|
a |
|
b/test_docker.py |
|
|
1 |
"""script to predict the segmentation results and calculate surrogate biomarkers of a given testing dataset using the docker image. |
|
|
2 |
|
|
|
3 |
This script allows users to execute the whole pipeline using the docker image. |
|
|
4 |
""" |
|
|
5 |
|
|
|
6 |
import os |
|
|
7 |
import sys |
|
|
8 |
import warnings |
|
|
9 |
warnings.filterwarnings('ignore') |
|
|
10 |
|
|
|
11 |
from src.LFBNet.utilities import train_valid_paths |
|
|
12 |
from src.LFBNet.preprocessing import preprocessing |
|
|
13 |
from src.run import trainer, parse_argument |
|
|
14 |
from src.LFBNet.utilities.compute_surrogate_features import ComputesTMTVsDmaxFromNii |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
def main(): |
|
|
18 |
""" Predicts tumor segmentation results and calculates associated quantitative metrics on a given testing dataset. |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
This function receives the path directory to the testing dataset that contains the PET images. It predicts the |
|
|
23 |
|
|
|
24 |
segmentation results and saves them as .nii files. It then calculates the surrogate metabolic tumor volume (sTMTV) and |
|
|
25 |
|
|
|
26 |
surrogate dissemination feature (sDmax) and saves it as CSV or Xls file. |
|
|
27 |
|
|
|
28 |
Acronyms: |
|
|
29 |
PET: Nifti format of [18]F-FDG PET images in SUV unit. |
|
|
30 |
GT: Ground truth mask from the expert if available. |
|
|
31 |
|
|
|
32 |
[directory_path_to_raw 3D nifti data with SUV values] should have the following structure as: |
|
|
33 |
main_dir: |
|
|
34 |
-- patient_id_1: |
|
|
35 |
-- PET |
|
|
36 |
--give_name.nii or give_name.nii.gz |
|
|
37 |
-- GT (if available) (Ground truth mask from the expert if available) |
|
|
38 |
-- give_name.nii or give_name.nii.gz |
|
|
39 |
|
|
|
40 |
-- patient_id_2: |
|
|
41 |
-- PET |
|
|
42 |
--give_name.nii or give_name.nii.gz |
|
|
43 |
-- GT (if available) |
|
|
44 |
-- give_name.nii or give_name.nii.gz |
|
|
45 |
|
|
|
46 |
It reads the .nii files, resize, crop, and save the 3D data, then from these data it generates the sagittal and |
|
|
47 |
coronal PET MIPs and the ground truth (mask from the expert) if available in the folder. |
|
|
48 |
|
|
|
49 |
Get the latest trained model weight from './weight' directory and use that weight to predict the segmentation. |
|
|
50 |
|
|
|
51 |
Returns: |
|
|
52 |
save segmented images and computed surrogate biomarker features using the last weight saved in the ./weight |
|
|
53 |
folder. |
|
|
54 |
""" |
|
|
55 |
|
|
|
56 |
# Path to the parent/main directory. Please read readme.md for how to organize your files. |
|
|
57 |
input_dir = "/input" |
|
|
58 |
|
|
|
59 |
# parameters to set |
|
|
60 |
dataset_name = 'data' |
|
|
61 |
desired_spacing = [4.0, 4.0, 4.0] |
|
|
62 |
|
|
|
63 |
# path to the preprocessed data |
|
|
64 |
preprocessing_data_dir = "/output" |
|
|
65 |
|
|
|
66 |
preprocessing_params = dict( |
|
|
67 |
data_path=input_dir, data_name=dataset_name, saving_dir=preprocessing_data_dir, save_3D=True, |
|
|
68 |
output_resolution=[128, 128, 256], desired_spacing=desired_spacing, generate_mip=True |
|
|
69 |
) |
|
|
70 |
mip_data_dir = preprocessing.read_pet_gt_resize_crop_save_as_3d_andor_mip(**preprocessing_params) |
|
|
71 |
|
|
|
72 |
# get list of all patient names from the generated mip directory |
|
|
73 |
patient_id_list = os.listdir(mip_data_dir) |
|
|
74 |
print('There are %d cases to evaluate \n' % len(patient_id_list)) |
|
|
75 |
|
|
|
76 |
# prediction on the given testing dataset |
|
|
77 |
test_params = dict( |
|
|
78 |
preprocessed_dir=mip_data_dir, data_list=patient_id_list, predicted_dir=preprocessing_data_dir |
|
|
79 |
) |
|
|
80 |
network_run = trainer.ModelTesting(**test_params) |
|
|
81 |
network_run.test() |
|
|
82 |
|
|
|
83 |
print("\n\n Computing the surrogate biomarkers ... \n\n") |
|
|
84 |
for identifier, data_path in zip( |
|
|
85 |
["predicted", "ground_truth"], [os.path.join(preprocessing_data_dir, "predicted_data"), |
|
|
86 |
os.path.join(preprocessing_data_dir, "data_default_MIP_dir")] |
|
|
87 |
): |
|
|
88 |
try: |
|
|
89 |
csv_file = ComputesTMTVsDmaxFromNii(data_path=data_path, get_identifier=identifier) |
|
|
90 |
csv_file.compute_and_save_surrogate_features() |
|
|
91 |
except: |
|
|
92 |
continue |
|
|
93 |
|
|
|
94 |
|
|
|
95 |
# check |
|
|
96 |
if __name__ == '__main__': |
|
|
97 |
print("\n Running the integrated framework for testing use case... \n\n") |
|
|
98 |
main() |