|
a |
|
b/bc-count/data.py |
|
|
1 |
############################################## |
|
|
2 |
# # |
|
|
3 |
# Custom data generator # |
|
|
4 |
# # |
|
|
5 |
# Author: Amine Neggazi # |
|
|
6 |
# Email: neggazimedlamine@gmail/com # |
|
|
7 |
# Nick: nemo256 # |
|
|
8 |
# # |
|
|
9 |
# Please read bc-count/LICENSE # |
|
|
10 |
# # |
|
|
11 |
############################################## |
|
|
12 |
|
|
|
13 |
import os |
|
|
14 |
import json |
|
|
15 |
|
|
|
16 |
import cv2 |
|
|
17 |
import numpy as np |
|
|
18 |
import tensorflow as tf |
|
|
19 |
from tensorflow import keras |
|
|
20 |
|
|
|
21 |
# custom imports |
|
|
22 |
from config import * |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
def load_image_list(img_files, gray=False): |
|
|
26 |
''' |
|
|
27 |
This is the load image list function, which loads an enumerate |
|
|
28 |
of images (param: img_files) |
|
|
29 |
:param img_files --> the input image files which we want to read |
|
|
30 |
|
|
|
31 |
:return imgs --> the images that we read |
|
|
32 |
''' |
|
|
33 |
imgs = [] |
|
|
34 |
if gray: |
|
|
35 |
for image_file in img_files: |
|
|
36 |
img = cv2.imread(image_file, cv2.IMREAD_GRAYSCALE) |
|
|
37 |
img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)[1] |
|
|
38 |
imgs += [img] |
|
|
39 |
|
|
|
40 |
else: |
|
|
41 |
for image_file in img_files: |
|
|
42 |
imgs += [cv2.imread(image_file)] |
|
|
43 |
return imgs |
|
|
44 |
|
|
|
45 |
|
|
|
46 |
def clahe_images(img_list): |
|
|
47 |
''' |
|
|
48 |
This is the clahe images function, which applies a clahe threshold |
|
|
49 |
the input image list. |
|
|
50 |
:param img_files --> the input image files which we want to read |
|
|
51 |
|
|
|
52 |
:return img_list --> the output images |
|
|
53 |
''' |
|
|
54 |
for i, img in enumerate(img_list): |
|
|
55 |
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) |
|
|
56 |
|
|
|
57 |
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) |
|
|
58 |
lab[..., 0] = clahe.apply(lab[..., 0]) |
|
|
59 |
img_list[i] = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR) |
|
|
60 |
return img_list |
|
|
61 |
|
|
|
62 |
|
|
|
63 |
def preprocess_image(imgs, padding=padding[1]): |
|
|
64 |
''' |
|
|
65 |
This is the preprocess data function, which adds a padding to |
|
|
66 |
the input images, masks and edges if there are any. |
|
|
67 |
:param imgs --> the input list of images. |
|
|
68 |
:param padding --> the input padding which is going to be applied. |
|
|
69 |
|
|
|
70 |
:return imgs --> output images with added padding. |
|
|
71 |
''' |
|
|
72 |
imgs = [np.pad(img, ((padding, padding), |
|
|
73 |
(padding, padding), (0, 0)), mode='constant') for img in imgs] |
|
|
74 |
return imgs |
|
|
75 |
|
|
|
76 |
|
|
|
77 |
def preprocess_data(imgs, mask, edge=None, padding=padding[1]): |
|
|
78 |
''' |
|
|
79 |
This is the preprocess data function, which adds a padding to |
|
|
80 |
the input images, masks and edges if there are any. |
|
|
81 |
:param imgs --> the input list of images. |
|
|
82 |
:param mask --> the input list of masks. |
|
|
83 |
:param edge --> the input list of edges. |
|
|
84 |
:param padding --> the input padding which is going to be applied. |
|
|
85 |
|
|
|
86 |
:return tuple(imgs, mask, edge if exists) --> output images, masks and edges with padding added. |
|
|
87 |
''' |
|
|
88 |
