[8c9e01]: / bc-count / model.py

Download this file

295 lines (236 with data), 10.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
##############################################
# #
# DO-U-Net #
# and #
# DO-SegNet #
# #
# Author: Amine Neggazi #
# Email: neggazimedlamine@gmail/com #
# Nick: nemo256 #
# #
# Please read bc-count/LICENSE #
# #
##############################################
import tensorflow as tf
import tensorflow_addons as tfa
# custom imports
from config import *
def conv_bn(filters,
model,
model_type,
kernel=(3, 3),
activation='relu',
strides=(1, 1),
padding='valid',
type='normal'):
'''
This is a custom convolution function:
:param filters --> number of filters for each convolution
:param kernel --> the kernel size
:param activation --> the general activation function (relu)
:param strides --> number of strides
:param padding --> model padding (can be valid or same)
:param type --> to indicate if it is a transpose or normal convolution
:return --> returns the output after the convolution and batch normalization and activation.
'''
if model_type == 'segnet':
kernel=3
activation='relu'
strides=(1, 1)
padding='same'
type='normal'
if type == 'transpose':
kernel = (2, 2)
strides = 2
conv = tf.keras.layers.Conv2DTranspose(filters, kernel, strides, padding)(model)
else:
conv = tf.keras.layers.Conv2D(filters, kernel, strides, padding)(model)
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Activation(activation)(conv)
return conv
def max_pool(input):
'''
This is a general max pool function with custom parameters.
'''
return tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)(input)
def concatenate(input1, input2, crop):
'''
This is a general concatenation function with custom parameters.
'''
return tf.keras.layers.concatenate([tf.keras.layers.Cropping2D(crop)(input1), input2])
def get_callbacks(name):
'''
This is a custom function to save only the best checkpoint.
:param name --> the input model name
'''
return [
tf.keras.callbacks.ModelCheckpoint(f'models/{name}.h5',
save_best_only=True,
save_weights_only=True,
verbose=1)
]
# loss functions
@tf.function
def dsc(y_true, y_pred):
smooth = 1.0
y_true_f = tf.reshape(y_true, [-1])
y_pred_f = tf.reshape(y_pred, [-1])
intersection = tf.reduce_sum(y_true_f * y_pred_f)
return (2.0 * intersection + smooth) / (tf.reduce_sum(y_true_f) +
tf.reduce_sum(y_pred_f) +
smooth)
@tf.function
def dice_loss(y_true, y_pred):
return 1 - dsc(y_true, y_pred)
@tf.function
def tversky(y_true, y_pred):
alpha = 0.7
smooth = 1.0
y_true_pos = tf.reshape(y_true, [-1])
y_pred_pos = tf.reshape(y_pred, [-1])
true_pos = tf.reduce_sum(y_true_pos * y_pred_pos)
false_neg = tf.reduce_sum(y_true_pos * (1 - y_pred_pos))
false_pos = tf.reduce_sum((1 - y_true_pos) * y_pred_pos)
return (true_pos + smooth) / (true_pos + alpha * false_neg + (1 - alpha) * false_pos + smooth)
@tf.function
def tversky_loss(y_true, y_pred):
return 1 - tversky(y_true, y_pred)
@tf.function
def focal_tversky(y_true, y_pred):
return tf.pow((1 - tversky(y_true, y_pred)), 0.75)
@tf.function
def iou(y_true, y_pred):
intersect = tf.reduce_sum(y_true * y_pred, axis=(1, 2))
union = tf.reduce_sum(y_true + y_pred, axis=(1, 2))
return tf.reduce_mean(tf.math.divide_no_nan(intersect, (union - intersect)), axis=1)
@tf.function
def mean_iou(y_true, y_pred):
y_true_32 = tf.cast(y_true, tf.float32)
y_pred_32 = tf.cast(y_pred, tf.float32)
score = tf.map_fn(lambda x: iou(y_true_32, tf.cast(y_pred_32 > x, tf.float32)),
tf.range(0.5, 1.0, 0.05, tf.float32),
tf.float32)
return tf.reduce_mean(score)
@tf.function
def iou_loss(y_true, y_pred):
return -1*mean_iou(y_true, y_pred)
def do_unet():
'''
This is the dual output U-Net model.
It is a custom U-Net with optimized number of layers.
