|
a |
|
b/src/LFBNet/data_loader.py |
|
|
1 |
""" |
|
|
2 |
|
|
|
3 |
""" |
|
|
4 |
import os |
|
|
5 |
import glob |
|
|
6 |
import numpy as np |
|
|
7 |
from numpy import ndarray |
|
|
8 |
import matplotlib.pyplot as plt |
|
|
9 |
import nibabel as nib |
|
|
10 |
from typing import List, Tuple |
|
|
11 |
from numpy.random import seed |
|
|
12 |
|
|
|
13 |
# seed random number generator |
|
|
14 |
seed(1) |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
class DataLoader: |
|
|
18 |
""" |
|
|
19 |
read preprocessed pet and gt MIP data for training |
|
|
20 |
""" |
|
|
21 |
|
|
|
22 |
def __init__(self, data_dir: str, ids_to_read: ndarray = None, shuffle=True, training: bool = True): |
|
|
23 |
self.data_dir = data_dir |
|
|
24 |
self.ids_to_read = ids_to_read |
|
|
25 |
self.shuffle = shuffle |
|
|
26 |
self.training = training |
|
|
27 |
|
|
|
28 |
def get_batch_of_data(self): |
|
|
29 |
""" |
|
|
30 |
data structure: |
|
|
31 |
-- main directory |
|
|
32 |
------case Name: |
|
|
33 |
-- pet.nii.gz |
|
|
34 |
-- gt.nii.gz |
|
|
35 |
--Given list of training and testing on .text files |
|
|
36 |
-- train.text |
|
|
37 |
-- valid.text |
|
|
38 |
""" |
|
|
39 |
|
|
|
40 |
# check directory |
|
|
41 |
self.directory_exist(self.data_dir) |
|
|
42 |
|
|
|
43 |
# get all names of the directories under data_dir |
|
|
44 |
case_ids = os.listdir(self.data_dir) |
|
|
45 |
|
|
|
46 |
# store batch data |
|
|
47 |
image_batch, ground_truth_batch = [], [] |
|
|
48 |
|
|
|
49 |
# if there are file in data dir |
|
|
50 |
if not len(case_ids): |
|
|
51 |
raise Exception("No files found in %s" % self.data_dir) |
|
|
52 |
|
|
|
53 |
# else continue getting.reading the files |
|
|
54 |
for get_id in list(case_ids): |
|
|
55 |
if str(get_id) in list(self.ids_to_read): |
|
|
56 |
try: |
|
|
57 |
# consider there four images in each folder name get_id: |
|
|
58 |
# e.g. : coronal (gt_1, pet_1) and sagittal (gt_0, pet_0) |
|
|
59 |
current_dir = os.path.join(self.data_dir, str(get_id)) |
|
|
60 |
# read sagittal and coronal as independent images |
|
|
61 |
pet_sagittla_coronal, gt_sagittal_coronal = self.get_nii_files_path(current_dir) |
|
|
62 |
|
|
|
63 |
# pet, normalization, standardization |
|
|
64 |
if len(pet_sagittla_coronal): # if image is read |
|
|
65 |
pet_sagittla_coronal = self.data_normalization_standardization(pet_sagittla_coronal, |
|
|
66 |
z_score=True, |
|
|
67 |
z_score_include_zeros=False) |
|
|
68 |
|
|
|
69 |
gt_sagittal_coronal = self.data_normalization_standardization(gt_sagittal_coronal, threshold=True) |
|
|
70 |
|
|
|
71 |
# display or save samples |
|
|
72 |
# self.mip_show(pet=pet_sagittla_coronal, gt=gt_sagittal_coronal, identifier=str(get_id)) |
|
|
73 |
|
|
|
74 |
# collect all images with case_id |
|
|
75 |
if not bool(len(image_batch)): # if it is empty; first time |
|
|
76 |
image_batch = pet_sagittla_coronal |
|
|
77 |
ground_truth_batch = gt_sagittal_coronal |
|
|
78 |
else: |
|
|
79 |
image_batch = np.concatenate((image_batch, pet_sagittla_coronal), axis=0) |
|
|
80 |
