[4ff317]: / Figures / Figure3.R

Download this file

301 lines (208 with data), 13.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
################################################
# File Name:Figure3.R
# Author: Baoyan Bai
#################################################
####Integrate three different mutation files:
#1. original mutation calling file from Sigve
# this files has been filtered by Ole-Christian'script and by Jillian's TCGA PON
#2. raw vcf files from TSD. Many mutations in serial biopsies were in fact called, but rejcted for different reasons.
# I started to work this. Noticed some of mutations were still not called. But if looked at coverage, variant allele can be detected
#3. Pyclone result. Some mutations are missing due to CN=0 by ascat. I tried to recovery those mutations
#
# two mutations targeting on TBL1XR1 in P46 have wrong AF by IGV inspection. Those mutations were also manually added
#######Aim of
#######1. calcuate which mutation is clonal, subclonal
#######2. Check whether's possible to detect the variants in control DNA and which group of mutations can be detected in blood DNAs
####data.frame empty.raw: raw mutation file.
####this file: from raw VCF files. add additional columns to indicate the mutation is shared by all biopsy for a given patient.
####data.frame empty pyclone result
###flcombined imported from 16_combined/fl42_combined_updated010719.txt the latest mutation file, original file from Sigve
library(plyr)
library(dplyr)
library(ggplot2)
setwd("G:/FL_resequncing/FL_exome_final/fl_latest/11_pyclone/BED_bam/counts_new/CPC_codingPlusUTR_pyclone/All_codingPlusUTR/All_codingPlusUTR_i1")
flcombined<- read.csv(file="../fl_latest/16_combined/fl44_reseq_final_060619.txt", sep="\t",header=T, stringsAsFactors = F)
mutation<- unique(flcombined%>%select(Patient, Gene, SYMBOL,VAR_ID, CDS_CHANGE,HGVSp_short,Region,
VARIANT,VARIANT_CLASS))
mutation$chr<- as.character(lapply(strsplit(as.character(mutation$VAR_ID), "\\_"),"[",1))
mutation$star<- as.character(lapply(strsplit(as.character(mutation$VAR_ID), "\\_"),"[",2))
mutation$mutation_id<- paste(mutation$chr, mutation$star,sep="_")
###process JP6 seperately because JP6 does not have raw VCF file
JP6_anno<- mutation%>%filter(Patient=="P6B")
#########annotate pyclone result
pyclone.anno<- merge(empty, mutation, by=c("Patient", "mutation_id"))
###raw vcf df
###mutation calling
empty.raw$mutation_id<- paste(empty.raw$V1, empty.raw$V2,sep="_")
raw.vcf<- empty.raw%>%select(Patient,SAMPLE,mutation_id, VAR_ID, V7,V8, num_biopsy,sharedbyAll )
raw.vcf.anno<- merge(raw.vcf, mutation, by=c("Patient", "VAR_ID"))
##extract only coding
raw.vcf.anno.coding<- raw.vcf.anno%>%filter((Region=="Coding")| (VARIANT=="3'UTR") | (VARIANT=="5'UTR"))
#########
fl32<- subset(raw.vcf.anno.coding, Patient %in% unique(pyclone.anno$ Patient))
names(fl32)[names(fl32)=="mutation_id.x"]<- "mutation_id"
pyclone.df<- pyclone.anno%>%select(SAMPLE, mutation_id, cellular_prevalence,variant_allele_frequency, mean, class)
fl32.pyclone<- merge(fl32, pyclone.df, by=c("SAMPLE", "mutation_id"), all.x = T)
fl32.pyclone.removed<- fl32.pyclone%>%filter(is.na(cellular_prevalence))
missed_gene<- c("TAS1R3","ATAD3C","MMP23B","MORN1","HES2","TRAV8-6","SNRPA1","DLL4","VPS39","PAQR5","CEMIP","AMELY","ANHX","ATAD3C","B3GALT6","BRCA2","CBLB","CEMIP","DLL4","ESPN","FAM46A","HES2","IL5RA","IL9R","LCE1E","LEPROTL1","MAP1A","MMP23B","MORN1","PAQR5",
"PPIAL4G","RAB7A","RORC","SNRPA1","TAS1R3","TNFRSF14","TRAV8-6","TRMT10A","TSPY1","USF3","USP9Y","VPREB1","VPS39","ZBTB20","ZNF268")
fl32.missed<- subset(fl32.pyclone.removed, SYMBOL %in%missed_gene)
