91 lines (90 with data), 2.0 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Concurrent.Futures.ThreadPoolExecutor"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"from concurrent.futures import ThreadPoolExecutor #using parallel threads \n",
"import time #time module"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def task(n):\n",
" print(\"Processing {}\".format(n))\n",
" time.sleep(10) #time.sleep pause the program. So it can be used to chech working of multiple thread"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"def main():\n",
" print(\"Starting ThreadPoolExecutor\")\n",
" with ThreadPoolExecutor(max_workers=3) as executor:\n",
" future = executor.submit(task, (2)) #working of multiple threads\n",
" future = executor.submit(task, (3))\n",
" future = executor.submit(task, (4))\n",
" print(\"All tasks complete\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting ThreadPoolExecutor\n",
"Processing 2\n",
"Processing 3\n",
"Processing 4\n",
"All tasks complete\n"
]
}
],
"source": [
"if __name__ == '__main__':\n",
" main() #main function"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.15"
}
},
"nbformat": 4,
"nbformat_minor": 2
}