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Abstract

Acute myeloid leukemia (AML) is a blood cancer correlated with certain genetic mutations. In this project, we implement
six machine learning methods with the intent of detecting AML, given a patient’s genetic profile and hematological data.
The six models include support vector machines, classification trees, boosted trees, random forests, Naive Bayes, and logistic
regression. Models were optimized using the metric area under the receiver operating characteristic (ROC) curve, and
accuracy scores were also recorded. Our results indicate that the models with the highest accuracy (just over 70%) were
random forests and logistic regression. The models with the lowest accuracy were support vector machines and Naive Bayes
(around 60%).

I. Introduction

Acute myeloid leukemia (AML) is a blood cancer that
interferes with the function of normal blood cells.
AML has a five-year survival rate of only 27.4%, and
there are about 20,000 new cases in the United States
every year [1].

Research has shown correlations between AML and
certain genetic mutations; these genetic mutations
appear in an individual’s genome years before onset
of the disease [2]. These genetic changes can serve as
biomarkers for cancer cell proliferation, allowing for
early detection of AML if an accurate screening test
can be developed.

The goal of this project was to develop a method
for the identification of individuals who are at risk
for developing AML based on their blood and genetic
profile. We applied several machine learning models
that leverage a patient’s genotype and hematological
data in order to predict whether or not that individual
has AML.

The benefits of creating such an accurate predictive
model for AML are twofold. Firstly, generating a
robust tool will greatly aid in early detection of AML.
As with many types of cancer, early detection is key to
successful treatment of patients and increased overall
survival rate [3].

Secondly, the parameter vector produced by our model
could potentially highlight other significant genetic
changes/features that have been overlooked by the
research community thus far.

II. The Data

1 Source

The data was provided by Dr. Duane Hassane at the
Department of Medicine, Weill Cornell Medicine, New
York.

2 Description

The dataset includes information from approximately
400 subjects, comprised of patients with and with-
out AML. Patients without AML may have other dis-
eases. For each subject, the following key attributes
are recorded:

• allelic fractions for 45 distinct genes

• hematocrit

• platelet count

• white blood cell count

• hemoglobin

• age

• diagnosis of AML (yes/no)

3 Plots

The following plots show two-dimensional cross sec-
tions of the 50-dimensional input space. Each plot
compares two of the following features: total allelic
fraction (summed over all 45 genes), age, white blood
cell count, platelet count, hemoglobin, and hematocrit.

The green plus signs signify AML patients and the blue
points represent patients who have not been diagnosed
with AML.
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Figure 1: Green = diagnosed with AML; blue = not diagnosed with AML

4 Preprocessing

The following steps were taken in the data preprocess-
ing phase:

1. Deleted irrelevant columns (such as IDs).

2. Converted all textual labels to numerical values.

3. Filled in missing values (approximately ten
throughout the dataset) with column average.

4. Added a column that holds the total allelic frac-
tion (summed over all 45 genes).

5. Added interaction features (optional, set by flag).
The interaction features were created from the fol-
lowing given features: hematocrit, platelet count,

white blood cell count, hemoglobin, age, total
allelic fraction. These features were multiplied
pairwise to create 21 new interaction features.

6. Partitioned the data into random train and
test subsets using sklearn’s train_test_split().
65% of the input data is used for training; the
remaining 35% is reserved for testing. See dis-
cussion below.

7. Standardized the data. (Deleted columns with
variance zero; for the remaining columns, sub-
tracted the column mean and divided by column
variance.)

8. Added a column for the bias term.
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5 Train-Test Split

In general, 20% of the dataset is reserved for testing
purposes. However, due to our small dataset and the
sparsity of the columns, we found through repeated
experimentation that model performance was highly
dependent on the specific train-test split of the data.

In order to temper that variability, we chose to use
35% of the available data as a test set. This necessarily
led to a smaller training set, and possibly a tradeoff
between performance and stability of results. We also
set a random seed when calling train_test_split()
for the purpose of reproducibility.

