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Introduction

Malaria is a life-threatening infection caused by a parasite, which is spread to humans through

infected mosquitoes [1]. The gold standard diagnostic tool for malaria is microscopic

examination, which involves spreading a patient’s blood specimen as a thick or thin blood smear

and staining the blood film [2]. The stained blood film is manually inspected through a

microscope by malaria microscopists to identify the species and stages of malaria parasites in the

blood smear as well as the density of parasites [3]. The manual inspection done by microscopists

is tedious and time-consuming, requires experience and extensive training, and is prone to

diagnostic errors due to the difficulty of the procedure [4]. There can also be errors caused by the

quality of the microscope and staining reagents [4].

This necessitates a replacement of manual inspection by microscopists for a robust cell

classification and cell counting machine learning model to reduce human error and the time,

resources, and expertise needed, which is the focus of this project. The scope of the project is

narrowed down to determining if there are any infected blood cells in the blood smears and does

not include identifying the species, stages, and amount of malaria parasites due to the lack of

information provided by the image dataset used. The image dataset used to train and test the

model is from the “P. vivax (malaria) infected human blood smears” dataset provided by the

Broad Bioimage Benchmark Collection [5].



Background

According to the World Health Organization (WHO), there were 249 million reported cases of

malaria and an estimated number of 608,000 malaria deaths in the world in 2022 [1]. A

disproportionate amount of global malaria cases and deaths falls in the WHO African Region

with four African countries (Nigeria, the Democratic Republic of the Congo, Uganda, and

Mozambique) accounting for over half of all malaria deaths worldwide [1]. In 2022, the WHO

African Region experienced about 94% of all malaria cases and 95% of deaths, making malaria a

large concern in this region [1].

In general, early diagnosis of malaria reduces disease, prevents deaths, and contributes to

reducing transmission [1]. Earlier diagnosis also leads to patients receiving malaria treatments

more quickly, which are determined by the malaria species and density of parasites that are found

during diagnosis [4]. However, in resource-poor settings like those in the WHO African Region,

the proper healthcare resources and personnel may not be accessible or available to perform the

necessary amount of diagnostic testing with adequate accuracy. Therefore, a robust diagnostic

machine learning model would reduce the amount of experts needed to perform diagnostic

testing and require less time and resources, so more patients can be diagnosed earlier and receive

the necessary treatment.

The two most common diagnostic tools used for malaria are microscopic examination and a

Rapid Diagnostic Test (RDT). Microscopic examination, as described above, is the gold

standard, but requires expert microscopists to manually inspect stained blood smears of patients,

which is time-consuming and requires many resources [4]. RDT detects specific malaria antigens



in a person's blood on a test card after 15 minutes [2]. The advantage of the RDT is that it is

quick to perform; however, the disadvantages of the RDT are that it may not be able to detect an

infection if the blood has lower numbers of malaria parasites, the test is not sensitive to the two

less common species of malaria parasites, and a negative or positive result must be verified by a

microscopic examination, making the RDT less effective than microscopic examination [2]. This

affirms the importance of a quick and robust diagnostic machine learning model that would

increase the accuracy and decrease the time of diagnosing malaria.

There are new diagnostic tools currently being created that are based on digital imaging analysis

by deep learning and artificial intelligence methods, which include using smartphone

applications [4]. However, the implementation of these diagnostic tools in resource-poor settings

presents many challenges, such as determining how to implement the technology in regional

hospitals or small healthcare centers [4]. With this project we hope to take the first step in

creating a technology that could be easily implemented by creating an accessible machine

learning model that can be performed on a laptop.

Methods

Dataset Overview

The malaria dataset from Broad Bioimage Benchmark Collection contains a train.json and

test.json, each containing the labels for each blood sample image. There are a total of 1208

images in the training set and 120 images in the test set. Each image represents an individual row

in the file; within an image, each cell is labeled with the following fields: “minimum”,

“maximum”, and “category”. The “minimum” field contains the coordinate of the location of the
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upper left corner of the cell. The “maximum” field contains the coordinate of the location of the

bottom right corner of the cell. The “category” field contains the type of blood cell, including

“red blood cell”, “leukocyte”, “gametocyte”, “ring”, “trophozoite”, and “schizont”.

Malaria Data Preprocessing

Based on the “minimum” and “maximum” coordinates, we first calculated the area of the cell.

We would like to acknowledge that given these 2 coordinates, only the rectangular area could be

calculated, overestimating the exact area of the cell. Additionally, the paper stated that cells

labeled “red blood cell” or “leukocyte” were not infected with malaria; cells labeled

“gametocyte”, “ring”, “trophozoite”, or “schizont” were identified to be infected with malaria.

We therefore added another field in the dataset called “diagnosis” where cells labeled “red blood

cell” or “leukocyte” had “diagnosis = 0”; otherwise, the cells were labeled “diagnosis = 1”.

