import torch
import torch.nn as nn
from models import CNNBase, CAM, ResNet50, BloodNet3D, CellMovementEncoder
from weakly_supervised_localization import WSLoss
from self_supervised_distillation import DistillKL
from adversarial_robustness import FGSM
# Assuming you have defined CNNBase, CAM, ResNet50, and other necessary components
# 1. Weakly supervised localization
cnn = CNNBase()
cam = CAM(cnn)
loss_fn = nn.BCEWithLogitsLoss()
ws_loss_fn = WSLoss(loss_fn)
optimizer = torch.optim.Adam(cnn.parameters())
for images, labels in loader:
cnn.train() # Set to train mode
optimizer.zero_grad() # Clear gradients
preds = cnn(images)
cam_maps = cam(images)
loss = ws_loss_fn(preds, cam_maps, labels)
loss.backward()
optimizer.step()
# 2. Self-supervised data distillation
teacher = ResNet50() # Pretrained on 100x more data
student = CNNBase()
distill_loss = DistillKL(teacher, student)
optimizer_student = torch.optim.Adam(student.parameters()) # Separate optimizer for the student
for images in unsup_blood_cells:
student.train() # Set to train mode
optimizer_student.zero_grad() # Clear gradients
t_preds = teacher(images)
s_preds = student(images)
loss = distill_loss(s_preds, t_preds)
loss.backward()
optimizer_student.step()
# 3. Adversarial Training
adv_steps = 5
epsilon = 0.1
model = CNNBase() # Assuming you need a model instance for FGSM
loss_fn = nn.BCEWithLogitsLoss()
attacker = FGSM(model, loss_fn, epsilon)
optimizer_adv = torch.optim.Adam(model.parameters()) # Separate optimizer for the adversarial model
for images, labels in loader: # Assuming you have a loader for this as well
model.train() # Set to train mode
optimizer_adv.zero_grad() # Clear gradients
for i in range(adv_steps):
images = attacker.attack(images)
preds = model(images)
loss = loss_fn(preds, labels)
loss.backward()
optimizer_adv.step()
# 4. 3D Convolutions
bloodnet_3d = BloodNet3D()
optimizer_3d = torch.optim.Adam(bloodnet_3d.parameters()) # Separate optimizer for 3D Convolutions
bloodnet_3d.train() # Set to train mode
optimizer_3d.zero_grad() # Clear gradients
# Add code for 3D Convolutions if needed
optimizer_3d.step()
# 5. Video self-supervision
frame_order_loss = nn.MSELoss()
for blood_cell_video in videos:
bloodnet_video = CellMovementEncoder()
optimizer_video = torch.optim.Adam(bloodnet_video.parameters()) # Separate optimizer for video
frames = shuffleFrames(blood_cell_video)
bloodnet_video.train() # Set to train mode
optimizer_video.zero_grad() # Clear gradients
pred_order = bloodnet_video(frames) # Assuming frames are the input to CellMovementEncoder
true_order = torch.arange(len(frames))
loss = frame_order_loss(pred_order, true_order)
loss.backward()
optimizer_video.step()