IV. Performance Evaluation

Area under the Receiver Operating Characteristic
(ROC) curve was used to evaluate the performance of
each model. The ROC curve plots true positive rate vs.
false positive rate as the prediction threshold varies.
The threshold value is the cut off point for predictions;
if a prediction is at or above the specified threshold,
we predict that data point is positive (the patient has
AML).

Ideally, we want the ROC curve to pass through
the upper left corner of the graph, where true positive
rate is at a maximum and false positive rate is zero. In
practice perfect prediction is unlikely, but a larger area
under the curve indicates better performance. Note
that the largest area under the curve we can attain is
one.

ROC analysis is a performance measure is often used
to assess diagnostic test accuracy. Variations of ROC
analysis are commonly used in bioinformatics classifi-
cation problems.

One added benefit of the ROC curve is that it al-
lows us to find the optimal prediction threshold for
probability models. After plotting the ROC curve for
each tuned model, we found the threshold value that
optimized accuracy, where accuracy is defined as

ACC =
TP + TN

TP + TN + FP + FN
where

TP = the number of true positives
TN = the number of true negatives
FP = the number of false positives
FN = the number of false negatives

Accuracy is a reliable performance metric because the
dataset contains balanced class sizes.

V. Binary Classification Models

1 Support Vector Machines

The first model attempted was sklearn’s Support Vec-
tor Classifier. With its default parameters, area under
the ROC curve was 0.654 (without interaction features).
After re-examining the data, we hypothesized that the
low value was due to the data being linearly insep-
arable. Thus we decided to incorporate nonlinearity
into the model via interaction features (discussed in
section IV.4 above). The addition of interaction features
decreased performance on the test set to 0.644, possibly
due to overfitting.

To increase the area under the curve (AUC) and better
assess the stability of the model, we used sklearn’s
GridSearchCV with 10-fold cross validation. We tuned
the following hyperparameters:

• kernel function (e.g. RBF, sigmoid)

• regularization parameter

• kernel coefficient

• independent term in the kernel function (used in
the polynomial and sigmoid kernels)

• degree of the polynomial kernel

See Appendix A for an example of hyperparameter
tuning and grid search results.

Optimal models used a sigmoid kernel. After hy-
perparameter tuning (on the original data and interac-
tion features), AUC was 0.659. After hyperparameter
tuning (not including interaction features), AUC was
0.693.

Figure 2: ROC curve for best SVM model
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This AUC corresponded to an accuracy of 67.3% on the
test set. The results for SVM showed promise; our next
step was to compare these results to that of a nonlinear
binary classification model.

2 Classification Trees

Continuing our exploration of binary classifiers, we
turned to sklearn’s Decision Tree Classifier. With
its default parameters, AUC was 0.589 (without in-
teraction features) and 0.629 (with interaction features).

We once again used GridSearchCV with 10-fold cross
validation to tune the classification tree hyperparame-
ters:

• node impurity measure (i.e. entropy or Gini)

• strategy used to choose the split at each node
(best or random)

• maximum depth of the tree

• minimum number of samples required to split a
node

• minimum number of samples required to be
present in each leaf

• minimum impurity decrease (each split must de-
crease impurity by this value or more)

After hyperparameter tuning, the resulting AUC was
0.713 (without interaction features) and 0.690 (with
interaction features).

Figure 3: ROC curve for best CART model

The larger AUC measurement corresponded to an
accuracy of 69.8% on the test set.

Interestingly, the optimal model had a maximum

depth of five. This made it easy to inspect the structure
of the tree:

Figure 4: Best classification tree

Although unnecessary, features were centered and
scaled, hence the negative splitting values. Note also
that the samples in the diagram reference the samples
in the training set.

For a tree of such limited depth, it attains a respectable
accuracy of nearly 70%. The root node of the tree splits
according to the total allelic fraction (which summed
the allelic fractions over 45 genes). The tree contains
two more splits; one uses total allelic fraction again,
while the other (denoted X[27] in the graph) splits on
gene 43.