imgs = [np.pad(img, ((padding, padding), |
|
|
89 |
(padding, padding), (0, 0)), mode='constant') for img in imgs] |
|
|
90 |
mask = [np.pad(mask, ((padding, padding), |
|
|
91 |
(padding, padding)), mode='constant') for mask in mask] |
|
|
92 |
if edge is not None: |
|
|
93 |
edge = [np.pad(edge, ((padding, padding), |
|
|
94 |
(padding, padding)), mode='constant') for edge in edge] |
|
|
95 |
|
|
|
96 |
if edge is not None: |
|
|
97 |
return imgs, mask, edge |
|
|
98 |
|
|
|
99 |
return imgs, mask |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
def load_data(img_list, mask_list, edge_list=None, padding=padding[1]): |
|
|
103 |
''' |
|
|
104 |
This is the load data function, which will handle image loading and preprocessing. |
|
|
105 |
:param img_list --> list of input images |
|
|
106 |
:param mask_list --> list of input masks |
|
|
107 |
:param edge_list --> list of input edges |
|
|
108 |
:param padding --> padding to be applied on preprocessing |
|
|
109 |
|
|
|
110 |
:return tuple(imgs, masks and edges if exists) --> the output preprocessed imgs, masks and edges. |
|
|
111 |
''' |
|
|
112 |
imgs = load_image_list(img_list) |
|
|
113 |
imgs = clahe_images(imgs) |
|
|
114 |
|
|
|
115 |
mask = load_image_list(mask_list, gray=True) |
|
|
116 |
if edge_list: |
|
|
117 |
edge = load_image_list(edge_list, gray=True) |
|
|
118 |
else: |
|
|
119 |
edge = None |
|
|
120 |
|
|
|
121 |
return preprocess_data(imgs, mask, edge, padding=padding) |
|
|
122 |
|
|
|
123 |
|
|
|
124 |
def load_image(img_list, padding=padding[1]): |
|
|
125 |
''' |
|
|
126 |
This is the load data function, which will handle image loading and preprocessing. |
|
|
127 |
:param img_list --> list of input images |
|
|
128 |
:param padding --> padding to be applied on preprocessing |
|
|
129 |
|
|
|
130 |
:return imgs --> the output preprocessed imgs. |
|
|
131 |
''' |
|
|
132 |
imgs = load_image_list(img_list) |
|
|
133 |
imgs = clahe_images(imgs) |
|
|
134 |
return preprocess_image(imgs, padding=padding) |
|
|
135 |
|
|
|
136 |
|
|
|
137 |
def aug_lum(image, factor=None): |
|
|
138 |
''' |
|
|
139 |
This is the augment luminosity function, which we apply to |
|
|
140 |
augment the luminosity of an input image. |
|
|
141 |
:param image --> the input image we want to augment |
|
|
142 |
:param factor --> the factor of luminosity augment (default is 0.5 * random number) |
|
|
143 |
|
|
|
144 |
:return image --> the output luminosity augmented image |
|
|
145 |
''' |
|
|
146 |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) |
|
|
147 |
hsv = hsv.astype(np.float64) |
|
|
148 |
|
|
|
149 |
if factor is None: |
|
|
150 |
lum_offset = 0.5 + np.random.uniform() |
|
|
151 |
else: |
|
|
152 |
lum_offset = factor |
|
|
153 |
|
|
|
154 |
hsv[..., 2] = hsv[..., 2] * lum_offset |
|
|
155 |
hsv[..., 2][hsv[..., 2] > 255] = 255 |
|
|
156 |
hsv = hsv.astype(np.uint8) |
|
|
157 |
|
|
|
158 |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) |
|
|
159 |
|
|
|
160 |
|
|
|
161 |
def aug_img(image): |
|
|
162 |
''' |
|
|
163 |
This is the augment colors function, which we apply to |
|
|
164 |
augment the colors of an given image. |
|
|
165 |
:param image --> the input image we want to augment |
|
|
166 |
|
|
|
167 |
:return image --> the output colors augmented image |
|
|
168 |
''' |
|
|
169 |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) |
