|
a |
|
b/Projects/NCS1/Data.py |
|
|
1 |
############################################################################################ |
|
|
2 |
# |
|
|
3 |
# Project: Peter Moss Acute Myeloid & Lymphoblastic Leukemia AI Research Project |
|
|
4 |
# Repository: ALL Detection System 2019 |
|
|
5 |
# Project: Facial Authentication Server |
|
|
6 |
# |
|
|
7 |
# Author: Adam Milton-Barker (AdamMiltonBarker.com) |
|
|
8 |
# Contributors: |
|
|
9 |
# Title: Training Data Class |
|
|
10 |
# Description: Training Data class for the ALL Detection System 2019 NCS1 Classifier. |
|
|
11 |
# License: MIT License |
|
|
12 |
# Last Modified: 2020-07-16 |
|
|
13 |
# |
|
|
14 |
############################################################################################ |
|
|
15 |
|
|
|
16 |
import os, random, sys |
|
|
17 |
|
|
|
18 |
from Classes.Helpers import Helpers |
|
|
19 |
from Classes.Data import Data as DataProcess |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
class Data(): |
|
|
23 |
""" Trainer Data Class |
|
|
24 |
|
|
|
25 |
Sorts the ALL Detection System 2019 NCS1 Classifier training data. |
|
|
26 |
""" |
|
|
27 |
|
|
|
28 |
def __init__(self): |
|
|
29 |
""" Initializes the Data Class """ |
|
|
30 |
|
|
|
31 |
self.Helpers = Helpers("Data") |
|
|
32 |
self.confs = self.Helpers.confs |
|
|
33 |
|
|
|
34 |
self.DataProcess = DataProcess() |
|
|
35 |
self.labelsToName = {} |
|
|
36 |
|
|
|
37 |
self.Helpers.logger.info("Data class initialization complete.") |
|
|
38 |
|
|
|
39 |
def sortData(self): |
|
|
40 |
""" Sorts the training data """ |
|
|
41 |
|
|
|
42 |
humanStart, clockStart = self.Helpers.timerStart() |
|
|
43 |
|
|
|
44 |
self.Helpers.logger.info("Loading & preparing training data.") |
|
|
45 |
|
|
|
46 |
dataPaths, classes = self.DataProcess.processFilesAndClasses() |
|
|
47 |
|
|
|
48 |
classId = [int(i) for i in classes] |
|
|
49 |
classNamesToIds = dict(zip(classes, classId)) |
|
|
50 |
|
|
|
51 |
# Divide the training datasets into train and test |
|
|
52 |
numValidation = int( |
|
|
53 |
self.confs["Classifier"]["ValidationSize"] * len(dataPaths)) |
|
|
54 |
self.Helpers.logger.info("Number of classes: " + str(classes)) |
|
|
55 |
self.Helpers.logger.info("Validation data size: " + str(numValidation)) |
|
|
56 |
random.seed(self.confs["Classifier"]["RandomSeed"]) |
|
|
57 |
random.shuffle(dataPaths) |
|
|
58 |
trainingFiles = dataPaths[numValidation:] |
|
|
59 |
validationFiles = dataPaths[:numValidation] |
|
|
60 |
|
|
|
61 |
# Convert the training and validation sets |
|
|
62 |
self.DataProcess.convertToTFRecord( |
|
|
63 |
'train', trainingFiles, classNamesToIds) |
|
|
64 |
self.DataProcess.convertToTFRecord( |
|
|
65 |
'validation', validationFiles, classNamesToIds) |
|
|
66 |
|
|
|
67 |
# Write the labels to file |
|
|
68 |
labelsToClassNames = dict(zip(classId, classes)) |
|
|
69 |
self.DataProcess.writeLabels(labelsToClassNames) |
|
|
70 |
|
|
|
71 |
self.Helpers.logger.info( |
|
|
72 |
"Loading & preparing training data completed.") |
|
|
73 |
|
|
|
74 |
def cropTestData(self): |
|
|
75 |
""" Crops the testing data """ |
|
|
76 |
|
|
|
77 |
self.DataProcess.cropTestDataset() |
|
|
78 |
|
|
|
79 |
self.Helpers.logger.info( |
|
|
80 |
"Testing data resized.") |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
if __name__ == "__main__": |
|
|
84 |
|
|
|
85 |
ProcessData = Data() |
|
|
86 |
ProcessData.sortData() |