--- a +++ b/binary_classification/random_forests.py @@ -0,0 +1,38 @@ +from sklearn.ensemble import RandomForestClassifier +from sklearn.metrics import roc_auc_score +from util import roc_results, results + + +def rf_training(x_train, y_train): + """ + :param x_train: the x-values we want to train on (2D numpy array) + :param y_train: the y-values that correspond to x_train (1D numpy array) + :return: sklearn random forest classifier object that can now be used for predictions + """ + clf = RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=4, max_features='log2', + min_samples_split=25, min_samples_leaf=7, bootstrap=True, random_state=0) + clf.fit(x_train, y_train) + return clf + + +def rf_classification(clf, x_test): + """ + :param clf: trained sklearn random forest classifier object + :param x_test: the x-values we want to get predictions on (2D numpy array) + :return: a 1D numpy array containing the predictions + """ + return clf.predict(x_test) + + +def rf_pipeline(x_train, y_train, x_test, y_test): + """ + :param x_train: the x-values we want to train on (2D numpy array) + :param x_test: the y-values that correspond to x_train (1D numpy array) + :param y_train: the x-values we want to test on (2D numpy array) + :param y_test: the y-values that correspond to x_test (1D numpy array) + :return: the roc auc score + """ + clf = rf_training(x_train, y_train) + y_pred = rf_classification(clf, x_test) + roc_results(y_pred, y_test, 'Random Forest') + return roc_auc_score(y_test, y_pred), results(y_pred, y_test)