Image Analysis for Preprocessing

Since the initial data only came labeled with coordinates and whether or not a cell was infected,

we decided to self-label some images to create an improved dataset with additional proxies that

could potentially enhance model performance. To do so, we took 9 images from the dataset, and

self-labeled a random sample of 20 cells from each to create a new dataset of 180 cells. To

analyze the images, we used ImageJ. We first opened each individual image, converted the

images to 8-bit grayscale, enhanced the contrast, and added a threshold to isolate the cells from

the background. We also used Process → Noise → Despeckle to remove any noise/small

particles. Then, we did Analyze → Analyze Particles, and checked Display Results, Clear

Results, and Show Outlines, which outputted the areas for each segmented cell. This method of



calculating area is more accurate than the area calculation for the Broad Bioimage Benchmark

Collection malaria dataset because ImageJ calculates exact area versus the rectangular area

calculated from the “minimum” and “maximum” coordinates.

Figure 1. Cell areas generated from ImageJ

We also looked at the unaltered photos and visually classified the cells by shape (smooth circle,

bumpy circle, spiky circle) and color (blue or purple).

Figure 2. Raw images of the RBCs, purple indicating infected cells

To build our more detailed dataset, we created a new CSV that contained the area, shape, color,

and infection status (infected or not infected). We planned to use this new data to train another

model, since we believed the area measurement done by ImageJ would be more accurate than the

one done through coordinate estimation.
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Code

The goal of our models are to classify whether or not a cell was infected with malaria based on

various features. In Model A, we trained on the train.json from the Broad Bioimage Benchmark

Collection malaria dataset, and used the rectangular area as the sole feature for prediction. In

Model B, we trained on the hand-labeled dataset and used exact area as the sole feature for

prediction. In Model C, we trained on the hand-labeled dataset using exact area and shape as the

two features for prediction. Because we are solving a classification problem, we selected a

logistic regression machine learning model for training and testing. We utilized the sklearn

Logistic Regression model and metrics libraries to implement the software solution. The CoLab

for Model A can be viewed here. The CoLab for Model B can be viewed here. The CoLab for

Model C can be viewed here. To comparatively evaluate whether or not blood cell area alone is

an effective proxy for detecting malaria, we compared the performance metrics of accuracy,

precision, recall, f1 score, and ROC AUC between the three models. These metrics are measures

of the model’s prediction rates of true positives, false positives, true negatives, and false

negatives.

Results

Model A:

ROC AUC Accuracy Precision Recall F1-Score

0.80 65.70% 10.75% 76.62% 18.86%

Model B:

ROC AUC Accuracy Precision Recall F1-Score
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0.94 91.67% 66.67% 80.00% 72.73%

Model C:

ROC AUC Accuracy Precision Recall F1-Score

1.00 94.44% 71.43% 100.00% 83.33%

Analysis

As seen in the results above, the metrics of ROC AUC, accuracy, precision, recall, and f1 score

improved when using exact area (Model B) versus rectangular area (Model A) as the predictive

feature. These metrics further improved when using both exact area and shape (Model C) as

predictive features versus exact area alone (Model B).

For Model A, the metrics of ROC AUC and recall performed best while the metrics of precision

and f1 score performed worst comparatively. This indicates that there was a low ratio of correctly

predicted positive instances (malaria positive) to the total predicted positive instances,

highlighting a relatively high false positive rate by the model. On the other hand, the model had a

low false negative rate, which is an important signal since false negatives in this case mean that

the model predicted that the cell is not infected with malaria when the cell is indeed infected in

reality. For Model B, we observe that the metrics of recall, and hence f1 score, are significantly

improved which informs us that the accuracy of area calculation (rectangular versus exact) plays

a critical role in the logistic regression model’s ability to correctly predict positive cases. For

Model C, we observe that the introduction of shape as a feature, in addition to exact area,



improves all 5 metrics as compared to Model B. This allows us to arrive at the conclusion that

blood cell area alone is not the best proxy for detecting infection; rather, blood cell area and

shape significantly improves the predictive power of the model. Future studies will e

Lastly, we would like to acknowledge limitations of our study. The Broad Bioimage Benchmark

Collection dataset had 1208 images, each with dozens of cells; thus, Model A was trained on

over 80,000 cells. Comparatively, Model B and C were only trained on 180 cells due to the time

intensive nature of hand labeling. Additionally, when hand-labeling the blood cells, we

considered using color of the cell (light blue, dark blue, purple) as a feature. However, after

inspection of the images, we realized that different staining methods were used for different

images, impacting the color of the cell. Without a consistent color baseline for labeling, we

decided to exclude color as a feature for prediction in the model.

In future studies, we would like to use ImageJ/Fiji to automate the labeling process such that we

can automate the labeling process and train models B and C on a more comparable dataset as

model A’s. We would also like to investigate how other features (cell texture, density, etc) impact

the predictive power of the model, and how other machine learning models (Random Forest

Classifiers, neural networks, etc) perform on the same dataset.
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