ground_truth_batch = np.concatenate((ground_truth_batch, gt_sagittal_coronal), axis=0) |
|
|
81 |
except: |
|
|
82 |
print('Not read %s' %(str(get_id))) |
|
|
83 |
|
|
|
84 |
return [image_batch, ground_truth_batch] |
|
|
85 |
|
|
|
86 |
@staticmethod |
|
|
87 |
def directory_exist(dir_check: str = None) -> None: |
|
|
88 |
""" |
|
|
89 |
:param dir_check: |
|
|
90 |
""" |
|
|
91 |
if os.path.exists(dir_check): |
|
|
92 |
# print("The directory %s does exist \n" % dir_check) |
|
|
93 |
pass |
|
|
94 |
else: |
|
|
95 |
raise Exception( |
|
|
96 |
"Please provide the correct path to the processed data ! \n %s not found \n" % (dir_check)) |
|
|
97 |
|
|
|
98 |
@staticmethod |
|
|
99 |
def mip_show(pet: ndarray = None, gt: ndarray = None, identifier: str = None) -> None: |
|
|
100 |
""" |
|
|
101 |
|
|
|
102 |
:param pet: |
|
|
103 |
:param gt: |
|
|
104 |
:param identifier: |
|
|
105 |
:return: |
|
|
106 |
""" |
|
|
107 |
# consider axis 0 for sagittal and axis 1 for coronal views |
|
|
108 |
fig, axs = plt.subplots(1, 4, figsize=(15, 15)) |
|
|
109 |
plt.title(str(identifier)) |
|
|
110 |
try: |
|
|
111 |
pet = np.squeeze(pet) |
|
|
112 |
gt = np.squeeze(gt) |
|
|
113 |
except: |
|
|
114 |
pass |
|
|
115 |
|
|
|
116 |
axs[0].imshow(np.rot90(np.log(pet[0] + 1))) |
|
|
117 |
axs[0].set_title('pet_project_on_axis_0') |
|
|
118 |
axs[1].imshow(np.rot90(np.log(gt[0] + 1))) |
|
|
119 |
axs[1].set_title('gt_project_on_axis_0') |
|
|
120 |
axs[2].imshow(np.rot90(np.log(pet[1] + 1))) |
|
|
121 |
axs[2].set_title('project_on_axis_1') |
|
|
122 |
axs[3].imshow(np.rot90(np.log(gt[1] + 1))) |
|
|
123 |
axs[3].set_title('gt_project_on_axis_1') |
|
|
124 |
plt.show() |
|
|
125 |
|
|
|
126 |
@staticmethod |
|
|
127 |
def get_nii_files_path(data_directory: str) -> List[ndarray]: |
|
|
128 |
""" |
|
|
129 |
read .nii or .nii.gz files from a given folder of path data_directory |
|
|
130 |
:param data_directory: |
|
|
131 |
:return: |
|
|
132 |
""" |
|
|
133 |
# more than one .nii or .nii.gz is found in the folder the first will be returned |
|
|
134 |
types = ('/*.nii', '/*.nii.gz') # the tuple of file types |
|
|
135 |
nii_paths = [] |
|
|
136 |
for files in types: |
|
|
137 |
nii_paths.extend([i for i in glob.glob(str(data_directory) + files)]) |
|
|
138 |
|
|
|
139 |
pet, gt = [], [] |
|
|
140 |
if not len(nii_paths): # if no file exists that ends wtih .nii.gz or .nii |
|
|
141 |
# raise Exception("No .nii or .nii.gz found in %s dirctory" % data_directory) |
|
|
142 |
pass |
|
|
143 |
else: |
|
|
144 |
# assuming the folder contains coronal mips: pet_1, gt_1, and sagittal mips: pet_0, gt_0, |
|
|
145 |
pet_saggital, pet_coronal, gt_saggital, gt_coronal = [], [], [], [] |
|
|
146 |
for path in list(nii_paths): |
|
|
147 |
# get the base name: means the file name |
|
|
148 |
identifier_base_name = str(os.path.basename(path)).split('.')[0] |
|
|
149 |
if "pet_sagittal" == str(identifier_base_name): |
|
|
150 |
pet_saggital = np.asanyarray(nib.load(path).dataobj) |
|
|
151 |
pet_saggital = np.expand_dims(pet_saggital, axis=0) |
|
|
152 |
|
|
|
153 |