|
|
170 |
hsv = hsv.astype(np.float64) |
|
|
171 |
|
|
|
172 |
hue_offset = 0.8 + 0.4*np.random.uniform() |
|
|
173 |
sat_offset = 0.5 + np.random.uniform() |
|
|
174 |
lum_offset = 0.5 + np.random.uniform() |
|
|
175 |
|
|
|
176 |
hsv[..., 0] = hsv[..., 0] * hue_offset |
|
|
177 |
hsv[..., 1] = hsv[..., 1] * sat_offset |
|
|
178 |
hsv[..., 2] = hsv[..., 2] * lum_offset |
|
|
179 |
|
|
|
180 |
hsv[..., 0][hsv[..., 0] > 255] = 255 |
|
|
181 |
hsv[..., 1][hsv[..., 1] > 255] = 255 |
|
|
182 |
hsv[..., 2][hsv[..., 2] > 255] = 255 |
|
|
183 |
|
|
|
184 |
hsv = hsv.astype(np.uint8) |
|
|
185 |
|
|
|
186 |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) |
|
|
187 |
|
|
|
188 |
|
|
|
189 |
def train_generator(imgs, mask, edge=None, |
|
|
190 |
scale_range=None, |
|
|
191 |
padding=padding[1], |
|
|
192 |
input_size=input_shape[0], |
|
|
193 |
output_size=output_shape[0], |
|
|
194 |
skip_empty=False): |
|
|
195 |
''' |
|
|
196 |
This is the train generator function, which generates the train dataset. |
|
|
197 |
:param imgs --> the input images |
|
|
198 |
:param mask --> the input masks |
|
|
199 |
:param edge --> the input edges if there are any (red blood cells only) |
|
|
200 |
:param scale_range --> the factor (i, j) of rescaling. |
|
|
201 |
:param padding --> the padding which will be applied to each image |
|
|
202 |
:param input_size --> the input shape |
|
|
203 |
:param output_size --> the output shape |
|
|
204 |
:param skip_empty --> skip empty chips (random if not set) |
|
|
205 |
|
|
|
206 |
:return chips --> yields an image, mask and edge chip each time it gets executed (called) |
|
|
207 |
''' |
|
|
208 |
if scale_range is not None: |
|
|
209 |
scale_range = [1 - scale_range, 1 + scale_range] |
|
|
210 |
while True: |
|
|
211 |
# select which type of cell to return |
|
|
212 |
chip_type = np.random.choice([True, False]) |
|
|
213 |
|
|
|
214 |
while True: |
|
|
215 |
# pick random image |
|
|
216 |
i = np.random.randint(len(imgs)) |
|
|
217 |
|
|
|
218 |
# pick random central location in the image (200 + 196/2) |
|
|
219 |
center_offset = padding + (output_size / 2) |
|
|
220 |
x = np.random.randint(center_offset, imgs[i].shape[0] - center_offset) |
|
|
221 |
y = np.random.randint(center_offset, imgs[i].shape[1] - center_offset) |
|
|
222 |
|
|
|
223 |
# scale the box randomly from x0.8 - 1.2x original size |
|
|
224 |
scale = 1 |
|
|
225 |
if scale_range is not None: |
|
|
226 |
scale = scale_range[0] + ((scale_range[0] - scale_range[0]) * np.random.random()) |
|
|
227 |
|
|
|
228 |
# find the edges of a box around the image chip and the mask chip |
|
|
229 |
chip_x_l = int(x - ((input_size / 2) * scale)) |
|
|
230 |
chip_x_r = int(x + ((input_size / 2) * scale)) |
|
|
231 |
chip_y_l = int(y - ((input_size / 2) * scale)) |
|
|
232 |
chip_y_r = int(y + ((input_size / 2) * scale)) |
|
|
233 |
|
|
|
234 |
mask_x_l = int(x - ((output_size / 2) * scale)) |
|
|
235 |
mask_x_r = int(x + ((output_size / 2) * scale)) |
|
|
236 |
mask_y_l = int(y - ((output_size / 2) * scale)) |
|
|
237 |
mask_y_r = int(y + ((output_size / 2) * scale)) |
|
|
238 |
|
|
|
239 |
# take a slice of the image and mask accordingly |
|
|
240 |
temp_chip = imgs[i][chip_x_l:chip_x_r, chip_y_l:chip_y_r] |
|
|
241 |
temp_mask = mask[i][mask_x_l:mask_x_r, mask_y_l:mask_y_r] |
|
|
242 |