It is tempting to attribute great importance to gene 43,
but worthwhile to note that it pulls only four samples
from a group of 177 to create a pure leaf node. (For
reference, the dataset contains roughly 20 patients with
a nonzero value for gene 43, only some of which are
part of the training set.) A more in-depth discussion
of feature importance can be found in section IV.

3 Boosted Trees

Given the improved accuracy of classification trees
over SVM and the apparent nonlinearity in our data,
our next step was to build on the success of CART with
boosted trees. For this we used the XGBoost Classifier
from the XGBoost library.

Under default parameters, AUC was 0.617 (with-
out interaction features) and 0.665 (using interaction
features).

We tuned the following parameters via GridSearchCV
and 10-fold cross validation:

• number of boosted trees to fit

• maximum depth of the trees

• learning rate
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• `2 regularization parameter

• `1 regularization parameter

• minimum loss reduction (each split must de-
crease the loss by this value or more)

After hyperparameter tuning, the resulting AUC was
0.705 (without interaction features) and 0.719 (with
interaction features), which was an improvement over
the classification tree AUC.

Figure 5: ROC curve for best XGBoost model

This AUC corresponded to an accuracy of 70.5%.

With the slight increase in AUC, this model had a
small boost in accuracy. The strongest XGBoost model
set the maximum depth of the tree to ten, which again
allowed us to easily display and interpret the tree:

Figure 6: Best XGBoost tree

The first split uses an interaction feature. This feature
is the total allelic fraction multiplied by white blood
cell count. The second split also uses an interaction fea-
ture: platelet count times age. Thus far, XGBoost was
the only model that had higher AUC measurements
when interaction features were used, and the boosted

trees clearly make use of the interaction features.

Given that there was not a significant increase in
accuracy using boosted trees, we decided to try a
different ensemble method for trees: random forests.

4 Random Forests

In an attempt to leverage the success of nonlinear
classification trees, we then tried bagging trees using
sklearn’s Random Forest Classifier. With its default pa-
rameters, AUC was 0.688 (without interaction features)
and 0.633 (with interaction features). Of the models
explored up until this point, random forests boasted
the highest default AUC.

Classification trees and random forests share many of
the same hyperparameters:

• number of trees in the forest

• node impurity measure (i.e. entropy or Gini)

• maximum depth of the trees

• number of features to consider when looking for
the best split

• minimum number of samples required to split a
node

• minimum number of samples required to be
present in each leaf

• whether or not bootstrap samples are used when
building trees

After tuning the hyperparameters, the AUC was 0.741
(without interaction features) and 0.714 (with interac-
tion features).

Figure 7: ROC curve for best random forest model
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These were the highest AUC values achieved so far,
and the accuracy, 72.9%, was the highest accuracy
attained on the test set.

Since random forests is a bagging ensemble method
for trees, we could not easily examine an internal tree
structure. However, it is interesting to note that as
before, random forest’s trees were aggressively cur-
tailed in their complexity. The optimal hyperparameter
settings allowed a maximum tree depth of only four,
and 25 samples are required to split a node.

VI. Conditional Probability Models

1 Naive Bayes

Having tried several binary classification models, with
the highest accuracy on test being 72.9%, we decided
to approach the problem with a conditional probability
model. We hypothesized that predicting probabilities
rather than hard classifications would add flexibility
to our model and increase accuracy.

We began with implementing sklearn’s Gaussian Naive
Bayes. Naive Bayes takes only one parameter: the prior
probabilities of the classes. Both training and test sets
were split fairly evenly (51% AML patients, 49% indi-
viduals without AML), so we set the prior distribution
to (0.5, 0.5). Setting other prior distributions had no
effect on the AUC measurements.

Naive Bayes achieved an AUC value of 0.662 (with and
without interaction features):

Figure 8: ROC curve for best Naive Bayes model

Because Naive Bayes is a conditional probability model,
we used the ROC curve to choose a threshold value that
would optimize accuracy. Several thresholds yielded
the optimal accuracy of 60.5% on the test set.

