--- a +++ b/load.py @@ -0,0 +1,33 @@ +import plot +from binary_classification.svm import svm_pipeline +from binary_classification.cart import cart_pipeline +from binary_classification.boosted_tree import xgb_pipeline +from binary_classification.random_forests import rf_pipeline +from conditional_probability.logistic import lr_pipeline +from conditional_probability.naive_bayes import nb_pipeline +from preprocessing import preprocessing, get_train_and_test, standardize_features + +import warnings +warnings.filterwarnings("ignore") + + +def pipeline(): + """ + This function acts as a pipeline and calls the needed functions before + any actual machine learning occurs. + """ + x_values, y_values = preprocessing() + x_train, x_test, y_train, y_test = get_train_and_test(x_values, y_values) + x_train, x_test = standardize_features(x_train, x_test) + + print(" AUC Accuracy") + print("SVM: ", svm_pipeline(x_train, y_train, x_test, y_test)) + print("CART: ", cart_pipeline(x_train, y_train, x_test, y_test)) + print("XGB: ", xgb_pipeline(x_train, y_train, x_test, y_test)) + print("RF: ", rf_pipeline(x_train, y_train, x_test, y_test)) + print("LOG: ", lr_pipeline(x_train, y_train, x_test, y_test)) + print("NB: ", nb_pipeline(x_train, y_train, x_test, y_test)) + plot.show_data() + + +pipeline()