if edge is not None: |
|
|
243 |
temp_edge = edge[i][mask_x_l:mask_x_r, mask_y_l:mask_y_r] |
|
|
244 |
|
|
|
245 |
if skip_empty: |
|
|
246 |
if ((temp_mask > 0).sum() > 5) is chip_type: |
|
|
247 |
continue |
|
|
248 |
|
|
|
249 |
# resize the image chip back to 380 and the mask chip to 196 |
|
|
250 |
temp_chip = cv2.resize(temp_chip, |
|
|
251 |
(input_size, input_size), |
|
|
252 |
interpolation=cv2.INTER_CUBIC) |
|
|
253 |
temp_mask = cv2.resize(temp_mask, |
|
|
254 |
(output_size, output_size), |
|
|
255 |
interpolation=cv2.INTER_NEAREST) |
|
|
256 |
if edge is not None: |
|
|
257 |
temp_edge = cv2.resize(temp_edge, |
|
|
258 |
(output_size, output_size), |
|
|
259 |
interpolation=cv2.INTER_NEAREST) |
|
|
260 |
|
|
|
261 |
# randomly rotate (like below) |
|
|
262 |
rot = np.random.randint(4) |
|
|
263 |
temp_chip = np.rot90(temp_chip, k=rot, axes=(0, 1)) |
|
|
264 |
temp_mask = np.rot90(temp_mask, k=rot, axes=(0, 1)) |
|
|
265 |
if edge is not None: |
|
|
266 |
temp_edge = np.rot90(temp_edge, k=rot, axes=(0, 1)) |
|
|
267 |
|
|
|
268 |
# randomly flip |
|
|
269 |
if np.random.random() > 0.5: |
|
|
270 |
temp_chip = np.flip(temp_chip, axis=1) |
|
|
271 |
temp_mask = np.flip(temp_mask, axis=1) |
|
|
272 |
if edge is not None: |
|
|
273 |
temp_edge = np.flip(temp_edge, axis=1) |
|
|
274 |
|
|
|
275 |
# randomly luminosity augment |
|
|
276 |
temp_chip = aug_lum(temp_chip) |
|
|
277 |
|
|
|
278 |
# randomly augment chip |
|
|
279 |
temp_chip = aug_img(temp_chip) |
|
|
280 |
|
|
|
281 |
# rescale the image |
|
|
282 |
temp_chip = temp_chip.astype(np.float32) * 2 |
|
|
283 |
temp_chip /= 255 |
|
|
284 |
temp_chip -= 1 |
|
|
285 |
|
|
|
286 |
# later on ... randomly adjust colours |
|
|
287 |
if edge is not None: |
|
|
288 |
yield temp_chip, ((temp_mask > 0).astype(float)[..., np.newaxis], |
|
|
289 |
(temp_edge > 0).astype(float)[..., np.newaxis]) |
|
|
290 |
else: |
|
|
291 |
yield temp_chip, ((temp_mask > 0).astype(float)[..., np.newaxis]) |
|
|
292 |
break |
|
|
293 |
|
|
|
294 |
|
|
|
295 |
def test_chips(imgs, mask, |
|
|
296 |
edge=None, |
|
|
297 |
padding=padding[1], |
|
|
298 |
input_size=input_shape[0], |
|
|
299 |
output_size=output_shape[0]): |
|
|
300 |
''' |
|
|
301 |
This is the test chips function, which generates the test dataset. |
|
|
302 |
:param imgs --> the input images |
|
|
303 |
:param mask --> the input masks |
|
|
304 |
:param edge --> the input edges if there are any (red blood cells only) |
|
|
305 |
:param padding --> the padding which will be applied to each image |
|
|
306 |
:param input_size --> the input shape |
|
|
307 |
:param output_size --> the output shape |
|
|
308 |
|
|
|
309 |
:return chips --> yields an image, mask and edge chip each time it gets executed (called) |
|
|
310 |
''' |
|
|
311 |
center_offset = padding + (output_size / 2) |
|
|
312 |
for i, _ in enumerate(imgs): |
|
|
313 |
for x in np.arange(center_offset, imgs[i].shape[0] - input_size / 2, output_size): |
|
|
314 |
for y in np.arange(center_offset, imgs[i].shape[1] - input_size / 2, output_size): |
|
|
315 |
chip_x_l = int(x - (input_size / 2)) |
|
|
316 |
chip_x_r = int(x + (input_size / 2)) |
|
|
317 |
chip_y_l = int(y - (input_size / 2)) |
|
|
318 |
chip_y_r = int(y + (input_size / 2)) |
|
|
319 |
|
|
|
320 |
mask_x_l = int(x - (output_size / 2)) |
|
|
321 |