2 Logistic Regression

We next tried a different conditional probability model:
sklearn’s Logistic Regression. Using default param-
eters led to an AUC of 0.697 (without interaction
features) and 0.682 (with interaction features).

We used grid search and 10-fold cross validation
to test various hyperparameters pertinent to logistic
regression:

• optimization solver (e.g. liblinear, saga, etc.)

• penalty (`1 or `2)

• regularization parameter

• whether or not a constant should be added to the
decision function

After hyperparameter tuning, the resulting AUC was
0.743 (with interaction features) and 0.742 (without
interaction features).

Figure 9: ROC curve for best logistic regression model

As with Naive Bayes, we used the ROC curve to find
the prediction threshold that would yield the optimal
accuracy. The optimal threshold was 0.436. The best
accuracy attained on the test set was 71.3%.

IV. Conclusions

In summary, the results from the six models were as
follows:
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Without interaction features:

SVM
Classification

Trees
XGBoost

Random
Forests

Naive Bayes
Logistic

Regression
AUC: 0.693 0.713 0.705 0.741 0.662 0.742

Accuracy: 67.4% 69.8% 69.8% 72.9% 60.5% 71.3%

With interaction features:

SVM
Classification

Trees
XGBoost

Random
Forests

Naive Bayes
Logistic

Regression
AUC: 0.659 0.690 0.719 0.714 0.662 0.743

Accuracy: 63.6% 68.2% 70.5% 70.5% 62.0% 69.0%

1 Model Analysis

From the data above, we can conclude that the Naive
Bayes model was not well suited to our data. Naive
Bayes relies on the assumption that features are pair-
wise independent. We chose to implement the method
despite this since in practice, Naive Bayes works well
on some datasets that do not uphold this assumption,
and models typically do not need large training sets.
Ultimately, Naive Bayes did not perform well.

SVM had the next lowest accuracy of the six models.
From the pairwise plots in section II.3, we suspected
the data was not linearly separable, but decided to
experiment with various kernel functions. The sigmoid
kernel performed best in both cases (with and without
interaction features). It is interesting to note that the
sigmoid function is a special case of the logistic func-
tion, and logistic regression performed surprising well
(see discussion below). However, the overall perfor-
mance of the SVM model was relatively low.

One possible explanation for this is “label noise” in the
dataset. For example, the dataset labels each sample
depending on whether or not the patient has AML.
The dataset can contain two patients with similar in-
put feature values, one of whom has AML (with no
reported mutations) while the other does not. The first
patient would be marked with a “yes” in the dataset,
while the second patient would be categorized as “no”
despite the two patients having similar input features
values.

According to paper [4], certain models are more ro-
bust to label noise. The paper discusses how “the RF
[random forest] classifier achieves high robustness to
random and systematic label noise. . .whereas the SVM
classifier is more sensitive to the kernel choice and to
the input feature vectors.” This offers one explanation
of why the SVM model did not perform well while the
random forest classifier had the highest accuracy.

Classification trees, boosted trees, and random forests
attained similar accuracy scores. Because trees are
nonlinear and well suited to medical screening tests,
the relatively high accuracies of these models was not
surprising. Of the tree-based models (and of all six
models), random forests produced the highest accu-
racy: nearly 73%. Random forests generally reduce
overfitting, and mitigate variance. In the course of
hyperparameter tuning, all models needed significant
regularization to prevent overfitting; this could explain
the strength of the random forest model.

Finally, logistic regression performed better than ex-
pected on the dataset. The scientific community often
uses logistic regression models on biomedical datasets
with high-dimensionality, and continues to research
how to tune and alter those models [5].

2 Feature Importance

To gain further insight into the data, we used our
most successful models (random forests and logistic
regression) to graph feature importance. These fea-
ture importances come from an attribute of sklearn’s
random forest classifier.

