|
a |
|
b/src/pca_cancer.py |
|
|
1 |
import time |
|
|
2 |
from datetime import datetime |
|
|
3 |
import csv |
|
|
4 |
import numpy as np |
|
|
5 |
from sklearn.cluster import KMeans |
|
|
6 |
from sklearn.decomposition import PCA |
|
|
7 |
from sklearn.preprocessing import StandardScaler |
|
|
8 |
from sklearn.pipeline import Pipeline |
|
|
9 |
from sklearn.cross_validation import train_test_split |
|
|
10 |
from sklearn.cross_validation import StratifiedShuffleSplit |
|
|
11 |
from sklearn.grid_search import GridSearchCV |
|
|
12 |
from sklearn.cross_validation import StratifiedKFold |
|
|
13 |
|
|
|
14 |
|
|
|
15 |
print "Script start at ", datetime.now().isoformat() |
|
|
16 |
|
|
|
17 |
X=np.load('F:/NYU/Hackathon/numpy_array.npy') |
|
|
18 |
Y=X[:,:3] #patient_id cancer_type tissue_type |
|
|
19 |
X=X[:,3:] #rpm |
|
|
20 |
|
|
|
21 |
RS=np.random.RandomState(90) |
|
|
22 |
perm=RS.permutation(678) |
|
|
23 |
|
|
|
24 |
Y=Y[perm] |
|
|
25 |
X=X[perm] |
|
|
26 |
|
|
|
27 |
X_train, X_test, Y_train, Y_test = train_test_split(X, Y[:,1], test_size=0.25, random_state=30, stratify=Y[:,1]) |
|
|
28 |
|
|
|
29 |
p=PCA(n_components=0.5).fit(X_train) |
|
|
30 |
print(p.explained_variance_) |