mask_x_r = int(x + (output_size / 2)) |
|
|
322 |
mask_y_l = int(y - (output_size / 2)) |
|
|
323 |
mask_y_r = int(y + (output_size / 2)) |
|
|
324 |
|
|
|
325 |
temp_chip = imgs[i][chip_x_l:chip_x_r, chip_y_l:chip_y_r] |
|
|
326 |
temp_mask = mask[i][mask_x_l:mask_x_r, mask_y_l:mask_y_r] |
|
|
327 |
if edge is not None: |
|
|
328 |
temp_edge = edge[i][mask_x_l:mask_x_r, mask_y_l:mask_y_r] |
|
|
329 |
|
|
|
330 |
temp_chip = temp_chip.astype(np.float32) * 2 |
|
|
331 |
temp_chip /= 255 |
|
|
332 |
temp_chip -= 1 |
|
|
333 |
|
|
|
334 |
if edge is not None: |
|
|
335 |
yield temp_chip, ((temp_mask > 0).astype(float)[..., np.newaxis], |
|
|
336 |
(temp_edge > 0).astype(float)[..., np.newaxis]) |
|
|
337 |
else: |
|
|
338 |
yield temp_chip, ((temp_mask > 0).astype(float)[..., np.newaxis]) |
|
|
339 |
break |
|
|
340 |
|
|
|
341 |
|
|
|
342 |
def slice_image(imgs, |
|
|
343 |
padding=padding[1], |
|
|
344 |
input_size=input_shape[0], |
|
|
345 |
output_size=output_shape[0]): |
|
|
346 |
''' |
|
|
347 |
This is the slice function, which slices each image into image chips. |
|
|
348 |
:param imgs --> the input images |
|
|
349 |
:param padding --> the padding which will be applied to each image |
|
|
350 |
:param input_size --> the input shape |
|
|
351 |
:param output_size --> the output shape |
|
|
352 |
|
|
|
353 |
:return list tuple (list, list, list) --> the tuple list of output (image, mask and edge chips) |
|
|
354 |
''' |
|
|
355 |
img_chips = [] |
|
|
356 |
|
|
|
357 |
center_offset = padding + (output_size / 2) |
|
|
358 |
for i, _ in enumerate(imgs): |
|
|
359 |
for x in np.arange(center_offset, imgs[i].shape[0] - input_size / 2, output_size): |
|
|
360 |
for y in np.arange(center_offset, imgs[i].shape[1] - input_size / 2, output_size): |
|
|
361 |
chip_x_l = int(x - (input_size / 2)) |
|
|
362 |
chip_x_r = int(x + (input_size / 2)) |
|
|
363 |
chip_y_l = int(y - (input_size / 2)) |
|
|
364 |
chip_y_r = int(y + (input_size / 2)) |
|
|
365 |
|
|
|
366 |
temp_chip = imgs[i][chip_x_l:chip_x_r, chip_y_l:chip_y_r] |
|
|
367 |
|
|
|
368 |
temp_chip = temp_chip.astype(np.float32) * 2 |
|
|
369 |
temp_chip /= 255 |
|
|
370 |
temp_chip -= 1 |
|
|
371 |
|
|
|
372 |
img_chips += [temp_chip] |
|
|
373 |
return np.array(img_chips) |
|
|
374 |
|
|
|
375 |
|
|
|
376 |
def slice(imgs, mask, |
|
|
377 |
edge=None, |
|
|
378 |
padding=padding[1], |
|
|
379 |
input_size=input_shape[0], |
|
|
380 |
output_size=output_shape[0]): |
|
|
381 |
''' |
|
|
382 |
This is the slice function, which slices each image into image chips. |
|
|
383 |
:param imgs --> the input images |
|
|
384 |
:param mask --> the input masks |
|
|
385 |
:param edge --> the input edges if there are any (red blood cells only) |
|
|
386 |
:param padding --> the padding which will be applied to each image |
|
|
387 |
:param input_size --> the input shape |
|
|
388 |
:param output_size --> the output shape |
|
|
389 |
|
|
|
390 |
:return list tuple (list, list, list) --> the tuple list of output (image, mask and edge chips) |
|
|
391 |
''' |
|
|
392 |
img_chips = [] |
|
|
393 |
mask_chips = [] |
|
|
394 |
if edge is not None: |
|
|
395 |
edge_chips = [] |
|
|
396 |
|
|
|
397 |
center_offset = padding + (output_size / 2) |
|
|
398 |
for i, _ in enumerate(imgs): |
|
|
399 |
for x in np.arange(center_offset, imgs[i].shape[0] - input_size / 2, output_size): |
