Switch to unified view

a b/src/gaussianNaivebayes_cancer.py
1
import time
2
from datetime import datetime
3
import csv
4
import numpy as np
5
from sklearn.naive_bayes import GaussianNB
6
from sklearn.decomposition import PCA
7
from sklearn.preprocessing import StandardScaler
8
from sklearn.pipeline import Pipeline
9
from sklearn.cross_validation import train_test_split
10
from sklearn.cross_validation import StratifiedShuffleSplit
11
from sklearn.grid_search import GridSearchCV
12
from sklearn.cross_validation import StratifiedKFold
13
14
15
print "Script start at ", datetime.now().isoformat()
16
17
X=np.load('F:/NYU/Hackathon/numpy_array.npy')
18
Y=X[:,:3] #patient_id cancer_type tissue_type
19
X=X[:,3:] #rpm
20
21
RS=np.random.RandomState(90)
22
perm=RS.permutation(678)
23
24
Y=Y[perm]
25
X=X[perm]
26
27
X_train, X_test, Y_train, Y_test = train_test_split(X, Y[:,1], test_size=0.25, random_state=30, stratify=Y[:,1])
28
29
pipe=Pipeline([('pca',PCA()), ('scaled',StandardScaler()), ('gaussiannaivebayes',GaussianNB())])
30
31
pca_val=[1,2,4,13,1046]
32
33
gs=GridSearchCV(pipe, dict(pca__n_components=pca_val), verbose=100)
34
gs.fit(X_train, Y_train)
35
36
score=gs.score(X_test, Y_test)
37
38
print score
39
print 'best_score'
40
print gs.best_score_
41
print 'best_estimator'
42
print gs.best_estimator_
43
print 'best_params'
44
print gs.best_params_
45
46
outfile="grid_gaussiannaivebayes_cancer_search_scores_{0}.out".format(int(time.time()))
47
48
with open(outfile, "w") as scoreFile:
49
    writer = csv.writer(scoreFile, delimiter = ",")
50
    paramKeys = list(gs.grid_scores_[0].parameters.keys())
51
52
    writer.writerow(['mean']+ paramKeys)
53
    
54
    for i in gs.grid_scores_:
55
        output = list()
56
        output.append(i.mean_validation_score)
57
58
        for k in paramKeys:
59
            output.append(i.parameters.get(k))
60
61
        writer.writerow(output)
62
63
64
print "Script end at ", datetime.now().isoformat()