCKkSm4i4rbPdz3c+9mvWv7DN7VBEkoJqoYvIkGhr7iAlzUdqWkqfbRuqm/nPG37L1tW74hCZyKnDGYL73L1RAhc5hYVCDnd87S88csdzeH0eJp02lukLJzJz4SRmzJ9IQUnusbZdHX6eeWA1d3//Ua3RFumn7lno8aQELnIKu/u/HuZvv30ajIdgIMT2tXvZvn4fD//mGQBKK4oYPaGYrg4/uzcfoKOty+WIRZKTxegeuIjExs4N+3jg50/02uZwZS2HK2vjFJHIqU2z0EUkJn737Yew1rodhsiwYC1Dsta7N0rgIqegnRsqNYNcJK6Gplxqb5TARU5Bf//d826HIDKsWNQDF5FB6mjt5IWH33A7DJFhR7PQRWRQXlu5ia52v9thiAwrFoOjWegiMhgvPrrW7RBEhiX1wEVkwDrb/ax9fqvbYYgMOxZVYhORQVi/ajtdHQG3wxAZhgwhzUIXkYF645k33Q5BZFhSD1xEBsxay+tPK4GLuEU9cBEZkL3bDlF7qNHtMESGJWtN3Hvg8b2aiAwZ9b5Fhhf1wEVOEUrgIu5SJTYR6beWhja2r93rdhgiw5YF1UIXkf5b+/w2HEc7j4m4x6gHLiL99/ozW9wOQWRYCy8jUw9cRPohFHJY+5yqr4m4TaVURaRf3lpfSXNDm9thiAxr2sxERPpNw+ciicFRD1xE+kMJXMR91kJIPXARiVbt4Ub2bDnodhgigiaxiUg/vKHJayIJIXwPXEPoIhKlN55RAhdJFNrMRESi4u8Ksv6lHQN6bm7hCGYsmMiM+RMZPaEYf2eArW/s5rmH3qC1qT3GkYqc+rQOXESi9ubq3XS2+6Nqm52fxVmXzWHWwknMWDSJsgnFGHPii8151yzgY7ddyV3f+Sv/vOeloQhZ5BSmIXQRiVK0s8/nXzCLL9/xSUbkZvbZdkRuJp/98XVMPn0cv/jivVir8qwi0VItdBHpk7WW1U/3ncCnz5/I1++5mdS0lH6d/7KPLiU1zcePb7lbSVwkClpGJiJRqXzrCEcO1PXaJj0rjS/fcWO/k3e3Cz5wFtbCTz5zNxYlcZG+aAhdRPr08hOb+mxz7ecvY9TYkYO6zoXXnoV1HH76mT+qJy7SCzdKqcb37YKIxMRLj2/s9fG8omyu+tQFMbnWRR9awud+/pF3TXqLpfKpo5l/8elDdn6ReHAwvR7RMMbkGWMeNMZsN8ZsM8ac1VNb9cBFksy+HYfZt+Nwr22u+rcLSM9Mi9k1L/7w2VgLP/vMH2J2ToDMnAyu+4+rueqmi/Cl6OVIklcMl5H9HHjCWvs+Y0wq0OPsU/3FiCSZZx5e0+vjqWk+Vly/LObXveS6s7GOw88/98dBn8sYw8UfO4frv/U+8otzYxCdiPsGew/cGJMDLAOuB7DW+oEe14oqgYskkWAgxLMPr+25gXVYevlcsvOzhuT6l350GVj4+ecHnsSnzZ/ITT/+KFPnTYhhZCIuszG5Bz4BqAF+b4w5HVgLfNZae9L9gpXARZLI6me2UF/d3Gubiz64eEhjuPRjy3Cs5Rf97InnF+dyw7ffxwUfPhuPR9Nv5NRiiWod+EhjzPFDaLdba28/7msfcCZwi7V2tTHm58BXgK+f7GRK4CJJZNU/ep+8VjQ6j9lnTx3yOFZcfw44ll/cek+fbb0+L1d+6gKuu+0qsqIoJiOSrKLogddaa+f18vhB4KC1dnXk6wcJJ/CTUgIXSRJVe2t47ak3e27gWM65Ym7cercrbjgXgF/cek+PS8zmnDuDm354HeOml8UlJhG3xGISm7X2iDHmgDFmqrV2B3A+0OOORUrgIknAWssvvvYg/q5gr+3OuXp+nCIKW3HDuYyqKOIXt97D4b3Vx74/qqKIG7/7AZZcMXdIl5+JJJIYzUK/Bbg3MgN9D/DxnhoqgYskgZf+uYmNr+7qtU3ZxGImzRkXp4jeNnf5TO5a+z22vraTI5W1lIwtZOaiyXh93rjHIuKWWBVysdZuAHobZj9GCVwkwdXXNPP/vvVwr22stZxzxZmu9Xa9Xg+zl0xl9pKhv/8ukqi0mYmIHNPe2sl3/u33NNS29Nn2nKvmxiEiETkpq/3ARSSitbmDb9xwBzs27O+z7fhpoxk3TRPFRNwSw0psUVMCl2GpqzNAU30rTfVtNNW30djQRnNjO02N7bS3+0lJ85E/MpuKicXMnDOWzKzYlSWNRmNdK1+7/nZ2b6nqu7G1nPOeM4Y+KBHplRK4yAD5u4I01DbTUNNCQ3UL9dVNNFR3f91MQ20LjXWtNDW209HuB2OwXg8YAx4PeMIfrTHhbX4iy7G8KV7OPGsil141l0VnT8HrG9plWnVHm7jtI7/lwK6jUbW31nLO1VHNeRGRIeLGbmRK4JIw2lo6aahpprGulZamDtrbuujq8NPVGaCzw09XR+DY5+1tXbS3dNLS1E5LYzvNta20NrVD93pka8GxJ34N4WTdnbSjFAw6vP7yTl5/ZReFxTlceuUZXHrlmRQV58T4NwBHDtRx23W/4ciB+qifM2XOOErHF8c8FhHpH6sELqey1qZ2qvbVUrW7moP7asKf76vlyP462lq7jrWznh7+EN6ZeCOJ2Tjx2au6rqaFe+5axb1/fIlFiyez4up5zFswAU9P8fbDgd1Hue2631B3pKlfbzDOuVKT10QSgWahS9JyHIfmhnYaqpuoO9JE7aFGqqvqqT5Yz+ED9VTtraGpvu3t5OQx4c+7v06igh9OyPLKi2/x8ks7KSnN5bwLZrH03KlMnlI6oGS+efVuvnvTH2iuP+meBT0ykeVjIuIuq1nokkistbS3dtHa3EFLZJJXc0MbTXWt4fvJtS3h+8tHm6ivbqGxtplQIBR+suOcOGzdXd4ziZJ0tI4eaeLP977Cn//0Mrm5mcyaWcbkqaMYO24kZeWFlJUXkJ6ZetLntjS2cf+vn+Hhu17AGcAowsz54xk5On+wP4KIxICG0CUuGuta2b/zKFWVtRytaqD2SFPk3nM7rc0dtDa00drciRNy3v1ka999r7n782GuqbGdV1bt4NXnt0PIYhwHQpaRI7MYPaaAsrEFlJTmEQqE2Lv9EGtf2E5XZ2BgF7OWc7X2WyRBaBKbxJjjOBzaV8uerYfYvbWK3Vur2LPtMA11rUDP95rjdU95uKirbqHucBObV+/GhJwTRygGyGNgyYo5sQlQRAZNPXAZEH9XkOqqeo5U1nJwdzX7dx2lcscR9m4/FF4y5XnHveZTcCh7uJmzZDJ5I2M/E15E+k+FXJJcKBhiw6rteHweMrMzyByRHv6YnU56Zmq/61Rba+nqCNDW2hmeHFbXQv3RZmoPN1J7pJHaw42RyWINNNa0RIazI0PeHk9STg6TKGnymkhisfG/i6gEHiPWWr738d/w8uPrweuNrDf2Yjwe8Hjw+LykjUgnNT0Fb1pKuBiIx4MTcsKHhVDQwXEcQo4lFHQI+IPhnnP3eubIYd7xNRruHnZSfYYlK1R9TSSRaBlZknrhodd56dG1GO/Jq3Q5jqWjrYuOdn+4+hec2DPu6XORk5i/fAZZORluhyEiERbdA09K1lru+8Gjbochw8i5Kp0qkmA0Cz0pbV29k31bD4aHzkWGWGZmKgvOn+V2GCLyDroHnoSeve8Vt0OQYWTxhTNJTU9xOwwReYd4D6EP7bZKw4DjOLz62Dq3w5DhwlrOVe1zEUE98EHbvaGSusMNb5cKFRlCeXkZzFk61e0wxEXdy0tbmjvCu/a1dtDe5sffGSAQDOGEwuO4Hq8Hj9fg8Xrw+bzhzz0efCleUtN8pGekkpGZyogR6WRlp+PtYQKuRCe8KEj3wJPKuue2uB2CDCNLLpqF16e5Fv2xp7qeB1/dTENTO+NH5jOtrJip5UUU54/od22GoRIMhKivbaHmaDN11c3U1bTQUNdKY30rTQ1tNDd0hMscN7bT1tJJIBB691a5cELtB3ts06Bevn/c07JzMsjNzyI3P4u8/Cxy8jLIi3xeMDKbkUXZFJXkUDAyW8m+B5rElmQ2vrDV7RBkGJl6RoXbISSVv63bwjcfehqn08ETAE/AYoLgDUBhRjpTy4qYUl7EhLJCxpTmM6o4h/z8LHyDfJMUCjl0tHfR3tpFW2sXrZG965sa2mmob6W+toW66hZqjzZRW91MQ10b1vZSCSRSn8kM0Swpa6G5qYPmpg4OVNb13MgBnweKR+UyuqyA0tF5lJYXUDomn9LyQkrLC8jIShuSGJOBJrElkVAwxNbXdrodhgwjrU0dboeQNJ7etov/+OuTmNDJJ/s0NHfwRl0la9ftw+O3ePwOnpAFC5npKaSnpZDi85Dq85GSctzHFB/dWwjYkCUQCOLvCtDR5qe9vYv2li46O8Ib1JyQcE+RzX5CQYfDB+o5XFkf3qzHWgg5xwpLFRaOoHxCEWMnl1AxtZSJM8oYP62U1LTBTbysPdLI9nWVbFu3jx0bKjm4pwZ/Z4DcwhFMOa2csy87nbMumo0vxb0RKg2hJ5F9Ww7S0drpdhgyjLz8xEau/rflboeR8A43tfCVv67EWgZUG6ujw09Hmz9c+TBcoQPscQnZOe77cGJyPskGfsNJfXUz9Ueb2PjqrmPf8/o8jJs8iimnlTN5djmTZ4+hYmopKaknT0H+rgC7t1Sxbd0+tq2rZPuGSmqrGk7atqOtiyOVtaz6+3pGjS3k41++nKWXz4n77RGLUQJPJltXq/ct8bVl40H2v3WYsVNK3Q4lof3nP5+jtcsf58KW0pNQ0GHPtkPs2XaIJ+5fDYAv1cvYiSWMKi9kRG461kJbcwdH9texf9dRgoFQv69zZH8d/33z3Tzyu1Xc+I0rmRbnW07xHmNRAh+Et9btPeHr9Kw0Lv3YOeSPyiMzO53MnMzwx+M2NElNT8GX4gtPAjFgHYsTsoRCkTroQYdQKHz4uwJ0dgRob+mkubGNhtpW6o82vb2JyeFGGqqbsXH/30bctPK+V7nxm+91O4yEtXrfAZ7ZsVvJO8EF/aFjST3Wtxe2rt3L56/8GedecQbXf+U9lIwpiOn5T0qz0JPLzuMSuDGG79z/WU5fOi2uMQQDIeqrm6k51MDRg/Uc3ldD1Z5q9u+q5sCuavxdgbjGI0PMGJ7+2zo+9pX3DPqe4qnIWstPn3/Z7TAkQTz/yDpefmITV3/iXP7l5gvJyk4f2gtqElty8Hf6w+VTIy674dy4J28AX4qX4rJ8isvymTl/wgmPhYIhDu6pYfeWKnZvrYq8262iuVEToZJZc3Mnr63czDJtJ/ouq/cfYN3BQxj1vyUi0BXkL796mifvf42PfOEyLr520ZAtxVQPPEns21qFE3IwJlwo4dovvsftkN7F6/Mybsooxk0ZxfKrw9W7rLXUHm5iz/ZDHNhdTVVlLUerGqg92kxjbQutzR042p50SKRnplJWXkBRcQ5OMMTe7YeoPdw4oHM9cf9qJfCT+OVLr7kdgiSoxtpWfnHbX/jb717ghq+8h4UXzor5RDctI0sSezbvB8IJccElcyguL3Q5ougYYyganUfR6DwWLp/xrsettbS3dtLS2EFrUzstzR20NrbT0tROc0M7zQ1tNNW30ljbQkNNCw3VzTTVtobXsAoAhUXZTJkyirHjRlI2poCysQWUjS2koCj7hBcMay1b1uzlnp/8k02v7e7XNda/tpvDlbWUjhsZ6/CT1hsHDrJ6/0H1vaVXB3Ye5dsfv53ZZ03iBw9+Nmbn1XaiSWRvJIEDXPDBxS5GElvGGLKyM8jKzoDy6CZ+hIIhmupaw8tHapppqG6h7nAjdUcaqD4Yvjd/pKqBQFdwiKN3h8djmDN3PGcvm8q8BRMYXZYf1fOMMcyaP4Hv/99NPPKHF7njvx7FCUW5BskYVv75Na7/8uWDiPzU8stX1PuW6G0+bplbTFhACTw5VG6vAiAtM435l8xxNxiXeX1eCkpyKSjJ7bGN4zjUHm6kak8NB/fUULWvhqq9NRzcV0t1VUNSDtsXleRw2RVncsnlpzOyKGfA5zHGcNXHlzGqvJDv3Xw3AX90b3SeengtH/nCpSqtCqw7dIiXK/er9y2u0hB6kqjcGk7gZy6fSXrm8C0dGC2Px0NxWQHFZQWc8Y7NOAL+INVVDVQfbqT+aDNN9a20tHTS0dZFZ7ufrk4/ne2B8MfOIF0dftrbumiPlKeMutcaA8bA/MWTuPy981hw1qSY1oRedMFMvvP7G/n2jXcdq+TVm/raVtY8v52FF8yMWQzJ6pevqvctCUAJPPG1NraFdyAD5l14msvRJL+UVB9l44soG1/U7+d237NvrGulobaVhupmGmpbqD/aHP68JvKxupnGuhZCoYH9hRUUjuCiK87gsqvmMmp03oDOEY05iyfzvT99iq9ffwdtLX1X+Vv5l9XDPoFvOnKEF/buU+9bXKZKbEmhclvVsc/POHd4v3i67fh79mUVvb8BsNbS0thOY10rTfWtNNW30dTQRmN9G81NHTQ1tNHU2EF7ux9fmpeCohzGTy5h9twKZpxWHrcdmKafUcH/3HcTX/3Y7TTVtfbadvULO6ivbqageOBD+Mnul6vV+5YEoR544utO4AWjcimbPMrlaCRaxhhy8rPIyc8CStwOp1cTZ5Txg/tu4j8++lvqjjT12C5kLc88vIb3D9P66Ftrqnl6z26t+xb3uVCJTZu6DkBlpIDL7MVTE2Y/YTn1jJ1Uwg/uu4nCkt571yv/8vqwXcb3i9fV+5YEYvs4YkwJfAC6Z6BPXzjZ5UjkVDd63Ei+87sbSU3rebCsal8tW1bHeElMEtheV8MTu7WhkCQS08cRW0rgA1C5tQocy/SFk9wORYaBCdNHc/0XL+vxcev1sPIvr8cxosTw09dfcTsEkROpB57Yumeg+1K8TJxT4XY4Mkxc8bGzqZja8xaiLz75Jm3Nw6fG/cbqw6zco963DFzF9NGxP6kSeGLrnsBWMbNcu0FJ3Hh9Xj7/Px/A08NM+K7OIKseXRfnqNxhreW/X1vldhiSpApH5fL5n3yYX678cmxP3F2JrbcjxpTA+6k7gU+K80bxIlNOKz9p/XqIDKP/dU2cI3LH05W7efXQ/r4bihwnIyuNj31pBXeu+hoXfWDRkCwLtbb3I9aUwPvpWAI/fZzLkchwtGzF6T0+tv3NKvYdV6PgVBRyHL772nNuhyFJxOMxXPLBs7hz1de49paLSM9IHbqLaQg9sVVuOwiOZfyscrdDkWFoycWzyR+ZffIHjWHlA6f2ZLaHd21lX3Oj22FIkjhj6VR++cSX+OwPro1PsaM4D6GrkEs/dddAHz97rMuRyHCUkurjgmvm8cDtz5/08acf28j1/98K0oayl+GSrXXV/MfLT7odhsTQyNJcRo0pJCs7HWOgpbGdIwfrey1eFI3ySSV84mtXMv+86XGt1WFUiS1xdc9ALyovZEReltvhyDB14TXzT57AjaGlqYNVj67jwg8sintcQ6kzGOTzLzxOVyjIUKynlaE3sjSXybPLmTy7nCmzxzB5dnmkKuK7Nda2sH3Dfrav38f29ZXs2LifztauPq+RWziC6z5/CZd+6Kz479I3RMPkvVEC74fu3vcE9b7FReUTi5k8eww7Nx9894PG8NA9r3D++xfg8Zw6d8j+8/Vn2d5QE9dreryG1BQfqT4fKT4PKT4vqSkeUlJ8eIzBAzhBh0AwhL/TT0d7eJe8oD9+u+MlopRUH2UVIxk3uYSKqaVMmFHG5FljyC/q4dbPSeSNzGbRBTNZFNmoJxRyqNxxmG3rIgl9fSVV+2pxQg6Z2elMmV3O2ZedzvnXzHNxd8ihGSbvjRJ4P3RXYFMCF7ctW3H6yRM4sG93DS8/tYWlF8+Oc1RD4/6dm/jT9vXEuued4vMyaUwBU8qLmDC6kPLSfEqKcigoyGLEiHRSU/v/8mitJeAP0tbWFd7ytjX8sbU5vPVtU0MbDfVt1Ne0UFfTQm11M3XVzQQCoZj+bENtRHY6o0YXMHpMHqVl+ZSOKaC0vIDSsYWMHJUb8xneXq+HCTPKmDCjjBXXLQHAcRyCAafXKoVxpx544uqugV6hCWzisqWXnMZd33+8x8fv+tE/mb9s6tDOuI2D148e4Kuvrhz0eTzGcHrFKGaPKWFqWTHTyosZP7qAlBgPsxpjSE1LITUthfyCEVE9x1pLU0MbNUfDyby2upm6mpbw9rj1rTQ3tNNc30ZLcwetTR04oaHp4Xs8huycDHILssjNyyI3P5O8vEzyCkZQUDiCwqJsiktyKC7NIzsnY0hi6F+8HlLTEmyUSQk8cakHLomiZEwBE2eUsWv7oZM+fuRgA3f+6J98+utX9niOUDDEljV7WffSTvZuq6KhpgVLePiyYuooTls0idkLJrj2JqCypYFPPvdXAs7gEtZVc2fw6QvOojQ/MbdcNcaQVzCCvIIRTO6jOpi1lo52Py1N7bQ2d9DS1EFbSycd7X66Ov0EAw6O4wAGj9eDx2Pw+jx4fd7I5168Pg+paT7S0lPIHJHGiBHp5ORmkpWdHrctc09ZSuCJq3JrFSkpPsZoC1FJAIsvmtljAgd47M+rKSzK4dp/O/fYTNzOdj9rX3qLV5/ZwuvPbKWloS3cuLvKhDFgDGtW7eCBu1aRkpbCzHnjmbd0CnPPnkLF5JK4zOpt8ndyw7MP0NDVwUCHzjNSfPzgA5dy4cxTZ88CYwyZWWlkZqVRMjrf7XDkeN2V2OJICTxK3TPQJ502Nv6zG0VOYtH5M/nj/z7Va5u7f/4krz23ldPmT2D/rqOsf2Un/s4AAMbpu7sQ8AfZ8OouNry2mzt//AQFxTnMXTKZMxdP5syzJpLbwyziwQg4IW5a9TC7m+sYUPK2hhGkcMdHr+bMcWUxj0+kJ1pGlqC6K7CpgIskivHTSikenUf1ocZe2+3YdJAdGw+EvxhkPcf6mhaeemQ9Tz66AeM1TJ09hoXnTOOs86ZRMb5o0L1zay3fXLOSl4/sG/A5UjsNv3zfCiVviT8l8MTUncAnnKYSqpIYjDEsPG8Gf7/XnW01rbVs33yQbVsO8bvfrWL05GKWXTCD88+dzvgxhQM65107Xue+XRsYzIzzz523mLPOGD/g54skC81YiFL3DHRNYJNEsuj8k29u4oYDB+u5+y+v8qEv/oEPff0e7n7yDY40tET9/Mf3b+W/1z8zqBiWlVdww/L5gzqHyEAZ2/sRa+qBR6l7BrqWkEkimb1gAplZabS3+90O5QQ7D9Sw7eEafvzES5wxfQwrzpzGxTMnk5ue/q621lru37Oeb6x5YlAjkEVpmfzgiovxeFSpTVwSo0lsxhgvsAaostZe3lM7JfAoVW6toqA4l/ziXLdDETkmNdXH3GVTefGJzW6HclLWwht7D/LaoYN88/lnWTp1HFdMn8ai0eWker1srK/iDztX88Lh3VjrYaBD58aBn1x6KYU5KnEsLoltKdXPAtuAXtc+KoFHoXsG+tzlM90OReRdFi2fkbAJ/HiBUIin9uxm5aGdmPQQ3tQQHm8MipJYuHnOAs6aovkp4rIYJHBjzBhgBfBfwK29tVUCj4JmoEsiW3DONDxeD04Uy8JORQvyyrhl+VluhyESzX3ukcaYNcd9fbu19vZ3tPkZ8CWgz+LxSuBRODYDfbbe4Uviyc7LZObcCja/sdftUOIu36bz0ysuw6faDJII+k7gtdbaeT09aIy5HKi21q41xpzb18k0Cz0Kx3rgmoEuCWrR8uluhxB3Hr/hh8suonRkYpZIlWHI9nH0bQlwhTFmH/BnYLkx5k89NVYCj0LltoN4PR7Kp/Vep1jELYvOS5zlZPFgQoYbx5/J+WdMdjsUEaDvJWTRLCOz1t5mrR1jra0ArgWetdZe11N7JfAoVG6tonzKKFLTUtwOReSkyipGUj6hyO0w4sPCPO9ovrhimduRiLhKCbwP3TPQNXwuie6sBCrqMpRyPGn8/OrLSEnRfW9JMNb0fvTnVNY+39sacFAC79PbE9iUwCWxLTxveNwH//65F1NWkud2GCLvNvh74P2iBN6H/du1hEySw7TTxw7J7mCJJCc1jUsm6r63JKZ4l1JVAu/Dns3hXZy0iYkkOq/Xw4Jzp7kdxpBq9nfx63Wr3Q5D5OSSuQe+a/1eHvrZYzz408fYsWZ3LE/tmj2b95Odl0Xh6Hy3QxHp03BYTvaT9S/z8r5Kt8MQOVEMZqH3V0wKubz58nbu+fYDrHvmuHKOxsP8i0/nC3d+isLS5Ex+1lr2bN7PxFljBr3PsUg8zF0yhdQ0H/6uoNuhDBkHh8889xiPX/NRRuX0WaxKJH7iXAxxUD3wLa/s4MsXf5fPL/vGick74o2VG7llydeo2nVkMJdxzdH9tbQ1tWsGuiSN9MxU5p09xe0whlytv51/X/ko/mDI7VBE3pYMQ+hbX93BVy75Lp87+2use3pTr21rD9Zz24r/pu5ww4ACdNNba8OlKTUDXZLJOZed7nYIcbG+5jDff2mV22GIHJPQk9i6E/dnl3yNtU9ujPp5R/ZW89X3/IDWxrZ+B+imnev2ADB+lhK4JI+F500jIzPV7TDi4neb1/HPHW+5HYaIK6JO4H/81l/6nbiPt2fzfr75vp/g7/QP6Plu2L5mD8YYKrSETJJIekYq564YHr1wgC8/s5LK+uQb4ZNTUKIOodccqB30xTa/uJ3vffRXhJLgvlUoGGL7G7spm1BCemaa2+GI9MuKaxe5HUKvijKyGJ2ZQyymhrYE/Nz8+N/pCpy6E/ckCbgwCz3u68Bf+fta/vczv8faxN67eO+bB+hq76JiZpnboYj026QZozlt/ni3wzjBuLw8PrNgEc/8yw288f5bePGKW3jp8s9x49Sz8A5ylcfWmhq+8+xzMYpUZIDi3AN3ZT/wf/7+efKLc7n+W+934/JR2bhqGziW8TM1fC7J6cP/vpxNq/e4GkNhdiYXzZ/C5WdOZ/boknctxyzOyOZLp13AeaVT+OSqB2jydw34Wn/etJkFZWO4ctapvxZeElSc+6WuJHCA+37wKNmF2VxzyyVuhdCrDS9sBWDC6arAJsnp9IUTWXjedFY/ty2u181MT2HpkilctGQaC6aOxefte6BvftFY7j73g3zo2XtpCwQGfO2vPfUUM4uKmVRSOOBziAyEYWiGyXvjWgIHuP22+wj6g/zLrSsSqlCKvyvAplXhFz2VUJVk9ulvXMm29ZU0NwztCpD09BTmLZvKOedP56z5E0hP7f/Wu6cVjubni6/ixhceGHBHpiMQ5NP3/537//UD5GZlDPAsIgOUTIVcYuF333yA//3c3QT8iTMB5c2Xd9DR2knGiHRKxo10OxyRASsalcu3fv1RRuSkx/zcI0tyuOyaeXz7px/koX/cyre+cRXnLZk6oOTd7fyyyfzHGecPKq7drfV88s+P0NI58OF4kX5L1lKqg/WP3z3PzvX7+OJvb6RiuvuTxl565A0Axs8ux+Nx/T2OyKDMOGMcv/37rfzj/tW8/NSb7NtxeEDnSU3zMXv+BOYumczcJZMZO6FoSEbO/nXaAnY31XPfzg0DO4GB9YcPce3v/8xP37uCKSV6Ey5xMpyG0I+3c/0+blr8DS77+Dm8/3OXUTLWnT+6YCDIi399PTKBbYwrMYjEWmFJDh/5zIV85DMXcnh/Ha88vYXXntrC1jV7cJyeX3UqpozizCWTmbt0CrPmjictfeC962gZY/jOgovY39LIS4cGvmnJrpp63vube7l89jQumj6J4uws2v0Bmju6aG7vpKm9k+b28OedXQGCIYvXY0hL8ZGdmUZhThYleVkU54ygJDeb4pwsUrzeGP6kcsoZrgkcwmuv/37Hszx+57Msfs9crrrpImYtnhLX++Mv/e0NmmpbAO0BLqem0rGFXHPDMq65YRlN9W1sfHUne7Ydor66GYDckdmMnzKK0xZNYuSoXFdiTPF4+fWyq7j6n39id2P9gM8TdBz+tn4rj6zbemyI89hH57ivHd5+8TVgPeEDD9jI18YTnlVfkpfNmIJcxhXmMbG4gGklRUwsKMCr0bphb1hNYuuJ41heemQNLz2yhkmnj+Oqmy7inPctJDVtaN/9O47DX3702LGvNYFNTnW5BVksWzGHZSvmuB3Ku+SmZfD75e/jysfvoaGjw+1wsBZqWtupbm9n85GjWI/FesHxQkaGj9PKRjF3zGjOHDWaM0tGk5sW+3kHfWkOtLK2YQO7W7dT768C20KWz8fo9CIqsqYxMXsuOSmj4h7XsKEEfqJdGyv50b/dwZ1fu59Lrz+HSz52DqMqiobkWo/99ml2bdgHnnCPXzXQRdw1LiefX597Jdc9cT+hBK791B4I8OrBA7xydD/WazE+h2lFhcwbVcbcojIWFJUzOjNvSEYTG/2tvFS7mVdq1/FWy1Z8ngAZ3gBp3iAZHj9pniB1XVt4q+UpMqv9lKaVMyl7PmOyFlOQfhoek/BpIDkMUbGW3iTNv1xjTTP3/fDv3PfDvzNj0SSWvGcuCy6ZQ/mU0kH9UVhr2bVhH6seXM0DP3382PdLxhWRlZsZi9BFZBAWl47jy/PO4Xuvv+B2KFGzwPbGGt5qrebPe9eQkhJidNYI5haWc2bBeOYWjmNidjGeAb521Xe18eyRLbxQs4k3m3bi8YQTdrrX6fO5Df49bG3Yxp6mu8j2ZlCWtZCijGXkZ5yDz1swoHgkTEPoUdj62i62vvIWd9x2H/klOUyfP4npCyYxbeEkJp85noys3oeuOtu7WP/Mm6z+xzpW/3M9dYcawje4jqP73yKJ48ZZC3jxYCUvVu1zO5QBq+5sZuWhN/lH1RYcx0O2L5Mz88cxf2QF84vGMj2vBF8v99HrOtt46tB2Vh56k3X1e/B4g6T6QqR5nQGvBw44zVS3PUZz+8NkGYe8tDnkZSwnI/0CvCkzE6o+R1JQAu+f+iNNvPzIGl5+ZA1YB2MM42ePZdr8CYyfNZaC0nx8KV7amto5tPsI21fvYuMLW/B3hTdUMZ6T/A/qWCbMVgIXSRQeY/jhsktZ8fDd1HW0ux1OTDT5O3j60Fs8dXAnjjVkedKYW1jOaYWjGZOVS4Y3hdaAn32t9ayrO8CGhoMYbxCv18HntUNQxMOh0/8GzYE38Lf8kHRvGTXpH6Mi7+aYX+lUpR74IDkhh90b9rF7/Z7wrJPjHf9u0vT+v7964CKJpTQrm5+eu4KP/vMBt0MZEq1BP88f2sNzB/eCY8KHsRifxXgdPF5LPBexWeco9R0vKoH3x3CrxJaoxs/WBDaRRLOsrILZI0vcDkPk3fraiexU2E40GaSmp1A2udTtMETkHYwxfGPRcrfDEHkXE8URa6fcEDpAdn4W0+ZPpGLmGApHF+BN8dLW2M6hPUfZtnonB7ZX9fr8cTPG4I1iByURib8FpeVcXDGJJ3fvdjsUkRPpHnj/eLweJpxeHp6FPn8i0xdOomxy70vLjuyr5rXH1vHa4+vY/OK2d22kMmaKet8iieyLC5by1O7d8X69FOmVJrFFYWRZAUsuP4P5F89h1pIpfS4be6dRFcVc9elLuOrTl9De0sG6pzfz4sOv89z9rwJQWzXw0o0iMvSm5I/kisnTeWT7drdDEXmbEvjJpaT6WPbeBVz80WXMPntqzHYJy8zO4OyrF3D21QuomFXO77/+F/Zs2o+1VmsgRRLYLfMW8agSuCQSJfAT5RfncvmNy1lxw3nklwztxgr/8oX38OJfX2fX+n1U76+lZNzQlGwVkcGblF/IislTeXzHDrdDEXl7k5w4StiZWpPPqOBLd36Se7b/hOtuu2rIkzeA1+vhI199LwB7N+8f8uuJyODcPG+h2yGIvC3Oy8gSrge+8JLT+cCtK5ixaLIrQ9gLV5xBybiR7HnzAIsunxv364tI9KaPLOL88RN4dtcet0MRGb6T2IrLC/ncLz/O3OWzXI3D4/Fw4XVL1QMXSRI3L1ikBC6JYTgOoS+4+HR+/fJ3XE/e3ZZes5Ddm5TARZLBGaNKWTJWlRPFfcb2fsSa6wn88k8s51v3f5bs/Cy3QzmmYsYYALo6/C5HIiLRuHnhIrdDkOFuuJVSveqmi/j0Tz+acFXPjDHMPX82+7YccDsUEYnCwjFjOHP0aLfDkOFuuCTwC687m0/9z4cSdq313Atns2dTpdthiEgUjDHcdNYCt8OQYcwwTIbQF146h8//+hMJm7wBZp89jf191EwXkcRx7vjxzCgudjsMGc5O9R74jEWT+eqfbsHri+fOtv2XlZuJ6WPPcBFJHOqFi9uMtb0esRZ1hkof0b964yczbsYYvvPQF0jPTBv0ueIhMycDOwS/dBEZGhdNmczEwgK3w5DhKJEnsf37T6/nq/d9jnGRGdr9VTy2kP9+7MvkFIwY0PPdUDZplDY2EUkiHmO4eUnyz0jPSU2jODOLLF+q26FIP8T7HnjUhVw8Hg/nfmAJS9+3iBf+8ip/+s8H+9xXu1tO4Qi+9/evMLIsud4ZT1swiT2b9lM0ptDtUEQkSpdNn8Kdr7zB9sO1bocSlVSPl9kFZSwYOY4FRWM5bWQpualvj3jWdLSxtuYATx96i+eObqPd6RjiiHz4UheSmnEB09IuGeJryWD0uxKb1+tl+QfP5px/OYsX7n+FP/3XX3tN5Fm5mXz30S8zdlryLfEYVVHEhufedDsMEekHr8fD1y4+j+v+8IDboZxUhjeF2YVjmVdQwdyRFcwpKCPN2/NLcVFGFpeMncYlY6fhd1bwSvVunjr8Jquqt+CnLSYxpXhGkp+5jNyM5WSlL8PjyQFA/f9+SpZSql6vl+UfWso5H1gSTuTffZADOw6d0KZiVjlfvfczVMwsH3SgbjDGJPxkOxF5t/ljx3Dd/Dnc+9oGt0MhPy2ThSVlzB9ZzpmF45iWW0qKZ2CvK6keL+eOmsK5o6YQcK7g9bpdrKreyGv1mwjYln6dKy9tBmMyFzMq62yyU2dr0m4MJF0tdK/Xw/IPnc05H1jMq4+uYdOqrVjHYfayGSy5cn7SJ0BvSsKUixeRfvjShUvZWnWU9ZWH43rdiXkFzBs9mnmjyphXXMb47IIhWTKb4vGxpGgaS4qmEXCuYUPjW7xWt4YNDetwaHpX+1RPJhNHLGRi9gLGZi0kwzcy5jENe8mWwLt5vR7OvnoBZ199ai3jSMtIxd/pJzVdg0kiySTN5+M3H76Km//vUdbuHZqaDoWZmUwtLWLW6GLOGD2aM0tLKcjIHJJr9SbF42N+wQzmF8wgZD9MVUcVNV2HCTrtpHtSKUovoSS9Aq9Rh2TIuLAfuP41+zB2WhmVW6uYfOZ4t0MRkX7KzUjnD9e/j4fXb+GZrbupaW6jub2T5rZOWvvY68BjDCNzMinOzaY4bwSjckdQkjuCUXnZlOXlUFGYT35mRpx+kuh5jZexmWMZm6kNXuJOCTyxlE0q4cW/rlYCF0lSPq+H98+bzfvnzT7h+8GQQ0tnFy0dXXR0BQiGQng8HtJSfORkppGXmYEvwfZpkMTVXUo1npTA++D1ebGOirmInGp8Xg/5WRnkZyVeL1qSVJwLfymBR0HpW0RE+qIeeIKy1ib05isiIuKiISqX2hvd4IlCYWk+9Uca3Q5DREQSmHF6P2JNCTwK42eVs2ej9gYXEZFexHkzEw2hRyGnMJuWhla3wxARkQQW73vg6oFHTfe/RUSkB5bwLPTejj4YY8qNMc8ZY7YZY7YYYz7bW3v1wEVERGIgBj3wIPAFa+06Y0w2sNYY85S1duvJGqsHHiVfmg9/V8DtMEREJFEN8h64tfawtXZd5PMWYBtQ1lN7JfAojZs+hgPbD/XdUEREhp3uSmy9HcBIY8ya445P9ng+YyqAM4DVPbXREHqUxkwexUsPv87E08e5HYqIiCSa6O5z11pr5/XVyBgzAngI+Jy1trmndkrgUfL6vISCQ7CQT0RETgmxmIVujEkhnLzvtdb+tbe2SuAiIiKxMMgEbsLlPu8Ctllrf9JXe90D7w+tJBMRkR5EcQ+8L0uAjwDLjTEbIsdlPTVWD7wf8ktyaTjaSH5JntuhiIhIIrHAIHeutNa+RD+6iuqB98P4WWPZs3m/22GIiEgiUinVxJVXlENTTYvbYYiISALSdqIiIiLJKIpyqbGkBN5P2hJcRERORpuZJDhvqo9gIOh2GCIikkj6uv89BMldCbyfyqeO5sCOw26HISIiCSRcStX2esSaEng/lU8p5cD2KrfDEBGRROP0ccSY7oH3ky/FRygYcjsMERFJMEPRy+6NEvgAxPnfSEREEt0Q3efujRL4QGgmuoiInCCq3chiSvfAByC3KIfGmh53eBMRkWEoBrXQ+0UJfAAmzBrL3jcPuB2GiIgkku49wXs6YkwJfAC6NzUREREBwIJxej9iTffAB8gJDcG/hoiIJC/NQk8OoaASuIiIHEelVJNDWmYqHa2dbochIiIJQpXYksTE08axY81ut8MQEZFEoUlsyaFs8ij2b1NJVRERITx8rlKqycHj8RAMqKSqiIiAYWiGyXujBD4IjmMJhRy8Xg1kiIgMe6rEljzGzShj98ZKt8MQEZFEoHvgyWPmWVPY+PxWt8MQERG36R54csnMzqCxpsntMEREJAHoHniSycjJoKG6ifziXLdDETllNdY0s397FXWHG2mua8VxHNLSU0gfkU56ZhoZI9KPO9JIz0onPSuNlFQfxmj7QDk1KYEP0tzzZ/PyI2u4/Mbz3Q5F5JTR2tjGumffZM2Tm9jwwlaO7KsB6Hcy9vq8ZIxII2NERjixZ6bxvb9/mez8rKEIW4Y79cCTy9R5E3jgJ48rgYsMguM47Fq/lzdWbmTNk5vY9vrut/cb8Ay8Bx0KhmhtbKe1sf3Y94KB4GDDFTmJ+O8HrgQ+SB6Ph+KxhWx9bSczFk12OxzphbWW9uYOWhvbCXQFAPD6PHi84cPr8+L1eUhJSyE9Kw2PR3M8h1LD0UbWPLWJNSs3svapTTTXt779oNHvXpKMRQk8GV368fP45Wd/zw9WflX32xJEc30bb22sZOf6fezeWEnltoMc3VtNV1sn1lpwIn9o1ol8OPFrj8eQV5zLqPHFjJ1WxqQzxjNz8VTGzx6L1+d140dKatZaGqubeGvtHt58cRtrn97EznV7T0jUZhA9bZGEEOc9rpTAY2Dc9DLSMtK4+9sP8tFvXKOeWxw5jkNddQv7dx1lz5Yqdm7az1sbKjm6rwYbDIETglAIG3IgFH3lPCfkUH+4gfrDDWx9Zcex76dnpTF90RRmLp7KzCXTmL5oMlk5mUPxo/VLKBSio6WT9uZ2Otq68Hf4CQZChILhn9njMXh93mMjDd2jDh6vB2PCHQcn5BD0B/F3+unq8NPZ1kVXe9fbH9v9dLV30dXhJ9Dpx98VJOgPEgqFrxMKOoSCIZyQgxMKf+7v8NNc10rNgVpaGtreDlhvdOUUpFnoSepfv3ctNy/8Kk/8/llG5GaRkubDl+IjJS2FlFQvqWk+fKmRI8WLz+fFm+ILv6B6PceGco9/kX378xOHebuf4/F5T3iu8XiOvS5aC9bpfiF1CIUcnGAo/DHy4hoKOoQCQULWEMBDyHjwG0OXMXR5LZ0eS7tx6PI4dHhDdPkcAj6HkLE4Uf6PaqzB5xh8fkNqAFKDHlICkBqAlCCkBB18AQevP4gJBsAfCPeQgZAFxwHHWhwMIcfiWAiGLB1dAZqbOmioaSHgD4LjYEJO+AlDuFd7Z1sX65/ZzPpnNgPhxDh2+hgqZo+lbNIoistHkjMym4wR6e/4tzwucXpMOGE64X+bQFcAf4efzvYuutr9dLZ1hj+2d9HZ1klnW1fk6KSjNZyk25o76GjpoL05fHS2dw3ZzywiUVICT07jZ5Zz2z2f5s7b7qWroyucJFMdHMfBCXlxHIeUYKSnkuoj6PPiC4bwer3HJefj7sWecF+2l0R+fG/KY44NQ1rH4jj2WLI+vld0LKkHQwQDQRwMQeMjaAx+j5cuA50e6PQ4kUQeTt5dNny8ncB7+581HIfHGrwhQ4ofbMDgBDw4QbABcAJggw4hfwhfIAhdfkwgnMAdwqPcjjXhnyPydchagiFLV2eArs4AQZf3ZXccG0m8XceScHpH+P6513f8m6y3/w2Nx4O1FutYQsFQOIF3Bt6VvLsiCT3c6+0KJ/Tje8Ld7Tr8rv4ORIRIIRcl8KS19OoFLL16gdthDCt+f5DqqobwEPrWKnZuOsDODZU0HGkckuulpPqYPHcCMxdPZdbZ05mxeAp5Re7WAHAch672Ltqa2mlv6aSzrRN/h5+AP3hsJrfxHDfSc9ybCuMxeDzhN0nhN3ThNxTdbxy6e/5vv2kIv2HwdwYI+AOEAuE3gScbPg8FHbo6/LTUh4fQ/Z0BV39PIkNLs9BF+iU11ceY8UWMGV/E4gtnAeEJU7WHGsOT2DbsY/eGfVRuq6KmsganHx32EXlZlFQUMXZ6GZPPmMD0RZOZMm8iqempQ/TTDIzH44msc85wO5QeOY7D0coadq3by6ZVW1n79GYObNd2vHKKUQIXGRxjDEVl+RSV5bPksjnHvh8KhmisaaGtqS28jMyY8FC314PH5znWK01J85GVm5lwiTqZeTweSseXUDq+hKXXLALgaGVNeN33yo2sf/ZNOto6XY5SZJCUwEWGhtfnpbA0j8LSPLdDEaBkXBGXf/ICLv/kBQQDQba+tpM1Kzey5smN7Nq43+3wRPpH98BFZDjypfg4bel0Tls6nRu+ey0NR5vCRV6e3MiGVdtoODrwTYNSUn1kZKeTkZVO+og0reOXIWKP1ZGIFyVwEUk4+SW5XHjdUi68binWWqr311G5vYr6ww0017fihBxSM1LJyEo/VuM8IzuDjKw00kekv/39rDR8KXqZkzjRELqIyNuMMZSMG0nJuJFuhyLSMw2hi4iIJCn1wEVERJKQEriIiEiyUSEXERGR5GOhX5WiYkAJXEREJBbUAxcREUlCSuAiIiLJxmoZmYiISNKxYFWJTUREJAmpBy4iIpKEdA9cREQkyVirZWQiIiJJST1wERGR5GPVAxcREUk2KqUqIiKSfLSdqIiIyOAFg0F8vjinuDivA/fE9WoiIiJxcPbZZzN//nwef/xxnDjcm7aAdWyvR6wpgYuIyCln8eLFrFu3jmuvvZaKigp++9vf0tnZOXQXtDbcA+/tiIIx5hJjzA5jzC5jzFd6a6sELiIip5wvfOELpKam0trayoEDB/jCF75ASUkJX//616mpqRmSaw62B26M8QK/Ai4FZgAfNMbM6Kl91DcIXnjhBXbs2BFtcxEREVf5fD6MMVhraWtrA+BHP/oRP/rRj3j/+9/PPffcM95auzdmFxz8PfAFwC5r7R4AY8yfgSuBrSdrbGwU096NMT7AD5jBRiciIpIgtltrp8fiRMaYJ4CRfTRLB44fx7/dWnv7ced4H3CJtfYTka8/Aiy01n76ZCeLqgdurQ0aY9ZZa+dF0/5UZ4xZo99FmH4Xb9Pv4m36XbxNv4u3xfN3YYwxwC5gwnHf9gMO8ATwXWvt2lhdz1p7SQxOc7JOco+9bC0jExGRU9FyoDjyeXvk4x3Aj621B9wJqU8HgfLjvh4DHOqpsRK4iIicir4JZAI1wPeBO6y1Le6G1Kc3gMnGmPFAFXAt8KGeGkc1C90YcwkwJppp7acyY8zvjDHVQKnbsbjNGFNujHkOKDPGbDHGfNbtmNxijEk3xrwOlER+F992O6YEcIcxZr0x5jG3A3GTMWYfMMoYs8EYs8bteNxkjMkLfzDbjTHbjDFnDfEl/wp8EBhtrf1JEiRvrLVB4NPASmAb8Bdr7Zae2vc5iS0yrf0t4ELC3fs3gA9aa086K+5UZoxZBrQCf7TWznI7HjcZY0qBUmvtOmNMNrAWuGqY/n9hgCxrbasxJgV4CfistfY1l0NzjTHmVmAekGOtvdzteNwSSeDzrLW1bsfiNmPM3cCL1to7jTGpQKa1ttHlsJJaND3wY9ParbV+oHta+7BjrV0F1LsdRyKw1h621q6LfN5C+N1imbtRucOGtUa+TIkc8S2KnECMMWOAFcCdbsciicEYkwMsA+4CsNb6lbwHL5oEXgYcf8P/IMP0hVpOzhhTAZwBrHY5FNcYY7zGmA1ANfCUtXbY/i6AnwFfIjzbd7izwJPGmLXGmE+6HYyLJhC+F/37yK2VO40xWW4HleyiSeD9mtYuw4sxZgTwEPA5a22z2/G4xVobstbOITxrdIExZljeYjHGXA5Ux3J5TpJbYq09k3BlrZsjt+GGIx9wJvD/rLVnAG3AsJ1PFSvRJPB+TWuX4SNyv/ch4F5r7V/djicRRIYFnwdisSY0GS0Brojc+/0zsNwY8yd3Q3KPtfZQ5GM18DDhW5LD0UHg4HEjUw8STugyCNEk8GPT2iMTD64FHh3asCTRRSZu3QVss9b+xO143GSMKYrMsMUYkwFcAGx3NSiXWGtvs9aOsdZWEH6teNZae53LYbnCGJMVmeBJZLj4IuBNd6Nyh7X2CHDAGDM18q3z6aE8qESvz3XgkSps3dPavcDvepvWfiozxtwHnAuMNMYcBL5prb3L3ahcswT4CLA5cu8X4D+stf9wLyTXlAJ3R1ZseAgv/RjWy6cEgBLg4fB7XXzA/1lrn3A3JFfdAtwb6QjuAT7ucjxJL6pa6CIiIpJYtJ2oiIhIElICFxERSUJK4CIiIklICVwkgRhjvmWM+WIfba43xow+7us7jTEzhj46EUkk2o1MJPlcT3g5Uvca40+4Go2IuEI9cJE+GGMqIjso3W2M2WSMedAYk2mM+b4xZmvkez+KtC0yxjxkjHkjciyJfP+EnrUx5s1ICVqMMV81xuwwxjwNTD2uzRxjzGuR8z9sjMk3xryP8CYh90Z2uMowxjxvjJkXeU6rMeZ/IqU7nzbGLIg8vscYc0WkjdcY88NIfJuMMf8Wr9+liMSOErhIdKYCt1trTwOaCW/5dzUwM/K970ba/Rz4qbV2PnANfWzoYYyZS7jgyRnAe4H5xz38R+DLkfNvJlx34EFgDfBha+0ca23HO06ZBTxvrZ0LtETiujAS63cibf4VaIrEOB+4MbL/sIgkEQ2hi0TngLX25cjnfwJuBTqBO40xjwPdhVsuAGZEincA5HRX4+rBUuBha207gDHm0cjHXCDPWvtCpN3dwANRxOkHuouFbAa6rLUBY8xmoCLy/YuA0yK9eYBcYDKwN4rzi0iCUAIXic47Kx4FCNe1Pp9wD/rTwHLCo1pnvbNnbIwJcuKIV3ov5x6MgH27OpMDdAFYax1jTPffuwFusdaujOF1RSTONIQuEp2xxpizIp9/ENgA5EZKx34OmBN57EnCyRwI38eOfLqPyOYNxpgzge4h61XA1ZF72dnAewCstU1AgzFmaaTdR4Du3ngL0Fuvvi8rgX+PbEaDMWaKtnYUST7qgYtEZxvwMWPMb4GdwLeAx4wx6YR7tJ+PtPsM8CtjzCbCf1+rgE8R3rXto5G68W8AbwFYa9cZY+4n/IagEnjxuGt+DPiNMSaTE2tH/yHy/Q7gLPrvTsLD6esim9LUAFcN4Dwi4iLVQhfpQ2S2+GPW2mG5x7eIJCYNoYuIiCQh9cBFRESSkHrgIiIiSUgJXEREJAkpgYuIiCQhJXAREZEkpAQuIiKShP5/Zn6BD9pr4usAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 504x324 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"st.plot_stream(adata,root='S7',color=['TNF', 'IFNG', 'CCL3'], factor_num_win=5)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABUoAAAEYCAYAAACKtsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xcxdXw8d/Zql4tuXcbFzAYMBjTWwi9hQRCICEkpJJAypM8yZM3PaQHEkhIILTQA5jemykG3DvuvUhW79K2e94/7lWXLMmWJds6Xz6Ldm+du15pds49MyOqijHGGGOMMcYYY4wxxgxkvv4ugDHGGGOMMcYYY4wxxvQ3C5QaY4wxxhhjjDHGGGMGPAuUGmOMMcYYY4wxxhhjBjwLlBpjjDHGGGOMMcYYYwY8C5QaY4wxxhhjjDHGGGMGPAuUGmOMMcYYY4wxxhhjBjwLlBrjEZEtInJ2N7ZTEZmwl+fY632NMcYYY4wxxpj+IiI/F5GH9nLfUSJSIyL+3i6XMb3JAqXGGGOMMQNcd28W7ucy3C8iv96L/WpEZFwn664Tkff3sVxNjUJr5BljjOkuETlZRD4QkUoRKRORuSJynIicISIrRKRCREpF5GkRGd7f5e1tbb9bqOo2VU1T1UR/lsuYrlig1BhjjDHGHLS8RtemPjqXNfKMMcZ0SUQygBeA24EcYDjwCyACfAx8UlWzgGHAeuDO/impMaYtC5Qa04aIHC8iH3p3+ApE5A4RCbXZ7HwR2SQiJSLyRxHxtdj/ehFZLSLlIvKqiIzu40swxhhj9gsRCfR3GYwxxpiDwGEAqvqoqiZUtV5VX1PV5aq6W1V3tdg2AXQ5PJuIzBGR34rIfC9L9VkRyfHWJYnIQ16GaoWILBCRwd66TBG5x2vb7hSRXzf2jGjblV5ExnjDxQW812NF5B0RqRaR14FBbcp0sYis8s45R0SmeMsfBEYBz3s9MX7QwbHneGX5wNvmeRHJFZGHRaTKu4YxLc41WURe97Jz14rIZ3r+z2JM1yxQakx7CeA7uJXALOAs4BtttrkMmAEcA1wCXA8gIpcCPwYuB/KA94BH+6LQxhhjzD46TkQ+9m703ec1uk4XkR0i8kMRKQTuE5FsEXlBRIq9bV8QkRGNB/EaPr/yuhhWi8hrIjKoxfrGrogVIrJdRK5rUYZsEXnR22+eiIzvqtDSYvxvr4H1nNfAmg90ub+331+9slSJyCIROaWT7do28r7o3Ryt9m6gfrXFtoO896bCa9S91/LGqjHGmEPaOiAhIg+IyHkikt1ypbhDuVQA9cD3gT9087ifx217DgPiwN+85V8AMoGRQC7wNe/YAA94204AjgbOAb7czfM9AizCbRv/yjtP4zUchtvWvRm37fsSbmA0pKrXAtuAi7yeGJ1d31XAtbgZt+OBD4H7cLNwVwM/886VCrzulScf+CzwDxE5vJvXYUy32Zc1Y9pQ1UWq+pGqxlV1C/Av4LQ2m/1eVctUdRtwG+4faoCvAr9V1dWqGgduAaZbVqkxxpiDwOeAT+I2VA4DfuItH4LbYBkNfAX3++N93utRuA2xO9oc62rgi7iNmRBuIxARGQW8jNsVMQ+YDixtsd9ncbsmZgMbgN/08Br+DjQAQ3Ebktd3c78FXllycBthT4hIUjf2KwIuBDJwr/dWETnGW/c9YAfudQ7GvZGq3SyPMcaYg5iqVgEn4/7dvxso9m7kDfbWb/O63g/CrW/XdPPQD6rqSlWtBf4f8BkvOzSGGyCd4GWwLlLVKu985wE3q2qtqhYBt+IGKPfIq7OPA/6fqkZU9V3g+RabXAm8qKqvq2oM+BOQDJzYzWsBuE9VN6pqJe73g42q+obXln4CN7ALbl27RVXv89rpi4GngCt6cC5jusUCpca0ISKHeRkghSJShRvsHNRms+0tnm/FvaMHbqPxr172SAVQBgjuHTJjjDHmQHaHqm5X1TLcAGXjTUAH+JnXSKpX1VJVfUpV61S12tu27Q3F+1R1narWA//FDUKCG4x9w+uKGPOOtbTFfrNVdb7XQHq4xX5d8hqKnwJ+6jUGV+Jm0XRJVR/yyhJX1T8DYWBSN/Z70Wvgqaq+A7wGNGajxnADtqO9a31PVS1QaowxA4SXPHOdqo4AjsBtM97WZpsy3LrqWene8DZt26FB3Lbqg8CrwGMisktE/iAiQdz2aRAoaNFG/RfujcyuDAPKvaBsy3O2XN/0WlUdr3w9afvubvG8voPXad7z0cDMxmvwruNzuDdzjelVFig1pr07ce/oTVTVDNwMEGmzzcgWz0cBjWPMbAe+qqpZLR7JqvrBfi+1McYYs286uwlYrKoNjStEJEVE/iUiW70biu8CWdJ6JvjCFs/raG7ojAQ27qEMne3XHXlAoIPr6JKIfM/rQl/pNb4yaX+TtKP9zhORj7yu9RXA+S32+yNuVuxrXrf8/+3+pRhjjDmUqOoa4H7cgGlbAdzAZUY3DtW2HRoDSrwbcr9Q1am4GZ0X4nbT3447gdSgFu3TDFVt7LJeC6S0OGbLwGMB7pA4qW3O2WgXbgATABERr3w7vUW9eXNwO/BOm3Z2mqp+vRfPYQxggVJjOpIOVAE1IjIZ6OiP7/94Y7SNBG4CHveW/xP4UeNYKeIOnP3pvii0McYYs486uwnYtqHzPdxsy5neDcVTveVtbyp2ZDvdHDd0LxTjjsHW9jr2yBuP9IfAZ4BsrytkJV1cj4iEcbv9/QkY7O33UuN+qlqtqt9T1XHARcB3ReSsHl6TMcaYg5C4Ew99r3EMb6/d+FngIxG5XEQmiYhPRPKAvwBLvOzSrlwjIlNFJAX4JfCkqiZE5AwRmebdtKzCDaAmVLUAt7fDn0UkwzvneBFp7AmyFDjVGzM1E/hR44lUdSuwEPiFiIRE5GTc+qzRf4ELROQsL3v1e7hB2cYkod3AuJ6+d514AThMRK4VkaD3OE68yaOM6U0WKDWmve/jjq1WjTuezOMdbPMs7qDWS4EXgXsAVPVp4Pe4XR6qgJW4Y8IYY4wxB7pvisgIcWfQ/TEd13/g3lCsByq8bX/Wg3M8DJwtIp8RkYC4ky9N36dSe1Q1AcwGfu5lvU6lxaQTe5COG2AtBgIi8lO6l9UTwu2iXwzEReQ83AkyABCRC0VkgpdhU4U7WWSiJ9dkjDHmoFUNzATmiUgt8BFu2/B7uF3TX/G2WYE7xM1l3Tzug7iZqYVAEvBtb/kQ4Enc+mY18A7QOJv953HrrI+Bcm+7oQCq+jpufb8ct337QpvzXe1dRxluff+fxhWquha4Bnfc8RLcIOpFqhr1Nvkt8BOvq/z3u3l9HfKG+jkHd2zVXd71/x63HjamV4kNlWSMMcYYM7CJyBbcMcuuxe1y/yxuj4rjgYe88dUatx2GO+HRDNzGyp9xe1QEVTUuInO8ff7tbX8d8GVVPdl7fQpuFuYU3MzNn6jqAyJyP7BDVX/ibXd623N3UnbFHS5ng5eZcx9ulusa3PHazmg8dyf7+4G7gE/jdkG8FfiGV+Y3ROTnuJNjXCMiY4DNLa71m8BPcRtqz+OOA7dBVX8iIt/B7XWSh9sw/Zeq/mpP12KMMcZ0pm39aozZPyxQaowxxhhjjDHGGHMAs0CpMX2jO7OqGWOMMcYYY4wxxpj9SERqOlllw7kZ00cso9QYY4wxxhywvK76L3e0TlXT+uoYxhhjjDHm0GeBUmOMMcYYY4wxxhhjzIDX713vBw0apGPGjOnvYhhjzIC0aNGiElXN6+9ymP5hdbAxxvQPq38HNqt/jTGme1rWl588I1VLyxLtt1keeVVVz+2tc/Z7oHTMmDEsXLiwv4thjDEDkohs7e8ymP5jdbAxxvQPq38HNqt/jTGme1rWl6VlCea9OrLdNoGhGwb15jn7PVBqjDHGGGOMMcYYY4wxnVEUR539fh4LlBpjjDHGGGOMMcYYYw5oCSxQaowxxhhjjDHGGGOMGcAUcNj/E9JboNQYY4wxxhhjjDHGGHMAs673xhhjjDHGGGOMMcaYAU6BhGWUGmMORvGEsrGggaBfGDMkjE+kv4tkjDHGDAgVu+uorYgwaGQa4ZRgfxfHGGOMOSjUxiO8sGMR7xWtIewPcsGwozl9yFR84uvvopkWrOu9Meags7MkygOvF1NT56bE52UFuP7cPDJT7c+NMcYYs784CYePntnEjrXlAPgDwjHnjmHskYP6uWTGGGPMgS2aiPPjJY+ypbaYsC+Iow5/W/sya6p28Y1J5/R38YxHgZju/0CphcaNMb3q6bllTUFSgOKKOK8sqOzHEhljjDGHvs3LS5qCpACJuLL4lS1E6uP9WCpjjDHmwPdhyTq21ZaQEUgmyR8kJRAmLZDM64UrKKyv6O/iGU9j1/u2j95mgVJjTK9piDrsKom1W76pINIPpTHGGGMGjqKt1e2WJeJK6Y72y40xxhjTbEX5NhSQFkPG+UTwibCxenf/Fcy0oTgdPLpDRL4jIqtEZKWIPCoiSZ1ta4FSY0yvCQWF1OT2f1ay0/z9UBpjjDFm4EjLCne4PLWT5cYYY4xxDU7OardMVVFVskKpfV8g0yFVSHTw6IqIDAe+DcxQ1SMAP3BVZ9tboNQY02t8Ipw5PaPVMvHBmUdndLKHMcYYY3rD+GPySWozHvjIKdlk5qX0U4mMMcaYg8MZQw4n5A9QF480BUir4/UMTc5iSuaw/i6e8bhd79s/uikAJItIAEgBdu1pQ2OM6TWzpqYzKDPI8k11BPzCjMNSGT4o1N/FMsYYYw5pKRkhzv7i4WxcXERtZYT80RmMsYmcjDHGmC4NCqfziyM/zW1rXqK4oQpFOSJrFDdPOd9mvT/AOF1v0o6q7hSRPwHbgHrgNVV9rbPtLVBqjOl1E4cnMXF4p0N+GGOMMWY/SMkIMe30Ef1dDGOMMeagMyVzOP88/svsbqgk7AuQHU7r7yKZNhQhodLRqkEisrDF67tU9a7GFyKSDVwCjAUqgCdE5BpVfaijg1mg1BhjjDHGGGOMMcYMaCLCkA7GKzUHjk4ySktUdcYedjsb2KyqxQAiMhs4EbBAqTHGGGOMMcYYY4wx5uCiQFT3aiiEbcAJIpKC2/X+LGBhZxv36WALIpIlIk+KyBoRWS0is/ry/MYYY8xAZXWwMcYY0/es/jXGmN6hgIO0e3S5n+o84ElgMbACNxZ6V2fb93VG6V+BV1T1ChEJ4c40ZYwxxpj9z+pgY4wxpu9Z/WuMMb0k0Y3AaEdU9WfAz7qzbZ9llIpIBnAqcA+AqkZVtaKvzm+MMcYMVFYHG2OMMX3P6l9jjOk97mROvnaP3taXXe/HAcXAfSKyTUSKRWRxcXFxHxbBGGOMGZCsDjbGGGP6ntW/xhjTi/am631P9WWgNAAcA9ypqqOAR4AX8/Ly+rAIxhhjzIBkdbAxxhjT96z+NcaYXqJAQqXdo7f1ZaB0B7DDG0QV3IFUj+nD8xtjjDEDldXBxhhjTN+z+tcYY3qNkMDX7tHb+ixQqqqFwHYRmeQtOgv4uK/Ob4wxxgxUVgcbY4wxfc/qX2OM6T2qEFN/u0dv68uMUoBvAQ+LyHJgOnBLH5/fGGOMGaisDjbGGGP6ntW/xhjTC7SPMkoDvX7EPVDVpcCMlstmzJjR8cbGGGOM6TVWBxtjjDF9z+pfY4zpPftj8qa2+jRQaowxxhhjjDHGGGOMMT3hTua0/zvGW6DUGGOMMcYYY4wxxhhzwGrser+/WaDUGGOMMcYYY4wxxhhzQHMso9QYY4wxxhhjjDHGGDOQuV3vbYxSY4wxxhhjjDHGGGPMgGZd740xxhhjjDHGGGOMMQOcAjHd/2FMC5QaY4wxxhhjjDHGGGMOWO5kTtb13hhjjDHGGGOMMcYYM5CpTeZkjDHGGGOMMcYYY4wZ4BRsjFJjjDHGGGOMMcYYY8xAJzg2670xxhhjjDHGGGOMMWYgUyBhXe+NGRgSjrKjOEpKko+8zGB/F8cYY4wZMKrLGojUxcgemorfv/+/fBtjjDGHmrpYhPs2zWFB6UZyQul8etRMTsibiMj+z/4zA4d1vTdmgHh9USVPvldGJOaQFPRxzGEpfPGcfIIBq1SMMcaY/aWqpJ5X7lpJxe46fH4hIy+ZM66ZTN7I9P4umjHGGHPQKKgr5/Mf/IPqeH3TskVlG7lmzCnccNhZ/Vgyc6hRhJj69/t57La5Mf1o3c56Hn27lPqIg+NAXcRh3upa3l1R1d9FM8YYYw5Z6iiv3LWC8sJaVJVE3KG8oJZ3H1uHOtrfxTPGGGMOGr9eOZvqeB1B8RMUPwF8RJ0E/932IUUNlf1dPHOIcfC1e/Q2C5Qa04/eXV5NPNG6QRaLK0s21PZTiYwxxphDX/H2aqpLI+2WV5XUU1lc38EexhhjjGmrNh5hdeVOpMUEOyKCD6EuEWVtVUE/ls4cahQhoe0fvc263hvTjwI+QQS0TfJKanj/p5MbY4wxA5U64PMLxNqvS0qzscKNMcaY7lBVfNJ5/l1GMLkPS2MGgv2RQdqWZZQa049mTkkjNan1r2EwIJw3M7OfSmSMMcYc+vJGpZGZ377xNvaoQSSlWqDUGGOM6Y60YBLTskaCgIOb/aOqJDRBbjiNI7JG9nMJzaFElT7JKLVAqTH9aMqoZK45axBDc4IkhXwMHxTk5suHMGZwUn8XzRhjjDlk+fw+zvrCVEYfkUsoOUByWohpp4/gtKsm9XfRjDHGmIPK96ZexPCUHFSVmMaJ45ARTOYvx3wB/x6yTY3pOcFRX7tHb7Ou98b0sxMPT2fW1DQcBb/PZro3xhhj+kJmXjLnfmUaiYSD328NOWOMMWZvjEjJ4cETb2Ru8RrWVO5iXFo+nxh6JEG/hZtM71IgsR8Co23ZJ9eYA4CI4LcYqTHGGNPnLEhqjDHG7JvkQIizhx7J2UOP7O+imEOcw/4PnFig1BhjjDHGGGOMMcYYc8BShJju/4mvLVBqjDHGGGOMMcYYY4w5YFnXe2OMMcYYY4wxxhhjjEGs670xxhhjjDHGGGOMMWaAU/bLLPdtWaDUGGOMMcYYY4wxxhhzwHK73ltGqTHGGGOMMcYYY4wxZoBzLFBqjDHGGGOMMcYYY4wZyBSxrvfGGGOMMcYYY4wxxpiBTYGYBUqNMcYYY4wxxhhjjDEDm+BggVJjjDHGGGOMMcYYY8wApmpjlBpjjDHGGGOMMcYYY4zNem+MMcYYY4wxxhhjjBnYFGwyJ2OMMcYYY4wxxhhjzEAnOFhGqTHGGGOMMcYYY4wxZoCzMUqNMcYYY4wxxhhjjDEDmtv13gKlxhhjjDHGGGOMMcaYAUxViKt/v5/HAqXGGGOMMcYYY4wxxpgDmmWUGmOMMcYYY4wxxhhjBrS+6nrv2+9naENE/CKyRERe6OtzG2OMMQOV1b/GGGNM/7A62Bhjeoej0u7RHSKSJSJPisgaEVktIrM627bPA6XATcDqfjivMcYYM5BZ/WuMMcb0D6uDjTGmF+xtoBT4K/CKqk4GjmIPf5P7NFAqIiOAC4B/9+V5jTHGmIHM6l9jjDGmf1gdbIwxvUM7CJJ2J1AqIhnAqcA97nE0qqoVnW3f1xmltwE/AM4HThaRhcXFxX1cBGOMMWbAuQ23/nWAUSKy0OpgY4wxpk/chrWBjTGmVzhIuwcwqLF94z2+0ma3cUAxcJ83DMq/RSS1s3P0WaBURC4EilR1EfAC8L6qzsjLy+urIhhjjDEDTpv6F2Cbqs6wOtgYY4zZv6wNbIwxvUeBuONr9wBKGts33uOuNrsGgGOAO1X1aKAW+N/OztOXGaUnAReLyBbgMeBMEXmoD89vjDHGDERW/xpjjDH9w+pgY4zpRXs5RukOYIeqzvNeP4kbOO1QnwVKVfVHqjpCVccAVwFvqeo1fXV+Y4wxZiCy+tcYY4zpH1YHG2NM71H2boxSVS0EtovIJG/RWcDHnW0f6J3iGmOMMcYYY4wxxhhjzP6hdHuW+7a+BTwsIiFgE/DFzjbsl0Cpqs4B5vTHuY0xxpiByupfY4wxpn9YHWyMMftI6W5X+/a7qi4FZnRnW8soNcYYY4wxxhhjjDHGHLCUvQ+U9oQFSo0xxhhjjDHGGGOMMQc0tUCpMcYYY4wxxhhjjDFmYOv2LPf7xAKlxhhjjDHGGGOMMcaYA5YqOI5vv5/HAqXGGGOMMcYYY4wxxpgDmtMH57BAqTHGGGOMMcYYY4wx5oBlkzkZY4wxxhhjjDHGGGMMfTOZ0/7v3G+MMcYYY4wx5oAnIski8o6I+EVkjIjM8ZaniMjDIrJCRFaKyPsikiYiI0XkbRFZLSKrROSmFse6X0RO7+J8PxeR67znJ4jIPBFZ6h3v597yySLyoYhEROT7bfbf4v3ME5FXeu+dMMYYc+BxJ3Nq++htllFqjDHGGGOMMQebn2deDdwCjAK2AT/m55WP7ONRrwdmq2pCpFXj8yZgt6pOAxCRSUAMiAPfU9XFIpIOLBKR11X147049wPAZ1R1mYj4gUne8jLg28Clne2oqsUiUiAiJ6nq3L04tzHGmIOA6v4/h2WUGmOMMcYYY8zBxA2S3g2MBsT7ebe3fF98DnjWe57ADVICDAV2Nm6kqmtVNaKqBaq62FtWDawGhnubVQLRLs5XA9R7z/OBAu9YicZgq6oWqeoC3MBsW8Utnj/jld+YXuWoQ02sAUf7YhoZY0xnVN2u920fvc0ySk2vUMehbsUyoju3ExiUR+pRx+ALh/u7WMYYY8whr6K4jq3LSxGfMOrwHLLyU/q7SMaY/e8WoO0ve4q3fK+ySkUkBIxT1S0AqroduNxbfS/wmohcAbwJPKCq69vsPwY4Gpjn7X8TXVDVP7V4eSuw1uvu/4p3joYu9j+uxcuFwK+7Oqcx3RVNxPjLxy/y1u5VKEp+UibXjTuNTww7sr+LZsyA5Tj7P9/TAqWmRxzH4etf/zorV67E5/MxatQoPjPlMG645XeMzUgHEX5y5qnMmDWLwV/6Or7k5P4usjHGGHPQ66j+vfJT1/D5z19DXsZIAK48/RtMO3w6J31qAiMm5/RziY0x+9moHi7vjkFARUcrVHWpiIwDzgHOBhaIyCxVXQ0gImnAU8DNqlq1NydX1V+KyMPeOa4GPguc3oNDFAHD9ubcxrStZ4tS4nDmODb//lnCI3IBGPnlMymP1hL2Bzl18JR+LrExA1NfdL23QKnpkVdeeYV4PM7cuXMpfe1lNt93F2vff4fTRwzllhOPb9ousmUztUsWkn7iKf1YWmOMMebQ0LL+jdRGueO7L/Pm/auZOnImnzuteW6TyqJ6VszZaYFSYw5923C723e0fG/VA0mdrVTVGmA2MFtEHOB8YLWIBHGDpA+r6ux9OD+quhG4U0TuBopFJFdVS7u5exLN3fiN6ZHGevbvzz3IDfP/TUp1PXWbi8g8bgJjbj4fcAM0pQ3VPLZlrgVKjekHCvtl8qa2bIxS0yNpaWmsXLmSt//3fyh/5AGyvO717+0s5LMvv8kv5i+idEyc0sPKKK1bgdo4LsYYY8w+a6x/33tjPv/+3vskSToAq7cv5NZnb+K/799ONB4hFkmwe0sltVWRfi6xMWY/+zFQ12ZZnbd8r6hqOeAXkXbBUhE5SUSyvechYCqwVdwZn+4BVqvqXzo7toj8VkQu29P5ReQCaZ5BaiLuGKkVPbiEw4CVPdjemCbh5DCvzn+Xa578HQCBdLdnZOXiTaz5nwfZ8o/XiNQnaHCEJWU72Vhd1J/FNWaAErSDR2+zQKnpkfFLF3BpEH70wH8446kXuO/jtRyem80bl1/AIxeehW9KkH9tX0vNFIedI9eyrvTh/i6yMeYgJCL3ikiRiKxssexxEVnqPbaIyNJ+LKIxfWpM3lQmp5/Gl77wFX72yOd4e/lTjBp0GD+76j9855K/khRK4c1l/wUg1pDg9XtWUVlsiVXGHLLc2e1vALbiJtlsBW7ohVnvXwNO7mD5eOAdEVkBLMEdD/Qp4CTgWuDMFnX0+R3sPw0o7OLc1+KOUboUeBD4nKomRGSIiOwAvgv8RER2iEhGB/ufAbzY9SUa09qjm97nfxveJHD2YWz9x6ss/+I/KHxmPinjh3DE3V9j/O8+jy85TPHTHwGQUPjh4v9SGqnp55IbM8Bo44ROrR+9zbrem26pXbWCglv/APEYn54wlk9PGEt1NMbVr7zFWSOHMyo9jdpxcMbI0dx913IkGMSXnEJ5/WqqGjaTkTS2vy/BGLOfzL9qw9W4k0eMwu3y9+PjH5uwrw21+4E7gP80LlDVKxufi8ifcWfTNeaQFo8meOqPiyjZXsPxE87l+AnnUh+t5bbnvsO0MbMYlOEOx3fcxLN4bt49AKRmhYnWJ1g9dxcnXDq+P4tvjNmf3KDovta3bd2BG5B8o+VCVf0PLerkFt6HbqXzBFX1wz1toKpXdbK8EBjRjXNcDFzSje2MAUBV+daCe/modCMAg845ikHnHEWiLsLa/3mIrOMnEhycjSJknX4Ehf95GwGGJmdSn4jx2q6VfHbsCf17EcYMNNb13hwIosVFFNz2R4jH2F1XT3U0BkBaMEBqMEBtzH0dy4Yli4sYOSqD4ODBNPacqYvv7rey94WaDfUUv11FtDze30Uxps95QdK7ccdJE+/n3d7yvaaq7wJlHa3zuuV9Bnh0X85hzMHg+b8vo2R7DRW1JdRHawFICqYQDibTEGvOGF23cymDs0aQnB4kEPIDUFVyiGeU1lfAkkdg8/v9XRJjDhmqugR4W0T8vXzcT/bm8doSkTzgL97wAcZ0KZqI859N7zKvdCMoRIqridVESDiChsP4kkNEa+PE1Y+qULN8C+HhuST7w6QEwgiwrba7w+ce+N7bvoWLn3yQI+/9G2c9di9vbt3Q30UypkOWUWr6jRONUvnmq9StWklkxzaIRdldV09hbR23LFiCT4S4KmeOGMbiohJ+/MECQm8HSB0d4gc/mkmitpZAZhYA6aF9mXzzwOUkHNbesouatQ2oAwhkHZPCxO8MRXz7/y6HMQeIW4CUNstSvOW9neXS6BRgt6qu30/HN6Zf7Vhbxqr3dlFdVs/uTdXUNFRSUlXAc/PuRkRIOAmmjZ7FpsKVPDznT4QCYdKSMvnc6f9DLJJoOk7O8LR+vIr9bOH98NpPIF4P6kBKHnzxRRg0sb9LZsxBT1Xv7e8y9JSqFgPP9Hc5zIFvXvF6frniKYojVShukCVWWUd9YSUF97+NiKAJh4zjJ1Kzegfbb38RCQUIZKQw/FsX0RCP46iiKJMzh/b35fSK5zas5rtvvkTcizhVRcv40svPcO3Uo/jVqZ/o59IZ05r2QUapBUpNO2Uvv0DZk49BojlDcl5hEX9YtIwfHHsUj59/drt9Pjd5IgpUnASyBbSggvjRQfIyjyUlMKTvCt+HCp6tcIOkjW1ShYoFdSz//jaGXZZN3ikdDZ1kzCGnszsh+/MOyWexbFJzCKosquOZW5dQU948EVMsEeXhOX8iL3MYN198Kz5f6ySvUw9v3cs0HnWoKW8ga3AK44/O65Ny97lILbz+/yBWiztYFVBbBP88BY6+Bs76KSRZHWyMMaZZPBHnm/PvZVHFFsDtBqUKTiTGlltfJGl0PhN+/3k34UVpmiAm9/wZOA4kHB+K0BCHj8t2k5OUzOBwVr9dT2/61ftvNwVJBbdaBXjw42U8tnoFXzt6Bt87/tR+K58xjVRBHet6b/pQ/fq1bP6fb1H2+EOtgqQARw3KYXxmBn9evJzVZR33aBEgey5kzoes9x0G/aOY4N3LKPjbn4kVHXrd76tW1DUHSaGpRonsirH570XMv3oDpfOq+qVsxvShbT1cvk9EJABcDjy+P45vTH+IRRK8ft8qHvrpR62CpABBf4gZE85k/a7lvL70MbQb/Yvqq2NUFNXx5gOrWfNhwf4qdv/Z+KabSdrUlFP3Ea+HBXfD70bCvRf0YwGNMcYcSF7csZiTX/tZU5AUmrvr+sJBsk+dTPXSTZS+srjdvokEJBw/LYfijauPmqjy0yUv8urOj/dz6fevhONQ2lAHtA6SNoqpw+2L5zPhn3+iqLq6z8tnTDsq7R+9zDJKDYnaWoru/Re1ixd0OsBDUiDAT44/mv+dO59bFizlNycex6j0jrv0iddewXGIV5TjC4cpe/5pBn/pa/vvIvpBMLvFr09Hb5sDG28tYtfYcqb+YgT+UMdDPTmOw9e//nVWrlyJz+dj1KhRfPKTn+Tvf/874XCYYcOG8cADDxAOh/fPhRizb36MO0Zpy+73dd7y/eFsYI2q7thPxzemT618bwcfPLWRWEOi022OnXAGNQ2VfLT2VdKSszhpStdBwIaaOMlpCZa/vYMh4zLJGtx2hIyDWO54mhqsncWNt70Pv8iF616E0R1PtGH1rzHGHNpWV+zkO4seoDRa02l1oUDuGUcQKayi7LWlhPIzST92QtPYh26Q1OVOweFmnNYlokh9HX9a8SZnDJ1EyNerw/r2GZ8Ifp8Px3H2uF0cOP7hf3Ht1On86tT2PUytTjV9ZX+MSdrWHjNKRcQvIl8VkV+JyElt1v1k/xbN9IXdD9zD5hu/TO2i+V1+4jJCIX4281gCPh+/nLeY0vqGDrdreRStryOyZRPVH7xHxZw3e7Hk/W/Y5dlIsOu7F/WbYyz+4mYqltd2uP6VV14hHo8zd+5c3nvvPW6//XZOPvlkPvjgA959911GjRrFQw891NvFN6ZXeLPb3wBsxf313wrcsK+z3ovIo8CHwCQR2SEiX/JWXcUA6XZvdfChrXBzBXff/A7vPLxuj0HSRqcefglHjD6B9z9+gWXdmLxIHaVsVy3F26t5/b5VxONdn+OgMfhwGHJk19tpHO77JDxyFXTQALT61xjTEat/Dw1Pbv2Qz3/49z0GSRuJCHlXzCJ5wlB2P/o+tRuLiCd8xOIB3Btz7qNp8hjcaqUiGmFzVQVff//xbvX4OBCJCGeMGgt0fu+xpQc/Xsr5TzxANNH6e4XVqaav9MVkTl11vf8XcBpQCvxNRP7SYt3lvV8c01ciWzdT8I+/Uf326z36ZA1OSeanxx9DbSzOL+cvpjrqznivLR7QwR/ZRIKSB++lYcumXij9gSFlRJjJPxlKOD/YsidGhzQB635XwNrf7aShINpqXVpaGitXrmT16tUA5OTkMG7cOPx+965kKBQiELDkb3PgOv6xCY8c/9iEMcc/NsHn/dznSZxU9bOqOlRVg6o6QlXv8ZZfp6r/3PdSHxSsDj4ENdTG+Pj9XTzzl6VEuxEgbSQinHvMNYwbcjivLXmEDbuWd29HhaIt1bxx78HdNbCd61+FSRdCMLnrbde9DLcfA4sfbLXY6l9j2hORZBF5xwsWjhGROd7yFBF5WERWiMhKEXlfRNJEJElE5ovIMhFZJSK/aHGs+0Xk9C7O93MRuc57foKIzBORpSKyWkR+7i2fLCIfikhERL7fZv8t3s88EXmll94Gq38PYjvqyvjB4of4/cfPd2t7ARIqSCDI0C+eTSA7jcL73iBaUkP7Vq10GJh5p3ATj2xYxOs71jG/aBvxLrIzDzR3nH0RE7Jyur39x6XFTLr7Vm5+44WmTFSrU03f6KDb/X7oet9VoPR4Vb1aVW8DZgJpIjJbRMJ0GRoyB6qaBR9RdN/d1C1rPwZLd4zNTOdHxx3Fzppafrdwabu7SY06Cpbu/tcdFD14D7v+8jtKHn2QWFHhXpXhQJF+WApH/XU00/40Cgl2sbEDlUvrWf6dbaz9/U7Ucd+hU089la9+9at84xvfYOzYsdx2221Nu6xevZqXXnqJK6+8cv9dhDHmQGV18CGmrirK6/euYtGrW0nEet6I8vv8XDLzBgZnjeLZ+Xezs3Rjt/fdtLSYBS9t5qU7l/Pav1eycUlRj89/QPEH4KqH4H+3wZjTut6+fDM8dyP8bhQUrwOs/jUHv2kPTLt62gPTtkx7YJrj/by6Fw57PTBbVdt+wb8J2K2q01T1COBLQAyIAGeq6lHAdOBcEel4vIuuPQB8RVWnA0cA//WWlwHfBv7U2Y7erPcFbTNA95LVvwephkSU/1v6KCvKuz9UvqPgeIEWSQqTf/25aEIpuvcVnPpoh/uINAZLmz8OP1v8Cj+d/wr/+9GLXPXGg2yr6XhejwNRKBDgjauu55GLPk16MNT5hi0yoxR4ZsMajrzvdsrr66xONX2jg2zS/sgobfotUdW4qn4FWAq8BXQ8QKU5oGkiQeXbb7gvuqjmfalpkNxxpsaRg3K5afo0Pi4r59YlK3G6+emMFeyi+t05RLZvo27NxxTddzdOfV1PLuGAlDw8xPQ7x+JL7d53p8ol9az7c/MEG9dffz1vv/02y5Yt4/7772fTpk3s2LGD6667jieeeIKkpKT9VXRjzIHL6uBDzPqFu6mvjnW9oUDW4I7r31AgzBUnfZOM5Bye+uAflFR1b7ImdWDBC5vZtb6C0l21LHp5K5uWFPek+AcmfxCuew6mX9u97Rsq4e4zocJtRFv9aw5WXlD0bmA07rf60cDdvRAs/RzwrPc8gRukBBgK7GzcSFXXqmpEXTXe4qD3aGwYVAIdR5qa1QD13vN8oMA7fkJVP/aeF6nqAtzAbFst/5A945V/X1n9e5D6qGQDVbF6kgOtx8HsqIWWAOIOxBI+VIVEQojF/fhysxl07SeIlVRS/PCbaKL9jc1EAhxv5m1tETgsjdZRHq1na1UFX377CVaVFh5UXfJPHD6ahV/4BoOSvO8g2ubRqMXrmliMq1/4L6pqdarpGwdARulCETm3VZlUfwncB4zp9dKY/c6pr8epcwOT/vSMjjcKhUmefiz5N3wd6us73gY4ZfgQrp86iY8Kd/PvlWs6rATa/k0FN1ibqKkmXlpCw+ZNbP/5/1H65GMHfcA0mOZnxj3jGX51drfuNVetqKdmUwO7du2iqqoKgPT0dNLS0iguLuZTn/oUd955J+PHj9/PJTfGHKCsDj7E1JS5Y3uHkwP4/B1UFAJpOSHOuf5w4vHOM05Twul8+uRv4fMFeGLu7VTXdy9rRR2IxxyqyxqoKqnnrQdX8+q/V1K4qXKvrueAcukdcPMqSM3vettoNbz7Z6t/zcHuFlpPpIj3+pa9PaCIhIBxqroFQFW3q2pjV/N7gR96XeB/LSITW+znF5GlQBHwuqrO8/a/SVU/2NM5VfVPqvq49/JWYK2IPO2NEdplVEVVj2vxciFwSrcuds+s/j1IFTVUEnccUgNhfHtokKlCNBYgEgsRTwSIxf3EE37U2ydpwnByLjuZ+nXbKXvug6Z9HEeIxwXH8aPqBlgbu+MDxB2Hivoo5Q0NbKws5yvvzOaXC9/sdlLRgSAcCLDwum9ywZjDut7Ya+yvLi3hz6+/zLMrllIZabA61exf/T3rvape08nyfwP/7vXSmP3Ol5pKIDeXeGkp/tQ0NB4nUVnptp5CIZLGH0bm6WeSNmMmRf+5p8vjXTRuNGWRCM9s3EJOUpgrJo7rcDulRezQccBxcOJx8PvRWJS6lctxIg3kfe663rrUPhEpiVHwfAW+sDD8U9lULKqj/KM6UsaGqS+IoJ3HmUlEEqz9807W1q3gD6//kmC6n0BWgIsuuogHH3yQnTt38t3vfheAa6+9li996UudH8wYc8ixOvjQM2hkOjvXVQCQlZ9MVWkD8ZiDCKTlJDH1pKFMPmEoTkKpLYvs8VhZqYP49Ek38sg7f+aJ9+/g6tO+R1Ko65ntEzGHRAzEJwSCPiqL6nn/ifWc+5UjSMs+iDI9HAfm/ROKPoZjvgBZI+H5b0HGMAimQsUW9jQthbPscXbMn8d3HlmJLxAinjGKiy7/jNW/5mAyqofLu2MQUNHRClVdKiLjgHOAs4EFIjJLVVd73fSni0gW8LSIHKGqK3t6clX9pYg87J3jauCzwOk9OEQRMKyn5+2gHFb/HqTGpw0m6PODwrDkbHbWlzXVBI1t0bGpg4nGg6yNNA9B01EcM+34KcSKK6l6ZxmBvCzSZk3DSXgTO3UQl1EHnLgASlwVn08Q4M0d6zl12FjOGH7gBgrL6+v52vPPsaSgAFVlZEYGEV+CMSmZbKuvxOkizqtxhz+/+QrlTz4H4iPV7+c7n7/O6lSzf/TBfYdujaYrIinA94BRqnqDdwdxkqq+sF9LZ3qdiJB90eWUPPofNBIhkJlF0phx5H3hywSyspq2c+rrqVu2pFvHvHbyRMobIjyydgM54TBnjhrevcKoQjxOvKoSRGjYsI5ETQ3+tAO/R0uizmHbQ0UUz6lp+kUtfLGC8OAAzrDd1E76iHi4HN/2IYTeOxFfQ+vGq6MOd628jYxQJldN/jz/OvURUEEyYky8aCTZ0zK54447+uHKjDEHGquDDx3jj8lj14YKirdW4w/6yRmWxrGfHM24o/NabffOo2u7Nd7S4KyRXDbrazw59w5mf/hPPnPytwj4uxow26WOEosmqCqpJz0niW0flzH1pH2OL+x/qrDhLXjyOohUu43VJQ9B1mgIpUF9mZsxKj53JsUOfLg9zm3zSvnbubXM/bwftwPmFpiyDX54h9W/5mCxDbe7fUfL91Y90OkdE6+L/Wxgtog4wPnA6hbrK7zJn84Fehwo9Y6xEbhTRO4GikUkV1VLu7l7Es3d+PeZ1b8Hn+k5YxiXNpj11QUk+YKMTBlEWbSGjEASnxo5kxPzJ5EVSuPsV//a4f5umLPxf0LmuTOJFlVS/tyHSGYOSYeNcsdIbNzep03jlbpB0maOAwW11WSEknhq48oDMlCacByeXvUxP3rjdRItok9bKisBJRAQAuJ35yTx4z7aqP94LbXzF5Pz6UsZ8r0b3TdR4D6Ev155o9Wppnd11GV5P+iq632j+3AH6p7lvd4B/Hq/lMjsd0ljxjLsuz8k94orGXT15xly43daBUkB6j5egVNb0/EB2vCJcONRh3N0Xi7/WP4xC3f3cMyzeJx4WSnRXTspe+FpYiUH9php1evqWf3bHRS/VQMOzb+sCWgoiFKrW4il7SaRWUZk+mJqvnI38aHNY8ipKv9Z/S8+LHiP9FAWogFw/KA+tDLMut/sZvHXNlFX2NBfl2iMObBYHXyICAT9nPG5yZxxzWSOv2gsF3zjyHZBUlVly4pSpJvf0MbkT+aCGdexvWQ9Lyy4F0d7MEmUQqQuTllBLavn7mLLipIeXE0/iNbBszfCE1+ASBVNI/qjbgZp0SqoK4F4rEWQtHXDdUlBgu+/HsEvkBJsuU5h2aPwmyHwbqfzxRhzIPkx0Hbcqjpv+V5R1XLA31GXdxE5SUSyvechYCqw1ZttPstbnoybbbqmg/1/KyKX7en8InKBiDT+Yk7EvYtR0YNLOIy9DNB2wurfg4xffPzqqM9w5ehZZIRSGJSUzjcOO4f/nvodPj/hNCZkDOHDok0kvLpSVdrfmPS60wMgfrI//QkCg3Mpf+w1YrvLQQTxZt7WhI9ETHCibluu7XieCVXKI/W8uX0DP/nwtU4nQe4vv3/3PW555x03SNpqPFL3AuJxJRFXRAVJCMRpFaSKbNlOxQuvIcEgEvJu1HrHSKDc+MYLjP/nn1hXcpBPIGkOKO7vbetHb+tuoHS8qv4BbwBtVa3HZvw7qPnCSaQccRTJh01G/O1vDcVKisHnh0C3ko4J+Hz8z7FHMS4znT8tWsa68oqeFUgVjUapW7KIovvuOmDHK1VH2fV0OYk6JT5sJ3UXPE/92a/ipFaj4oAo/q0jCb07i0RGOZpcj5NVQd2VjxOfthpV5fEND/D2zte4cOzlXDj28g7OIsQrHFbevIPFX9vU59dozIFAREaKyNsislpEVonITd7yT3uvHRGZ0d/l7CNWBx9i8kalM2baIFIy2s8sW1sRAVV8/u5+RYMpI2dw5pFXsHbnUt5c9t8eTxzhJJTywjrmP7+ZTUsP4JuVK56A3Ssh1tl3BIVE1H20XCZ+wMfq4gQ3vxphSJpwx/nJpIc7+DVyYvDWr+DnmbB94X64CGN6x4ovrHgEuAHYihua2Arc4C3fF68BJ3ewfDzwjoisAJbgjgf6FO4kT2+LyHJgAe4YpR1lXE4DCrs497W4Y5QuBR4EPqeqCREZIiI7gO8CPxGRHSLS0WQLZwAvdnmF3Wf170EoORDi6rEnc/cJX+FfM2/g06NPINyit8WuukoU8OGjeYC41hMzNXISgoRC5F57PhIKUvbgiyRq6kAa44lC65CKND8aZ+R2IBJN8MbWDTy0pns9NvvCjspKXl+/gZg67i2JxgSgRl7AU1WbPvTiCBITiEKssITy2S8QyM4i+7ILkca4QZvfkARwzpP/4fKnHt7fl2QGiraTjO2HDNPuRcEg6t0hdJPQRcbj3l0zh6hARiaBrCzi5WWAoImE+1deBPwBSMTb1STJgQD/d/zR/GjuAn49fwm/Pel4RqSldv+kqsSKi3AiEaoXzSfz5NN79Zp6Q6wiQawyQWTMampnPoOoEHr/JDSlHk1qgGgIfIqUZ+ErzcHJKQMBXySZRG4pL217kpe3PMvZI8/jUxOvpnB4JQm/w5CdmfgT7RvF8QqH+VdtYOhnshl5eW4/XLExXbvqNxuuxp08YhRul78fP/Z/E/a1oRYHvqeqi0UkHVgkIq/jZopcDvxrH49/MLE6eAAJJQdIzggRi7hZJ05CUW9wMG/YtQ57lB838SxqGyqZt+510pIymTX5vB6dN1ofp7K4jhVzdjBuel7XO/SHwuXud5FOutQ3a8yqbcwIEjbVhLnx5RoywsKdFySRk9yNWMc9Z0HGSPhubyaoGdN7vKDovta3bd2BG5B8o+VCVf0P8J8Otl8OHN2N4wZV9cM9baCqV3WyvBAY0Y1zXAxc0o3tusvq30NQfnI66f4kahMRQEl0EGRRvOrGy1TzZ6aRc835lPz7acoefplBX7oEfIH2O7V8qkDC3T8BFNXV8u+VC7j+8APjPv+G0jJEhIb6ONKy7O69xdbUDQO4hER1NeVPPIsEg+RccSm+UJJ7kY1xY2ner9Hi4gLG/PNPvHT5NUzNH7J/LsoMDAdQ1/ufAa8AI70Btt8EfrDfSmX6Xer0YwjmDyY4eCiB3FyCQ4aQNPUIQqPGEB4xktCwjr+rZIXD/HTmMfhF+OW8xZQ29LD7uCpOXS0177/bC1fR+wJpPiLjV1JxzoNoVgVOdgUNn3iD2IjtaCjqBkz9CfA5+AggPvAXDib52Yt4+5ltPLX+EU4afjqXzbqWFz63nDcvXcWcC9fwzLWLKRtU23QebfNfwX/LmX/1BuqKrDu+ObB4QdK7ccdJE+/n3d7yvaaqBaq62HtejTsG2nBv0oi1+1jsg43VwQNIKCnAxBmDSc9NIj0niYzcJAaNTGPohCxyh6eTOyyNYFIHg4QBpx5xKYePOp53Vz3H8i17nGi6HVWIxxyKtlZTVdJrQ/z1rpRcKG7Xo7c98YE/RGPLbmdljG8+U0rA7+cfF2eTn9bx+9ehqu1udukz397rYhtzMFHVJbgZoj34RenWcT/Zm8drS0TygL94wwf0Fqt/D0GnDZlIdjiFnFAqqYEkkv0B/F53+hFJOQQJEI8KiZivOSCjQmhEPtlXnE10WyEVs99uuonZrEVWaoKmIGkjR5XdtbWsKzswem7kp6Wyu7IGp03ykzRmlzbyxmv11uI0NFD21DM40Si5l1+KPy299bYJOs7y85adP/shZv3nnyQOsGEIzEGkD2a971agVFVfx83guQ54FJihqnN6vTTmgOFLTiH/y18n/cRTSDniSLLOOZ+hN36H1KPcG8ZOIt7pvkNTU/jJ8cdQHY3xq3lLqI3Fun9irwt+ZNsW6j5esa+X0fuCDpUnPwO+hFdfKCRFiJz1ZlOAFAUnq5J4fgESEJI+PJn31n3Io4sfZcbIY/nKWdez/PStVOVWgz8B/jgNKVHmnd55N3tFwYGV397Bsv/Z3FdXa0x33AK0nWo7xVveK0RkDG62yrzeOubBxOrggWf62SM57oKxjJqaw8TjBnPWF6Zy4uXjCQR9iEgHjTOXT3ycd8y1jB08hVcXP8TGgp7Vo05cScQSfPjMxt64jN5XVdCmW30n1Ovv6A9TVJPg6y/UE0nAPy4bxMjc5L0799IH4OfZUL597/Y35iCiqvd6M9kfNFS1WFWf6eVjWv17CMoJp/K7GZeSl5xOdjiV/KRMjsgazvDkXBwgnsAdbxTBSeAGYbxZnpIPH0/G2TOpW7qemjmL2wUEtTGL1PG1CeR4NyQdh6+/8Rz1PWkf7yfqKJFYosOgpiSk9XLve4fGY5Q++xyx8nJyLrmQYH6eO15rW10Ml15QV8P4u2/lnW02zJzpIQXp4NHbuhUo9QbVPg841htzJkVEju/94pgDSSAjk+xzLyDv2uvJPONs/Cmp5F7+GdKOP8Hter8HE7Iy+OGMo9heU8NvFy7t9sDVTfMi1dex9YE/snv3+/t+Ib2obNMS0j6sIucNSGlMahFFM6qpv3w2kZkfER+7ifpT30JKcqA0nYVL13P/ggc4Imc6X53yHdSJsyuvFCerAg1H0GAMTa+mdGQxkfCe31eAyPYE86/eQM3GAzTjxww0o3q4vEdEJA13DLSbVbWqN455sLE6eOAREcZNz+OUKw9j5sXjGDQijSHjMjn50xNJTg+SiHf+jdDvD3DpzK+QnzWSZ+fdza6ynt1cS8SVDYuKeP72pcRjB1CcJNYAq5/v5sYKToyK2ga++VI9FQ3KHeeFGZ9WD5FKtz/lXnHgr0fAU1/Zy/2NMQcTq38PXUfmDOex06/n7ydcyT9P/CyPnX49vzz6fGpjcWIJdWexT7j9yJ2EO+JL43ijKSfNIPmoSdS8NY/6FRua7s0pgLOH7DavobuhopRzn7i/X4OlqsovXnsbcdw8H5/jZZK2+Hoh8eYJnMQBTTiUv/Ia0e07yf7kOYRH7vtX/S+8NJt/L7PxwE1PiPt71vbRy7rb9f4fuLP9fdZ7XQ38vddLYw54tUsXUTP/ow4ngGprel4u3z7qCFaVlvPXpSvbpfXvkYK/JMrWOXdRVbZhH0rcexq27KTs1sdIXaMkb4XsuZA111spijOohNjRS4get5CU5y8h9bHPsvG2Kdz1/r2Mzx3PN0/4FkF/EIoySStNQ2pScdKqcXLKcdJrCOYWs/Pct6lP7ka2jANrfrVrv16vMd20rYfLu01EgrhB0odVdfa+Hu8gZnWwIRZ1Mz3rq2P4uqiCQ8Ekrjjxm6QlZ/Lk3L9TVr27ZydT2LaqjDkPH0CjXPznEmio6PbmNVHlxpca2Fml3HZuElPzfODE9yFI2sKKx2Hdq/t+HGPMgc7q30OYX3xMyMhjbHouIsL9axaRIkmEJIg6zRM8gaCOD024D8FH5kVnEhw5lIqn3yC6vag5ONpVwEYAB7ZWVvD9t16mJtqNdt9+cN+8RSzbWdCuaO0y8xRE3fei6t251K9ZR8Ypp5AyZUrr7Rxv372YWOeWj94h4fRC3WwGjj6YzKm7gdKZqvpNoAHAG/ul/VSt5pBXu3gRABJK6tb2p40YynVTDuODgt3cs2rtHmfibTfKSwKSl0UpvPd2Sp9+gujOHXtb7H1WXr+GTS/fQdxf0aqgKetAGiffFSDhR5MiOLklrN+ynTveupsRyWP59rk3kBRIhoQfVJg2fyT+uhT8xXlIzB0IfBKFJB/3EU/+7/NsnFLQtgjtOA1KzUYbs9T0ux8DbaegrvOW7zUvi+MeYLWq/mVfjnUIsDrYsGtdBZE6t9eB+Lq+c56alMGnT/o2Pp+P/77/N6rrK3p8zg2Linjn0bVsWFTUaXf//a56N7z4fdixgO5+E26IKze/0sD6sgR//ESYY4Z2d6jFHmQkvD/Q/ywZMyBY/TtAFNfXsq6ymPRgGL/4aVUftJmkSREIBMi+6nz8aalUPPoiibJqiLXtrt7mJNJ62csb1nPJfx/igWVL9thG7k1xx+G2t+fyh7fe7/C+oag7wpwv4bbFxQEUahYvpmbhIlKnH0XajGObLqfxWgU3k7bxv54ErxxVPirov3a+OQgdQIHSmDegd+OMf3l0OfKEORSp9xfVqW8bF+ncJePHcPHY0by0ZRtPb9ziHofufa7DhaCbi6n56AN23/NPIlu37GXJ915B1VyWFd5KQ2QLmlzbqt6MDKf116VAHE2uY93w57l10W8ZlDqI7534A+TiN1FJNE2BOGxHFp986ggOWz6M8WvyOKmmgHGVEVKIcUSgmHnXLOLZ77xNZdYeutd7Y+UY05+82e1vALbifiK3Ajf0wqz3JwHXAmeKyFLvcb6IXCYiO3AzPF4UkYGQ1mV1sGlqRKmjxKPd++fPTsvjihO/SX20hic/+DuRWM+GbEnEHDYuLmLxK1tY+PKWnhZ539UUw8NXwKL76Xqme1c0oXz/tQaW707wmzOTOGlUoOudGokPQqkQSIKu5rHxh7t/XGPMwcrq3wFCvUaVqlIXjTUubDWRkbaa1Ah8qSlkX30hGotT/viLOA0xL7NUmn82Tozk4HVhl6YxPR1VSurquGfZIt7Y3Ddjg//17Q+4+/0FOI62aIx3fJOwMcO0fv06Kt97l+TxE8g8+XTcXAaaJ25yGjem6Zg9zS7t1ZnjzKGtoyBpPwZK/wY8DeSLyG+A9+nFiTrMwSN1+jEAOHXdD5QCfGHqYZwybAgPrlnPW9vbdxnv7LMtCr46h1jxbpyGBqo+eLenRd4nddEiVhf/G9lWSSJViWU11yXqg+rpoC3bYAK7tldy+9/eIjXf4funfY/0tBQ0rRbxBgV3d4ac4lSOe28sJ7xxGEM3DCH1oc8RWnM404NhPpuawoWTj2XKX4eTfnhSh4NkB7P8pE3oXmavMfvTY/834ZHH/m/CmMf+b4LP+7mvQVJU9X1VFVU9UlWne4+XVPVpVR2hqmFVHby/Z9E9QFgdbBg2MYtQkp9oQxzpQeLjkOzRXHrCVymp2sXsD/9JPNGzMdHqq2PUVETYsryEuqo+7CLoOPDsN6BwBTjdK3PCUX7yVoSPdiT4yalhzh7XgyApApkjYeRMOOEbcO3TcO2znWzqg1O+14NjG3PwEJFkEXlHRPwiMkZE5njLU0TkYRFZISIrReR9bxzxxv38IrJERF5osex+ETm9i/P9XESu856fICLzvJujq0Xk597yySLyoYhEROT7bfbf4v3ME5FXeuM9aMHq3wEiLymVcRm5lDV4bdymoKg0v+xAIDeXrMvPI15USuUzr6KO02ZjL2jaIkDadECFqmiEhniMR1ct7+1Lamf97hLumbuAeELdoG3cyxxt0b2+ZdlQaNi5g7LXXyE0ZCi555yHT3zNgV91r0i8IDBxmgKnkhD8cSHVHyTdH2r+3tLB95ew389xQ0fs56s3h5QDYdZ7EfEBm4EfAL8FCoBLVfWJnpxIREaKyNtepbdKRG7aqxKbfpV27PFknnUO+Hz0pKXmE+Fb04/gyEE53LFsFYuLSrwVoHu6hdR4R8pxSFRWkKjq27lcVhX9k9QP6nGCUDkTSs+BknMglgWxbIjmtN6+uLCOO361iEASfPsb55GTnklicCHiBEgMKqV1zem9f3XJJL16Dv6iIaQ89hnynv82Rweu58TMYxkZzmXq/xvJjIfHkTQs4P7G+iA8LMiUXwzvmzfBGNNvrA42jUJJAU656jBSs8I96iEOMHbwVM4/9vNsK17HiwsfwOnhOJ0NNTFU3Z99ZvnjsOEtupsm4Kjyq3cjvLU5zvdmhbl4UrDn5wwmwbFfhLN/BuNOg/Gnw88r4cRvuxmk4oNQGnziV+56Y/rZ6slTrl49ecqW1ZOnON7Pq3vhsNcDszuY9f4mYLeqTlPVI4AvAbE261fv47kfAL6iqtOBI4D/esvLgG8Df+psR1UtBgpE5KR9LANg9e9AIyL85NizCAeCbrXjeNmgtKmFWr5IAHEhPHY0GeecRmT9Zqrf8iYi9rqsN2VYttzfCzI2rqtoaKC8Yf9O0quqfH/2yyS86r+pPI4bMCXR+JCmssXKSil9+TkC6RnknncxEgi06m7fkrR5gOBTH9NzhzH/i19n89e+zy2nfKLdfj4R/nrWBfh93c3fM6ZvZr3v8la7qjoi8mdVnQWs6Wr7PYgD31PVxSKSDiwSkdePPfbYfTik6Q8Zp5yOxqKUPPVftLam2/sFfT5+eOx0fvLhAv6waBm/OmEGE3Iz3eCfVxHtqe2n0SjJEw7bp7L3RFn9x9RtWUvsCHBSaCpcIhWKLgKCtCpwRWkDd/x8EYm4w82/PJ68RIBIyjyih6/Av30EDWe+RepjVyJ1Ka3OI4DUpSKOH0So2xxl+yOlTPj2kKZtfH4fR/5lDOBWdNKTdCJjzEHL6mDTUu6wND755SN4+i+LqSqp79G8RIePmkltQxVvr5hNalIGZx356W7XJaqQlBoga3DyXpa8hxJxePdPoPFuba6q/OmDKC+si/O1GSE+O20vgqQC1JXCe3+G3PEw+PDmdef8yn2o9ugmsTH7kxcUvRto/GI5Grh79eQpTFmzel96dnwOaAy4JnCDlABDcYfXAUBVm2Z7E5ERwAXAb4DvtjhWJdBVKnoN0BglyscNSOIFaj/2nhcBRSJyQQf7F7d4/oxX/rkdbNcjVv8OPOMycnn8E9dw7vP3UFZXDwgabxHlbAx+Nsb0Es31QcqxRxIvraBu3hICOdmkTp8GbcfqdLzsy8bluOvi4nDcsP2bALOqoIh1u0uagrZNcSVp/iHqJeYpxGtqKH7hafD7ybvwMgJJyU0j4IiAhhqDU+JdjraMkjYdc0dlFa9v3MjFkydz9RFHcdXUady1bAHvbNvCpNxB3HjMCQxKSd2v124OQX0w/GB3Q/evicinZB+iM6paoKqLvefVuHccLSXuIJVx6pkEsnPoaVpLSjDAT44/hqxQiF8vWEJBVS0Sd7uxt9TRUBO+zAzSTzl9H0rdMwVV7xHNTOCk4f6mNP7x9+GOS9ri0qsqItz+80XUVMX45k+PZeiYZOLjNxE9bgGk1JMYvZ1Ecg2aVouGI+Bza0onrRoSAXDcE4gPJAANhTEiJR1n7liQ1JgBx+pg0yQ1K8wRpw3vcEiWrhw38WxmTDyTRRveZv7613u07wmXjsfn76OMj11LoLr9MD2duXNhjP+uinHNkUG+dPReBEkbK/iQ11jb+HYnm1n9aw4ot9AcJG2Uwj50DReREDBOVbcAqOp2Vb3cW30v8EOvC/yvRWRii11vw828bHX7RlVvUtUP9nROVf2Tqj7uvbwVWCsiT4vIV0WkyzGmVPW4Fi8XAqd0tU8PWP07wOSnpPHVw09AWjb+HIGEz22wOuIGSB1p01gV0s8+hdD4MVS9OofIlm3Na7xu7pKgOZO0BR9w3ZHH7NfrenTeMtRpbr62imm2+XQ7kQjFLz+DE4mQd8HlBNIz3c28WKhPwReh1XWINr4nzUdOCgYJ+Hy8sbF5/FWfz8fXjp7Jo5dcyc9PPsuCpGav9EVG6R6/8YpIY0X7XeAJICIiVSJSLSJ73QdaRH4EnAv8vri4uKvNzQFIAgFyL/kUEgz0uOGQnRTmpzPdyuCX8xZTXh9p+kPbNkDa8nXmaWfjC/XNRJPVkR0U1HyAdmOuhrqaGH//5WLKiuv5+k+OZtSEjOaV9WF8ZTn4atLxISTGL0DDVTi55TjpNfjqUpFoyK2MBYLZAfC5zV9f0BpkxgxkVgebzhx5xkhSskKIr2f1hIhwxrRPMWXEscxZ8TQrt37Urf3CqX7yR2d0vWFvSMThtf8Hse6Nhf7A0ij3Loly2eQgN80MdeNmYpuUF3C/x4RSIcltDBLso8xZY/bNqB4u745BQEVHK1R1KTAO+COQAywQkSkiciFQpKqL9uG8jef4JTADeA03q7WnY44WAcP2tRxW/w5sNxx+POkhtxHYOJt7k8Zu+U0BwRadzX0+si87j0BONuWzXyJeWtbUa7LlpFBtHZU3hGHp+6+O3V5WwQvLOkiK7mDcUE0kKHnteWJlpeSdcxHhQfmISLubswL4YriDb3jd9qXFbRKfCINT03BUSQn2ZLxwY7rQOAFZP49Rei6Aqqarqk9VQ6qa4b3eq99mb9DvK4DPquoxeXl5e3MYcwBIO24mKUcchQR7lr0hwLC0VP7f8UdTEY3y6/mLqY923L3OUeX/fbiAK196g/P/54d87nOfa1p37733EuzhubtrbfEDOBrtMmE20hDnzt8soXB7DV/+wXQmTM1utd4XSYaE3+umoUSO3kQwbTG+kky320JWFf4sh0C6n+RhIQLp7oCt6VOSCWZapWLMAGd1sOmQzyec9KmJJKV2XU+oaquHIJw/4wuMyZ/My4sfZFPhqk73ddTh0Xf/wu8fu5GTTz6lb+rg1c9BYfcmtXjy4xi3z4/yyfEBfnRKd4Kk0HwLViCUDsnZkD0Gcsa5y4LJMOn8vS+/MX1nWw+Xd0c90GkWp6rWqOpsVf0G8BBwPnAScLE3qdJjwJki8tDeFkBVN6rqncBZwFEiktuD3ZNo7sa/L6z+HcB8Ivzg2FMJSEehEmkeZ7RRi5nefaEQ2Z++CPH7KXv8ObS2gY5u0KnjUPL4kxT89Q7e+dmvOqxfC6uqUd23VDlV5bcvzCEaT3TZXVkdh7K3X6Nh5zZyTz+HpJGjW61vDho3X4tPvUxZaKpaw34/ozOzCPn9KMpFk6fs0zUY084BMOu9X0SyRSSno0dPTyYiQeAp4GFVnb1XJTYHlMFfu5HUGTORpKQOM0s7+vw2/pyQlckPjj2KLVU1/GHRUmJO+8HW3t1ZQMJRHrv4E7xy59+5/fbbAWhoaGD27NkMHzGUjWWz2Vj2FJUNG9vt31OqDmtLHqSsYQVd/cbFognu+t1Stqyr5IvfPZLDjxnUvFKA2hSIt2/ERkdGCMg2pCqdQCSHzImZjP9WPqkTwoRzAww6OZ0RV/b418sYc+ixOth0asKx+Zx57WTCKQF8gY4DhJ01sPy+AJee8BUGZQzj2Xl3UVC+pcPtVm9fgOMkuOXGe3nvvXdb1cFP/fe/DM/Joegvt1L5wos4kci+X9SWufDCdyBW2+WmL62P8fu5EU4dHeAXZ4Tx9bRnrC8AGcPhsrvgiCsgfRiMOgEuvBUyhu7lBRjTp34MtE29rvOW7xVVLcete9oFS0XkJBHJ9p6HgKnAVlX9kaqOUNUxwFXAW6p6TQf7/1ZELtvT+UXkghbd3Cfi5qpV9OASDgNW9mD7zlj9O8BdPWk6X5o6w61bWlYvjY1ah+YJkFpO1uRAICOT7MsuxKmpoezZF9BE23nRoH7NWnAcht10I1+6/a9N9euc1Wv54V/+ii8jk8/8+1HO/8cD/OS513lz9UYcp+fRoNtefZ85H29uXfa2vGUV8+dSu2E1mcedROqkqd0/ibpd78N+P5mhMMPS01GUuliUq6YdyYkjR/a43MbsUR8ESrtKRZgMLKLjvDrF7X7RLV6ldw+wWlX/0u0SmgOaL5xE2tHHEtu1k0RtDfHioqZ1e/g77D73wdFDBnHjUYdz+7KV3L50JTcfPa1VYyc1EGBdRSVrtIpxx52APy0NgL/8+fecd2Qyyz8qp+qhpyA9RHT9s5RUBwhm55N9wSWkz5zV4+vZVT2XHZVvdrldIuFw319WsHZ5GdfceDjTTxzcfiNfm8Cv90vsqwvioxpUSBoUYuTnckkaEiJzmo3RYkxLXnZKNd68oqo6o39L1OesDjZ7NHJKLlmDU3ASSsmOapzG6Wy7MX5pKJDEp0+8kYfe+SNPzv07nzvt++Skt67LwoFkdpVvoT5YjIiQk+PGB2654gouXLuOFeXllP3nP2gggPzkJ/hzc0k//TTybroJf0YPk64aquC5b0FDRZebztkS5+dzIswY6ud3Z4cJ9HAIAgDEByffDIed4z6MOchMWbP6kdVuptYtuN3ttwE/3seJnMDt9n4y8Eab5eOBO736xAe8iBv8665pwHNdbHMtcKuI1OFOgvQ5VU2IyBDc8UczAEdEbgamqmrbbvBneOXaV1b/DnA+Eb5+5Eye37gGdRx21dW430Yd2k1Y1NQVuPE5EBo2jMzzzqHi+ZepfP1NMs/5BII05RX5wiGiBQVEC3dz/kWXUefz87tnXua+f/yD0FHHoQU72V1TC5W1bC4q5+klHzM4PZW7r7mM8fndS7LeUlzOIx8ucydvctxqTxvL3ziJk7jzFFavWkrVsgWkTzmSzKOPbx2AatF5pHkiqPa/GpnhJO799GXUxeNURRqYmpfPYK/tbkxv2tsxSUXEj1uX7FTVC/e0bVeB0o9V9ei9K0Y7J+FWfitEZKm37Mc249/BSR2H6PatSDBE8tRpVL75Gk591+OJqQ/wA+o+1yCcPG0Y5ZEID61ZT3Y4zBcPn9S0/XFD8rnkzPH8YtFSvj1tGl+77BI+NWUyrz1yL7d+8UScINRMShDeVk9SBTixGLHCXRQ/eC+qDhknnNSj6yqs/gBHW0yi1GpaQJcTVR76+yqWzy/iii9N5oQzOxmPPaUBKc9CAwn3l9kRfDUppGysI8JQJJBgwk1DSBrSN+OuGrO/vLbhqqtp01A7Z8Jj+9pQa3SGqpb00rEONlYHmw5VlRRRW1HOoJGjGX1ELpuXlYDWuRWrBEBjIGHaN2S8NBiNg4RIS87kMyd9i4ff+RP/nXs715z+P6Q1jtMJTBh2JKccfiF3Pn4LP73tK3x55glcHArx7jvvcOfwEfwW0IYG98giJIqLqZj9NNEdOxl55z8QXw8mf9o+H6oLutxs3o44P3ozwuH5fv78ySRC/r0cl2rsqTD9s3u3rzEHCC8o2lv1baM7cMfmbBUoVdX/AP/Z046qOgeY08nqoKp+2MX+V3WyvBAYsad9PRcDl3Rju65Y/TtAJRyHFzav4YHVi2lIxMkKh6loiLjjkjbei/S6mDdrHSTFAVRInjyJREk51R98RCAzh/QZM9x2sEDy+PFknDiL0idmc/6/72fwyafjm3wU9Vs3kXPymRS/8ox7LD9owj1DYVU1X7j/Sa6beTQjsjM5Zsxw8tJTOx125qMNW6mPxMCdQxj1g3jtcJzmXvT1W9dT9v7bJI8aT/aJZyJxd0RS9W6JaMItR9PVagdDQjrw90svYkp+/l6868b00N5nkN6EO6Fel3fz+2wQRFV9nw5uPcyYMdAShA5+kYJdFN7+J6Klu1FVAjk5DPnijZQ+/mDX+w4Gf707+LM4EMuEiplwWeUYyhoiPL95KzlJYS4ZPwZw23yXzhrHeb86jdrCSr7xxQd5891MvnD8eCpmKeqHeDokJkN0MKSuVfwNMQKVUba+cSflQx4l6EsjHMgiK2kS+WnHkRbq/HtWNFGB0r57BIDUgMSUxx9dw4J3C7josxM4/QJvvPx2FaYrkVdC0tLRqAQIlKSRulJxYsNx/LmExsZIGmpBUnNw84Kkd9M88+5o4O7XNlxFLwZLzT6yOvjQ4DgJXr/rDtZ+8C7xWAx/IMCJn/k8Y4+aStGWNcAg1KkFbXADppKG20MWnHgh8fr3EX8GvsBQQBH/KLLT8rl81td5/L3beHLuHXz21O8S9iYz8sfruS7NYdyg4ZQ5DVzz6iu87/fzpewOep6qorEYRKPUvvce6086GX9WFv68PMJjx5J+5hmkzpqFdDYpY6QK4g17vP7luxN877UIY7KEv56bRMreTnroC8Anfrl3+xpziFPVJSLytoj4VbXjL8V7d9xP9taxOiIiecBfvOEDDhhW/x48VJVvzHmW17aub47DqJtdKm0be0rrYeccWnUBFm9Z2gkziZeUUfX++wSyskieMMHbX0ifPpPMaTPR+gg7/n0HofXryD7pDPcQjd37vWBmPO5GaUuq6vjzK3MJiBvMHJSeyudPPobPnTidoL9FNBPYVNQ8mZQAEnfvk6rPLboA9UU7KXnrZZLyhpB/+vn4nOYbnKLg+Ly8oQ6CpU1ZqUBWchLHjNznedTMIUg1ColC8GUhvl6YtGwvu9qLyAjgAuA3uDcD96irW/1/9Q766Q5O1G6ZGRgK/3kbkaJd7ngrCSVeXMqWe/5AoqYWOskeUdw/ysFqwA9OEiRSwB+BQD04IeH6wycxa+hgHli9jnd2uFklhYl6qiMx6mq2E6qtJAUf0dIIdy1YzQ+/+w5lpfX85uYPSPvYzU4tvhAKP6XsuhpKTo/TEC+hOrqFkrrlbCqfzbLC29hV9W6HZayoX0c0UdnpdfsT8MyzG3jv9e2cfekYzrlibNdvVihO5PgtOMMKEV8dDclH05B1GEknljHt/03qen9jOrG5MMJT75XxxLulbNi55+DCfnYLzUHSRine8n2lwGsiskhEvtILxzvYWB1sWvn43bdZNecNYpEI6jjEo1Hefejf7N74DPG6p3ESRaD1uN02EuBUu4FTIFb3BmgdGi8k0bCERGQZicgi0CjDckZzycwbKKrcydMf/YtEIgaOQ13FFsKb3qFh+XKSa2pIcRwiiQR3lZbyle3bKYnH+e6unc0FbBwT1XFIlJcT3byZ+gULqHjqKQp++jN2/ehHOPUdzLPiOLD88eb9O7C2JMG3X24gP1X4+/nJZIS7ESQVP805AT43QJqSC5feCYN7MP6aMS1U1sV4ZN42fvvyap5ZspOGWK/FEg8YqnpvbwZJ+4KqFqvqM710OKt/B6BVpUW82jJICiDu5MLtSXPAJuFOaCSOG0AUL/vUTcgUss85h9CQIZS/8grRoiJQIVFZiUYb3O3DYXyhMBqLUfbuG+z8z7+I11Sz68n/uON/JhqP6/0EEo4Sd5TdlTX88815/PWVua1KVx+N8d7qLe3iSYI3O70D0Yoyit58Fn9aOvlnX4rP38EEjU7z9TUNPdBG0O/jvqs+1b032QwoTt0zaMllaPkNaOmncKr/4AZO94Hg/R60eQCDRGRhi0fbtuNtwA/o8FPc3h4zSlX1fu/pj4An2qzuaJk5xCXq6ogU7PDy7d0ZdAmBv6yOqsFBkhIJfvrRQtaXVyIiDEtN4U9nzGL21s08u3oLjsKnpo/jwinNs+iFisAXARHhpulHUBWNcvuylWSkBnHShFv+vQR9THBiyqxPDONLZ0zFVw+RIXDN1S/yt1NPhPWQvBGqjoHqo8FJdx/NtYODg0NtdCfrSh8h6M8gK+kwgv7m+E5x3WJiTk3rC1YgGgAfvPjyJl57djMnf2IEl1w7EeliTLSgLwNVxecTgmNSmXDs+WQmTcAnQYJ+G6/F7L3lm+p4bE5p0+d7yfo6Lj8lhxmH9cs4t6N6uLwnTlLVXSKSD7wuImtUteM7HYcgq4NNW8tee6nDCZrWzn0X8QdwIqt4auEiCsq3I+IjO20Q1558OQu27GDe6hdQ/JwwbiLHjBkLKmiiBHVqEX8644ZM5dxjrublRQ/x0qIHuPioy6mq2sm3Nn6MTyChyulpaXw1t3niwk9u2shfhnUy/EwjVYjHie/eTfWbbxEYdidZl19GeGyLm42Fy2H3KjpLEdhS4XDjyw2khoR/XJBETnIXQVJ/GMIZ7vECSTD+dPjEryBWDxnDOpx80pjuqI3E+d4Ty9hd5d6g/GBDKXM3lPD7Tx2Jb2/GyjUHJKt/B6ZnN61qt6ypyg2AxhzKH3uaaEEhIoI/O4u8L36Omo8WUjt/EaiSNmsmacce02pyJwkEyLnoIoofe4yyZ58j/6qriFdUUvr8swiCOg6phx1O7qlnNwVYN//tNwy74vNuAMjX3P0e3NdN3eeBqvoI97+3iF2llVx32gyOHD2Uldt3U1nXcSKFAPHaGna/Pht8Pgafcxn+pOSOt3W883v7+UUIiI+c9BSGZ2Vw3MjhfHnWcaSFrZekaU0jc6H2diAZJNX9ENe/ghJE0r+zbwd3OqxvSzqbz0JELgSKVHWRiJzenVPsMVAqIucB5wPDReRvLVZl4A6wbQYYXyiEiiIodWMhMgJCpeAEwdFa5s8rII7yn8+fjS8K1aURNpRU8tGW3Txw9umICE4InLh3dywOqaua//CH/H5uPPJwbnr3A77w0hwumDaK639wFGOnZpGWFESi0JCAzA8gUAOvfPECwBv7VCB9OdRMBu0oXqSAKNFEBUsK/kjAl8L4nE8xOutcAATB0TiOo9z+04VsWe8Ge/PzMpl8dBb33rqURNzhKz88puOxYFp0QfBJmFPH3EF9vJhIvJyM8BgLjppe89bSqnbxhLeWVPZXoHQbbnf7jpbvE1Xd5f0sEpGngeOBARMotTrYtBXZw1jgmoizescc4rEabjrva6hTRXX1UnYUPseaLVv46mnHI+IHSUE1BiRAI0RrZuMLTiSQdCSHjzqObcXreGflMyzbOIevjTqCPwwbyvBAsMN679Vx43tUfm1ooOzuuyl//HGSD5/KyDvvxJeU5AYuI+6NSkeVr7/QwMpiB59AXopQWq8sKUiQUNhQ5jAkrYsOURf9DSafB7uWQlo+5E/pUTmN6cxba4qagqSN1hRWs2R7BceOzu6nUpneZvXvwBRJtP6nbXVfUqBhzVrUcRjyvW+6WZ21dUR3FdCwfj353/oKooI0Zpq22A8Ff2oamWecSfEjD7P9978n54ILybvsM4Rz8t3xvL0sz8aaduy3/6914drOm+G9Fi83ToFXl27g9WUbuPaUoznzyAk0xOII4KhDwetPEikpBBGCaZk48Ri12zeAKrGKMoLpWe3fEC9IKgoTBueQlhpGRLjoiMlcftThJAX7bBRHcxDSusfcgXF9XhBd/EA6NLyMpn0NkY6D892xF5M5nQRcLCLnA0lAhog8pKrXdLZDV5/uXbizQl2MO/Nfo2pgH8PA5mAkgQDRQen4q6pIZEHa6uZ16ovD6AAf76hk4ZFVTIlmkLY6zENz1pPiD/DF198hJRDgpzOPYUi0dU/d8oYI8wqL+HD3blaWllOjMVTg/V27Wf7XCgCGjkhj4sgsjq7I4vBQFnn5yeCTpiBpY2Xhr4V4l/GiBHGnmrUl9xNP1DM+9zJyko9kU/kzLHy3gERCufXRsyEW5O2nCnjiscV84rKxNNTF8DVWYV7l0Z6PKYOux+8LkRYaTlqoi2wbY3qovKb9d/SK2gSOKr6+z5T6Ma3HKAWo85bvNRFJBXyqWu09PwcYaIMKWh1sWjnmvIt48547O10fCvgpqChg5+5nGZyRTkoI3l+/i1BAuevd+YQDfi49+nCyUpq/nCYcZUvxW2woms2mkmrqonFQh+raEv677l2eECHN72NyOMykcBKTwmHGh8OE9uFvjVZVUffhR2w49zwmvvUmMngaBNwv0q9siBN3YO71qZTUOXz+6XpQ5c3Pp/D3BbEujiwweBpM9+aDGXfaXpfRmI4UVUc6Xl7Vr0PgmN5n9e8A9LUjTuA/a5Z2ul5SQ8QKCokV7iY4dDD+tBSq35mLhEIU/f1uJBwi9/JLCWQ13zRJ1NdQv3o99WvXES0scMfzTsSpePcd/MEPkVCYpKHDCA8bQXjwSMK5eYiv9VijrcZkbDFhlLQYF1XAHQ1A4cF3lzByUKbbA0WhZvMacBzGXv1t1Emw67UniFUUM+KiL1C1dikdTs/RONaqQDDg45EvXUlqOIS/g2H2qhoaWFGwm6RAgCOHDWk3VqoZoJxikDaZxuJ3P6RONfj3MlC6F2OUquqPcHsD4GWUfn9PQVLouuv9MmCZiDyiql19OzUDxODPf4ctb/+C1M2AA/46b3BoHxw3Lp8L88Zz222LKN5UyzVHT6QwWk91JMp9nziNOTsK+N3Cpdx6+okU1dUzv6CIDwt3s6asAoBhaalcOmUMx04dTO5JaVSPVzbtrGTTmgo2fVzBokW7+aBoB74IZIVCTM7O4rDBWRw2IosxuRlEp/qI5/XsejaW/5dwIBvFwUeI5JQAW9ZVsm1dFWU7lNlPLGXKUYP42o+n89efLnBroo6CpAp+XzLjc65gUOpR7Kyag2qcnJQjSQm6MwBqLAYiJGprqJrzJpHtWwkOyifj9DMJDbEBsE33TBiWxOqtrcf5Gzc03B9BUs6Z8Ngjr224Cnp/1vvBwNNeFlsAeERVX9nHYx5UrA42bU0/54I9BkrH5+Uya9woZi9aSVldPadMHEtVfYS6aJSvnHo8qwuKeGHZaq46/ii2llawvqiEzcVlROIJgn4/YwdlMzF/CEcHx3LitiIKE3HWNkRYG4mwJtLAwjr3705AYFwozOSkMJO8AGrmXjSMEoWFbPvyDQz9yQ8IBd07nGkhYWVxgvk74vzpwyjVUbjzgmSOyPdDV4HS8WcRu/zfzF1bxOaSWibmpzNrfC5+n+A4SiTukBT08fzyAt5avRufCGdNGcwFRw7tcdnNwDR9ZCbPLNnZapkIHDkyq38KZPYLq38HpmHpe55oJmnSONJOmUnZY08TLysn44yTSVRW4dTWkX/jDdSvWk3Zsy8w6DNXUL9uA/Vr1xLdvgMUgvl5ZJx0MinjDiOQko5TW0tk1w4iu3YS2bWD+q2bAfAFgoQGDyNp6AiShowgnDsEn/hbB0ShVeC01bd/L3noltlz3KaqgD8YJlJSSENxIdVrlxIp3kX+rE+SPm4KVWuXuvsnaJo4quWxAn4f04YP5vI7Hybo9/GJqRO5euZRPLt8NZtLywj4fczbtrNpRJv0cJifnXsmyaEgOSnJ5Ka0ncbADBihY6DhFaBFsFQbQDLAN6jT3bpjLzJKe6y7+dJjROS3wFTcVFUAVHXcfimVOaDlT5rC5nd9oA6BKm9wZ9yfSTvg/M+M45NXjCPt/hjXPfYW4zMzOHnEEMQnjM1PZ+G8Ev5n3kdsLHa7D4/JSOfKw8Yza+hgRmSkEs93B8CujbkftkmTcjjs8Bx85wH1Ss1LtWxdWsHa3eWsLa7go8IiWAH+ZB/Dt2YydlsW4yZnMXZKFmlpHQxK3Y6ytuQ/qCZwiDDt+HwuuHI8v/+fD9m6sYpxk7O54X+OIegPQMKHlOa2mvUPgDj4GmDY8FPJCI9lScEfUXUQEXZUvc04OZ+Gu54jVliABgIEkpLxp2eACPGSEho2rif1mBk0bN5EMD+frHPOJ5CR2a6kTiSChEIdd/03A8YFM7MoqohRWulmlman+7l4Vv91+fOCor06w72qbgKO6s1jHsSsDjZNJsycxYZ5H3a6/vhxIzl+3EgaYjH+8fZH5KenMWlIHrGEgw9Yv7uEf70zj1jCIRwMMC4vlwmDcxmdk03A794BHLW9GJ/Px3BfiOHBEGelpwNQmUiwzguarmmI8FJVFc95X1aHBgNM9jJOJyeFGdZJd/226j78kPJfXkv+mC0IcOroANcdFeLix+qpaFC+cVyII/L9TV0gVd2HSHO3yHqCvD/oM+Se8mseeXErqwuq8XvjRR47OpuEozy7dCfxhENWSpCUcJDkoFuRry+qYW1hFcU1ESJxh8/MGMkJ43LblTMad9zMGn9X86CaQ9mxo3O44MihvLSiAFXw+4TPzxrN8Ky970J4oBG3P+QrwJnASOB+VT1dRFJwe5AciRtOqQDOVdUaEdmCm22ZAOKN48SJyP3e/nP2cL6fA1tU9X4ROQF3IqWw93hcVX/eYtvjgI+AK1X1SW/ZFlUd4816/6CqnttLbwVY/Tvg/P6ET/DDj17vdH3aaceRNut4nPoGdt96J8Eh+SRNPQyNxVBHaVi7jsI77wJVAtnZpM86geRJhxHMyQFH8DV4kzylpxM4bApph00BhERdLQ07dxDZuYPIrh1ULHAnZ/L5AoTzh5I02AucDhqKLxBonCnK1cnUNI43+VPakPFEp81ix7P3EasqI33CEaSPP6J5wzYBWIWmgKvGHVbvKiInNYWQ38+Ti1fwrw8XNG4KPgj4hAl5uQR8PnZWVnHlA4/hD/nw+XzMGj2SWy88j5SQGyzbWVXF21s20RCPc8KIkRyel9/uu0I/9ZAzvUxSrkEj74NTCRIGjbqfq7QfIrKP36X2IVDq1Udzutquu4HS+4CfAbcCZwBfpM3NCzOwZI6eRXzj3KYgaaPCaD3O6gB6YpB0CZDiDzAhK4NnNmzlg127+bimgrpEHPXBNUdM5IS8fIalpTaNrwLNgddQEdROAn+1O6O9JNxxRMeE05gwLY2zjhwBcdg1OMKWlRWsjFewuryCN5/Zwute62nIiFTGTXYDp+OmZJM3JNn9Y9zm05vQ1uO+TTgim1CKn5lnDmPHpmrKi+sZOiQHHD+aVwq0aUT5wUmDHcWvUvrRq/jiEBsaxDc0h1Akico/3oHEvd/oaJR4XR1OLEowNw9Qoju207B5oztGDVA99z1yLr0CXzBI8pTDiZeXU/Hy88SKi/BnZZN1zrmkTJ3WdHqNx6lbuZx4RRnhMeNJGjMWc+jKSQ/wnU8NYWthBEdh7JCwTSJxaLM62DS55Lv/x5+vvLDDdZX1DYQDfpKCQcKBAAGfj5RQkPfXb2H+5u3URWOAMHlIPhMG5zIiO7N9NzoRGkIBVARRbfVBy/T7OS4lheO8DJGoKpsizRmnC+rreLvGHWu02931VYkX7oZRDvigPqYsLkwwOlO49+IkfvxWhI1lDmOyfTgIlZpKLYI6sMoZxXfjX6eYHGI7g/BPN4DsF8hOCTE4M4knF26jJtr8JaOuMkLAF2XykHREhMr6GP+Ys7EpAPrqqkI+fewIpg7NZFxeKpOHpHPnOxt5f0MpfoEzJ+fzlVPHEwo0v2/rd1ezcGs5OakhTp2YR3LIuh0eyr522ngumT6MHeX1TMhLIzu1/yYx+fvX3rqaNj06vvnPM/f1xuX1wGxVTbQJYNwE7FbVaQAiMglomW15hqqW7OO5HwA+o6rLRMQPTGpc4b3+PfBqRzuqarGIFIjISao6t6Nt9oLVvwPMlVOO7jRQGi+vwpcUwudLQpLCSDCEPz2d6jkfUPvBQhK1deD3k3bcMSRPmkQgL685CKiN/2vx8RG8CZLBn5JK6rhJpI6dhCgkGuqbM04LtlOx9CNAEZ+fcN4QwoNHkDx4BEm5Q/H5Qu0zTb1u+eIt8weT8YXC5B53BtWbPiZWUUooK9edMdyb2b4x8CrSHCxNAHWxBHUV1QR8EGsc8o7mn3FH2VVZTVZKEmX19d4cjgl8Poe3NmziuDv+yYjsDCYOymVx0S7q4jH84uOhFUu5+LDJfOeEkwB4fuNa7luxiKLaWkZnZvGN6cdz8sgxe/cPafqd+IdB9l1o3eMQWwb+YUjKZ5Dgkft+8AMoozRZVd8UEVHVrcDPReQ93IrDDECTz/kWSxbMJVSG+4dYwAlDQVUdt9y6hMifHWpLoiT5/by+dQe7a+vZUlVNamaQ3/z+ZM4sysdXB8Hy5v0buxSEynwEBg0iM2Ms8e3LqRlej0TddakrIVBNU0ZnPBsG14QZNnQw044YTN14oS4Jtm4tZdPqCjatqWDJh0V88IbbTSo9M8TYSY2B0yxGjc8gEGzdSFw+v4j7/ryc7EHJfPuXx/KLr89FSUBKPQRjtIrqNhJ3bNTMuVBzFDhJ4ARjaPVuZJuPeLK65W7eHKe2FnLzcBoiON4EHeqtTcTKKX3iEYKD8ql49SWiVaUk6qpBwVdVRPyJcoZ+PZ9g/mCchgaK7v0XsaLd3tHfIu2Ek8g+94Le+Kc2ByifCGOHJnW9oTkUWB1sWskZOZay7ZvbLa+sa+DpJauIxOLUR6P4fD4SjkNDLE4kHic5GOQLZxzLkMz0To+dkpFJcOxhJC1cQWznTjclpRMhESYnJTE5KYlLcMdD2xWPs9bLOF27h+76h4WTyPK669fsDBOPComA8o2XIiwtTPCbs5I5bWyIyHthHk+cxAXODpQ1VJHCJs2kWlP5fvwGCsijbdwioVBSG6WiPkq8g+LHHaWqIU5mcpBdFXXEHYg77l1av8CDH21j6tB0QKiPxdlaUkvcgXBAqKiPkRT08+VT3ISy/y7czoMfbm069hMLt/PHK47q1+CZ2f+GZiYzNLN/s0i9IGnLMcJHA3f//WtvsY/B0s8BV3vPE0CZ93wo0PRhV9W13ThWJRDtYpsaoHE8oXygwDt+Avi4xXbfAp4Cjmuzf3GL58945e+tQKnVvwPQpLQs1tZUtFueKK+k5LHn0IYoTk0d+H00bIjh1NfjRCL4k5PJ/9IXCA0Z7O6gbYKigtuGTTQvbwqdavNmCPiTkkkdNZG0kRPBASfSQKRoFw2FO2go3EHlivlULpsH4iMpdzBJeSNIzh9Bcv4wJBh2j+W1rys3LKd4weukDh9H/nGfpG77RnC0VSZq47at5qLyeZfQGBBVmgOqbe6xVjdEqE1EcXyNx1Ac72ZrJJ6gLhbl5XXrUVH3PRAob6jnqdUfc9bY8WyuKufPC+aSFAiQnZTE7toafvze6/zx9HOZOWxkd//pzAFG/EOQ9Jt6/7gHUKC0Qdz82PUiciOwE7ciMwPY4FOupLLwcTQACb+yrqyCxTtKSMsLEy2qJzs1zOGDs5k5fDDHj80nKyVMzeFQNQN210HmPEhb5R7L7309EgDHwZ+SxtAbvkXa+3MoXvQatTXbCO6G6FCIDgZfDCLDoHYihEohfREkbQ5QNyKTcFI9E6fmMnFqDiA46rB7Ry0bvcDppjUVLJ9fBEAg6GP0xMymrFN/EO767RIKttWSSCg/++r7zDxzGJn5YX74hTls21jJ1vWVHHfaMD5/0xGt3g91oPx0d6xW/DQFfiODHQquBV8tBGohbQmkbgTxGp+xkmJac/s8xBP1xGPFUFGH1CaamoFaVkM0FqNu1Qoy8wdTs2h+iyCpq2beXNKOm0kwd9/G/zDGHBCsDjatfPFPt7fKKq1uiLCxuJQNu0sBJRTwk5eezYT8XCYMHsTgjLRud2OL1NUy66c3kVJeSel991H91lvQ0PEENm2JCMODQYYHg5yZ5gZjq7zu+qsjDayNtO+u72achjhqRZCny6qYuz1BggD/9y7sfDuVzAnH8Fr4TP784J00lAZ5eXeczPEj4OSvkuh4RsUmHQVJGylKTSTWbpuEgqiyvbweAcrrmhPmGuLKpuJaXltVyJdPGUdlfYxH529rtf/uqgjPLN3JF0+ynh1mv7uF1hMp4r2+hb0cDkdEQsA4Vd0CoKrbgcu91fcCr4nIFcCbwAOqut5bp946Bf6lqnd5+3fZQlbVP7V4eSuwVkTm4Hb/f0BVG0RkOHAZ7nAAx7XZv+XrhcCvu3/FXbL6dwB69dNfYcx9f2h6rY5DdMtOGlatRQIB8CcIDM4jafJEkqZMJDRyOD6fN45ogs6z3XzgBJQZQ4eyalcR0cYbkS2zP1skDzXNiwH4w0mkjBxHykj3Jp0TjbqB0wIvcLpmERWrFyAIoex8UvLcjFMnnmD3R68Qr6+mbvd2Nj95B+njDseflMaWJ+8kUrabhtJC0sZNIf+Uc5sTXzvpGCG4bd62WaVuUmrjGDnNy9X7/67qGrSxX3+L9QU11by+aSMvblmLqhLy+xERUoJBaqLKPcsXWaDUtLYXkzntje4GSm/GrXi/DfwKt5L6wn4qkzlIDDv1MorefRxfDJxah1veXEIkyWHizBzOu2wcZxbnkUXI/cvpB/VDZIibkOmkutmgTgr4q2j3YY+r4gsEyDz9bHzJKRQ/fD8NqbVUnJwgkQIJN9GDYBlE86D6GEh74zBSXp5C/YlLiU3YBv4EqODzw9BRaQwdlcbJ54wAgaryiBs0XVvBptVud/1Xogk2rakkGPZx2RcOY/oJgxk/NYus3CRQ+P0Dp+/x/XBSaF1peM8T6UACAgpxP1ScBoEaCO+Gusrt+OKxVrkwTT0mgopqBH9D+6kItSZCXf0unFdeoGrOWyRqqvGnpeNLSvLGyHGI7tppgdJDzLaiCDtKogzNDlo26cByM1YHmzbGH3ciGxd8AMDCLTtYtr2AnNRkjhszkomDcxmUlrpX41knYjH8gSDJ06Yx7He/Y/OllxHbuRONdC9Y2laG38+MlBRmdNJdf5HXXX/jyxEiqpw6PoWLp2WxJf9UVmWdRplkUYWSddXvSXhfW5saY/vQA7akOkJDJ5FUBRpiCRpiHa/fVFzDq6sKeWLhdjYV15Ia9pOdEkLVHct01a6qvS6XOTBV1sX4aHMpQb9wwrhcUkLdbULtV6N6uLw7BuGOPdqOqi4VkXHAOcDZwAIRmaWqq4GTVHWXiOQDr4vIGlV9t6cnV9VfisjD3jmuBj4LnA7cBvywg+EA2ioCenN21Jux+ndAOjxrECvL3ZEknNo6yh9+BgkGCU8aR/LUwwiNGYk7GkRTKgs44mZadjSLfKMA/Pr8TzB78SruX7AYJ94mO65NZmmHFPyBECnDxpCSPwY5Cpx4jEjxLhqKdlK/eweVG5ZRtmoekbJCJBAkb8bZpI4cT3L+cHzBMCow5oqvN51MG5N8pNVpOi+D175vykL1NZe93aRQgKq2eqtanuXfSxcQ9SXwiY+C2ioyw0lE1X0Ta4uj1MaipAatl8bBQFXRhjeh/iFIFEFwKpL6ZSQ4uVfP0xfjn3SrllfVBd7TGtyxWYwBYNS1P2bZtluQuJ+vzDiaIRPTSE4PggMNlVCzFlJXQzwTqo+ERBr46t3XkUHgr3SzQ9t+2BO7mmcUlUAQHIeGkW62ihPWVsFXcSCaDw5pBArySXvmHCLjyolNXIeTVYmTVYZml7sVl3eijOww02cNZvqJbteIaCTBhlVl/N+X3iUnP4mPF5ey5AM3S3PQkBQmTMli/NRsJhyezaDByR03PjuoFAD3vNrc+8IJQPHF7uRPyRtiZC0A4s2HaBISJOK0GwcW3OOVrJ6Dr16pnw6RtAaCZdWkL/MTLFcQH+XPzSaQkUF4tGW1HApmv1/GwrW1Ta+njknm6jNzbbDzAcDqYNORS7//Y/7y2YtRx+GY0cM5csRQctN6Z3bZtFx3HO7Gus5tLLWYPWkftOyufzGZOKoUxOP8oKiAjxvq8fn93DevjF36Hg2BZQQGjyeUP47Q4AkEB41E/EF64ytyfSdB0Eayh3OU18a4+bElpIQC1DTEqG6IUVTVgHp7VTXEuPvdTdxwqs33cihYubOSXzy/qilwnpG8md9cOo0xg1L7uWRsw+1u39HyvVVPi0mL2lLVGmA2MFtEHOB8YLWq7vLWF4nI08DxQI8Dpd4xNgJ3isjdQLGI5AIzgMe8v0mDgPNFJK6qz7TZPYnmbvz7zOrfgevFy65nzH1/cCdtS08j59rLCA4fggS98InipVG27K/eJtLYQssYYnZSkjtGOD5EnObJClts04pX/Yq2WR9vfu4PBEkZOpqUIaO9SZji1O7azNbn7iGYkU3NltVUbVqBiBDOHULykFHuBFGDhruTQ7UsaGMm6x4iRU1B1MaOHU3JQp28B9L6uZsU6F5QgybcOLOXWlvWUN/Ubo8k4nzjjef45ycuITnQnUmaTX/S+tlQ+3fcufhCEF2Kxm6G7DuQwIRePFHvHaozewyUisjzeyqGql7c6yUyB5Wc0UeStXE00e1bmTQmm2ga4M2w56RD5QyomQLhQvBF3MBmyhqomgmRESAdBEkBiEVJRCL4w2FSDp+GPyMTX8T93iNeurU6kEiBQJU70ZM/vJ0Ex5JIAV95NuH5MwGo/exD7cZRcQ/U/DQU9jP1mDyOnjWYEeMz+MLNR7BzSw0bVpWz8eNyViwo5qO3dwGQmR1m/NRsJh6ezYSp2QwekepOpONzr73Dc/nddYkkd9In8YY6rZsCKVsgtNu9rsY6Vv2gIT++WjdKqj53e/VB7VRoGAXqqyMyDBBB4kosExqGJcifDYGIENtdQOlTjzP05h8Q1zoSGiEp0H4mX3Pg27o70ipICvDxlnrWbGtg6uhDZ6Zd05rVwaYr37r/v/zt81eQmdy7GebP3fo7Lv/BT5FgkIzzzqXknnt79fjQovedCDmpQU4ek83aKqXs22NJr00mvPJIdFuE6O5NVC95CQDxBQjmjSY0eDyhweMJ5o3B543F1puCfmlqwHUkgRtorY9Fm3pJOl4FLgLVDXGeXLyDI0dkcvSobHZXNZCXHiYpaJM8HYz++c7GVtnFVfVx7v9gCz+/+PB+LBUAP6b1GKUAdd7yvaKq5SLiF5EkVW1ouU5EToL/z955x8l1lXf/e26bPrO9V61Wq95lyd2WC4bY2AFsjA0vhFCTUAJ50wtppAIvSUghBIhNNcbYxr13yeq9rsoWaXuZnT63nPePOzu7q11Vy7Js5svHaOfOnXvPzO7c557feZ7fw57cPgZuJ/gXhBABQJFSxnI/3wj81YnHznWP3yCl/MXJzi+E+DXgMSmlBFpxv26jUsrmSft8H3hkBpEUYA6w6+ze9YzjKMTfAvz4XXdy5xM/AcBoqpv65LhI6Ew0Ih43G5WIU3oofvQXP+O/bv51vvH8qyTsCQvf8XgyI2JCw5S5c844h84dQFE0wrWtBKqaCFbPpnTZNaSix0n1d5Hq72J09wbk7tcRioq3rBpvdQO+qno8ZVWgqScdiCSXfTpZJM2PUU7sNUkvFcqkwwk38XZagpGc/HomeqAokj2DfXx9yytkHJOI4eXXmucxt7j8ZJ9UgbcIKbOQ/D7gB5HLABZhcKLIxL2IyF+ev5Odeq37vHC6jNJ/Ps3zBQowe9FnOPLSH5FYcEKfIzEROKwSN6NSyYDvMCTmQWA/p4wIXX/++zT9wzdRvF6qP/dl5Pf/lVi6A8ULtg6KqiE0Dc1nYOxLYdb3kC3fgji+LFf6YGMu2YAMxaYffKbIIiEYMYhHs6iqQkNLmIaWMGvf24hjS/q6E7TvHaF9t/vflld7AQgE9Xy26ex5xdQ2BVG16WqpXTLpczHJG2THlkLJCyBSOYFUhZHLQZRqeHt9eDdFUXIVjyNXQ6oZHB3sMEgN1DGJUEHJgmNAahYE9zk46TTm6CD7u77LqHIEkPj1KpqLbyVjj2IoIUKe5nMqzSxwYensz5DOOli2xNBFvtty10DmHS2UCiF+F/gE7lViJ/AbJ07c3uEUYnCBU6J73oBAqignbdR0ZPOG/M9ln/0s9liM0fvvR6ZzXz9NQygKanExdjTqbj/LbNOxoAK2g63A7kbBS6Ua8hlJOp3GLofwMhNP7W0gdZxMgmzfEbJ9h8j2HSK+82nY8RQIBb20PieczsKomIXieeNZtaqAiFfHdrKY9qnf17RnJViOw1jK5P7N3fzLcwcZS1n4DZWPrGmktthHPGOxrKGYoOeiKN8ucAoylk17f5xExkJVBAGPhiIE+3tnuLe8wPz2f6790bc+8xyc/673TwFXAM+csL0FN9NzXCJ5FLe5UjPwi9z9pAb8SEr5xAzHXQQ8fJpzfwT4hhAiiVtvdXeuqdOZcm1uXG+UQvwtwKU1DacuppgsFp64zynmuPtGhqkKBfnS2sv56hMvYktnouR+cnm6cOeK40lC+RmbmD6VnZLHKd05ubBA0304mRSG1BCV9fir65ECHDtLuv84qd5Okn1djGxfx8j21xCajreyFm9NPd6aevTyCoSi5M8hVaZUaebfupwQR08s2Zc5AVQquRL9ya+f/H5nSEZ1hGTYTvLjg9so8fqRSH7SvoMKvx+frnFZZRMfaVtOuS8IQNax6YyPENI9VPpcr/TRbIqElaHKF0YVp/Y2L3DuSHsI7CGQucu38INSBsIH1pn0/jszBFwUzZyOSCnfSPlGgV8BQuXNpEtV5OQa8fGLvcTtWG+7F/7gTvD0QOO/4WZCahrSNGc6LFZfH9JxEIqCUV1D0x/9HRWjnRyLvcioOIrlJPFqJZSXLaO8YSmjjz5MLxsZW7SP8EthDHMM/+EwZk8dY5crjJWMID0gVI2g0UCpdyEHR34MTASnYNhgsDc57UKtKCLvc3rlu+qRUjLUl6J9zwjte0Zp3z2SbxDl8Wq0zCuiZX4Rs+cV0zArjO5V8wFTmKAPuqfF5zalSja7FgWOBnYEQnsgU51kbHUIz34dTBMz6Iqg4ytw46t5dnhirCINVsD9BUjpMNqaIGHtQ2bcSWzUO8am5N/g091VuKBRz9zy30BTvEjp0JfYQDR1AF0NUxW6DEMN0Rd/nWS2h4BRS2VwNapy/rN3Cpwc25FsPpBgcMzKbwt6FYqCGpXFF0cJSvvH7ryLEyZqs7//kzc0Ucs1bvg8MF9KmRJC3AfcCXz/DQ737UQhBhc4LbNXXUr7xnVn9RohBIqiYJ+io/0z3/l3rv/EbyE0jao/+WMqvvwlRn/6U5Kbt2AeO4bwevEtXULR+99Pes9eBr/9bdfLNJkEIdBrqhGBIAiBMzqKnUqhaBpqSQn+O97H73jupT/Zh26DqQkSB9xsSzvpoJc6SMeP0EaRZjGKJ4C3YRHehkUAONk05sARsn2HyfYdIrH3RRK7nwMEWnGNK5rmsk7V3ETpbEhbEjuRIezTGU6aZ6UBS9zrdtZyWHd4CE0RZCwHTRX8yYO7qMhllnp1hT9891xWNLqrqPt7Yzy2s4eUaXNpSynXtlWw4cgwrxwcwGuo3LSgilnlwbN+LwXeGOsODXF8NJUXzDU1S12Rj6ay82Nz8UbJiaJvVBg9kX8DvsQJQqmU8h7gnhn2PwwsOYPj6lLKU16spJR3nu4gUsqPneLp9wK3nsFYTkch/hYAIKBqxC3r5DuMVxTmmzAJ0EGak0RP3OcmP/7H117hT666hsubG/nTh59m5/FebNtBAoaqEvJ48Kgqx4bHmLJUICeqEE/UGrFBZN3KBmGBYoNq+LAzqfGyBzeeqaAoBv7aJny1zZQIsDNp0n1dpHrdjNORTS+7xzY8eGvq8NY0YNTVo5eWIhBTMkTH/8k3eZpUPDFuPScnbz+F9+qJWaoSiY0kY1v0JGM40kFKyWgmRVMkwoNHdvFiz2G+v/YOtg0d4+u7XiDjmNiOZF5RJUFDY+twJwJBUPfwu/PXcnnleSwBLzBB+hGQo+SVcJkAOwWiFPTzWIExLqq/yZxOKH0QWA4ghPi5lPL9b/qICrwtaX7PH7Kr929xvEwVGFNQ8pRGus3Cfxj87RPPCZ8fNRDAGug/6XHN3h6Mmtr8Y39RA61FH5lx38oPf5ySgZsxB/rR11RjDQ4gsxm8LXNQfFOz7iw7y6ubP4EqHOzIxJiDEYMj+0fdBye3mUEIQVmVn7IqP2vWuuMbHUpzaK8rmh7cM8KeH7aDA5qh0NwWYfa8YuYXFbO8J4IfDSSk6117Ak+3W5ag2CAzbmaovx38h2IgXT/X0cvBLM6tEJpMlCxMWrGUXkg3g9wsEKogM8eDNTQA0i0iNBUTNBVHs1GESjzbRW/sFeoi19M+/DOGktvz73EwuRVN8ZG13aYUQ6mdDCV3sKDysyiiUD54odhxOEnfqIXXUEhnXVEjnnaYXaexsOmtn6jlRNLJpX+NwH+3f+xO3qhYihujfEIIM3f842/weG83HqQQgwuchlt/70/42gdvPqvXCEUhVFZOJpEgFZu58VDfkUNTHiteLyUf/SglH/3otH09s2YRum4t6V27EH4/SihE9vBhjMZGPM3TfbK/8NwX6O/qByEwc3eiatCdHdk5yxmhRZk6+4TxoKwYXjy18/DUzgNAWibZwY58xmnq4Osk97mTPC1cMZFxWjkbNVh8Rp+R6bhepOdyLy6BgKEylrHI5Eq2zdwEOOBR8eoqadPhX59r57sfXcXOY1H+/OHdOLmJ7LpDQ/xy23EO9sfzx3xqdx9/fetCFtVFzmFEBc6FrOXw7ZcOUxr00Bt1s6ktWzKWNvnwmpmsQd8ZSCm3CiGeF0KoZ5nNebrjvut8HWsmhBDlwNellCPn4XAPUoi/BYCdH/4izd8/RYJxrtx+imKIO1ecEkBOmFPuHnB7YTSVFvOD37iDeCbDgb5Besfi+HSdeVXlVEVCvH6oix+u28qB3kFUoaApChXhAL+2eC4L6yoYjidJZCyef/0Aj63bi5Mrc1dy66Cq4SUbH0EAWhpMPyeorO4D1eMl0NBKoKkVRwU7lSDV20W6p4t0TyfJDveeQPX78dTU46mtx1NfjxYpygvAgpOU1SMQUroi7SkTOmdIw1UmVGFVCKzcyqUtHWzbwatp9CbH+OaOl3llsB1D0QhoHqSUvNJ3CIlDS6QERQjStslfb3+cf1nzQeaEK041kAJniXSSkPo5iBKQI0wo5hYQRwQ+fF7PdzFklE7+Ey840hc4KeUti9C3u0tqdiBXEp4UlD0QwNMD/qMZFCXnOC0EajiCf8EiZDaLZ+2NDP30B9MPqmkogbMzytfLK9DL3QufXnJyP85Nr34RR8+6fZZirp8qAkJhnfiYieNI13d0nFOaxrgUlXpZcUUVK66oAhPiiSxHdo5y4MAIh/aO8OTPjvDM8GFUBC2lYeZWFjO/u5gaTxGpFh19u2tVoMZBVVw/U2FDqgHii92MUzsEjoeJzoScMC4HzCJINyqUr7iBqLkd9NwKoird1TzbNcw2nQSWk+DoyKOYdmqKSAqQsUdJmf14tIlJZcI8zkhqD6X+Raf+MAqcN44Nuh54pWGNVNbBtCS6Krh0XhBNvShsE77KVH80co+/yhvIcpFSHhNC/DNuhmoKeEpK+dQ5j/LtSSEGFzgjqtrm07t/z0mfF2Ii+0PTdRoXL0NRVYIlpRzdvoWRSQ0Ux2leuuKsxqD4fPhXrco/9jTM3Hj70fZHea7ruWnbtYB7S+okXV1GC+4hO7oKzLLTnltoOp6q2Xiq3CwR6diYQ1054fQwqaNbSR50E9nUQHE+29SoakENlZ/UguZcLLCEgKbSAO9ZWMV3Xz2a3y4lOEgsS5KxbEYSJp3DSf7qkd2MJM28SOruK3l6Tx8Npf58wz7bkfx0UyeL6grx90LRN5YmlrYIejQaSvzEM25W2aLaCAtq3tmCtZTy/BsTv8lIKQdwBc7zQSH+FgBAUZTT9zLMZ5W64qgC1EbCHBsdO2mDpsvrpy62BD0eljfUciKrW+pZ3VJ/yjH2DEb5v+secsdogZg0T9QMH6mMm2cg7Fw26immuE6utF4NBAi2zCXY4nYrzyajpHq6yPR0kT7WRfKQW0qtBoN4auvx1jXgqatHiYROEErl1JOdyDTRdobnVRAItwomt78jHXozY9hpBwfJDw5txlAVqgMhbOmgCkHWsRAITMfGo2p4VZ0xJ8WDHdv4/UU3nvIzLXCWOH2ABLXc/SNyhnEtpnVQGxH6eb53uQiEUnmSnwsUmMa8NX9Mz9f/FrNMQaQCeDoMhBRIKRDlK/BEjiFNE9/CRZTe9gGUyd5qHg9D9353IgopCqHLrkKLFJ33ccYyHdjDw9j1rug4uTwgGDGQUpJKWgSCJ5Q1n4FYmseGiGKwfF4Fy1sq0K6GVNKi/xej7OsfYU/vCI/v7eSXu44iX4KalhAr4sXMKy1mXkURRR4PahqyZRBfCL5OtyGW2ARjq9xxqymwg7lxuU0C3fjiU9E/fT3C30Z6x0tkw6ZrNG7lMnFMQVofwJYZQGDLDIdG7kNKiaoYCFQ0xYfEQTI9kSBjnY+F+gJnynh5vQD8hgI5b+zaMuOtG9RUZlZDTr79jBBCFOOWzzUDo8DPhBAfllLOsKryjqUQgwucEXf/1T+eNKtUKAr18xeTiI5QVFHF6l+/nerWufnnHcfhW795J9lkMr8tWFLKkhve/aaM9Z82/dOM25VALqM0abtlg5qJr/bHpI/diZOpQyhZpBXg9LeuIBQVo7wJo7wJFl6HlA7WSE8+4zRzfD+pw5vc83pDE8Jp5Sy04mrEOXqYCWBWWYC/uW0R//78QbKWPc03LmXZjA5m3YmeAz/Z2OX6T2sCQ1Xx6Aphr47lSGxHokxaEOsby5zTuAqcG+UhDz5DJZW1MTSFEs2Nu21VZ2/nUOBtRyH+Fsiz50OfZ/6P/2VGsVRAvmmvKgT14Qh/uuZaDFXFq6jc+cB9017j1TTuWHj+hKN/vf9lt+x+fDyTnAJU3YedTSGldG130rn54zj5JkoCR+OkGZ9qKEIwEiE4f6G76BcbJdPdSfpYJ+nOoyT373WzPiNFeBrcbFNPfT2K/2S9FMZ9+pj490QhVUg03c0izTrjc1J3CVOokpRtM27eKoC0ZXN0bARDUyZluQpsR+bn+5pQ6UlFT/pZFjhHlHIY77atlIJS4j52YmAsO++nuxgySpcIIcZw//Z8uZ/JPZZSyvCbOroCbytKaxYyYDei7x1BYkw4OQuB7VRR9YVPokdm/pMrXnsDvtmtDD9wH9I0CV12JaHVl70p4+yPb8IsmsginUww7N4Ex0az04VSJu1/EsNpwL1+a643jX8/hHaMm1dr1BeXsay2DARkLZv2gSjb7RF2xkd4eu8xHjnaCQJqgwHmlxXTcFkRs48VY3h9DN/gHsfb4a4EJtsmjUEBbFcEFarOQGILx2MvISI2UkikDmhu6YJjgJSpiTciNcYdYCzHQhE6tp1BVbxoYnqjkIi35ew+8AJviKUtATbuT9A9MNEVc9EsPw0VF41XbCduuf1M298I1+N6hA0ACCEeAC4DfpWE0kIMLnDG3PzFP+KR//d307ZrukHbpVew+PqbZnydoih8+t+/z/oH7qN73y7q5i5gyQ3vIVB0ZiXqZ8tQZmjmcWgKiqHkS+8BVD1BoOl/MMfmYSXawDGwxpZymtq9aQihoJfUopfUEph3FVJK7NgA2d5DefE03bHN3dfwYVTMyvuc6qX1COXM7GY0VWA5Dp+8ZxOqklvDPOFmPpW1sXMliKoAKQWWI7GykowiyVgKiYxN2Kehq1Pf55JC2f0Fxau7Dbi+/dLh/LaIT+eOVafO7irwjqAQfwvk8Xu91PpDHEvO3MTNr+l8YcXlXF3XTFtJ2ZQqhR/++u185tGHiGezCCEo9fn415tuptx/dlWTp+L13UenbpjU/EnTfCAljplBNbxoWRCjbpViPrNUdSsPOVl1heruwyTxUS8qRi8qJrhwMY50MIeHyHR3kTnWRerAfhK7dgKgl5biqa9Hr6vDaK5D8XuZtvYg5LQGUQg3M9YttR+f8Ob+FXLqvtKdyYp8THUwVJWsY6MrAo86EcNNx2ZF6RvK5SgwA0IJIr23QOoXwPiidgqEhvCf1nr67HmrhVIpZcGIsMBZMftv/oz23/kK2LmsByEQuh/LmOs2aDjFPb63oYmaL/7+mzo+KR2ORV8iW82MImco4gql8bEsiFMEMAFkgZl66Ti4AcfriplmBRS9AtpobvUjBY4fDE1lbmMJJb9Wwg1j4LvM4dj+MfZ3jLB3cJRXe3p5/JFuxMNQVOejtbWI1jnFtLYVU17rR7EFSgKk7v6HBKMX1DllpJ1hJDa2YU7ElvyKnUDkgo0benKrcePDl65YKlCpDa+lP7GR8YPUhq8lYEwvCwFImYOMpvehKQFK/QtRxMXRaOjtjq4JPvVrFew8kqRvxKSx0kNb/RvodH3++WOmepQCJHPb3widwBohhB+39P46YNMbPObbikIMLnA2tF16ORsfnk3f4QkzcEVV8UUipBPxU7wSDJ+fq+7+2Js8Qnio/aFTPq/61SlC6Th6eC96eC9IgR3eTar3vUjr3EVDIQRauAItXIF/zqUAWPFhzFypfrbvELHu3e6+qoFe0TSRdVrWiNBmjm8lfgPbccvk06YzYyGKripgO9hS4kjIWBMF/rYjsYSDqqjcvLiaA31xRpNuw8vmssBJfTHTps1rhwaJpS1WNZVQU3SyDJ4CZ8stS2qYVx1i3eFhwl6Na9oqiPgK9zfvdArxt8CJPPe+T9D2g29M264gKDK8LKmsYm5p+bTnL61vYOunf4f9Q4PYjsOc0jIM9fz9ebV3DTAWdW26ZprbqoYbD5xkCk31ujZvgBxyc2UkYPnA9rsd5uWkg0iYsct9/smcDatQFIyycvSycoLLlyNxyA72k+nqJNPdRWLXLuS2baCAXlmB0VCP0VCHUVeDYhgzHl8Aqiawc/PVmZUxOfVHMfFj1rFREGiKJGWbaFIhY1uUeYPcXL94ylGGM3F+ePRFXhvcjyYU1lYt4s6GK/FpF0313tsCEfwsUglB6n5wRkCbjQh+DqGd5+ZZknPzRjpLTl+/VKDAWaAFApTc/lsMP/oUwuxF6mVYgUsxyorwVL61N5ZSOmzr/SZpp++kySjByULptANM+jknPCoJ8g2shOUKoU4u0U/JuK8xiyC+AMKb3OZW6SodO2RihyE+3+1ab5dAtlohvLaIG14t4n07wFYlR+w4GypH2HdshD27hnh9XY87zhKD1tZiWucWM7utmJr6IEIXlKzTic3Vkfb4UqKcWICzwBgGOyAh7MFxMswcdASa8OHViqkNX01N+CqSZh8BvRqPVjTj59YX38CRkQfzj7vHnmVBxacw1HNfcHeyDplBC6NEQ/WeWxnkOwVNFSybff5Wns8ns7//kx+1f+xOOM9d76WUrwsh7ge24BYRbQW+/QaHW6DAO5r3/9Ff8cM/+RKp+BhCKHgDAbzBEHXzzmO30XNkQ+8GvvLaV065jxpQsZOn6h0jUf1H8NffQ7L7LqR5ci/ys0ULlqAFS/C1uD6rdiqWzzbN9h0mvu0JXPM5FaOsMV+qr1c0o+heFMBnqGRt9+5dSve/yYUo7nYHRXGzSE9E4JZuNpT4aCwN8Ac3zWPnsVG8usr86vCMXqqD8Qx/cP8O+mPuAvV3XznC569r5bp5lW/o8+gaTqKpgupIQXSdXRFidkWh3L5AgV9lPLrOX62+nr/c8CxOrlRAVRRKPT48msb8kpNfcxUhmFc2XUR9o/QPx/jkX/9kWpyZjGa4yRV2Jo3iG8/IzE1lLbfaUDXBSQgsH2TKJDKXaio1ZiyJF7gV1pMFTimYpCwpGFVVGFWVhFavQtoWmf4+sp1dZLq6SGzeSmLDZlAEenUVnqZ6jKY6jNoqhO4eROQyXKdWZcyQeTp1VFM+haBmMKeonNpAmOFskjXlzdzetJwiYyKupW2TP9nxQ/pSowQ1Dw7wy+5NtMd6+ZvFd53Uw/xkjGZHeW1oPd3JY9T5ari0bA3FxptToXOxIYSGCHwM6f8/gIUQb57QfDGU3l/0DI9ZRBMWteUGhvarLaZcLJS/q4ls4gNEtyWREoxijfq7ShHK2V1ozjc9sVcZTOQS0k6MKLnHwbAr5sbHzKkvPvHLaCugO+g9EN4IVhFkasEKglWca7g06c8xW4FrRG1ppJsdkq0Kjt9x98ntJw036MRWgO8QaAnBLH+I0JUhrippwPZKBjuSHNw3woEjIxzcM8LW9W7HRF9Yp62+mMUUUb1xmLq5RYhJldneTih+CZQsICTJOVlGL5czBBqBQCUrTUYdhYeiB7g8NIda37yTfq62k6Fj9LEp2zLWMMfHXqKp+Ow6MY8zsilB76Mj2BmJogsqrgtTdlWhyuliJSeKvtEO99OQUv4F8Bfn+7gFzg+WaTPSk8QXMggWXzRWEL/S+MJhbvz053j9F/eRSSZQNI2FV19PzZyTX8MvBGPZMf78lT/HktYp91MDKtbYKfYRgJJEGGl81Q+Q7Pw4U4zGzyOqL4SvaSm+pqUAOJkk2f7D+YzT+K5nYKc7kTNK6tArW8hUzyZY3YJj+JH5LJipZGyJKuS0bFMhQFPcplu90QybjgxTEfJw4/yqqc0lT+CnG7vyIimAI+E7Lx/hitYyPNrZfzb9sTR/99g+2vvdLORFdRH+8N1zCXsLWZS/KgghfMATwFqgHvi+lPKaXIXHfwOLcb+No8BNUsq4EKII+A6wEPdP++NSynVCiO/nXv/CKc73FeColPL7Qog1wDcBT+6/n0opvzJp31XAeuCDUsr7c9uOSimbcl3v75VSzuwz8g5ASsnD3Zt5tncXhqJyXdVCrqtahKG+7af0bwvubFvCut5ONve7DRB1RUFTVH578aWEjQt/H/St+14mmcrNWQXMJJWqOaHUySZzOTQT+Zlikgiq2BIjIbACYPsmHPRmPmpuu3S9P+W4DRwTQ8m/xgE0DU9dLZ76WoKsRlom2WM9ZDq6yHZ2EV+3EV7bgNBU9LoaPE21GC116HUViHELmvHy/JMyaVKfK8VP2Fk6EkM0hIr45urbCenTK/I2DB1gID1GxHAL41QgrPs4EDvOgdhx2sJTKymllHSleulJDVDmKWZWoC4vpvam+/i3g/9O2kmjonIgfpBXh9bxO7N/i2pf1akG/47C9Xl/k7NxC0LpyRkaM/nWw3109mcxNEFZWOPOa8uY31hY+X6rEaqg7vZSKt9VhJ108FRob7lIajtZDg3/fHpzopN5lEZzk46TfQmFA45CptFBqViE/2iK0KYelOEMxz5o4fhywmfGzTRVkyBMkHhIV6dwfLl88fELvgRhg5J2BdZMHWj7QU2A74ibdSptQVlrgLLZAS7P1KGNwGA0xcGDIxzaMcqhnSPcY/Yj/+IAhldlVlsRsxcWM3tOEWs2R1BkzlxGgn+/TbZSIz1Hyzd1EjmzUwdJHJ3dooV0soOdqW4+U3EttUbJjB9FyhrEkdMzcBPZ7pP+Pl7fF+f1vXFMW7Jklp+FTT4GxyxqSg2CJhz/xXB+BdExJb1PRPE3e/DXF8SYAgXeaqQj2fDoEfa8fBwpJR6/zuwVFay6ufmUgk6BC0PDwiXUzp1PtL+fQFExHr//9C96k/nOzu9wPHH8tPupAZVM72kaFgkQwkH1H6Zl3lPUWh/h8GCcgViWrOW8affOisePt34h3vqFADhmGnOgg2zfIcy+QyT3vUJizwsMAlpRdT7j1KhsQfVH3KScXOdkicCru6Jo1nQgJ5IKITBtB5+hcGQoybeeP0THUJJPX31yb/BxQXMy8YxFXzRDQ+n03/3RwQT3ru/g8ECc2RVB7lhZz3Aii9/QWFAT5lvPtU855s7uKN975ShfuL71jX6EBd4EvvbBm+/ihIqOL//0kTe6cPlx4AEppX1CNtUXgD4p5SIAIUQbMJ5Z8E3gCSnlB4SbRnSuF57/Be6QUm4XQqhA2/gTucf/ADw50wullANCiB4hxOVSylfP8fwXLdFskk+u/zadycH89GXryFFe7t/HXy25A+0MvZQLnDuGqvLNq2/h2a52Xjx2hJDu4b2z5rGo7MKLYL2DYzy9bj/CniiWd0SuVH7S11Y1XNXTzqamzGvzuupEkikSiWdYkKySoOTq6k8lTk4WSE91+zflPAJ0HU9TA56mBhBuPM12HyPb0U2mo5vYi+vgRRAeHaOxBqO5Ds/sWrTKUoSi5E51gkmpcN+BK/66/3o1jUpfkC1DnfzDzqf4m+XvnTa0o/F+HDm1jnv8uteVHJoilGYdk/9s/ym7x9pRENjSxqOqFOkBio0IGTtG2k4T0CaqABNWkoeO/5LPtHzyFB9QgbOlkFF6ElIZh3+6r4fjQ25szpqSdNbkpy8M8cd31eDRC5mlFwN6WEUPXxxBuy++npQ1cNr9NF3B59eIR81T7zhp1U6W+lmw6E/gFujZ/jD+g/cTi2RxDLeroJIBbQhsVcfMXorn+CtYFemJYzmu7orjiqlCghbNbRPgPwipJjfwSRX87VD8LGgpKCv1MU/40PQaYh8XdM+32X90gAMHhzm0Z5RHf9wOGfh2XGF2eYT5lWUsrK6kpcxP4LgHZUEFlkyRtUZQFS+qEqLTdtinrsDOeYza0ubV2EHuKF2dH3LWcrBt8HkUvFopitBx5NTPzG9Uz/jRrd8b5+HXRvKPH3hlmAdegaKABgJWhQxacxc/05Kksw6aIhjdlSoIpQUKXARseaqD7c90uZkEgJmxObipj/L6ELOWnf/SsgJnj6rplNTM7Cd9oYllYzx++PGT5FdOZdyjdLw77ykRkri2kf/58DfQVZ2+sTS3futVeqPpU7/uPKHoXjw1bXhqXB1HwyI72EnyeDvZvsOkDm0kuf8VANRQGb6qFoJ1c9ArWhD+YuqL/aiq4NhICtOWNJT6GYhlCHs1QpOyN5/Y3ctdqxvy2xxHEktbhLwaiiJoKg1ME0t9hkpFeHq8jCZN/uiBncQzbtZu18gAP93YRV2xH1URNJT4OTIYR1UUbCmJpy0cKXnp4EBBKL0IyYmkkz3CG4H//toHb+YNiqV3A3flfraB4dzP1UDH+E5Syv0AQogwcBXwsdz2LK6TP0B00s8nI47rRQ5QAfTkjmMDeybt9zng58CqE14/+Qb/wdz433FC6Vd3/YLO5CAaCkK4Cy1JM8PWkaNsHj7M6rLCd/RCYKgq725q491Nbaff+U3kp09uwTGnCnyKBMfOiaU5NN1NIrOy6YkeSDnhUp5Qxi4kaFn44Kx5BBoCfG/95hNTjKZyimm+kJOaRU065+SeTO4xJELz4Gmdhbd1FgB2KkH2+DGyR7rJHukidrCD2NMgvB48zbV4ZtVizKpDKy/GUFUMTWA6Nq4zuIMQEr+mMytcjCIEId3LxsGjjGSS+DWddYMH2Rs9To2/mBIjhHrC/cb4/W21b2rJ/OM9L7MzepCg5sPBYSA9zKhpETO9RM0YA5lBSo0AmpIhakYxnSwKCruiu3EcB0UpaFTnhakOC28ab0uhdPvhJCPxqV9by5ZEEzad/Vlaay+qRicFLgIGElvh1Jf6PKGIQWwsewZfwJxIYE90QCxfdANdpVvwH+snkxhGqmAcc7NFs8U+ZO9sIk93kq09jFlig8ytAiquSIpwGzJ5jrnBS+pglrnl/JYPvIeh9Cm3hF4qoI8KN0NFlXiOSyIrNJatqWLpNa5PTixmc+iVBEMP9bGvf5iHdh3lwZ2dgEnD7FJaOutpW1DFrLlllJXPIi0dxpw4mjCxJ3WqGrPd+1fbkTyyfpRNBxLYtqSlxsPtV5VSH7mBjtHH6B8qZWC4hJKwZHHlVTN+auv3TkzoMqZDPOUgBEQCblBd15emWIA34X6nx9m7L8b7rw0R8E6Pyo6UtB9LE03YtNR4KQm9LS9tBQpc9FhZmwMb+vI3keNkEha9h6MFobTANA6NHmI0M3pG+6oBFWlLZFYiPKfPTlaEQmesk5aiFirDXu6+pIEHtx2jeyRJxnrz76IV4Za6A1hoeCpbUMrciZ50bMzhY3mf03TXLuyjm7AcifCFkc3zKKqfQ2ntbMpq6mkqD7KlYwT7BO9Syx4XRnU2HBnm2y8dom8sQ2nQ4OOXN/PBVfVs6hhmMJbJC6B3r56NV58eK19uH8jvA9A/lsa0JfGMRcSn0zGcIJax8Bsax0ZS+bHE0hYvHRjgqjkzf797o2m2d49SHvKwtK6okFl+4fgq0zM3/bnt5ySU5rJBZ0kpjwJIKbuA9+We/i7wlBDiA8CzwP9KKQ8Cs3DFyu8JIZYAm4EvSCkTUsovnO6cUsp/nvTwG8B+IcQLuOX//yulTAshaoFfx7UDWHXC6yc/3gT8zdm964uf0WyC7SMdKIj8IpIAFEUhbqbZMdJZEEp/xXh9+9GpG3KhQ7FBWm5lIwIUVUcoKnYmNaGJCjchR1jgTPYhtUEIiZm0+L83XkVXNMrL7UdJWNa0U8kTvUunNFOasHebsp+c9JwE9Mnl9DJf7q8E/fjmzcY3fzYIsMdibrbpkW6yh7vJ7D0MgBr0E2ptpGzuLERjGUT8oDioqtsM15YOilBRco2Me1Oj/MuBJzieHMFtWyXwqBpe1cNQJkbGSZNx3MSfen8FbaGpST8vDWzCqxoIIUiYcRxsNKGRdrJUqh5UBMPZBCnbQgj3HsWRDik7yStDL3FV+TVTjncsdYjXBh6iP9NFsVHJZWW30BR46z3lL3ZmsM19U3hbqgmJtI06gyBvO5Kw/+LIYCxwcXFituOpCIQNEjM1c5pMPhgIhFBzneI1NMXH3LKPckR7CCXdh2d9FG1UYhxMoQ6NkVFfIZ2+jMh9YeLv2otVnEaqNooFej/4OiGwJxc/FBhbBtE14Phy5/MKnJBARJ38QBwdEq0QWwpmkeMGRgkOCprhY/bVJVwtS/B0K0hp0B212NHfw2ZjiEfu7+Cn/9uNlIKquhJWX+ajeqGP+vmH6am8gpQIAtDmcwPFiztivD5J6Gw/nuG/Huvn8vlLOHC8hl1HUgihoCl++nqy/Oa7Jbo29VJmTurwmzEnJoTjGUSqT6E3JCkZmAjKWQPafZJXd8W5cWVkyvEypsN3nxigq9/9nQkBN68p4tL5hcYLBQqcb6wTshfGcRyJL1ToDlpgOqpQsZxTe5Pm983dw9kJG8Vz+swLRSikzFT+8SeunEXGcni5fZBoMkssbaEqYoqH5xtBU8ByJs35TtBiTXtig1BUjLIGjLIGWHAtqpA06glGu/aT7TtMz+E9HN+1Hgmo3gAlDW14KmdhlzRTUddEedjNAqot8lEd8TIYz/B3j+/Fyp1jKJ7l7x7fy52r6lnbVs696ztxJAQ8Kj/b3M38mjCL64qmjC896ftr2U5+vOMLHwJB2KPTH89MEWyLfDr//fJhLmspRTvhBvzh7cf5zsuH85/F3KoQf33bwhmF2gLnnYaz3H4mlOF6j05DSrlNCDELuBG4HtgohLgUdz65HPhcrhHjN4E/BP7sbE8upfwrIcQPc+e4C/gQcA3w/4A/mMEO4ET6gZqzPe/FTtLKooiZr4kSSYkRvMAjKvBWY1qTEoBkrhIxdx0WABmwVbeRlKZ7cbKpGY7iJvPIcZE09+K+/jEsy+bL111J12iUkUSSvniC8RAnVUDNCZuTs0MlSDEhkuZL83PCqCuE5h5M8TV1S+UnMlxlPqYIJGokgG9pG76lbe58cTSG1t3P0P7DxNo7GN3mJp5rRSH8rXV4W2qQs2vpKpU0B4vJOjYBzeDVwf10J4byfqRjZoqu5BDgoKsWIFFQCOgeklaaH3W8yP9pvi7/WVmOlbOqg6yTYbJcJ4GQHmI4O4otHQxFRUr3Mwppfp7tf4bLSq9AU1z5rTt5kPu7voFEoise+tNd/KL73/i16k8yJ7z8ZL/2AuMUMkpnZl6Dj6BXJZl28iv5QsCiZj+VxQWz+QLTKfEtZCC56Yz2DUZ0hvpSJzhR55hcNpC7NmbsEQ4PP8Ds0jsACHubWVL1RSwnidroxR4dpe9//ovU0HY86i4M5QB2rBj/z03sUlckVeK5AJc7rKOBWep2G3RyuQLCEcigirUgjKWoeDaN4gibTJlDdLX7QiULZMAxICt0EAKvJ8HAtSq+nQahflh95Q3cdNkNbOz38sDLxxk83k730XUMdB3gqUf34HlyCFs6hGrWEVq4mNUrVtF49aXIoGTH4WT+o7DTaZLDoyQ6Ldo37+KlyJX4g4H8YkVnf5at7QkumTv15m1Rs5+XdrhZuOPzLY+uoExaIS++MkRXcpRwXJLwCzqrVSxdcHxouoD9+t54XiQFd+L62IYoi2f5Z8w+LVCgwLnjDeiUN4RIxbKYGXvK9tkrK97CkRW4WJldPBtN0bDs04ulamBCKNVLTn8/p6s6X9v8Nb5xzTco8hbhM1R+711t/M7a2fl9/ve1o/zbcweJZc6squREJksyxX6dYE5ITGdtZmhcf1IcKaisa+DP7r6WlY3FfPg7rzM60Mux9j1Euw8y0tOOOLQV25H0aR7KG9uon7OAT999E5Zlse7QUF4ktR1J90iSeMbiq4/tQ1UEuqpQW+RDVQRZy+G7rxzh/925bMoYLmsp5d71HTiORFFEPiM24JmYDqxoKmbnsSgdQ0kEEPbpBD0ao0mT4WSWitBE1dZoMsv3Xj0yRTDe1xvj8V09/PqyurP5mAucG5245fYzbT9XUsBJS/OklHHgAeABIYQDvAf4IdAtpXw9t9v9uELpOSGlPAT8hxDiv4EBIUQpsBL4SU4kLQPeI4SwpJQPnvByLxNl/O8YqnwRyj0hxsykmyWXyyx1HIeQ4ePqyre2YV+BC8+s2lK6e0aBXAf6E7vDA2quDF/TfVjZFPlJ7GSvUonbcGn8sQODgzEefX43t96wmHs+cjvPHzxMx9AIKcvi/p27Gc6eYHEzWSwV5Evyp5Te5+bOrhgr3PzRSXNqKXI+3pOyUfMHn1SurwgBxWHKa2tpvXo1x1MjpPuGiLd3kTl8jMTuI8Q27gUBenkRI3ObKJvbzF/c9hs8MLAJn+Yu6vekRoiaKSQSTXFwpIMqVMq8YSK6H1s6PN6zmffXX05Acy+Jy4vn88rgFkJKAFVoQAYHB6/iQSAIakFGzFH3uyndD9anGBTpQbJOlqSdJKy4zYlfGXgQCXhV189UVTWyToaXB35Oa2jZ6e2HfsUpeJSehJpSg9uuKObR9aOMxCwkcNn8IB9aW/ZWD63ARYqDxYzK5wxfslDYoOPA2MwHGje1zl+7VBxpMpjcTlPxzWjKRAXU+M9acQnhK64ic/QQTjyOEFk04XarV4cBVXUNZSaTO76n1y2LIFfGVqEtpapmPkowxNDIU6T6DpEdt6FzXD9UcJtCZdsrkYsSmMKLIzVS8wSJxTrldSHKisrZtWUDs5oPUlfnobTxekzzFhzHZnnTj+ls7+TAnjhdW3p5/sWf8PzXf0JFRQUy2Ia/bB4VdXPxmDrCkQgkWFkCmVFiSil+r4KWG++xGYTN65dHSGYctrYn8HsVhCLw6BPBoLbc4NKlIf7pYBzTkiRSDpmsjWZDJDB9Nb2jf/o5bFtyfMiktbYglBYocL5Z/d5ZWFmb/o4YVsYmUuln7UfmEiop2N4UmE40E8VQDdL26b1DFb97jbeTpxc1FRQs2yJpJXn52Mvc0nJL/rnJ2YwfXFXP47t62NYVnXYMPZcherr7bSGg2G/wuzfMwZYwmsjyb8+3k7FmzrCeNlYBuqoQz9hc1lLKL7YcYzCewfYU4529Gn3WJQAEZRxluIPhzv3U2X3Etj3KV7Y9yt95PBTXzaZTVBKpayXmryFuuuN2pMQ0HSxbMprKUhpwvUkPDyamjaOmyMfvv6uN77x8mMF4lsZSPynTQc+tWmqq4I6V9QQ9GpYtSWYtxlIWsbRJdcRLiX9q1vihgXhevJ3Mvp4YLJu2ucD554+Z6lEKkMxtPyeklCNCCFUI4ZVSTvnSCiEuB/bk9jGA+cALUspeIUSXEKIt51t6HVO9Rcdf/3fABinlL052fiHErwGPSTfNuRXXN2tUStk8aZ/vA4/MIJICzAF2neXbvuhRhMLn2m7ir3c+wFA2hi0dpASPqvGXi2+nzBt+q4dY4ALj1SZknAnRaIZo5oBqeLHHqy+kPGkikBACTbp/b0+9spdbb1hMyOvhvYsmhPjKSJC/e/4lrBNKKqSDqyyd0EzKHeDEPzLXvV6oENQ9xK2c3Z06k/FkrjQ/720q82KrV1XpTA5h40B5hEB5mOLLFyMdB7N3GLWzj6F9h8lsO0xqWzdf+dl6oqUqvtnVRNpqSdYHEF4dgUDJfYC2dBjOxAnrflShIBAMZsbyQultddexL3aEkWwUgYbMDa/EE8GRDkk7RbW3FE1JYTpJTCcLwmYgm8SrBPAqE/fJ/ZlODGXqfbMuDEbNQWxpoYlC8t8pObPbrzfE21IoBbhsfogVrQGGxizKwhpGoYFTgVPgdmDXAPPkMyIJGaHhKfIRH8viTG4mMf4a9cRrv03WjqIqHhx58myZ4OrLcEyToZ/+ECee8zRVFPTycqTtYA0PgTPxjVdMEFmwQuRPWPK8wNvZTVT0IDQdT1kp/Vf4yeoJpCFdj9PxDGsJZeYgg5YfqekogG6k8Rhx2qMv8Fx0J+GqPrBVVKFQUa6ybc8NZDJBmlvLmb8ozCc+ej01oWs4cuQIW7ZsYevWrbzwyka2bXgWadsYup/yqjnMLyshWyTAvwTNzmBaBprhDrq2dHoprqYK3ndFCTevLspn42zYH6d32KSm1GBVW8D1P6328uLOMWx74nU7jqRYu8wiEpi4dJXN0DBMCCgLv20vbwUKXNSESrzc9KlFjA2m0AwVf7hQcl/g5Owf3k/EE2Ese5IFyElMzig9HRJJ3IwTy8ZOKcIW+Q3+/v2L+fMHd7G5YwQ7l5wS9uvURnwcGYiTOpXgmVtjtRzJ9149iqoIPLrKsoYIm46OcKqXKgJUxS3Usx1Jx1CC9/37qxzsi2M5EnWSl6emKBjBEkoqq1hwyVV85/+sJBodZdu2bWzdupUNGzdxfP2jdLxmk7UlWmkDRmULgZrZqGXN2IZvSml9c1lghhHB5bPLuHRWab4h1NauEV45OITfULlxQSX1xX66RpI8vP04g7FM/j4olrZ4bFcv710yUdVcW+RzM4BOuK+qKznXhucFzoYv//SRH33tgzfD+e96/xRwBfDMCdtbcDM9x4tmH8VtrgRuo6Uf5gTUw8BvzHDcRcDDpzn3R4BvCCGSgAXcnWvqdKZcmxvXO46VZS38yyW/wePHtnIkPsDccDXva1idLyMu8KtFd++oKxadIrVOSDfhRtV8pGMDOQ9SJiokx21XpHBL8G2Jo8LwUJxQYObF7zuWLuLVo508f+QIyIk2jYoQSMeZ0kjqRCQyn20qcBf6fKpG0jInmktNexO5sSJRJiUrdSSHEUKiTDpf1rHRhYK3tpxZ89tIXL+a/7n0LkaPHmPDxg389PnH2PTCFo4+vRFbSLz1ZQTmVBNuqyTcWoai69g42NLJ6bKSMs/EIkRED/GVBb/NpuHdHE0ew7az7IrtI2WnMYHFkbloSoqNI68CNgIFBdenFGzWDb5Ejb+S0ewAtoSENUpQC+fL8W1p4VeDuWzVAiel0Mzp9Hh0hZoZhJgCBU7Eo7ld7xybfMWBcMivUkkB20UdnZRxOGQRdboZiAsqcjaXllDoIUICDyUkqCCWu05LHGlOaeg0E0IIIldeQ+TKa7ATCVIH95PtOIKTTiMdm+gzT057jT4C2QoIdvrwHlMJbUxgSTcTFUXBScSpmreKQ/XrESOpKRcMJQWRnVkG5wUQmsDrHUNTswgFUtYI1fSTMIJYKa/ro2JI6mv2kkw04PNmCHtaqA5dgaIotLS04CuqJ9h0A1feJhkZPM4zjz7Dod2bGe3eycb2HjYBpudpPPUraGhbTm3jQpYumc+y2TNP1IApixtXLZoIQu3H0tz77CDxpI1lg3Qkqup+2gOjFs9siZIxJQePpRlL2G7Xz7SD36PgNdxjrpkfpLjQ0KlAgTeVcJnvrR5CgbcB1cHqM/coPUuhVEpJf6KfrH1qX/G5VWHu+8xlSCnZ0T3K1q5RuoZTVIU9/MeLh04qlHp1Ba+uksy4WZVjaRMBhLwaS+qLqCv20zGUPPn6q3R9P03HQVcUElmb/b0TPt+WI9FVBcdx7/pDXo2gR+OL17eiKILi4mIuuexKxorn4Ft+Kzf/lsWzr23kiRfWET9+kOSeF0jufs7tiVFci9XYhqdlHmVNbfzmFQtP+nkoiiDid7NVVjSWsKKxBIC0afMHP9/Bvt4YYykTW0rUnNgbz1jc89oR0lmbZ/f1cXQwiWk7mLaD5UhKA26Di4qQh1sWV5/03AXOLzlR9I0Koyfyb8CXOEEolVLeA9wz0wuklNtwy+NPhS6lXHeqHaSUd55ucFLKj53i6fcCt57uGG9XGgNlfGbODW/1MApcBERCPrezvMPUjM3c82I8S1SCrnhJZNN5mzekRLEnNFa3TwRuSbwDNg7JWDpv0zIZn67znx+4ldc7uviv9RvZ3tuLKW1K/D6OJ2Juxuj4YE5kknWdAyQsN6a6NhKTGztNIpdNKqZUdI6P212pE2JCOzOlQ1A3iJlp3tuwiIZwKd1VQzzXlkVrupSFH1rI6JEexvZ1kzjYw/Bzuxh5ZgeogkBzOeG2agJL5uNrKuXWxjWoQuFI/BhhPUipJ4JHNbi8fBmX58ombOkwkh1FEyrfPvwfDGUGURC4bgg2tnRQhYJpx3ms97v4FIOsTOVaV0nidoJivRiP4sF0Mlxe8d5C2f0ZUCi9L1DgPCClQ8ocQNqWe1VW3QupNgbS6/qBHqWMDs21bvCEfdgorB+r5L2hPiwE62lhmAnRr54RltMBgCq86GqI/vgm6iJrTzseNRAguHQ5LHWNmrO9vUSfe5p86mQOARTH6yldp5Pt7UE6MrcMCDgO1ugIoW5BebSYVCqL5bOxImD0QXgzqGmL2q1Rotf5UPUsQoCFio2GLrN49DRSqjhZDYFGc7XDysZ5hHyrCBi1+XHs2tXLtl88jz8zylCwjq7yhfzeb99J8P5B+ocq6I8l2D/Qz76hYbYqUQ6/fi+dmwR7nvax68lFlNUtQCtqo7l1AVcuLmVW9cnLc6WUPLRuBNOU2I772HbcCbEjYThm8cArI3h0QdbKNX9SoDyik7Uky2b7WDwrQHFI46UdY/i9KouafXgKGecFChQo8JbQl+gjaSZPvyOg6AqKoZyRUAquR2mlv5JXjr3C3fPuPu3+QgiW1BezpL44v+2RHT2MJqPT/EYjHoWGshDxjEU0mWsImZuMxdIWe4/HeP+KWn6wvoP4SfxPNVW4GaVCQQg3a8eyZc4TTWBLN86FvBpfuL6VRbURFtRE8tYBYymTj31vA13DKVRFEPHpXLt4JY3zlvH0nj4Go3Ey/UfJ9Lajj3bg6d7EwNF1pLwaf71+FrPaFjIWqMVfM5vLF83m5sU1GNrJ4+Hju3rY1+su/FqOxHYkliMxVIWoZbKlc5R9vTFsR2JLUIWgLGTgM1Tqiv28e1EVl7WUsunoCNGUyaqmEhpKC9lubzeklFuFEM8LIdSzzOY83XHfdb6ONRNCiHLg61LKkTfzPAUKvNWkMya9PVFXJMwro7l/xh9Lt1GTwPUodcw0imkjVQVl0rc633tJuvMtIQReXUNRBAcO9zF3dtW08ytCcGlTA5c2uX3jouk0A4kEf/zsk2zq7ZlxzAqgeVUyufnuZClQTpriTg3FOSNt9QTfUuHGc6RbkKmqMn8Oj6qzsrSetTVzmBMp55HubfztrocwHce1FlA1SuY0Em6tQWJBxiJ1uJ/ogW7iB47T9/hORp7YQ3moGHPBFr7X+O+Uzq0h3FjK4pJWPtXyPvzaRKKAKhTKPCVsHt7EiDlMQAsQswZzwxQ5ixwbr5rFkg4px52TK2iAREjBSHaYCk8pFZ4Im4Z+xPaRnzMvcg0rS25DUwpJgTNSEEoLFHjjjKb3M5Q5Sjal4nUcbB9YqoL/uIOvB+JLoCtUilDdzFJPxL34DUYlyVqdQUJTRFKALoppZoBiMhhaGEVoZO3TlxXOhFFVhX/hElK7dyLNLAiB0A2MujpwJNK2XZH3xNUlR4JtUdpZgRnVMQd6kamJzr5mKXgDBlnbIava+SAkVQOZu3SrHhvVY1Oue2gMt1EVacMaHWHk6Ycw+/vQysqJvrCV2Rl3klszeoiKsaM8V3Y7n/jwR9GefJxgVw+Vc+dz8w3voXVZCyMjI/lSwceeeZ2Hn/wfpHRQVI2y6lZuvmE177l+NUuWLCEYnNroKZVxGIq6mUceXeTdCBwJjp3rgCghmcmVigj3naSzDiGfSlnEIJa0+d+nB/MX0Ge3qHz65gqKghfucudISSxpE/Kp+ZXY4ZjF4Z4MxUGVWdWewmphgQIF3vE40uHePfeSsc+867zqV8/Io1QgiBgRAnqA0fRoLiPm7K+rn7m6hT/5xU6iKdNdRFUUigM6LeVBYmmLZNbKZ6uMI4GMZdNcFqC5LMhQPMPx6NTyf0NVKPZrDCdNbEeiCOGKpbl5nyJcETXs1WitDHHXJY1oiuCJ3b28dmiQgEdj97Eoe3smKlbG0ibP7+vnH96/iLBP59m9fWTLI6y55Vr+4N3z8CiSffv2sXXrVl5at4Hv3vcgZtr1pfthpIx/WbiY373zXSxbtoz6+vppn9e+SefSFJF/z6Y90Tx1XBR2OxQLokmTxtIAGcvmitll/MHPd9A35v6+/3fdUT5zdQvvWXRhM0yjKRNVEQRzTaqylsOmo8NkbIdVTSX57QVOjpTyu2/1GM4WKeUA8OBbPY4CBd5sNmw7SjSadMvlx9e+Tmx34Uxoi5ruRSKxzQwqEyKfyJW0TzwWCEviC+ooQhBPnFnsjni9RLxefvuSNXz60YfJziCGloeC9GVzMWaGUO1TNQxDYTQ7cc7xNr8ip/5OZMtOqMMKAl1RsKWk2PDx5UXXsivawf+0v4giFI6nBwGJni9vd0jZDj5VJ6B7iCtJ/POqCS2o5YONl3N35aVs27qNh156jIdefoz466Ou2Owz2NBWybaV6/mTWz5PS0sLijKx8Nid6srfhyhCwZG5MlYkqnDzS8fftpTgCBsFhYAeQUiJoaRJWGkMJYDEYfvIY4xkj/Humt89o9/BueLINKn086Qzm9G0WgK+9yDtHlKJ/8Y2D6Fqs/AFP4FuLH9Tx3G2FDJKCxQ4DyTMfkasBKoQSNM1j9Z8DrE2gfeoJNvpQZ3n5LNNvUVuAMmOJVFxiDJzeWkUH8UkSZq9qMJLUWnrOY+x/MMfY+gnPyDb1wuOg7e1jbIP3o3MZrGio/T957+S7T0+xccUVcHbMgcUhbHnn8EoryE90g0pEyeokF0WIdlsIuNJiLgrcYpj4XOSZHSPW64A6EIjYtRQE7oaO5mk/zv/iZ3zUU3s2oGSUJGahshd3ivHOjh0rBvvrSup+eznqDnhvRQXF3Pttddy5VXXECs/xtKxOP3de+nt3EVfxy5+9KMf8uQvf4SiKLS2trJ8+XKWLVvGsmXLiBQVEfKrxJJ2rouvmzl6Kl9Z23GzTWMpm63tcfpHLYQQ+WAUTdg8v32MX7+85Jx/P2fDrqNJHlk/yljCJuhXePeqIhJph8c3jOZ93JqrPXzsxnJ0rSCWFihQ4J1L2krTMdZxdkJpQD3j0vuB1ABD6SFubLzxnBefblpYRcdwksd39ZIxbUoCBl++cQ6L64roGErw8LbjfOeVI6RNe2KSBtQX+7imrYKfbeqmNOjBkg6DsSxSup3iw16N49F0vhTSlhIc0DXFzeDJjbc4YPDZa1owNIX/fPEQj+5ws3Es26G9P57rTp8z+5EwkswykjT50g1z+NINc6a9n0WLFrFo0SLSTZfTO/cOEoPdRLsOEO0+wO6tG/mzvesxNIXS0tJ8/F2+fDmzZs2ivsQPh4YACHo0EhkbZ5IH3Qm/gHz8TWQt0iM2f/Hwbo6PpvPeq1LC9189yrVtFfiMN7+54mgyy9efPsDWzlEURXBVaxnvW17LX/5yD0Nx157Bp6v8+S3zWVgbedPHU6BAgQJvBsd6RonH0iiW416fBUhV5Mrt3SxTqYi8IKnp7lzWMlP5n/MRc8oqoDvnio4kSaWytDSVn9W4rmxs5ra2eTx75BAp00Ii8WsaVzY149E1Hjy0h5RtTTstQNDrIeLzgIDoZLFUlVPK7t2YKhiPTEJxKzM0IWgKlnAwfoz1g4cJaz5Sdia/n4PMN2iypYMmVP5q8R30pEbwqjpryloJ6W4FxDXXXMPGqk6uuymEknDo29NN/95u+nZ38eh/P8COH75KSXEJK1euZNWqVSxavgh0cuIoeBUvcdtkInrOPJF1cIibo+gig4JFSCvNxXsNRQnRldjJcOYYJZ7aGV//RnGcOH1Dn8a0DuW3RWP/gVc4qMKLEF5McwfmyOcIFX0Nw7PmTRnHuVAQSgsUOA+oagW6jKP7TBwPYIFiw6AI8Nx7GsmYGn6yZFUVXdgYYTeABKMDaPgpYuaSwcnbHZklafZRwoJzGqNeWkbVb3+RbF8vQtPQS10bALxe1HCY0OVXMfLIL3BMM2+8rVdUElixCjUYQghBfMsmfCEfsZYUY8tAqCryaDeKqqInBZbPRiqgYTOqz6VLNNCq2awIL6DGvwghFGLbX8mLpADYNrqUmI7qdqXI0eRPnfY9ZS1JJisxvAHqZq+kbrZrXRUwTN41bzjfIOqBBx7ghz/8MbGUTbi0nrpZCzFK5lLTuIiQv5ixpOVmlDrTG0aAG3oSaTdjtmvAZGjMIuBVKJ6UQXp8yDz7X8o5MBKz+MnzQ3k9O550+OkLQ0jJlKYdR3oybDwQ57L5oQsyrgIFChR4K/DrfjKTJipngupXsWJn5mkKrmB6OHr4XIYHuILlZ65u4YMr6xlKZGgsDeS7wM+uCHHbsloe2nacvrF0PqvSpyt86uoWKsNe/vLWBfxgfQfBQY36IoekaaEpCqPJLFqukZN03EoDBAQMldkVQXy6xppZJXzokgaKAwbxjMWTu3vz47IcNzPFLX2fiB+2I5lXffoO10OJLEJRCFY0EKxooHbF9Ugp+fTyMGb/IbZu3crmzZt5+umniaVNsoqXiqY2ZEkz/prZhMrqGNEUFCBj2/mmVZM98Mb/7RlNUxIweLV9ENOW1Jf40HKZNinT5thoitkVQd5s/uXZdrZ2jgLgOJIX9g+w6ejwFGuElGnzHy8c4lt3X1zZMQUKFChwpuiaQGadyZafOI6bsShkrpRdJ9+HQ9Nd2zPLdCsfJiLKpNgsmGj2BFhZm0QiQ3HkzO1TFCH4m7U3cP3RFp45fAhDVXlPaxura+sQQhDyevjuzk3TFuAiHg9fvfxG/mnrSxR5fGRsm6xj49M0Mkoml8skcE64m1CFQFdAVRTe37SET7at4ZPr/5eg5nXjp3RyNZQS23FQc7HdzfxUWFLcyMrSlhnfSzQbQxUKnoiXxkvn0HipuzA51DfAu5JLad+xn40bN/LgEw8SNaP4iv0Uzw1TsaCCOYtnoRUpWLk0X0eOdzaZQI5PaoVEy1VIxi3XNcSvRXKZqSpRs/eshVIpJWmrE9MZxa+3oAo/WbsHRRjo6oT4HUv8hKx1EEUU5RdvLbOdFA4ho81NPBI60kmQjP9rXiiV0gTrgHsQrQ1xoZtPFZo5FShwfhiOv4xOrnROAQywU4INWguOAouMbopJMkiQXiKEQhIfFiVjvVi0omITJskYE4GiiSGKcMVCRbgNEYZSO87Io/RUGJXTfWAAim76NYRhMPbiczipFJ7mWZTd/iG0sJsREb7qWsJXXZvfP20Noyletuz7XdJGCsVS0GMCqYBiKdwx5wuoM3iejIukEkmqIo0VsQkcSDEmjInrkapy6fUnbxIxjt+jUFtucGxgoslG1nKYXRNk6bJmVq50hdNkKsuffetl9u/ZTl/nLra+/hxW9hECXpWy8ip85fOwA21EKufji1TlL+QCUBS3qZsiIBJQ0TWBIiCRcQj6JXpOnKwp0U873pMxGDV5cUeMwahFY6XBwmY/2w8liSVt2uq9LGnx57N99nSmpiT9AmRMiWlJwv6p2TQdfVkum+/+nMo4vLhjjKO9GUojGlcvDlNRdO5jLlCgQIGLgYMjB8+o2/1k1ICK2Xdmi1sKCrqi05d0fVD9+rn7YRYHDIoD0+PirPIg37p7OV9/aj8H+uOUBgx+84pm3rvUnbgsqInwd+9bnN8/ljZJZm2+/vQBHt52HABDFcjcxPCOlXX80XvmTztPImNh2W6kzVpOvuRfPaFGce3cCqoiJ/f6HmdFQzGvtQ/lH1uOO2FcOr+V+iuW8L73vQ8pJf/5+Ca+9/DzRLsO0NlxkOS2DYQ8Gn6/n/LGVjpEJU5JE3pZA0KdiEuqItBUdwJaHNAp9uvYjiRtmowmTcqCHsDN4KwpOv14Z8J2JI/sOM76w0OEvTrvWVTF8dE0O49FqY54efei6vx50qbN5o7hacfY1xujrnjq30XncJJExiKQK8F/tX2Qp3b3YkvJ2rkVrJ1beU7jLVCgQIELwYsv7Z+yaAWgTPYmBaQlQXOzTDXNbfxkZ1OTMvEmVewJwJloAKV7VRxHsn1XF3U1xZwNmqJw/azZXD9r9rTnvrDyUvaPDLDueJe7eAgEdJ2vXfsermts4bKaRtb3djKWzZCxTfaPDvJg5w7iVgZdUXGkxJZOLp4KfqNtJdfWtrKitB5DVRnNJnFyGbVRM8FQNo4zaWlPSokj3S231i3Ll+PPxOKiVp7oeQ2PauBIh6QdI2knUYs1Fl+6jI+8/y72jx3g66/9Pwb3DtC3p49ju7rpfK2bzWwhWOGnfH4R5fNLqFpQhLfYQEFiS4kicqJ2zo7HqwSAOAiFpB3Fr4Xd8nxpE9HPLh5l7WEODP4ZCfMAAgVkGo+iuPYF0sFvLKKh+M8xtEqS6acRwntCRY6Zy9g1EeTuiYQf22p3xV1zBzL6xyBHAQ2UUoj8NUI/t2Sxc2bmHpznlYJQWuAdje1kGEhuRnEvTfkltCF/EBtBBWMU5zJDy4hTTRS/keURn2Qo6pDCYCuNOAiW0EkWjVISlJAYb8KHI00UoePXZxY5zwdCUSi6/l0UXX9mPvhezS0zL7cW0MVmyLmSCgdKE80ziqQAvjlzGXvtJfpWDJEqT4OUhDSH4p4EUhaDqlF5220U1Z1Z0PzAlSXc+8wgg6MmQ7kMof3H0vzjfcf5yHVl1Fd42H/MxFM8h8WXz4HLb0c6DsP9R6jzHmGwezcPP7meVOIZTFti+Isprl5Acc18GmcvpLGpmaGYQyYrSZsSQ1eIBFRG4zaW7QqlIb/K1UtOn30zE2NJm/94pJ9U2r0atx9L88Arw5SGdQSw43CSo32ZfFm/Z4ZSek0V2Pb0Za/yiHv5lVLyjQd6ONyTwbbBYwh2Hknxu++rojhUuEQXKFDg7cs9u2dskH1K1ICKmTTPyHPUxkZHJ6gH8aiecx3maVlYG+G7v3HJGe0b8uqEvDrvX17LYzt78uKnEK6dzF2XNM74usqwl4YSP7uPR/Men1K6C4KVYQ8SWNVUwt/8+ukXKgGun1fJ3p4Yz+7rYziRZTRpUhHy8Ds/2sJty2r5jcubcSS82G1RueAyKhdcBkA2Poo/1sWlRTF+8OgLxI9sJms5OEJFL2/EqGwhXNdK05x5aB4fHUNJ0lkH0ysp9uskMhamPTGD+ciljfiNc4tl//ZcO8/s7cs//vmWYxT5dXy5ZldP7enjm3cuoyRg5Ox6FDLW1NlTyDt90bE0aOSPcf+mLv7xyf0ksza6KnitfYiRhMn7V9Sd05gLFChQ4M0kFk+z76BbfTAlQsoThVOJNF3VVBce1y4lnUTYDtIGtInSfGw5ydNUYJsWiqZSVXFu86eTEdANvv/u97NveJB1xzsp9/m5oWk2Xk3PP39d/VSB1aMrfHf/BqTMeX2jYCPxqCpfXnQtHm0ivkR0H1W+CIdj/STsFCLnYepIiRRuZYcqFBYV1fJbbdefcqzvqrqU9UO7GMlESTpRHFzP0YDm4b8O/Zhba2/gWOoQ4aowVXVVLLxhEVJKhruGObrjCGP7+ujY2M3RF7oQQKQuQOX8YioXlFA1v4hwSKAi0IXEQUUVCo50cJDY0sR00tT7F1HiObtY1D70lyTMfagiDFhI5ygZ28Gj1qMqQRLZnRwe+l3aKn6AED635GXKH5IOmLitscbJoCiVSGcYRj4BMgbj+czOMHL0y1B6P0J58ytHGD9zIaO0QIE3RsYaxnKSgDNl5c3IpcIHmdp8Ybx1QaDIQ3Is6/qKoSKBEhKEmOqz5gAKEkONUB+58c18K+dEwxUfQz6aYDhwFEd1iKRqmLX28yfd39PYjLhxPin1GffDUlSSN5ZgZg1miZsoaVmN4jvzjJ3KYp0vfaCKHz03xPZDSfRc+WA86XDfS8N86f1VxFNTJzVCUSitauHSZctoqvwQ/gX9dHYepfPQToaP7WakZw99h15h/8vgD4YorZlPoGI+JTXzqW9qJRIw8HoUrl0SpiSksXiWH69xbl3vNx9I5EVSgHjaJp2VZEwHr+4ec9P+BGuXhokENBY2+3lqS5R4cuI1Yb9Ka6ufHYcn7AqKQypr5rnB5KUdY+w6ksqXdGYtMC3Jxv1xblxZdE7jLlCgQIGLgQMjB7CcMy+jB1D8CtKSyKxEeM7Ad1TC3fPuRlXefA/Ms+GS5lJ++9rZ3PPaUVKmTdCj8fnrWmksC5z0NV+8vpUPfnt9/nHYp1Ee9DCvJszvXDubWeVnPglRFMEXrm/lqjll/N/7d9BY6jbncCQ8sOUYKxqLaa0IkchM9YM1gkWEKiv4/Y9fwoHKtVT0DLB3105Sve1ke9uJ73ya5M6nGXhSoaimCau4iWRlC5naFpprymko8bOiqZiFNRFWNhWf1ZgnM5rM8ty+CZE0bdokMhYg8eWabo4mTR7f1cPdqxvRVYWbFlbxUC6Ld5y7LmngqT29mHnBGj6ypjHfaPGvH93LWK6RlyIglbX5wfqOglBaoECBi5KBwRimeYKP93gV9+QH448l6Kqb1W+bKVcQdQBrBqVJAFLi2ILysgBLFtaf9/ELIZhXWs680jPzP/3sgkt59thBOuIjiFxlhqYo/NnyG6eIpOPH/mzb1Xz29Xtcr1YhEAg0IVAVlRLDz6fnrOXdNYtQxannhhEjxF8u/DTfPnQfm0a241f9hPUAHsXAljaPHH+WJn8xqpi49xBCUNpQir/Gj+fX6lCdFXQcOkzvnhF6dw9z6MXjHHi6G4DK5hB1CyPULSylcm6IkmApgjiOzCClZFHRjawqfd9ZfbZpq4dYdjeqCCOEwLFHyU3oseUomgigqRGydg+J7HaC/tsZjv4VUjoIoeQWqP0IUghsQEPKLFKm8Qe/AGN/AzJ6wlltsHsg+xp4L6AWMpMf33mmIJQWeEeTyPYiUHFXRiYWTIpJUkqcOFPLwQzcCV0gbBCPZugjjI1CK+7Nupx0DIkrv0p0yv3LiWWO4FGLEKe58F5I1FCYWXf+EXV9vSAdjKoTWy9NR86rQI9WIS0boWkIRcHxg1mkn5VIOo4iBINRKy+SjjMUtRiNu+Xrj29kmtfI3HofRUEVRQV8NdTOr6F2/rtc35VYPyM9e4j17iYxsI/ug6/jSNANH3XN87nhmkuoXHEpC2YtwDhHkRQgnpp6I2Ln1MxJyTJuc424xXDMxrYlv3lTOc9ti3F8MEtVic71yyNUFGksnpXm0PE0xSGN5a0B/B53XPc8PZgXScePnc46F8xXtUCBAgXeDGzHJmklEUJMeHGdAWrAnXTYCRvFc/rr99KKpaiKylBqiFJf6TmP983gM1e3cOeqeo6Ppmkq8582szLi06kp8pK1HBQh8l6pyYx9zoJj90gqnz05mW1doyyuK2JhbZhdx6baI1zS5FaNzKkMsqVjBKNuAXqdW1bnmGmsgQ7M/kPYIx0k971MdOdz9ANDlXXMWbCYS1pvYk1zFWVl555dMpaypsRGKx9/p/4t9Y1l6BtL0zmc5L1Lagj7dF48MIBHVXjXwiretaCK9y6t4dl9/ZiWw5WtZbRWuv7g333lMNHURKx1JGQsh+PRFI4j82JqgQIFClwsdB8bQREKtjzz2mNF1VEUbcKj1K3Cnpo0OJ5RJN3EIcOGJ5/cyXves+ScmyWeDyKGj5/f+FF+dngHzx9rp9If5ONtl7CgZOZKzoZAKRXeEFnHcn1OVZ2I7seRDhHDz231Z+5PHdIDeFSVUk8RfnVCM3DFUYtKXw09meN4mKhoMR0TQzUo91TSldpPaUuE0pYwC25pxDYdhg6N0btnhIHdw+x8vJttv+xCKIKq2RFmLa7lfVd9hJsvu5Og7/QNB6W0sWQKTfgRQsF24gjUSb+v8fgm8o2m3NdlGBz7OprMoqgVOHYvUrrVproxn7DvRrLJn+I4UYQI4g9+EY/vVuTY7880CiCNtHu4YH8lspBRWqDAG8aSCbxaCUmzzy29n8RqDnOQCpIYREjhwcrljkIwrNPbb3GACgDKGaOHCIOE8GJSzxBlJLBQ2EIz4dReopmDRNPtzC794AV/n6fjZN6nMxEwahCKijihQ21AP73IejKKAir9I1OFP10T+L0KHl3hljVFPLEpimlKNE1w/fIwdeXuBXthk5/DPRM+p0IIfOFKfOFK9PnXUhTQUKxRuo/sYqx/LyGznUfu/x/u/9F/YxgGq5YvYvUlK1i+fDmLFi3C758u9o7GLbYcTJA2JYuafdSXuwFvboOPdXvi+f08ukLGtPHqE6FA1wQPvDzCYNQV2SMBlY++q5yq4qnlfvMbfcxv9E3Z1j2QJpGZfqW3HaivmNkeoUCBAgXeDljSwqt5CegBYtnY6V+QY7JQqp+Bv3R3vJsHDj7As53P8tUrvkqFv+Kcx/xmUOQ3KPKf2fW8JGBQ7DcYTU6Nl7PKT56FejrGPTxPpDy3/XNrW/nbR/fSOezaEC2sjfDRy5oAuHtNI99/9ejUck7di1HThr+2DZ9HY3nEYOTYIYY6DjBb7Wf48Ea+8OXnsBxJS3Mj116+muXLl7Ns2TKqq6unTbgt2+Hlg4Mc7I/RXBbk6jnlGJpCXbGPyrCXvjF3Yj9exXGi2Nw/luZT92zCkW4W7d2XNPCtu6ZOhGuKfHxkzXTLg398Yv+0bRLwampBJC1QoMBFSSZjEgoYjMYmV0XmrtInip/jT0mJpnmxzJSbSSpByWXZS0UgBblsTYFQBcKSZNMWP/jBa4TDPq68su0CvLOTEza8/ObcS/jNuae3wCk2/HhVnaDmQZtUaTJmZlkWPLMs1qnHK8I5QZSWUuLgcFnpJXQljzCUGUIVKjYOCoI76+9AyiQ/7toz5XWqrlAxt4iKuUXo75+Fz9YY2D/I0V199O2Os/nBdjY88Mf8qf5nzFvYyq9d+SEuW30V8+fPR5uUPSulw9Gxn3M09jMsJ4mhFjEn8nEqA1egCB1HZlCEByECSDkM2Gi5snjbHsOy+7BMCxQ/UmYQeCkOfwavvgBDX+xmlwY+hpQxhAghhIoTu/cUn5IE7QL/jbzThFIhxE3ANwEV+I6U8u8v5PkL/OpR5J2Lqnjx69UMmCMM4EV0VRPxRAlqCeaHBkGzXIuN3GsGCZIKlzLSfpw6RumgjE5KOU5xzulT0k0JyznKTmqJ4aPTPE6lYtMXz1IbXotPP/sL8cVCiW8BEe9soun2/LZS3yLC3lnnfMyrF4doP56e0ujo8gUhPLmJz6XzQyybHWBg1KQ0ouezLQEWNPp59PVRrBOqTFwTbIEtJaFwKW1Lrua2y28jbTo8+EIX/d176e3YydaDu9m+/buoyv+gKArz5s3LT9qWLl1KLOvlvx/rJ2u6V9xXdsa47fJiLpkbpLXWy9plYV7cEcO2JWURjfoKg9GYOxhDF5SGNXomZX9GEzYPvjLMZ245vfn2P93Xc9Lnrj1HX9UCBU5GIQYXuJB4VA9LypegCIXusW7iZhznDNz31VzjOztpn2ZPl+54Nx7VQ6m3lMePPM5HF3z0DY37rURTFX7zima+8fSBfDZlkV/nrtUN53zMS5pLaCkPcGggkd9WGfZydZt7n1JT5ONbdy/n8EA8J1BOLCbWFvkoDRmkR1KckMiJEGDZEkXTKW2cyyUrV/CH757Hl36yGU/HYaLdBzjadYAfP/g4Dz30kHveysp8/F2+fDn19Q185Ze72d41Ucr31O5evvq+Reiqwh/c1MY/PLGPvrEMuqpw9Zxy+sbS+ezStqoQu45F8+Kr40juXd/BJc0lNJ3C4gCgezhO2pr57/GaOW/fe7gCFyeF+FvgfDF3TjVBnwdNVRkajiMdB2GDcC00cVThiqWKcDPvLAfFBl3x4qRTqKbr1zm+FCQm9VFwFNzUeikZGoxhGBo/f2DjWy6Ung0eVecDjav44eF1eFUdQ1FJ2llUIfhg05l5jU/mqvJVrBvaQtYxMRQdKSVxO0lzoJ5ZwUa+OOdzrB/awL6x/RQZES4vu4wGfz0JK4aCcsJ9z4QRoJCgGBoLVsxj9tJ6gloKK+VwfG+Kwzv6ObjjOP/8r1+l6L++j8/nY9myZaxatYpVq1ZhVO7gUOx/UYUfXQljOSl2DX8dVfHRVPQlDo/8HZaTwm0HqSFwUISBbSew7B48ih9DLckNyYvtRMlkdxMJ3O1mqWZ3IMmiaQsQ49YCiX845eckjNVn/dm+Ed5RGaXC/ZS/BdwAdAMbhRAPr1ix4kINocCvID69jObi23hi6Fk2ixoyaZ1kpYaQpRRlbdpGh2kNtzPmUfCS5TjFbKeeTNEAY9EOumQxLaKPDsrGqxFybqcKG5lFFB9eLGIYlDlRMgyTNgff1kKpEApzyz7GSHo/SbOHoF5HxNv6ho7ZXO3ls7dUsn5vnLTpsLDJz5JZUzM7vYZCfcX0zJfZNR48uoLAYbIljyLAZwiKgiqlIY1L5wdZ2uLnqz8+jtcfpmHOahrmuBft1mrJvJLjbNmyha1bt/KTn/yEe++9FyEEarAef+lcKhsXUtmwEH+wmCc3R1neGkBTBdcvj3DZ/CAjcZuKIh1dExwbzDKWtGmu8vDPP5sudnb2ZzEtia4JDh5L8+ruGMmMw/wGH1cuCqHmMlX6Rm2k47Dp4T8n2n8QIRT8kWrWfvjrfOELn2fbtm1EIhHuueceSkpK3tDvoMCvNoUYXOCt4FOLP8XfrP8bOsY6XDHrDG5s8xmlZyiUAmTtLMPpYXYO7jzXoV40XNNWQWtliHWHhggYKle0ls3YkOhMURXBV9+3iEe293CgL0ZjWYBbFldPy8w8WWl/W0WIgbEMWduZIpaGvDoRv07Qo7GisZjfvKKZH2/sJJaVhKqbCVU3U7fqXShI/uKaUtr37mLr1q1s2LCBxx9/3B2bN8igt4ZI3Rwi9XMIlNWxrzfGa4eGuHpOOa2VIb79kZUcHUoQ8uqUhzxEUyb7esaojvh48UA/+3unZytv7x6lqSzAaDLLTzd2sa83Rn2xj9tX1lNf4t57fPR7G5HSYfjJf8cc7AAhUMPllN38e/Q9+R9c+bUdhfhb4LxQiL8Fzif1dSWsvWYev/j5JtSsw5RkRwmqJZFCTiqjB4RwM0qtidL7meqkheO+IGdVim05dHYMvenv6XzzoabVBDUP93VsZDgTZ064ik/MvprW8Nk3Xq73V/Obzbfzw86HSdlpHBzmhmbx8ebbAfCpPq6tuJprK66e8rqAFsKn+knZyZxYOq4kgIKNQKJID1mZpspbSdLuJByKEL6kmLmX1CDlEkZHR6nsezft23vYtGkT3/zmNwGwjU5aFxUxd0k5c5eUUt0QQGJzOPoj1lT/K169lv74w2TtAcKe30CQJJZ+GdCw5TBepRzHiQEmAi8CH+nsZizzAInR38NxRgEQQsMX+lN04yrAre50HMlv/UE/u/dnUQTU1+rc+625fOHzF3be+o4SSoFLgHYp5WEAIcRPgFsv4PkL/IoS9i+lfaQDQ0szoiaQ0g0gCaGzV9ZyfKyI/rIMFWKMQUKu62jYj3Qk2XiWzlApo/jRcNBz5ftZVDLoCBwMTMIkySDwSRtFefs7WgihUOKbR4lv3nk7Zm2ZwfuvPPuLpt+rctWiEOv2xIml7Lw/qFDA0BV+65aqfJn+YNTMZ4ZOJpYxWLNmDWvWrAEgm82ya5c7afvufS9zcMcz7N30CADhklqqGhcy13cVV1y6kurqavxeFb93onyjtsygNvdzJKDSO2ySSLtB0OdRqCnTUVU4eCzN954cyIsD3f1ZBkZNbr+6lKc2jwDQc/AlpGNz/ad+CkAmOUqDupXuZJKXX36Ze+65h3/8x3/k7/++kHxQ4A1RiMEFLjgV/grmlcyjK9ZFT7yHpJVEnkYtzWeUxs9cKJW5/51YHvd2pbbIxwfOYzMhv6Fxx6pza8rxhetb2d8XYyiRJZl1fycKYEu4eXENX75xItOoeyQ17fUOAn95HXcsms8dd9yBlJKuri62bt3Kjx59gY51Gxk6sAUA1eMjUtvKjwbWUHL7DcybNw9N06aIuBGfzupZrhdtechLKmszlMiQsRy8mkpp0KAi5MWyHf7ogZ35MbX3x9l4dIR/u2sZpUEPhwaSpA9vRjo2VR/+JwDsVAyzYwtmIF2IvwXOJ4X4W+C8cvNNS3jyke0IR5JMuAKWHP9/Z4bq+1zpfSYz5iqgAqakleYQjpttCgIBOI5zQUqczzeKULi1fjm31i/PNSh6Y1Yqy4oXsLhoLn3pQXyql2Lj9P6hAJeX3cRzfQ9OEkoFCg6GkGiKyrKSq1lVehP7oo9xMNY55bVCCAJhD8tb23j/Tf8HgMHBQV7f8Cr3Pft/ObgjwfZ1rogdLjJoXVzE3CX91L27m9raOcwq+b9Tjlcd/gRSZjnaew3SPoxkcqNNA01dTnz0i0gnnu9eL2WG5NhXCHmuzP9NPfF8EsuGlx927ymGR2yeXL+WZHLgwsbNd5hQWgt0AQghPgV8EggODAxcwCEU+FVkwIxhI3PN/Sa+VbYqyRo2R0IqCgZDhIjjRcXBE/YhgVjMJBUqRsEhg0aaqVkdCrCSIyiARGBoRRhq8QV8d78afGhtKQGfwqOvRxGARxeE/SqqInh1d4wPXuNOmkpCGiG/SuyETKTGyqmZqoZhsHz5cpYvX0549m1s3j/GUO8hejt30de5m+4Dr/IPX32efwCqqqqmlAo2NDRMCbglIY1Yys4334unHMI+DUUIXt0Vm3Yh33YoybsvKeL5bW4WjGb4ifYfYKy/nXDFbDz+IjL9m7n55psBuOWWW/jP//zP8/dhFvhVpRCDC7wlHIkewVANsk72tCIpgGIoKLpyVhmlAD7Nx6KyRec6zAInYVFdEf/w/sX86UO76BtL49FUiv06fkPjlfZBPnXVrHzG67zqMDu7p3bE9RkqTaUTZfBCCBoaGmhoaGDOJdfy+/fvID02xFj3QaLdB4h2HeDlB+9h82M/wuv1snjx4nz8XbhwIR7PRDyfXx1mMJEhY7oCecq0GUlmmVcdYlPHyDThNp6xeHZvPytzzaqE4cMc7MAc7EIvq0f1hWi2Ogvxt8D5phB/C5xX+vrG8PsNnElCqThFfBWApvmwrPSkpsRy2hxF4Jbwy9xOQghqa97e89rz1YhKFSo1vtPbqk3m2opb6U93sXfstZxM6qAKQUgrRVM0Rs1Byjy1VHhbaY+9NOW1UkokDiXGxCJnWVkZN930HnyL7sV0xogOGBzcMcb+7cPs3d7PtpdHefi/bqOqqopVq1axcuVKVq1aRUWF690uhIGmBDHtTkB3PXSkA6QwhIF0YggllD+fEB6kTCHTz+S3Bf0Ku/dl2Hsgy7w5BiXFKi+9zoWNmxLEBVgXv5BCaf6vVEr5bSFECrikvLz8dy7gGAr8ClKuh9CFhiLMvDWIRKBYCimvjRRgC4UMGgKJjYIWcUuzolGLkhrwYRKb8nWReDHxYBEkCwjCWgll/iX49LK34m2+ozE0hTVzQ2w5kJz23GRRVFEEt11ezI+fH8JylXHKijTWLp3u95k1HZ7eMsbBY2nG0hAoa2VRbRvLrvwAH7q2GC1znK1bt7J161bWr1/PY489BkBJSQlLly7NC63dA37KIhrJtIME/B6FgaiFZUuS2elXcSndrvZBn5s1VdF8CS2r7mTzL79CYuQYS675GOHyYYqL3RuToqIihoeH3/BnWOBXnkIMLvCW0BxppiPWga7omI55+hfgZpXaiTMTSgUCv+6nKdzEjU03vpGhFjgJl80uY0ldEe398SnbLVsylrbyQumvL6tlS8dIfj9VEXz26ha8ujrtmK+1D/LzLcdIZi0SIkjpvNVUzF/D1XPK+Y2VZWzfvp2tW7eyZcsWvv3tb+cyojTmz5+fj7+HnTJqIj6iKZOMZePVVSI+nfWHh/MWNycyljZxW5aAt34hoaU3MfT0v2NF+wmveC9zW5RC/C1wvinE3wLnlaqqCLYt0bQTckenTDum1tdrqhfbzuA4NoqiusLquIg4vmtOOB3fXFwc4NbbzrxLfIGp6IrBLTUfpSe1F0WoqELDo3hACCwnS8IaA6A5uIYdI78kZvahKz4kDpbM0By8lIgx0Uw5YR5jS/+fkLWjZJ1hvCWwfG0Rl1zfBHIWlenPs3/HCBs3buTFF1/kl7/8JQANDQ2sXLmSFSsWUV0/RChSgpS57GJAUcqw7aPoM4RNiQSh5/82rrrUxyc/EuF3/qifo10mn/9EDcPDb8G89R2WUdoNTK77qQOOX8DzF/gVxacY3BBZyKMjWzE0jZRloloKnoxGym+6Pi4IUhj51TgnEsFGITuWwkFgoeD2shN5j9IsHkAhQRGzPCGaQpdQF77urXyr72hqSvUZs0Xn1HmnPJ7X4OMPPljNge40XkOhrc47Y/fan700zO6jbrZJxK+SzkpWzAlwxcIgpWEdTW2ltbV1WqnguM/pc889B8Bw0qC0dh5VDa7HqVE9GyndG5f5DT66+7NTzltRrFMW0Xn/lcXsPuo2yJi14nZmrbgdKx1j7y8+xqjexujoKADRaDQffAoUeAMUYnCBt4T3tb6P7QPbiXqjpBPpMyqPVwPqKTNKRW7ypykaJd4S1jas5QNzPkBtsPakrynwxljeWDxNKK0p8lITmYjBQY/G125fwrbuUUYSWZY1FFMSMKYda3PHCH//xD6kdG0BFCEoCxr83o1tNJcFCHl11q5dy9q1awGIxWLs2LEjH3/vvfdevv/97zOaskj7K4jUzSFcN4dgXSuKMJBSsqKxBE0VWPbU2dSaWaW0lIeojng5Hk0TXHwjwcU34mSSxH/+J4yWLi3E3wLnm0L8LXBeqagIs3r1LF555QCqKrDtGeKqZIoZqa6512rbyqCoPrfMXpWgKK5glnXcCkkhkJpCUUmA665fwLVr51+w9/VOJKQXEzFKSdsJdGWiIiLrZJgfuRRwG23dXPcXbBt+iI7E62iKh7nhG5gXuSG/v5SSHYN/S9oewquVozl+MvYgljOCISQRYxZlJWMsnPPr3H777TiOQ3t7O5s2bWLjxo088cQTPPDA/WTN/TQ1h1iyNMySJQEWLi4iEJA4wgCSSGkhhJY/p0AB/52Q+Jf8WD7+oQgf/1CEsZjNNR/QmNM2ekHjpgCEfPOV0gsplG4EWoUQzcAx4E7gLuCrF3AMBX5FuSI0h9meCrYnO/nJ0GvYZEkWZZEqTHZykeOTr4jrzZEdTaAAGXQ8mGTQ0XEwUXCANDqviDZWldxEY+Dcu9IWOD2KIrjzmhJ+/MIQ8aQDAhY1+7hsQWjavgGvyrLZJ+94G0va7O6YKMkTQqCp8Ny2KE9sHMV2oLnKwyffU05lsT6lVPDWW11bqd7eXrZu3cp9j6xj3eub6D64EQBN9zBvwSK+Z13K4iXLWNBQw54utzS/vEjjzmtdm4C59X4+ckMp9zyyDxsvkUiEu2+exZ8+H+Lqq6/mscce47bbbuOxxx7j6quvnv4mChQ4OwoxuMBbQmWgkq9f83XW9azjvn338VrPa6d9jRpQseLWSZ8fL+F3pMOyimX84SV/iCJOdGUrcD65fUUdRwYSbDzqZoqMC5snljUqimB5w6knSU/s6mHyHMejKezrifHJezaRyNgU+XV+59rZ3HlJA44jCYVCXH755Vx++eUApFIpdu3axQuvvc6/3/8MPdte5NhmtzQwVF7LuuFrUdas4jdXNPCTnWNEUyZeXeHOVQ0srHW95X76mUv58Dcfpzsu0bwBrpjbyP6NFYX4W+DNoBB/C5x3Pv2Z66iojPDAzzcy0D92QoadnPSP+7OWE0qtbBLd4/4sJLku9xMvEVKiWQ5f/tJNXPY26nZ/saIIhesr7ubh4/9ByoqjCg1bWgS0MJeU3JTfz6uGWVP+EdaUf2TG4yStYyTMLjThahSq8ONVdGxnFNvpZTTdz2h6PUdG/pWm8J0YWjnNLVcxZ85d3HXXXdi2zd69e3nm+c+zefNuHn+0n4d+IVEUaJmts2rVNaxZsYo5Lc/h9QlXIMVB91yBGvgMmFsg+wrHey2CAUE4pBIqez/B0GtvTdy8ABmlQl4ANTZ/MiHeA/w/QAW+K6X825UrV8pNmzZdsDEUKPClo/9Lwuoni0oaPfc9m3qjb2ctnv3g15l/16XMvn0NDoJiEqjYZNEYZMLEWQDFaoCvN96NVzn3zrQFzgzbkRwbzBL0qZSEzm2tZzhm8c/3TXSrl1LSO2KSsSTapOxTn0dQFtExNMHquUFuXBlBOWFSaDuSJzaO8tLmbo4d3YMS309meC+HD7XnSwXntM1nwaKlXHnZSpYsWUIgMCHivrbudb70pd9F11Qsy+KWW27hD//wD/nc5z7Hjh07CIfD3HPPPZSWlp7Tez0dQojNUsqVb8rBC1xUFGJwgbeae/fcyz9u/MfT7tf3iz5SR1I0fanplPsJBJqi8fdX/n2h7P4CcXw0RTxjMbs8OGO1xpnw5w/tYmvnaP7xcCJL31gaVRH5GKsq5Js4La6L8NlrZlNb5Jt2rM0dw/z3CwfZu3cvRrSDisxxutr3kky6Vj3VNTW0zlvMpZes5NLVK6mtrc2Luxs2bOBzX/gimqrg2HYh/hZ40yjE3wJvFkcO9/Ppj30HW0o3M1QC6rjJKK6fIzA22sW+w79kbsuthAPV7sxXSmQuo3S8i/j4Vb2ppYL/uvdT583j81ed/nQXW0eeZzTbT72/jSXFVxPQplvDnYxY9giv930RTbhzSClTWNZBHGkjhIomdByZBWyCioJXLUMIncaSv6TId0X+OJbVTd/Qp0ilh9m/b4wd29Ps2qly6GARliVR1Qzz2jwsX1bB6jXvZenyj+Lx+JDSQWbWseHlb/DlP30NRa/Gso0LFjcnx8tgSb1c9K4vTttn/U9+77zG1AvanltK+Rjw2IU8Z4EC4wxbCfakjuFX/UQtBRM1n0EKrgm2yDlXqYaG5jXIjqXw45ZOL6GTYlK8wuxpx044GQ5n+pnvK5T9vdmoiqChwnP6HU9BSUijrsLIl8WblsS0JZPnfLYjiSUlXsMh4FF4aUcMj65w7Ql+p6oi+LXVxbznkiIkC/OTvFgsxvbt2/Olgg/87If87Cf3oCgKbW1t+eYUl1xyCevXTc+w+ta3vvWG3mOBAidSiMEF3ipM22RD7wZimRgKSq4D7MkZL70/k261lmPxyrFXCkLpBaJmBrHybLmytXyKUBpLm1N+146UpLMOHUMJGkoCbO+K8hcP7ebbH1kxTZxd0VjCio+uxnEuyT/nOA4HDhzIx98tm9bx0rNPAFBeXj4l/r5eiL8FLgCF+FvgfOM4kice3spjD24BR6LYObsaoSAt6RZMCoHMiaea5l67bTOVF0WRILK2q44qAoRw+/tI6OsZJZnMEgi8sTlXAZcKbz3vqv4/5/z6oN6ArgSx7CSq4sNxYjkrIwUll/0psJEITOkQUEJILDpG/oqQ5yFUxf39a1od1eX3k8q8RHnJcdZePQevZw3ptMn27dvZuHEjGzdu5Ac/3sc9P/wOhnEPS5cuZdWqVaxevZo1N9zPqzdMH9+FjpvvtGZOBQq8ZWxPdnLf0OtIJBnHIoEXccJETSJQcQAHCw2jyE8mmsRBECZFhBQaNldykK2k2U9N3idNFQoBpRBI3k586JpS7n95mCM9GXRd4NEVTGsiw96R46uqE9u2tiemCaUA3QNZBsdMGio8+SzXUCjEFVdcwRVXuKt4qVSKnTt35n1O77//fn70ox/x85//nMbGxjfzrRYoUKDAW0Y0E+Urr32F4wnXkk9XdDJO5pSvUQMq0pLIrER4Ti2UKkKhyFN0voZb4AJww/xKesfS/HLbcVKmTcSnk7Gc/D2V7UwuG3XpG0uz+/gYi+oiU441ljbZ1jlKxKezuC6CEAJFUZg7dy5z587lrrvuwnEcjh49OsVn/KmnnuKuu+7iS1/60oV62wUKFChw3vjJ91/miYe34fHqBHw68THLbeak5+YvjltPL3CVz3F/TMtOTxzElq7XowRsxxVLNQUQaJqCYRSkoosFIVQWlf4+Wwe+gulEkU4GhFtZowgVKSeaZQokjsyg5LrWxzNbifguA8C2+4knvkc68yqKiKCppWTTzyOcPlYsm83q1b8Ncoyx0SNs3d7Jpg1PsmnzPr71rfW88sor/M///M9b9RFM5R3WzKlAgbcEWzo8MrIt72kmhMhVIihM7QgosZjozKqH/RCN0cgQs+jHi+uXdphShgjhw8w1gII2bzWNnkK3+7cTxSGNT76nglTGQdcE33q4jy0HE1N801QVbBuGYhaqIigKTu3c6ziSH78wxO4jrt+pEDCr2sNA1CKWsmmr83Ljigg7j6Q4PpxFEc1kKxtovvYW1t6p0BTsoaGh4G1boECBdy6PHn40L5ICZ1TGp/rda62dtFE8p/YeDRthbmu97Q2NscCF5yNrGvngynoyls3mjhG+dN92UtmJBl6qEHgNlb6xNFJCyKtx4p/Oa4cG+dpTB8ha7sJ3dcRL2KdzsC9GVcTLh9c0ogjBSwcGsKUkKeZwfHY9C5fewXWNGovrSy7kWy5QoECB80I8lubpx3bgD3hQVQVdVdwMOymRGXOimb0QeUFJU93GeqaVE0ptJyeSTpr4OBJp2qCpXH3dfHR96rynwFtLiXcJl1d/m57E8ySsDvpj9+HIiZ4bMvf/KhZZu8NteoQfcslhtjPC4NDHsJ0hhPBhywFGRj6PLoLoShCBhiE0VAFex+KKeSNcOT+M+HiIkdFiRqzr34J3PQMShPPmK6UFobTAO56onSThTKyexe30pEWICZH0RIyIH3XgOI0M5cvvj1HEfqqxERhYZPAQUrxcHZ5H1rEwlMJX6u2GLzcJ/+R7KvjBMwNsOZjEdiSRgEIyI4kmLNfnXMIRKRkYzVJe5N5sbD+czIukAImMw0s7Y1QW6WiqYE9Hitf3xYn4NTKmw+CYhaYKKop0th+2GamoYXXB+6dAgQLvYA5HD+d/TltpLOfkTZrGUQM5oTRhoxef3PvbUA2ub7gej1qo6Hg7YmgKhqZwTVsFX7llPv/ybDsDsTQRvwfTtIkmszhSYEvJWNpk3eHBfDOmrOXwrefb8yKplJLXDg0R9mqUBj0cH03zRw/sxKereDSFrpEUWcuhpsjLUDzL/n7B15oK1RwF/n97dx4nx13f+f/1qao+pnvuGd2nJcv3IdnybXzJF47DlWCDCWDACWzWuyyEXcKR/AjH7oY7/pEsgSxsTAIxNywx2GCMwcY2trEtG8nYkmzZlmRJI2nOnj6q6rt/dGs00hwaWTPdM9Pvpx71mJ7ub3V/v62a/nR96nuIzDwvbO2iVAhJBD6+79Hfky93AnKVSeWGLcy0nxd5+BYQlnIQxkNzlI7gwI8d2WTAQF+ebFN66hskE5YO5nBMy3UA7EiexMY9f0XsSlCZQjBFiZQX41Gq/PcW2NP3DVoaLiSX+y5RvBfPawXAxTsBR8n1k/QW4cd7IX4JZx0E5ADDuR5wHm2tzbTxVVx0JeZPzbzdR0Q9SkWOzjPb8ty/cZDunuUk5u8js6SHuDIz6YG/r9H/0pJNDezZ7DgwGAy20VbZu3yPhzHoinx7z4Pc07uRd869jNYgM7WNkimRSXn82R/MA8pzlr6wO88nb9vBYOHAvOgD+Zhbvr+Lj761vBjEczsPHj6ay8c4B8VSTOD7DBZi+nIxmZRjIB8TRo5CybF1Z4HGBo8wdmzfU2RhR7IGLRYRmTrd+W5+sPkHbNy7kT2De2hJtVTm0zq84YnSMcuYj3OOe7bdw4a9G7jp1Ju4fNk06e0gR+xVqxfxqtWLKIYxgWfc8E8P8Ojz3YRxjFcZCXTLXZt4xbFzOGFBMy/sy9E7eCDpnitGRLFjsFQ+ZmLn2DdQJEwncKmAQimiEMZs2T1AJukxt7mBOze8xLFzR847LyIyXd3+7Yf49j/fx76Xeug2SDckiQ/tGToKc47ASxGGecbrorH/LPeXdzzJ1k27+Mgtb8Lzxh/ZIbWxoOkP6Micx4t93yRf2k5/7nYCdmPOlUfSmoeHT1/+xwwUHqVY/C3gVxb9GsDF/RgBDkcc50m6PsDH6AXi8iJfAFEX2F6gFYq/hoY/rGGry+xlJErNbAlwKzCfcjfbLznn/m6s8jrqZdb63dYcX71jN09tzZPY286+JxbQ+/tOGrwE/gQO/WRrhv6eIve4VbxEMyV8Yjwq1+Ao4RMSU3IReRfSE+W4u3fDVDdLqiARGLmCI/A9At9I+Da0SMTunhJbdpQTpJ3NCZxz9OYidnaXGCzExLHD8yBfjMkXHc6Vt/7BiKiSI4gd9OZidu4rHjQvqojIbFCICvzVr/+K25+9nUJYYKA0wPb+7aT8FIEXDLv8OLrhQ+/HErmIUlyir9iHw/G1DV9jMBwcs7zMDMnAw/OMKHZ4ZqQCvzys1Iwwcnz30W0AzGlKEfhGrhiyrXuQnX15wqicZC2UIvrz4dBcp/lSSD6MKc/YBwPFmOf2DLBtn44XEZk5Hn9oC9/6P/eSakjQ3JLBORjMFfGisS9CDnXvcY6EnyYM86OXcwwNxY+imCDh8+LWPWx47PkpaYtMjqTfzorWd3HSnI+STTTim4dnAZ4l8S2JWQA49vV/Ez9YAq4A4RaItuER4VEgoIQf7yRyBWIXYnGEueFLXjscEbAXF++uWVsPqFwYOHQ7vBD4C+fcicC5wH80s5PGKqxEqcxav1rfN9RZNOulmBc0k3hhMX/UfC5XNJ9y0Hr3o0k0Z3BRxN4Bn59zEhtYSCe9QDlJmiM5tP9AXMAB20r7prBFUk3HzE+N2tc4nfDorZy8n3lclmJYTpTuT3jGDrp6Q7p6Q3LFmNhBXy4mHOU7TKHEy7skJiIyjT2440F25XYB4Hs+i5sW05Zq4/S5p/PxCz9ONpEdd/+J9CiFylf3OGKgNEA+yrOjf8fkNEBq7rh5jSPuSyc8unPlqZCa0wnOX9nB9u48g5XepLFz9OZDXtg3yK6+AqXIUYoiXuwemRhwDp7r6p/ydoiITJY7vv8o5hlB4NMxp5G2jsZyR47KCrQHxjxWbjtXfiyMsDAm4aUJS4NQiiCMIB6+T2VRJ1c+NendlyOKYra/sLc2jZUj1pA4DgCzADOf8tD5GCNBKd5LpuH1mNuHo1hZq8Uf+r+PXZHy8P0If7xz03DXlLfjcMyNvh2Oc26Hc+63ldt9wEZg0VjllSiVWatv8ODMVMJ8Mq6BM9IruKTlRBq94XOujEyWJlvKJ3LF3hwxHutZygMcSy9pcqSG7eOIXEzkYhYkWqekLVJ92bTPVWc2H1g8wiCb9sg2eKxcUD52PINU0qMl65NNe7Q3ByQTRhSXF3bKpDyaMh494/SKCg8/XZ+IyIzSXeg+6HfPPJpSTZzccTJXLb+K1XNW4+GN2bPUS3p4gXfYROl+hahA2k8zPzv/aKsu08R/ufw4mtIHZggLfGNuU5ozl7UN3eebVRZwCmjPJpnTlCaMy0MOk4HHgtY0ffmxg+zmXUqUisjM0deTIwjKFxLNjLb2LMtXzGXBojbWXXXqUK86c5QTpPuTR6GDyBFYkjAcxCuGeIUQK5TKJyJxXNm3vFkcUyyG+L7HvIVto1VFpqH5Le8BPJwLwcU4V/4O5fvNNKXPx1wBjwyGB0SADX0Piwhx+ATmj/ndzOEgnB6jZ8dIlHaa2cPDtj8bc3+z5cAa4MGxyihRKrPWCUtHTj69eE6Sxgafxcl2WvwGEvjDhuHbQVuyuQGAUu/w1eS8yhWYg/kYLX6GS5tPnPyGSM286vx2XntBG3NaA+a1JZjXluB1F7bTnPXpzYV859497NhbYrAYk055ZFIecQzppMeijiQdTcFBJ3qjWT5f85OKyOyyZu6aUb9or5m7BoCz5p9FwksQeAHeGF9F/aw/7tD7/RyOpJfkuuOvI5PQHOGzxZymNF+5cS0nLmhiUVsDyzoyXLiqk9esKXf++Pf12/nR+h3s7i/gmdGeKc/Tl/Q9FrdlWNqeoS2TJOWPPc3DojYdLyIyc6w5ZyWFfOmg+4rFEg2ZJJdcdSqB2cER1TkohlgcY3FMwksRRvlyYjSKsSjG8hGWK2GDJSiGUIpxcbmr6byFrZxyhha9mykyyRNZ2PphPMsAhmcNBH4bqWA5CReyp+sNONcNlLMdvjViJDASYGm8YFllqP4hhofR4PQqtGQC3CgbdDnn1g7bvjTarmbWCHwH+C/Oud6xXkKLOcmsdcUZLezuDtm0rTzkqrMl4I8vagfAN4+3dl7I5166g7wrjbp/sqX8BbrYMzDu6/h4XNFyKq9pP5OMp6TXbPOaC9q5dHUze3tDFnQk8Tz47r17+fFvuimGDucgimBvb0hnS4DvGw3JA19TKhd+x+RrgnQRmWWWNC3hxlNu5Bsbv0E+ypPyU1x//PUc03IMAG866U387Pmf8dTep8o9FEbhZ/0J9Sg9vu14PnrBR1nVtmpS2yC1d8qiVm5753k8vbOPloYEi9sy/PLp3Xz6zt/zzM5+PA/CyNEdlYhiR8L38D0jHRyIq7nS2HP3/Z+3rq1GM0REJsUVr17Dr+/eSNfOHoLAJwxjPN/jpves44xzV7Js5Vye3bijPKzeRl6uDLwUURwSxxGeHXKC4sBCBxZBwufci0/g5g9ei+/rPGUmmdP8NrKp1ewd+DalaDfZ1JmEg3fR3/cxIMTDARFGitgNYDjAI/DmYJaBOAKr/J+Pdp2x6T3Va8w4LH55U9eZWYJykvRfnXPfHa+sEqUya6WTHm+/eg5dvSWKJceC9gRmB/7il6Y6WZhs47lCFzEjT8YOJErHn+z/nOxKbug8b3IrL9NKSzagJVv+uPzefXv59e/6KJTKH9DOOcwM58qr3q9ZmWHHnuLQvr2DY5/oX3t289RWXESkRq5efjUXLbqI7f3bWdC44KB5SZNeknVL17GpexNRHI2aLPUyhx9635xs5stXfJnG1Mj5LGV2SPgeJy9sAeCZnX185s7f8/yeHABRVFnZF6MvH3Leyg768yUGhyVHozHOpQxoyqamuPYiIpOnqbmBv7nlTdxzx5M88chzdM5tZt21q1l+7Fycc6w5YxnPPvFieW7S/ee8wxa5SXjlz7xSlCcVjD5XuDm44jVn8t6PvW7K2yNTI5NaQyZVHsHT3ft5CtHTeICRwhFilHAUMXzA4VkC35pxzhESEjB6xy/Dx5sOHXwc5TXrj5CVE0H/G9jonPvs4corUSqzXmdzYsR9hbjE/9p5Fy8U95S/LY/yRTrRvD9RmhvzuX08zmw8ZrKqKjPAY5tyBy2sZ2Z4HsxrSXDi8gZuvHIOz+7I89jmHJ5nPLixjz29o5/s/8kVc6tUaxGR6sskMhzbduyI+7/+1Nf5+lNfxzk3bo/S0u7RR3xAeWatla0rlSStI/c8vZvYQbx/Hj4zfIy5zSkaEj6ff8Nq4tjx4ydfYkf3IIvaGnj/d54Y9bk+eM1x1ay6iMikyDamueaP1nLNHx3cI/7+n/2Ou37wKEHgEYbxqJE1qKzPEcYFUhySKK10/AD4w+vPnoqqSw3kBn+CZ+lhix0FxBhGiNFAkDyVtNdBHG6AuMhQN9JDepMaBo2frGLND+PldSi9AHgz8ISZPVa574POudtHKzwNUsIi1fd47gV6ohyG4dwYJ2nJgCCdpNQ3XqLUeKnUzb5w/OH5MnuYQTIwgmHznhng+8ba48pfOo5ZkOa1F7bz6vPb8MeYH+24RZqmQUTqTzEqcsdzd5Tj7zjfdP1Meej9WDHaMNJ+modeemiqqirTjFc5iW9KJ0bcf/Yx7TSnE7Rmkrzx7KW898rjKUWOsUaN/ulFmqpBRGaPO7/9MP6waUdw7kBvUucgDEnEPjhHqTTA/kyTAeZcOS9W+fm1z/6YPTt7qtsAmRrmA0nK/9P7u2F6OHzMbyPb9C6yHf9ItvMHNGReT9rKI3AP/QfgNb6qRo0YyZwbsR2Oc+5e55w5505zzq2ubKMmSUGJUqlT/XEeMyPrJcdY160s0ZKh2D12otThuLfvGb646+fk4uKY5WT2OOv4LGZGR1NAMigfPS3ZgKvOauGU5SMXhvA9I5M6+CjzDD50w6Kq1FdEZDoZDAcpRAWakk1jrqwK4Df6xGGMK4795Xdz92Y+/fCnueeFe6aiqjLNrDtxLr5ntGUStDQkMIPAtG50zQAAIV5JREFUNy48tpP3XD6yh2gxjFnWnh1xlL3p7KXVqbCISBVEUcyuHd0kAm+oV+j+BZyI4/LK9mFEwpKAIwrzWFxJLh2SYHLEbNmwjb/7wDfHvFApM0c2/QfE5HE2n3JyPARKmKVIpS4klboEAM9vx7MkZmNMC5e6qko1nqDRF3OaVBp6L3Wl5CLu7fs9jw9sZU84QKMlyVmR0I0+0UWyOUOxd+xEabKYILnVJ2yLeKxpK+c3qYfCbHf1Wa34nvHophztzQGnrmjgqjNbSASjX3c6fWWGYslRCGP6B2OSgXHxaU2kkodZ5UlEZJZ5fPfj3PHcHQwUB4hcRFu6jZcGXhq1rJ8pf0ZGuQgvNfLz1Tef7kI3Dsf3N32fi5dcPKV1l9pb1pHlr649kX994HkyqUFOmN/En5yzjOPmN41a/hWrOvn+Y9s4aWEze/qLxM6xqK2Bv7zmhCrXXERkamzZsI1bPvhNurbtI5crlvNFwxa6MecgKp/nBn4aMEpxoZw89X3YP+ekc1AqgXPs3VEkLEU8v2kny1bNr3qbZPI0Nd5IofQ4xeITxHRiroDnZWhr/RvS6SsxO/D9ylIX4vI/hLgR3E7KPVANaMNaPlGrJozkmFAP0qOlRKnUlW903c9T+e0ApMxnd9iHM0haQNGFI8onWzLku3pHfa7lz3Ry7t0r8MPy1bvu4/uJ3+7wgvH6qMpM53vG1We1cvVZrRMqf83ZrRRLjvXP5kgnPU5ZnuEPz2ub2kqKiEwzj+x8hE899CkcjoSfYM/AHkpxiZSfohgXiQ+5YDk8UZpoGznXeOQiYhfTNdjFvdvu5cmuJzml85SqtEVq58xl7Zy5rH1CZVfNa+Ld61Zx6/1b8cxY3NbAn19y7Iih+yIiM1F+sMin/+LrlAolOuc2sX1bN4WBfDlR6nnl5Gd8ILYmSACOMM6X7wgr576eB6UD58EO6NnVy5f+5nt84l/+Q/UaJJPO8zLMaf8ixdJjlMIt+N4C0qmzMRslDZhYA+mrIH8HuAWAlYfuN/4F5k2fBYgNsJexmNORUqJU6kZXqW8oSQrQ6KeJnKPoQiJiSm5kr+1kc4beLTtHPFdQ9DnnF+UkKZTjkPd7j0fu3cJZl6ycymbIDJNKeFx/SQevvaCcHE0mNOOJiNSfH2350dCcpEk/yaLGRWzt3UpjspHuQvfIRGm2kijtH7kYnmHElbm2HI4wDnnfPe/jJ3/0kyluhcw0606cx6XHz2WgGCpBKiKzyvr7n6EwWCTbVF6kadHiVp57eicxDuJoxImtmUdgSUpR4eAh9+HIzkIAj9/3NBt/+ywnnqGFi2cyMyOVXEMqueaw5Wh8H6SuxBUfAGvAUpdgwTScrqYKPUp1xi51YyAujLgv6fmUXEToYrxR/hwSLQ0Ue3Ij5mjp3NlIUDpQ3jcPAzY/sYdfPdFHV8/YK/VKfUomPCVJRaRu9RYOHp3hmYdnHv3FfoJRejYMJUpzIxOlwxeB8swj8AJ2D+7m7x75Ox5+6eERSVepb55nSpKKyKyT6ysQDxtm7/seyVQAOPz9K9nF7qCFnRJeinD/OfGhCz4N4/lGFMZ8+IZ/4P9//zfYvW3vVDdHpgEzw5Kn4zW+Ey/7lmmaJC33KD10m2w6a5e6sSjZRqOXPui+tCVo9FM4HBEj/8KSLRlcFBHmDl6oKddUDjCG4VWSpKXIsSPI8ePfdPO577zEI88MTFlbREREZpK189ce9LuZsaRpCQDFaORiiMOH3h+0X2Vpnv3x1zefMA4Jo5A7t97Jpx7+FJ944BOUYl2wFBGR2eu41Usxg3jY8Pp0ygcHURiXk6RhCMXS0BD8wEuV5ygdniANowPD9F15ZZw4Kj/u+z6/vXsjH3/HlxnoHax2E0VGMSz57w6+EDCZlCiVuhGYzxs7z6PZbwCgFEf45pMkIHIje6xAeeg9QOmQBZ36Wws8u6qLGEfsHGHsKCQjXlxQPoFzDm5/sJsw0mqBIiIir1v1Os6ad1Z52LyLCeOQTJAhdvHQMPrhLGlYYEQDB8dnh8PDw+GGnid0Ib7nk0mUY/aTe57k/u33V6VdIiIitbBwWSfrXnsWub4CfT05tj29g97dvQcSnnF0IIEURlAoEliyPEepA+ccrhTihiVay0knhvZrbm2gqTVD774B7rv9saq3UWRUVVj1XolSqSvHpObw3xZcy1s7LyLtJYiJCUc9RStLtpRPuoo9BydKYxz3r9vEg5duZuuxXWw8eSc/uXA78d5FQ2UGCzF7+0af80VERKSepPwU7zvrfXxh3Rc4rfM0Ai+gEBfGHCZvZvgZf0SiFDgoajschpFJZPCGrd76bM+zk98IERGRaeSGd1/Ju//n9cyZ24yLIuYtasNcjIsqG8NySc4RuASlMI8rlco9TSsJURdF5VyTHViU2HCkGxKV27D1qe2ITAfm3IhtsilRKnXHM2NnqXtoqP1oc5fut79H6aGJUgDnweYTd3Pvlc+wYUWRwvalxMPO5xpSHm2NWi9NRERkv7SfZsOeDQD0F/sPmm/0UH529ETpcAlLkPSSI+YSX968/KjrKiIiMp2ZGaefvwoXRsxZ2I7ne7gwgmhY7Ixd+ffYkbAEoSvgokNiq6sM0y+FEIZ4xPgMG9FssOz4BdVqlsj4qtCjVFkcqUvFylD70MWUxhh2D5DY36O0d2Si9KByc3sIn4tIxJU/KYOr1raQCGzc/UREROpJGB8Yx9Ff6h+3rJ/1iXPjz9AfE9OSbMHzDlz7P6H9BM5feP7RV1ZERGQGKBVDPDN6ewYxwEXDYmcYDmU8gzggdhExEf7+PnPD5njcP0rDRTFeygNz9PXkaGxu4LxXrq5uo0RG48DiKciMHkKJUqlLp2YWc3fvBgzGXR032Vyez3S0HqXD+dkS117rM29PJ4OFmBOXNTC/TSusioiIDNeabuWkjpPYsGcDzrlxY7Cf8SntHn9RJsM4tfNUrjv+OnbkdrC4cTFnzT+LwNNXXBERqQ/nXnUaP/mX+3A4XOzKY+Wj+OCepUCCBDgIw0G8wB9KkNr+IfdmuDAi3dxAtjXDQG+e1Rcczxvf80qaWjNVbpXIGKZgqP2h9C1S6tK8RAvXdZzDT7rXs63YPWY5P5XATydHLOY0nGFc13YOl7WeDHOnoLIiIiKzyH9a85/44uNfZHdu91EPvV/ZupLPXPoZEp4uToqISH269saLWH/f02x+4oWh+9whq4EbEFgScBQL/SSLfuUBwwUB5vu4sARmvPvzb+biV51ZeVgjJGV6sSqsl61EqdSt0zNLOT61gPds/Re649yYp2rJ5gaKPYO4OObhv76Nnmd2YJ6RWdDGyusvYP1n/y+PJP+RRel2br31VpYsWVLVdoiIiMwk7el2PnjOBwnjkO8+/V0iRk+G+lmfOIyJizEWGNtv3U7hxQJ4kGhP0H5JO3d+507WfWYdvucrBouISF1qbMnwka/9Bz7x9n/kwTufKM9BGkbgeQeG1ZuVE6UOQkq4OGZj6UH6427ASHtZFvur2FR6lD//iweZ9/lOxVWZfhzleXenmBKlUtfWDz5PwvPxY4+Q0Yf/JVsyFHtz7PjlRlwUc/lt7wWg0D1AkElx+W3vJYHPxfcE3HLLLXzqU5+qZhNERERmnMFwkN/v/T1JP0k+yo/as9TPlnu7RAMR+efzuMix4sMrAAj7Q7y0x7IPLePGM26Eh1AMFhGRupVIBuzaspPAg1K+Mi/psPm7cY6AJBiUojxd0Qu4OOLsxBVgRslK+AScnb6allITV7/5TMVVmYZcVRKlWvVe6truUh9ZL4VvY/8pJJozFHtyBJkUPU9vp3fTSwCkWrP4yfK1hoiYzXu3cdppp1Wl3iIiIjPZvvw+QhfSnGoec1ifn6kkSnMRXtqjsK1AfnsegKAxwAvKsfuhnQ/R29urGCwiInWrVAzJ9eVpam44sEBTFMGwGBt4qXKP0iiPT0Cf66Ev2oeLIoLIx3Plsn3dA+zbu09xVaYdA8y5EdtkU49SqWtLUx1Yv+Gbh+eMeJQeLcmWDP3P7WLu2cey8g0X8shHbmNg215WveUSjn/bpWy/+0l+d8vtNOcDfvrjO2rQChERkZllbmYuralWuvPdBBZQdMURZYYSpQMR2eOztF/Szo5bd1DsKtJxRQedV3XS91gfP/gfP6AxbuT222+vdjNERESmhUQyYO6SDrZtfgnP94jDqDwE3zms0rM0iMtD8UtxgXneEhbbCp6KHmHQDbDUW8Wy4ES64m1sKTzJ5i/9ekJxdaA3h4sdja3ZqW6iSJkWcxKZWic3LObUhiV0hznyjL6ybrLSo9Q5x4rXn8eK159HqW+Qn9/weRatO5WFl57CxVev45RfR3zggx/kX//t6yS9gBcKe9gT9tMZNLO71MugK9LgJTghvZDNL4Q8sy1PazbgrOOzNDb4VW65iIhI7QRewJ+e+qf87UN/S1e+a9QyfuOBRClA20VttF3URjQY8ex/f5bmNc3MWzuPr374qzx515O8/wPv51vf/BaDpUEe3vkwi5sWsy+/jz2De/A9n+PajiPhJfj5Cz+nEBU4b8F5nNhxYtXaLCIiMlXMjDf812v53H/8KsBQ9x8XlROmRnmBp8AlKFEE51hoK1jorSByJR6Kfk5nuJAO18ncxDryA928/uo38JZ1f8r6X24g15vDTwSExRJ+ELD0xEXEsWPns7sAWLl6OX/2yTezYMW82rwBUh8cjLMO6KRRolTqmmfGde3nEBVL/Cj3xKhlki0Z4jCif+tu0h1NJJoaCBrTBNkUUaGcXH2msJNf5TayNXyem7Z8mZSXpOBKRM7hcPh4eGa0+BnIpUk+fjLJXBMAD2zs589fNZeWrP4cRUSkfqydv5YPnfMhbv7pzRQZp0dpLqK0r4SX9vAbfLy0h5f2iEsxuTDH9T+6nr4n++jZ0cPl37yc/rCfKI4I4xDf8/HNJx2kaUu1UYgLtKZaAbjjuTt4xynv4MrlV1az2SIiIpPGOcdjdz/JL267lx2bd9G15UWi0si1N/bnlgICQlek4AbxCQhI4BEQEBBXFleMShG92wfYSRe3b/nZiOfyEx57d+zFzJi7tJNsa5Ytjz/Hx9/wOT5990doyKansslS50yLOYlMvl/1Pc239/yGrrCPaIwFnIZLNjcA0Lt5Jw++/18wz3BhxMLLTqXr0Wd55P+7DfMML+Gz9uM3UCSmGOfZPxuMA2IiEs6nuzQIBSO1eDNznl4NQF8u4tcb+nnlWa1T0l4REZHpYHv/dj72wMf47c7fkgtzhy1vScMCIxooJ0pf+vpL4IGLHE2rm8htyrH91u2YlcstvHEhu/O7MQ7Mx1aKSzhz5MM8O6OdxC4mE2RI+kkAvvX0t7hs6WUEnr4Si4jIzNK7t4/3X/4xNj3+7IR72QUkCCmRJ8fT8WMYhsPRaQvocXt4yj2CYRgeJ3LG6E/iII4dQeCzb2cP2dYs2dYsffv6efiOx3nF686ZvEaKHEpD70Um18P9z/KVXfeQd8UJ99hOtGQAyC5qH1rxfriV150/6n4OsIN+dxAbzjmK2d6Dynb1hBOsjYiIyMyTK+W4+a6b2dKzhchFE9rHzPAzPtFARGZFZmjF++HaL24fcZ87JMLHrnxRtBSX8M2nEBWGEqW9xV4GSgO0pFqOtEkiIiI19Q/v/gqbjyBJCuVEaYFBWqyDs/x1Ix5fFC8/7HPEkQNXjrdhKcI5h5kRhRF7tu89ghaIHCHnID58Z7ejpVXvpa7c1fs7ii48omktks3lRGmxd/CoXtsA82M8gyCfOeixY+anjuq5RUREprP7d9zPjoEdQ0nLifKzPnHu5X0hHupZWvmR8BIH/QRY1LhISVIREZlx8rkCD93x+BHvF5CkRGn05OoEE1Dm2VBs9XwPs3JnoEQiYPnJS464TiJHxI2yTTL1KJW6UoiPvOdmdnEHZ37kepqOcGJqD6v8zbpyktQ80l6CTGMSb8sxQ+WOWZDinBMaj7heIiIiM0U+zB9xkhRgzjVzsJQdvuAwhuGZN/R6gQV45jEvM4/IRaSD8txpDUEDN5160xHXSUREpNaiMMLFh46hOLz5LGEOCyrDl41y19AjexbzDHPl5Ghja5ZSoUQhV2TF6cs49SItkihTTHOUikyucxtXsDm/k5h4wkElaEjScfryCb9GhgQnZBbSHeXIxUVa/QyLgjbwYHGynTOzx5BemGXzjjytWZ9jFmiyaxERmd3Omn8WralWClFhwkPvAdJLJh4jPTxO6zyNVJDipdxLpP00x7YeS8JLMC87j7Xz13LG3DN4sutJ8lGe1XNWk0lkDv/EIiIi00y2OcOK05ax/p4NI6acGU/G9nfQmXiC1DyrFHf4gUcQ+MxZMY/jzlzB7hf3gIMLbzqHV960Dt/3X0ZrRCbONEepyOS6rOVktpW6uaf3KQquNOGQMt9v5rjUAh7LbSVHkUZLsSoxjwXpNub4jZyQWUiT30BrMjuxJ0zAmmMnWFZERGSGm5uZy1+f99d8/IGPs2Ngx4STpSkvxVXLr2LT3k1s7t1MYAErW1aydv5aUn6K8xedz5yGOSxoXIDnTWxGqTPmjbE4hYiIyAxy8xfewX+99CN07+49fOEjYAadizq48sZLuOyGC9n8+FYATjp3FV7g09CYJtPUMOG4KzJpHFrMSWSyBebztjkXcUPHefRFeZr9NMlhc5WJiIjI1Lhg0QX8++v+nV25XaT9NM2pZjzTSZaIiMjLsfykJXz5yc/ync//iAf//beU8iG5/kH27tg3NG9j85wmLnr9uTRkGzDnuOIdl7H8+MVH9DpLTziy8iJTx2novchUSXkJUkqQioiIVJVnHvOz82tdDRERkVmhdU4L7/jEm3jHJ95U66qIVEcVepRW5TK+mX3KzJ4ys/Vm9j0za63G64qIiNQ7xWAREZHqU/wVEZlkjnKP0kO3SVat8U4/BU5xzp0GPA18oEqvKyIiUu8Ug0VERKpP8VdEZLLF8chtklUlUeqcu9M5F1Z+fQDQJBciIiJVoBgsIiJSfYq/IiKTzYGLR26TrBZzlL4d2GVmDwMsXbq0BlUQEXn5du4rsfH5QRrTHqeuyJBKaDESmTEUg0VkxhosRvzymd30DpY455gOlnZkal0lkYlS/BWRqnLO4fK3Q+5WiHZDsBJrfBeWPLPWVTs6M2nVezP7GTDa7Pwfcs79oFLmQ0AI3ORcuXVr166d+laKiEySBzb288P7D6wkeddjvbzzD+bS2qi18aR2FINFZLbb1Zfn/d9eT1d/EYCvPbCVP79kJVefsqDGNZN6pvgrItOVG/wuDPwDkAJrgeh5XM9fQsunseTpta7ey7N/jtIpNmln9s65y8d73MzeClwLrNsfIEREZpJCKeYnD3UPJUkBevoj7lnfx6vPb6tZvUQUg0VktvvWwy8OJUmh3KHkK/c9xyXHzyWd8GtYM6lnir8iMh05F0Hun4EGsGTl3izEfbjcrVjyM7Ws3tGZST1Kx2NmVwPvBy52zuWq8ZoiIpNtT29Ifz6mWIoJfCOV8DBg+57iYfcVqRXFYBGZDZ7e2UdvvoRz0JgK8D1jsBixoyfPMZ3ZWldPZATFXxGpFRf3QtwFbhBcCNYAfidYGsItta7eUXBTsnjToao1VvQLQAr4qZkBPOCce1eVXltEZFKs35Kjq7s01Ns/lTA6WxIs7EiOv6NIbSkGi8iM9mzXAI89382uvgIAXf0FFrY20J5NsqAlXePaiYxJ8VdEamPw/0LcTXkopAeuH8JB8DohcUaNK3cUHLOnR6lz7thqvI6IyFTZ01PimV13cfkr1hO7Ett3ruKpTecBCS4+ranW1RMZk2KwiMx0n73z93QPliiGEWAEvtHVV+B9Vx6nYfcybSn+ikgtxHEOBv6eclYxqmwGxOD6sMxbalq/ozaLepSKiMxom7ruYeHC+4HyCoIrlj5JY0NIR+q1WshJRERkiuwdKPKLp3cTRo5E4BHH5c4knY0pLjthXq2rJyIiMr3kfwauj3K6z6O8lpwDDLwlM3chJwDc7OlRKiIy4yUeG7ppZvgG8+c+w5yE1a5OIiIis9yvntlN4Blh5DAM3yvfn035JAOvtpUTERGZbkoPVW4Y4Fc2gBCCJbWp02Rx4Kqw6r2+XYiITEAqYWTSB39kJgJYu0oLSIiIiEyV2Dk6GlPYIdclX7FqTm0qJCIiMq15YFnKQ+73JxUrw9XTV9aoTpPIxSO3SaZEqYjIBHRm1tDa6NPRHNDY4NHa6HPc/NPJprWIhIiIyFS54NhOmtMBS9sztGeTtGeTrJyb5W0XLK911URERKYdS18O1gzWXrknAjzwF2GzIVEau5HbJNPQexGRCVjUfAmRK7Cr/zc0JEM6MqeyvO1Vta6WiIjIrDa3Kc1fXXsS//veZ9m6J8fyziw3XXgMHY2pWldNRERk+kleAOnLoHA3uA4wD0hhLZ/ALFnr2h0d57SYk4jIdGHmsaz1lSxtuRpwmKlDvoiISDWsWdrGF25oI44dnqe5wUVERMZi5kHTB6HhNbjiY5jXDKkLMK/98DvPBEqUiohML2ZGeWJsERERqSYlSUVERA7PzCBxMpY4udZVmXROq96LiIiIiIiIiIhIXdPQexERERERERERERGmZPGmQ2mSPREREREREREREZm2HOBcPGKbCDO72sx+b2abzOwvxyurRKmIiIiIiIiIiIhMX86Ve5Qeuh2GmfnA3wOvBE4C3mhmJ41VXolSERERERERERERmdZeZo/Ss4FNzrktzrki8G/Aq8cqbNVYMWo8ZrYb2FrTSkx/nUBXrSsxA+h9Ojy9RxNTT+/TMufcnFpXQmpDMXhC6unz4OXSezQxep8Or57eI8XfOqb4O6p6+vufKL0nI+k9GWm2vydD8dLMfkK5vYdKA/lhv3/JOfel/b+Y2R8DVzvnbqr8/mbgHOfczaO9YM0Xc9IXhMMzs4edc2trXY/pTu/T4ek9mhi9T1IvFIMPT58Hh6f3aGL0Ph2e3iOpF4q/I+nvfyS9JyPpPRmpnt4T59zVL3NXG+3pxiqsofciIiIiIiIiIiIyG70ILBn2+2Jg+1iFlSgVERERERERERGR2eghYJWZHWNmSeANwA/HKqxE6TRkZreZ2WOV7Tlg3hjlnjOzJyrlHq5uLWvPzD5iZtv2v1fAr8cod7WZ/d7MNpnZX1a3lrVlZp8ys6fMbL2ZfQ/42hjl6u5YOsxx8SUru6Xy+HozO6MmFRWRqlIMPjzF34lRDB7bOMfGlyqPKwaLzHKKtyMpvo6kWHqAYufL55wLgZuBO4CNwDedc78bq3zN5yiVkZxz1++/bWafAXrGKX6pc242T9x7OJ9zzn16rAfNzAf+HriCcnfrh8zsh865DdWqYI39FPiAcy40s78FFo5Ttm6OpcMdF865L5nZNcCqynYO8L8qP0VkFlMMnjDF38NTDB7FeMfGsIUXXolisMispng7JsXXgymWotg5GZxztwO3T6SsepROY2ZmwHXAN2pdlxnsbGCTc26Lc64I/Bvw6hrXqWqcc3dWrp4APEB5Lg6Z2HHxauBWV/YA0GpmC6pdURGpDcXgo1bX8RcUg8ehGCwiQxRvj1hdxVfF0iGKnVWkROn09gpgp3PumTEed8CdZvaImf1ZFes1ndxc6Vb+FTNrG+XxRcALw35/sXJfPXo78OMxHqu3Y2kix4WOHZH6phg8PsXfI6MYfIBisIgMp3h7MMXXsdVzLFXsrCINva8RM/sZMH+Uhz7knPtB5fYbGf/K2gXOue1mNhf4qZk95Zz75WTXtZbGe58odyX/GOUPxY8Bn6H84XnQU4yyr5vMOtbaRI4lM/sQEAL/OsbTzPpj6RATOS5m/bEjUq8Ugw9P8XdiFINfFsVgkTqheDuS4utIiqUTothZRUqU1ohz7vLxHjezAHgdcOY4z7G98nNXZWLjs4HZ9GFw2PdpPzP7MvCjUR56EVgy7PfFwPZJqNq0MYFj6a3AtcA659yoH5T1cCwdYiLHxaw/dkTqlWLw4Sn+Toxi8MuiGCxSJxRvR1J8HUmxdEIUO6tIQ++nr8uBp5xzL472oJllzaxp/23gSuDJKtav5g6Zb+O1jN7+h4BVZnaMmSWBNwA/rEb9pgMzuxp4P/Aq51xujDL1eCxN5Lj4IfCWyuqB5wI9zrkd1a6oiNSEYvA4FH8nRjF4TIrBIrKf4u0wiq8jKZYOUeysIvUonb7ewCFDEMxsIfBPzrlrgHnA98pzXxMAX3fO/aTqtaytT5rZasrdyZ8D3gkHv0+V1fFuBu4AfOArzrnf1ai+tfAFIEV5+AHAA865d9X7sTTWcWFm76o8/kXKK+JdA2wCcsDbalVfEak6xeDxKf5OjGLwKBSDRWQYxduDKb6OpFiKYme12Rg9l0VERERERERERETqhobei4iIiIiIiIiISN1TolRERERERERERETqnhKlIiIiIiIiIiIiUveUKJW6YWaRmT02bFtuZpeY2Y8Os99qM7umcvttw/YvmtkTldv/8yjrdrOZbTIzZ2adR/NcIiIi04nir4iIyORRXBWZWlr1XurJoHNu9fA7zGz5BPZbDawFbnfOfRX4amXf54BLnXNdhzyn75yLjrBu9wE/An5xhPuJiIhMd4q/IiIik0dxVWQKqUepSIWZnW1mvzazRys/jzezJPBR4PrKFbbrx9i338w+amYPAueZ2Z+Y2W8q+/yjmfmVclea2f1m9lsz+5aZNQI45x51zj1XrbaKiIhMF4q/IiIik0dxVeToKFEq9aRh2PCC743y+FPARc65NcBfA//dOVes3L7NObfaOXfbGM+dBZ50zp0D7AGuBy6oXOmLgDdVhh58GLjcOXcG8DDw3slsoIiIyDSk+CsiIjJ5FFdFppCG3ks9GTFE4RAtwD+b2SrAAYkjeO4I+E7l9jrgTOAhMwNoAHYB5wInAfdV7k8C9x/Ba4iIiMxEir8iIiKTR3FVZAopUSpywMeAu51zr63M8fKLI9g3P2z+FgP+2Tn3geEFzOwPgZ865944GZUVERGZJRR/RUREJo/iqshR0NB7kQNagG2V2zcOu78PaDqC57kL+GMzmwtgZu1mtgx4ALjAzI6t3J8xs+OOutYiIiIzm+KviIjI5FFcFTkKSpSKHPBJ4H+Y2X2AP+z+u4GTxpv0ejjn3AbKc7bcaWbrgZ8CC5xzuykHqm9U7n8AOAHAzP6zmb0ILAbWm9k/TWK7REREpjPFXxERkcmjuCpyFMw5V+s6iIiIiIiIiIiIiNSUepSKiIiIiIiIiIhI3VOiVEREREREREREROqeEqUiIiIiIiIiIiJS95QoFRERERERERERkbqnRKmIiIiIiIiIiIjUPSVKRUREREREREREpO4pUSoiIiIiIiIiIiJ17/8B1pOGZb5rvBIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1360.8x288 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"st.plot_flat_tree(adata,color=['label','branch_id_alias','S3_pseudotime'],\n",
" dist_scale=0.5,show_graph=True,show_text=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### detect marker genes at branch"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Selected</th>\n",
" <th>vst_mean</th>\n",
" <th>vst_variable</th>\n",
" <th>vst_variance</th>\n",
" <th>vst_variance_expected</th>\n",
" <th>vst_variance_standardized</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>MIR1302-2HG</th>\n",
" <td>0.0</td>\n",
" <td>0.000019</td>\n",
" <td>0</td>\n",
" <td>0.000019</td>\n",
" <td>0.000020</td>\n",
" <td>0.965209</td>\n",
" </tr>\n",
" <tr>\n",
" <th>FAM138A</th>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OR4F5</th>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AL627309.1</th>\n",
" <td>0.0</td>\n",
" <td>0.000520</td>\n",
" <td>0</td>\n",
" <td>0.000520</td>\n",
" <td>0.000573</td>\n",
" <td>0.907270</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AL627309.3</th>\n",
" <td>0.0</td>\n",
" <td>0.000004</td>\n",
" <td>0</td>\n",
" <td>0.000004</td>\n",
" <td>0.000004</td>\n",
" <td>0.999929</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AC233755.2</th>\n",
" <td>1.0</td>\n",
" <td>0.002616</td>\n",
" <td>1</td>\n",
" <td>0.017407</td>\n",
" <td>0.003155</td>\n",
" <td>5.517430</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AC233755.1</th>\n",
" <td>1.0</td>\n",
" <td>0.046100</td>\n",
" <td>1</td>\n",
" <td>48.705948</td>\n",
" <td>0.056577</td>\n",
" <td>11.072466</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AC240274.1</th>\n",
" <td>0.0</td>\n",
" <td>0.006056</td>\n",
" <td>0</td>\n",
" <td>0.006399</td>\n",
" <td>0.007445</td>\n",
" <td>0.859565</td>\n",
" </tr>\n",
" <tr>\n",
" <th>AC213203.1</th>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>FAM231C</th>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>33538 rows × 6 columns</p>\n",
"</div>"
],
"text/plain": [
" Selected vst_mean vst_variable vst_variance \\\n",
"MIR1302-2HG 0.0 0.000019 0 0.000019 \n",
"FAM138A 0.0 0.000000 0 0.000000 \n",
"OR4F5 0.0 0.000000 0 0.000000 \n",
"AL627309.1 0.0 0.000520 0 0.000520 \n",
"AL627309.3 0.0 0.000004 0 0.000004 \n",
"... ... ... ... ... \n",
"AC233755.2 1.0 0.002616 1 0.017407 \n",
"AC233755.1 1.0 0.046100 1 48.705948 \n",
"AC240274.1 0.0 0.006056 0 0.006399 \n",
"AC213203.1 0.0 0.000000 0 0.000000 \n",
"FAM231C 0.0 0.000000 0 0.000000 \n",
"\n",
" vst_variance_expected vst_variance_standardized \n",
"MIR1302-2HG 0.000020 0.965209 \n",
"FAM138A 0.000000 0.000000 \n",
"OR4F5 0.000000 0.000000 \n",
"AL627309.1 0.000573 0.907270 \n",
"AL627309.3 0.000004 0.999929 \n",
"... ... ... \n",
"AC233755.2 0.003155 5.517430 \n",
"AC233755.1 0.056577 11.072466 \n",
"AC240274.1 0.007445 0.859565 \n",
"AC213203.1 0.000000 0.000000 \n",
"FAM231C 0.000000 0.000000 \n",
"\n",
"[33538 rows x 6 columns]"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"adata.var"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scanning the specified marker list ...\n",
"Filtering out markers that are expressed in less than 5 cells ...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/anndata/core/anndata.py:1239: FutureWarning:\n",
"\n",
"is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 cpus are being used ...\n",
"677 markers are being scanned ...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:169: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n",
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/stream/scikit_posthocs.py:185: VisibleDeprecationWarning:\n",
"\n",
"Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
"\n"
]
}
],
"source": [
"adata.X = adata.X.todense()\n",
"st.detect_leaf_markers(adata,marker_list=adata.var[adata.var['Selected']>0].index, cutoff_zscore=1.0,cutoff_pvalue=0.01,\n",
" root='S3',n_jobs=4)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>zscore</th>\n",
" <th>H_statistic</th>\n",
" <th>H_pvalue</th>\n",
" <th>S3S1_pvalue</th>\n",
" <th>S4S6_pvalue</th>\n",
" <th>S4S5_pvalue</th>\n",
" <th>S1S0_pvalue</th>\n",
" <th>S1S2_pvalue</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>GZMK</th>\n",
" <td>1.99669</td>\n",
" <td>446.999</td>\n",
" <td>1.93435e-95</td>\n",
" <td>1</td>\n",
" <td>3.04458e-54</td>\n",
" <td>6.5113e-71</td>\n",
" <td>6.5113e-71</td>\n",
" <td>1.02338e-59</td>\n",
" </tr>\n",
" <tr>\n",
" <th>XCL1</th>\n",
" <td>1.95116</td>\n",
" <td>369.244</td>\n",
" <td>1.22574e-78</td>\n",
" <td>1</td>\n",
" <td>1.82206e-45</td>\n",
" <td>1.69781e-56</td>\n",
" <td>1.17536e-64</td>\n",
" <td>1.27049e-25</td>\n",
" </tr>\n",
" <tr>\n",
" <th>KIR2DL1</th>\n",
" <td>1.95458</td>\n",
" <td>341.862</td>\n",
" <td>1.00228e-72</td>\n",
" <td>6.50522e-70</td>\n",
" <td>2.8413e-28</td>\n",
" <td>1</td>\n",
" <td>1.3545e-51</td>\n",
" <td>5.3589e-56</td>\n",
" </tr>\n",
" <tr>\n",
" <th>KIR3DL1</th>\n",
" <td>1.94358</td>\n",
" <td>271.84</td>\n",
" <td>1.27992e-57</td>\n",
" <td>2.54986e-56</td>\n",
" <td>8.41564e-25</td>\n",
" <td>1</td>\n",
" <td>2.73917e-33</td>\n",
" <td>2.27556e-43</td>\n",
" </tr>\n",
" <tr>\n",
" <th>KIR2DL3</th>\n",
" <td>1.94392</td>\n",
" <td>260.413</td>\n",
" <td>3.71581e-55</td>\n",
" <td>1.87584e-53</td>\n",
" <td>4.71595e-24</td>\n",
" <td>1</td>\n",
" <td>1.29599e-32</td>\n",
" <td>1.57841e-41</td>\n",
" </tr>\n",
" <tr>\n",
" <th>COTL1</th>\n",
" <td>1.98247</td>\n",
" <td>166.325</td>\n",
" <td>6.42743e-35</td>\n",
" <td>1</td>\n",
" <td>2.25455e-20</td>\n",
" <td>2.50527e-27</td>\n",
" <td>2.50634e-19</td>\n",
" <td>2.14826e-17</td>\n",
" </tr>\n",
" <tr>\n",
" <th>CD3E</th>\n",
" <td>1.50533</td>\n",
" <td>149.381</td>\n",
" <td>2.76281e-31</td>\n",
" <td>1</td>\n",
" <td>2.70601e-19</td>\n",
" <td>3.36011e-17</td>\n",
" <td>0.000233962</td>\n",
" <td>5.7121e-21</td>\n",
" </tr>\n",
" <tr>\n",
" <th>IFIT3</th>\n",
" <td>1.99642</td>\n",
" <td>177.747</td>\n",
" <td>2.27153e-37</td>\n",
" <td>2.86825e-35</td>\n",
" <td>2.95051e-19</td>\n",
" <td>1.34396e-22</td>\n",
" <td>6.65828e-31</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>XCL2</th>\n",
" <td>1.67029</td>\n",
" <td>250.722</td>\n",
" <td>4.54972e-53</td>\n",
" <td>1</td>\n",
" <td>1.04741e-16</td>\n",
" <td>1.57319e-32</td>\n",
" <td>9.83201e-49</td>\n",
" <td>1.38375e-06</td>\n",
" </tr>\n",
" <tr>\n",
" <th>CD7</th>\n",
" <td>-1.77116</td>\n",
" <td>116.939</td>\n",
" <td>2.40639e-24</td>\n",
" <td>4.84284e-22</td>\n",
" <td>7.13086e-16</td>\n",
" <td>1.02136e-07</td>\n",
" <td>1</td>\n",
" <td>9.41487e-12</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" zscore H_statistic H_pvalue S3S1_pvalue S4S6_pvalue \\\n",
"GZMK 1.99669 446.999 1.93435e-95 1 3.04458e-54 \n",
"XCL1 1.95116 369.244 1.22574e-78 1 1.82206e-45 \n",
"KIR2DL1 1.95458 341.862 1.00228e-72 6.50522e-70 2.8413e-28 \n",
"KIR3DL1 1.94358 271.84 1.27992e-57 2.54986e-56 8.41564e-25 \n",
"KIR2DL3 1.94392 260.413 3.71581e-55 1.87584e-53 4.71595e-24 \n",
"COTL1 1.98247 166.325 6.42743e-35 1 2.25455e-20 \n",
"CD3E 1.50533 149.381 2.76281e-31 1 2.70601e-19 \n",
"IFIT3 1.99642 177.747 2.27153e-37 2.86825e-35 2.95051e-19 \n",
"XCL2 1.67029 250.722 4.54972e-53 1 1.04741e-16 \n",
"CD7 -1.77116 116.939 2.40639e-24 4.84284e-22 7.13086e-16 \n",
"\n",
" S4S5_pvalue S1S0_pvalue S1S2_pvalue \n",
"GZMK 6.5113e-71 6.5113e-71 1.02338e-59 \n",
"XCL1 1.69781e-56 1.17536e-64 1.27049e-25 \n",
"KIR2DL1 1 1.3545e-51 5.3589e-56 \n",
"KIR3DL1 1 2.73917e-33 2.27556e-43 \n",
"KIR2DL3 1 1.29599e-32 1.57841e-41 \n",
"COTL1 2.50527e-27 2.50634e-19 2.14826e-17 \n",
"CD3E 3.36011e-17 0.000233962 5.7121e-21 \n",
"IFIT3 1.34396e-22 6.65828e-31 1 \n",
"XCL2 1.57319e-32 9.83201e-49 1.38375e-06 \n",
"CD7 1.02136e-07 1 9.41487e-12 "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"adata.uns['leaf_markers_all'].sort_values(by = \"S4S6_pvalue\", ascending= True).head(n=10)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>zscore</th>\n",
" <th>H_statistic</th>\n",
" <th>H_pvalue</th>\n",
" <th>S3S1_pvalue</th>\n",
" <th>S4S6_pvalue</th>\n",
" <th>S4S5_pvalue</th>\n",
" <th>S1S0_pvalue</th>\n",
" <th>S1S2_pvalue</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>IFIT3</th>\n",
" <td>1.99642</td>\n",
" <td>177.747</td>\n",
" <td>2.27153e-37</td>\n",
" <td>2.86825e-35</td>\n",
" <td>2.95051e-19</td>\n",
" <td>1.34396e-22</td>\n",
" <td>6.65828e-31</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>IFIT2</th>\n",
" <td>1.99849</td>\n",
" <td>156.823</td>\n",
" <td>7.01736e-33</td>\n",
" <td>3.86271e-28</td>\n",
" <td>2.96696e-15</td>\n",
" <td>1.63051e-23</td>\n",
" <td>6.98751e-29</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>CCL3L1</th>\n",
" <td>1.83012</td>\n",
" <td>131.795</td>\n",
" <td>1.60896e-27</td>\n",
" <td>8.42025e-22</td>\n",
" <td>0.00063311</td>\n",
" <td>1.0411e-15</td>\n",
" <td>4.1267e-23</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>PMAIP1</th>\n",
" <td>1.94497</td>\n",
" <td>120.401</td>\n",
" <td>4.38565e-25</td>\n",
" <td>2.54436e-12</td>\n",
" <td>1.80931e-05</td>\n",
" <td>2.24366e-18</td>\n",
" <td>3.95767e-24</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>OASL</th>\n",
" <td>1.98586</td>\n",
" <td>102.243</td>\n",
" <td>3.2745e-21</td>\n",
" <td>9.92811e-20</td>\n",
" <td>7.06546e-14</td>\n",
" <td>2.95289e-15</td>\n",
" <td>3.96149e-14</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" zscore H_statistic H_pvalue S3S1_pvalue S4S6_pvalue \\\n",
"IFIT3 1.99642 177.747 2.27153e-37 2.86825e-35 2.95051e-19 \n",
"IFIT2 1.99849 156.823 7.01736e-33 3.86271e-28 2.96696e-15 \n",
"CCL3L1 1.83012 131.795 1.60896e-27 8.42025e-22 0.00063311 \n",
"PMAIP1 1.94497 120.401 4.38565e-25 2.54436e-12 1.80931e-05 \n",
"OASL 1.98586 102.243 3.2745e-21 9.92811e-20 7.06546e-14 \n",
"\n",
" S4S5_pvalue S1S0_pvalue S1S2_pvalue \n",
"IFIT3 1.34396e-22 6.65828e-31 1 \n",
"IFIT2 1.63051e-23 6.98751e-29 1 \n",
"CCL3L1 1.0411e-15 4.1267e-23 1 \n",
"PMAIP1 2.24366e-18 3.95767e-24 1 \n",
"OASL 2.95289e-15 3.96149e-14 1 "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"adata.uns['leaf_markers'][('S1','S2')].sort_values(by = \"S1S2_pvalue\", ascending= True).head()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AnnData object with n_obs × n_vars = 2000 × 33538 \n",
" obs: 'ClusterID', 'ClusterName', 'RNA_snn_res_1_5', 'annotation', 'bms_subj_id', 'bor_by_irrc_may_2018', 'cd3_neg_cell_number', 'cd3_neg_viability_percent', 'cd3_plus_cell_number', 'cd3_plus_viability_percent', 'cd3_status', 'cohort', 'cohort2', 'date_processed', 'group', 'index', 'lane', 'nCount_RNA', 'nFeature_RNA', 'orig_ident', 'pbmc_sample_id', 'percent_mt', 'pool_id', 'seurat_clusters', 'singleR_cluster', 'singleR_cluster_main', 'subject_id', 'tigl_id', 'treatment_cycle', 'type', 'label', 'kmeans', 'node', 'branch_id', 'branch_id_alias', 'branch_lam', 'branch_dist', 'S0_pseudotime', 'S1_pseudotime', 'S3_pseudotime', 'S2_pseudotime', 'S6_pseudotime', 'S5_pseudotime', 'S4_pseudotime'\n",
" var: 'Selected', 'vst_mean', 'vst_variable', 'vst_variance', 'vst_variance_expected', 'vst_variance_standardized'\n",
" uns: 'workdir', 'label_color', 'params', 'epg', 'flat_tree', 'seed_epg', 'seed_flat_tree', 'ori_epg', 'epg_obj', 'ori_epg_obj', 'stream_S3', 'branch_id_alias_color', 'scaled_marker_expr', 'leaf_markers_all', 'leaf_markers'\n",
" obsm: 'harmony_cell_embeddings', 'pca_cell_embeddings', 'umap_cell_embeddings', 'top_pcs', 'X_dr', 'X_vis_umap', 'X_vis', 'X_stream_S3', 'X_spring'\n",
" varm: 'harmony_feature_loadings_projected', 'pca_feature_loadings'\n",
" layers: 'norm_data', 'scale_data'"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"adata\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### detect marker genes that are differentially expressed between pairs of branches¶"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scanning the specified marker list ...\n",
"Filtering out markers that are expressed in less than 5 cells ...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mtang/anaconda3/envs/stream/lib/python3.6/site-packages/anndata/core/anndata.py:1239: FutureWarning:\n",
"\n",
"is_categorical is deprecated and will be removed in a future version. Use is_categorical_dtype instead\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 cpus are being used ...\n",
"677 markers are being scanned ...\n"
]
}
],
"source": [
"st.detect_de_markers(adata,marker_list=adata.var[adata.var['Selected']>0].index,cutoff_zscore=1,cutoff_logfc=0.25,\n",
" root='S3',n_jobs=4, use_precomputed=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys([(('S3', 'S1'), ('S1', 'S4')), (('S3', 'S1'), ('S1', 'S0')), (('S3', 'S1'), ('S1', 'S2')), (('S1', 'S4'), ('S1', 'S0')), (('S1', 'S4'), ('S1', 'S2')), (('S1', 'S0'), ('S1', 'S2')), (('S1', 'S4'), ('S4', 'S6')), (('S1', 'S4'), ('S4', 'S5')), (('S4', 'S6'), ('S4', 'S5'))])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"adata.uns['de_markers_greater'].keys()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys([(('S3', 'S1'), ('S1', 'S4')), (('S3', 'S1'), ('S1', 'S0')), (('S3', 'S1'), ('S1', 'S2')), (('S1', 'S4'), ('S1', 'S0')), (('S1', 'S4'), ('S1', 'S2')), (('S1', 'S0'), ('S1', 'S2')), (('S1', 'S4'), ('S4', 'S6')), (('S1', 'S4'), ('S4', 'S5')), (('S4', 'S6'), ('S4', 'S5'))])"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"adata.uns['de_markers_less'].keys()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}