Download this file

39 lines (32 with data), 1.5 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from sklearn import tree
from sklearn.metrics import roc_auc_score
from util import roc_results, results
def cart_training(x_train, y_train):
"""
:param x_train: the x-values we want to train on (2D numpy array)
:param y_train: the y-values that correspond to x_train (1D numpy array)
:return: sklearn CART Classifier object that can now be used for predictions
"""
clf = tree.DecisionTreeClassifier(criterion='entropy', splitter='best', max_depth=5, min_samples_split=2,
min_samples_leaf=1, min_impurity_decrease=0.023, random_state=0)
clf.fit(x_train, y_train)
return clf
def cart_classification(clf, x_test):
"""
:param clf: trained sklearn CART Classifier object
:param x_test: the x-values we want to get predictions on (2D numpy array)
:return: a 1D numpy array containing the predictions
"""
return clf.predict(x_test)
def cart_pipeline(x_train, y_train, x_test, y_test):
"""
:param x_train: the x-values we want to train on (2D numpy array)
:param y_train: the y-values that correspond to x_train (1D numpy array)
:param x_test: the x-values we want to test on (2D numpy array)
:param y_test: the y-values that correspond to x_test (1D numpy array)
:return: the roc auc score
"""
clf = cart_training(x_train, y_train)
y_pred = cart_classification(clf, x_test)
roc_results(y_pred, y_test, 'CART')
return roc_auc_score(y_test, y_pred), results(y_pred, y_test)