a b/binary_classification/svm.py
1
from sklearn import svm
2
from sklearn.metrics import roc_auc_score
3
from util import roc_results, results
4
5
6
def svm_training(x_train, y_train):
7
    """
8
    :param x_train: the x-values we want to train on (2D numpy array)
9
    :param y_train: the y-values that correspond to x_train (1D numpy array)
10
    :return: sklearn SVM Classifier object that can now be used for predictions
11
    """
12
    clf = svm.SVC(kernel='sigmoid', C=87, gamma=0.0212, random_state=0)
13
    clf.fit(x_train, y_train)
14
    return clf
15
16
17
def svm_classification(clf, x_test):
18
    """
19
    :param clf: trained sklearn SVM Classifier object
20
    :param x_test: the x-values we want to get predictions on (2D numpy array)
21
    :return: a 1D numpy array containing the predictions
22
    """
23
    return clf.predict(x_test)
24
25
26
def svm_pipeline(x_train, y_train, x_test, y_test):
27
    """
28
    :param x_train: the x-values we want to train on (2D numpy array)
29
    :param y_train: the y-values that correspond to x_train (1D numpy array)
30
    :param x_test:  the x-values we want to test on (2D numpy array)
31
    :param y_test:  the y-values that correspond to x_test (1D numpy array)
32
    :return: the roc auc score
33
    """
34
    clf = svm_training(x_train, y_train)
35
    y_pred = svm_classification(clf, x_test)
36
    roc_results(y_pred, y_test, 'SVM')
37
    return roc_auc_score(y_test, y_pred), results(y_pred, y_test)