[48f029]: / conditional_probability / naive_bayes.py

Download this file

51 lines (42 with data), 1.9 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import roc_auc_score
from util import roc_results, results
def nb_training(x_train, y_train):
"""
:param x_train: the x-values we want to train on (2D numpy array)
:param y_train: the y-values that correspond to x_train (1D numpy array)
:return: sklearn GaussianNB object that can now be used for predictions
"""
prob = GaussianNB([0.50833, 0.49167])
prob.fit(x_train, y_train)
return prob
def nb_probability(prob, x_test):
"""
:param prob: trained sklearn GaussianNB object
:param x_test: the x-values we want to get predictions on (2D numpy array)
:return: a 2D numpy array containing the probabilities for both classes
"""
return prob.predict_proba(x_test)
def nb_classification(y_pred, threshold=0.5):
"""
:param y_pred: a 1D numpy array containing the probabilities of x belonging to the positive class
:param threshold: determines which class a probability estimate belongs to
:return: a 1D numpy array containing the predictions
"""
for i in range(y_pred.shape[0]):
y_pred[i] = 1 if y_pred[i] > threshold else -1
return y_pred
def nb_pipeline(x_train, y_train, x_test, y_test):
"""
:param x_train: the x-values we want to train on (2D numpy array)
:param y_train: the y-values that correspond to x_train (1D numpy array)
:param x_test: the x-values we want to test on (2D numpy array)
:param y_test: the y-values that correspond to x_test (1D numpy array)
:return: the roc auc score
"""
prob = nb_training(x_train, y_train)
y_pred = nb_probability(prob, x_test)
y_pred_class = nb_classification(np.copy(y_pred[:, 1]))
roc_results(y_pred[:, 1], y_test, 'Gaussian Naive Bayes')
return roc_auc_score(y_test, y_pred[:, 1]), results(y_pred_class, y_test)