Please read model.summary()
'''
inputs = tf.keras.layers.Input((188, 188, 3))
# encoder
filters = 32
encoder1 = conv_bn(3*filters, inputs, model_type)
encoder1 = conv_bn(filters, encoder1, model_type, kernel=(1, 1))
encoder1 = conv_bn(filters, encoder1, model_type)
pool1 = max_pool(encoder1)
filters *= 2
encoder2 = conv_bn(filters, pool1, model_type)
encoder2 = conv_bn(filters, encoder2, model_type)
pool2 = max_pool(encoder2)
filters *= 2
encoder3 = conv_bn(filters, pool2, model_type)
encoder3 = conv_bn(filters, encoder3, model_type)
pool3 = max_pool(encoder3)
filters *= 2
encoder4 = conv_bn(filters, pool3, model_type)
encoder4 = conv_bn(filters, encoder4, model_type)
# decoder
filters /= 2
decoder1 = conv_bn(filters, encoder4, model_type, type='transpose')
decoder1 = concatenate(encoder3, decoder1, 4)
decoder1 = conv_bn(filters, decoder1, model_type)
decoder1 = conv_bn(filters, decoder1, model_type)
filters /= 2
decoder2 = conv_bn(filters, decoder1, model_type, type='transpose')
decoder2 = concatenate(encoder2, decoder2, 16)
decoder2 = conv_bn(filters, decoder2, model_type)
decoder2 = conv_bn(filters, decoder2, model_type)
filters /= 2
decoder3 = conv_bn(filters, decoder2, model_type, type='transpose')
decoder3 = concatenate(encoder1, decoder3, 40)
decoder3 = conv_bn(filters, decoder3, model_type)
decoder3 = conv_bn(filters, decoder3, model_type)
out_mask = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid', name='mask')(decoder3)
if cell_type == 'rbc':
out_edge = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid', name='edge')(decoder3)
model = tf.keras.models.Model(inputs=inputs, outputs=(out_mask, out_edge))
elif cell_type == 'wbc' or cell_type == 'plt':
model = tf.keras.models.Model(inputs=inputs, outputs=(out_mask))
opt = tf.optimizers.Adam(learning_rate=0.0001)
if cell_type == 'rbc':
model.compile(loss='mse',
loss_weights=[0.1, 0.9],
optimizer=opt,
metrics=['accuracy'])
elif cell_type == 'wbc' or cell_type == 'plt':
model.compile(loss='mse',
optimizer=opt,
metrics='accuracy')
return model
def segnet():
inputs = tf.keras.layers.Input((128, 128, 3))
# encoder
filters = 64
encoder1 = conv_bn(filters, inputs, model_type)
encoder1 = conv_bn(filters, encoder1, model_type)
pool1, mask1 = tf.nn.max_pool_with_argmax(encoder1, 3, 2, padding="SAME")
filters *= 2
encoder2 = conv_bn(filters, pool1, model_type)
encoder2 = conv_bn(filters, encoder2, model_type)
pool2, mask2 = tf.nn.max_pool_with_argmax(encoder2, 3, 2, padding="SAME")
filters *= 2
encoder3 = conv_bn(filters, pool2, model_type)
encoder3 = conv_bn(filters, encoder3, model_type)
encoder3 = conv_bn(filters, encoder3, model_type)
pool3, mask3 = tf.nn.max_pool_with_argmax(encoder3, 3, 2, padding="SAME")
filters *= 2
encoder4 = conv_bn(filters, pool3, model_type)
encoder4 = conv_bn(filters, encoder4, model_type)
encoder4 = conv_bn(filters, encoder4, model_type)
pool4, mask4 = tf.nn.max_pool_with_argmax(encoder4, 3, 2, padding="SAME")
encoder5 = conv_bn(filters, pool4, model_type)
encoder5 = conv_bn(filters, encoder5, model_type)
encoder5 = conv_bn(filters, encoder5, model_type)
pool5, mask5 = tf.nn.max_pool_with_argmax(encoder5, 3, 2, padding="SAME")
# decoder
unpool1 = tfa.layers.MaxUnpooling2D()(pool5, mask5)
decoder1 = conv_bn(filters, unpool1, model_type)
decoder1 = conv_bn(filters, decoder1, model_type)
decoder1 = conv_bn(filters, decoder1, model_type)
unpool2 = tfa.layers.MaxUnpooling2D()(decoder1, mask4)
decoder2 = conv_bn(filters, unpool2, model_type)
decoder2 = conv_bn(filters, decoder2, model_type)
decoder2 = conv_bn(filters/2, decoder2, model_type)
filters /= 2
unpool3 = tfa.layers.MaxUnpooling2D()(decoder2, mask3)
decoder3 = conv_bn(filters, unpool3, model_type)
decoder3 = conv_bn(filters, decoder3, model_type)
decoder3 = conv_bn(filters/2, decoder3, model_type)
filters /= 2
unpool4 = tfa.layers.MaxUnpooling2D()(decoder3, mask2)
decoder4 = conv_bn(filters, unpool4, model_type)
decoder4 = conv_bn(filters/2, decoder4, model_type)
filters /= 2
unpool5 = tfa.layers.MaxUnpooling2D()(decoder4, mask1)
decoder5 = conv_bn(filters, unpool5, model_type)
out_mask = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid', name='mask')(decoder5)
if cell_type == 'rbc':
out_edge = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid', name='edge')(decoder5)
model = tf.keras.models.Model(inputs=inputs, outputs=(out_mask, out_edge))
elif cell_type == 'wbc' or cell_type == 'plt':
model = tf.keras.models.Model(inputs=inputs, outputs=(out_mask))
opt = tf.optimizers.Adam(learning_rate=0.0001)
if cell_type == 'rbc':
model.compile(loss='mse',
loss_weights=[0.1, 0.9],
optimizer=opt,
metrics=[mean_iou, dsc, tversky, 'accuracy'])
elif cell_type == 'wbc' or cell_type == 'plt':
model.compile(loss='mse',
optimizer=opt,
metrics=[mean_iou, dsc, tversky, 'accuracy'])
return model