Figure 10: Random forest feature importance
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The features that are not plotted have zero values. The
top two features are total allelic fraction and gene 42.
Many of the top ten features are blood attributes; only
genes 42, 13, 43, 40, and 39 are mentioned explicitly.
(Gene 43, which the optimal classification tree used as
a splitting variable, ranks seventh.)

It is interesting to compare this with the top features
ranked by sklearn’s logistic regression model. The
following is a plot of the coefficient values. Once again,
the features that are not plotted have zero values.

Figure 11: Logistic regression feature importance

Unsurprisingly, logistic regression also heavily empha-
sizes total allelic fraction. Unlike random forest feature
importance, logistic regression does not use any other
blood attribute. The favored genes in this model in-
clude 39, 43, 40, 15, 2, 36, 42, 17, and 23. This is almost
a superset of the genes emphasized by random forest.
Both models emphasize genes 39, 40, 42, and 43. Al-
though this does not prove any correlation between
these genes and AML, this observation could be com-
pared to existing knowledge of those gene mutations
in medical community.

3 Challenges

One major challenge we faced was choosing the train-
test split of the dataset. We originally used the tradi-
tional 80%-20% train-test split. We then tuned a few
models which performed well on validation sets (about
70% accuracy), but never exceeded 63% accuracy on
the test set. We hypothesized that the 73 samples in
our test set were not representative of the training
data. To test this hypothesis, we tried several train-test
splits (by changing the random_state parameter in
train_test_split()), and saw widely varying accu-
racies. The accuracy depended more on the random
seed than on the finely tuned hyperparameters.

Deciding how to remedy this problem was a chal-
lenge. Ultimately, we decided to increase the size
of our test set to 35% of the original data to reduce
variability. Of course this meant that our models could
only train and cross validate on 65% of the data, which
also led to a decrease in accuracy. However, we de-
cided that the reduction in variability was worth the
sacrifice in accuracy, and throughout the project we
used a 65%-35% train-test split and a random seed of 8.

In general, using a small dataset (with many sparse
columns) made it difficult to attain a high accuracy,
but it also allowed us to examine the entire dataset
manually which enhanced our understanding of the
problem.

V. Future Work

The six models explored in this project certainly do
not constitute an exhaustive list of models that could
be applied to this problem. There are many other
methods tailored to high-dimensionality datasets and
bioinformatics/medical problems that we could test;
see [4] and [5].

The techniques referenced in this project could also
be more finely tuned. The train-test split of 65%-35%
was chosen somewhat arbitrarily; in future work we
could explore other means of choosing the train-test
split proportion.

We could also further explore the potential of non-
linear features. The 21 interaction features referenced
in section II.4 generally did not improve AUC or ac-
curacy measures, and perhaps this was because they
were also chosen arbitrarily. More scientific methods
of nonlinear feature discovery exist, for example using
trees or neural networks, and this would also be an
interesting avenue to explore.

Aside from attempting other methods, it is impor-
tant that we understand on a deeper level why some
machine learning models had relatively high perfor-
mance compared to others. Logistic regression’s high
performance was a surprise; understanding why it
performed so well could provide more insight about
our data and possible next steps.
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Appendix A: Hyperparameter Tuning

When tuning the SVM model, we tested a wide range
of hyperparameter values:
param_grid = {

'kernel': ['rbf', 'poly', 'linear', 'sigmoid'],
'degree': [2, 3, 4, 5, 6],
'C': np.logspace(-4, 2, num=30),
'gamma':np.logspace(-4, 2, num=30),
'coef0':np.logspace(-4, 2, num=30),
'random_state':[0]

}

The table below shows the results of grid search using
10-fold cross validation.

After iteratively narrowing the range of hyperparam-
eters, we found that the optimal kernel was sigmoid,
the optimal regularization parameter C was 87, and
the optimal kernel coefficient gamma is 0.0212. These
settings led to an AUC of 0.693.

Figure 12: Hyperparameter tuning for SVM via grid search
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