elif "pet_coronal" == str(identifier_base_name): |
|
|
154 |
pet_coronal = np.asanyarray(nib.load(path).dataobj) |
|
|
155 |
pet_coronal = np.expand_dims(pet_coronal, axis=0) |
|
|
156 |
|
|
|
157 |
if "ground_truth_sagittal" == str(identifier_base_name): |
|
|
158 |
gt_saggital = np.asanyarray(nib.load(path).dataobj) |
|
|
159 |
gt_saggital = np.expand_dims(gt_saggital, axis=0) |
|
|
160 |
|
|
|
161 |
elif "ground_truth_coronal" == str(identifier_base_name): |
|
|
162 |
gt_coronal = np.asanyarray(nib.load(path).dataobj) |
|
|
163 |
gt_coronal = np.expand_dims(gt_coronal, axis=0) |
|
|
164 |
|
|
|
165 |
# concatenate coronal and sagita images |
|
|
166 |
# show |
|
|
167 |
pet = np.concatenate((pet_saggital, pet_coronal), axis=0) |
|
|
168 |
gt = np.concatenate((gt_saggital, gt_coronal), axis=0) |
|
|
169 |
return [pet, gt] |
|
|
170 |
|
|
|
171 |
@staticmethod |
|
|
172 |
def z_score(image: ndarray, include_zeros: bool = False): |
|
|
173 |
""" |
|
|
174 |
|
|
|
175 |
:param image: |
|
|
176 |
:param include_zeros: |
|
|
177 |
:return: |
|
|
178 |
""" |
|
|
179 |
# include zeros |
|
|
180 |
if include_zeros: |
|
|
181 |
image = (image - np.mean(image)) / (np.std(image) + 1e-8) |
|
|
182 |
else: |
|
|
183 |
# Don't include zeros |
|
|
184 |
means = np.true_divide(image.sum(), (image != 0).sum()) |
|
|
185 |
stds = np.nanstd(np.where(np.isclose(image, 0), np.nan, image)) |
|
|
186 |
image = (image - means) / (stds + 1e-8) |
|
|
187 |
return image |
|
|
188 |
|
|
|
189 |
def data_normalization_standardization(self, data: ndarray, threshold: bool = False, z_score: bool = False, |
|
|
190 |
z_score_include_zeros: bool = False, |
|
|
191 |
min_max_scale: bool = False, log_transform: bool = False) -> List[ndarray]: |
|
|
192 |
""" |
|
|
193 |
Data normalization and standardization function |
|
|
194 |
:param data: |
|
|
195 |
:param threshold: |
|
|
196 |
:param z_score: |
|
|
197 |
:param z_score_include_zeros: |
|
|
198 |
:param min_max_scale: |
|
|
199 |
:param log_transform: |
|
|
200 |
:return: |
|
|
201 |
""" |
|
|
202 |
|
|
|
203 |
if not isinstance(data, List): |
|
|
204 |
data = np.array(data) |
|
|
205 |
|
|
|
206 |
# groundtruh > 0 is 1 and <=0 is 0 |
|
|
207 |
if threshold: |
|
|
208 |
data[data > 0] = 1 |
|
|
209 |
|
|
|
210 |
if z_score: |
|
|
211 |
data = self.z_score(data, include_zeros=z_score_include_zeros) |
|
|
212 |
|
|
|
213 |
if min_max_scale: |
|
|
214 |
data = (data - min(data)) / (max(data) - min(data)) |
|
|
215 |
|
|
|
216 |
if log_transform: |
|
|
217 |
data = np.log(data + 1) |
|
|
218 |
|
|
|
219 |
return data |
|
|
220 |
|
|
|
221 |
|
|
|
222 |
if __name__ == '__main__': |
|
|
223 |
# for Example |
|
|
224 |
print("data_loader for preprocessed coronal and sagittal MIPs, pet, and gt") |
|
|
225 |
data_dir = "../data/vienna_default_MIP_dir/" |
|
|
226 |
ids_to_read = os.listdir(data_dir) |
|
|
227 |
|
|
|
228 |
data_loader = DataLoader(data_dir=data_dir, ids_to_read=ids_to_read) |
|
|
229 |
loaded_data = data_loader.get_batch_of_data() |
|
|
230 |
print(np.array(loaded_data).shape) |