|
|
400 |
for y in np.arange(center_offset, imgs[i].shape[1] - input_size / 2, output_size): |
|
|
401 |
chip_x_l = int(x - (input_size / 2)) |
|
|
402 |
chip_x_r = int(x + (input_size / 2)) |
|
|
403 |
chip_y_l = int(y - (input_size / 2)) |
|
|
404 |
chip_y_r = int(y + (input_size / 2)) |
|
|
405 |
|
|
|
406 |
mask_x_l = int(x - (output_size / 2)) |
|
|
407 |
mask_x_r = int(x + (output_size / 2)) |
|
|
408 |
mask_y_l = int(y - (output_size / 2)) |
|
|
409 |
mask_y_r = int(y + (output_size / 2)) |
|
|
410 |
|
|
|
411 |
temp_chip = imgs[i][chip_x_l:chip_x_r, chip_y_l:chip_y_r] |
|
|
412 |
temp_mask = mask[i][mask_x_l:mask_x_r, mask_y_l:mask_y_r] |
|
|
413 |
if edge is not None: |
|
|
414 |
temp_edge = edge[i][mask_x_l:mask_x_r, mask_y_l:mask_y_r] |
|
|
415 |
|
|
|
416 |
temp_chip = temp_chip.astype(np.float32) * 2 |
|
|
417 |
temp_chip /= 255 |
|
|
418 |
temp_chip -= 1 |
|
|
419 |
|
|
|
420 |
img_chips += [temp_chip] |
|
|
421 |
mask_chips += [(temp_mask > 0).astype(float)[..., np.newaxis]] |
|
|
422 |
if edge is not None: |
|
|
423 |
edge_chips += [(temp_edge > 0).astype(float)[..., np.newaxis]] |
|
|
424 |
|
|
|
425 |
img_chips = np.array(img_chips) |
|
|
426 |
mask_chips = np.array(mask_chips) |
|
|
427 |
if edge is not None: |
|
|
428 |
edge_chips = np.array(edge_chips) |
|
|
429 |
|
|
|
430 |
if edge is not None: |
|
|
431 |
return img_chips, mask_chips, edge_chips |
|
|
432 |
|
|
|
433 |
return img_chips, mask_chips |
|
|
434 |
|
|
|
435 |
|
|
|
436 |
def generator(img_list, mask_list, edge_list=None, type='train'): |
|
|
437 |
''' |
|
|
438 |
This is the generator function, which provides the list of image, mask and edge lists to the train generator and test chips functions. |
|
|
439 |
:param img_list --> the input list of images |
|
|
440 |
:param mask_list --> the input list of masks |
|
|
441 |
:param edge_list --> the input list of edges if there are any |
|
|
442 |
:param type --> can be either train or test, used to determine which generator function is to be called |
|
|
443 |
|
|
|
444 |
:return tensorflow dataset --> the output generated functions fed to tensorflow |
|
|
445 |
''' |
|
|
446 |
if cell_type == 'rbc': |
|
|
447 |
img, mask, edge = load_data(img_list, mask_list, edge_list) |
|
|
448 |
elif cell_type == 'wbc' or cell_type == 'plt': |
|
|
449 |
img, mask = load_data(img_list, mask_list) |
|
|
450 |
edge = None |
|
|
451 |
|
|
|
452 |
def gen(): |
|
|
453 |
if type == 'train': |
|
|
454 |
return train_generator(img, mask, edge, |
|
|
455 |
padding=padding[0], |
|
|
456 |
input_size=input_shape[0], |
|
|
457 |
output_size=output_shape[0]) |
|
|
458 |
elif type == 'test': |
|
|
459 |
return test_chips(img, mask, edge, |
|
|
460 |
padding=padding[0], |
|
|
461 |
input_size=input_shape[0], |
|
|
462 |
output_size=output_shape[0]) |
|
|
463 |
|
|
|
464 |
# load train dataset to tensorflow for training |
|
|
465 |
if cell_type == 'rbc': |
|
|
466 |
return tf.data.Dataset.from_generator( |
|
|
467 |
gen, |
|
|
468 |
(tf.float64, ((tf.float64), (tf.float64))), |
|
|
469 |
(input_shape, (output_shape, output_shape)) |
|
|
470 |
) |
|
|
471 |
elif cell_type == 'wbc' or cell_type == 'plt': |
|
|
472 |
return tf.data.Dataset.from_generator( |
|
|
473 |
gen, |
|
|
474 |
(tf.float64, (tf.float64)), |
|
|
475 |
(input_shape, (output_shape)) |
|
|
476 |
) |