fl32.ig<- setdiff(fl32.pyclone.removed, fl32.missed)
#######have to manually add clonal informations for missed genes
write.table(fl32.missed,file="clonal_gene/fl32.missed_genes.txt",sep="\t",row.names=F, quote=F )
########read manually revised genes
fl32.missed<- read.table(file="clonal_gene/fl32.missed_genes_manulrevised.txt",sep="\t", quote="",header=T,stringsAsFactors = F)
fl32.pyclone.kept<- fl32.pyclone%>%filter(!is.na(cellular_prevalence))
fl32.pyclone.new<- rbind(fl32.pyclone.kept, fl32.missed)
########defining mutation order: early dominant, dominant, subclonal
###
biopsy_empty_new<- fl32.pyclone.new[-FALSE,]
for (i in unique(fl32.pyclone.new$SAMPLE)){
biopsy<- subset(fl32.pyclone.new, SAMPLE==i)
biopsy_specific<- biopsy%>%filter(variant_allele_frequency>0)
biopsy_specific$clonal<- ifelse(biopsy_specific$cellular_prevalence>=0.5 | biopsy_specific$mean>=0.5, "dominant", "subclonal")
biopsy_empty_new<- rbind(biopsy_empty_new, biopsy_specific)
}
removed<- fl32.pyclone.new%>%filter(variant_allele_frequency==0)
##remove"TBL1XR1", discard_rescue_TBL1XR1
recover<- subset(removed, class=="discard_rescue_TBL1XR1")
recover$clonal<- "dominant"
fl32.missed$clonal<- fl32.missed$class
######
fl32.all<- rbind( biopsy_empty_new, recover,fl32.missed)
mutation_af<- ddply(fl32.all, .(mutation_id, Patient), summarise, min_CF=min(cellular_prevalence))
fl32.all.af<- merge(fl32.all, mutation_af,by=c("Patient","mutation_id"))
fl32.all.af$clonal[fl32.all.af$min_CF>0.5 & fl32.all.af$sharedbyAll=="Y" ]<-"early_dominant"
###corrected on April 5th 2019
fl32.all.af$clonal[fl32.all.af$class=="CPC_dominant_lost_LOH" & fl32.all.af$clonal=="dominant"]<-"early_dominant"
fl32.all.af$clonal[fl32.all.af$class=="CPC_dominant"]<- "early_dominant"
fl32.final<- fl32.all.af[,-c(16,17,18)]
##########process JP6 ,see previous
JP6_final<- JP6_df[,-c(4,5,7,9,11,13,14,15,16,17,18,19)]
JP6_final<- ddply(JP6_final, .(mutation_id), mutate, min_CF=min(cellular_prevalence))
fl32.all.final<-rbind(fl32.final,JP6_final)
##########
write.table(fl32.all.final, file="clonal_gene/fl32.all.coding_040319.txt",sep="\t", row.names=F,quote=F)
write.table(fl32.all.final, file="clonal_gene/fl32.all.coding_040519.txt",sep="\t", row.names=F,quote=F)
####plotting
fl32<- read.table(file="clonal_gene/fl32.all.coding_040519.txt",sep="\t",header=T,quote="",stringsAsFactors = F)
fl32.dominant<- fl32%>%filter(clonal !="subclonal")
fl32.dominant.ns<- fl32.dominant%>%filter(Region=="Coding" & VARIANT!="Silent")%>%filter(class!="discard")
fl32.dominant.ns.df<- unique(fl32.dominant.ns%>%select(Patient, SYMBOL,clonal))
fl32.dominant.ns.df.count<- ddply(fl32.dominant.ns.df, .(SYMBOL),mutate, num_pat=length(unique(Patient)))
clinic<- read.xlsx(file="../../../../../../2_clinic_infor/FL_Baoyan_clinical_file_FINAL_020719 - survival.xlsx",sheetIndex = 1)
clinic$group<- ifelse(is.na(clinic$Date_transf), "nFL", "tFL")
clinic.reduced<- clinic%>%select(Patient_ID, group, POD24)
names(clinic.reduced)<- c("Patient", "group", "POD24")
fl32.dominant.clinic<- merge(fl32.dominant.ns.df.count,clinic.reduced,by="Patient", all.x=T )
#########
discard_genes<- c("TTN","MUC16","MUC12")
fl32.dominant.clinic.clean<- subset(fl32.dominant.clinic, !SYMBOL %in% discard_genes)
#######taking genes mutated in at least 4 cases
dominant_4cases<- fl32.dominant.clinic.clean%>%filter(num_pat>=4)
dominant_4cases$SYMBOL<- reorder(dominant_4cases$SYMBOL, dominant_4cases$num_pat)
dominant_4cases$SYMBOL_ordered <- with(dominant_4cases, reorder(SYMBOL, SYMBOL, function(x) -length(x)))
####sepearte nFL and tFL
dominant_4cases.nFL<- dominant_4cases%>%filter(group=="nFL")
tmp.nFL<-ddply(dominant_4cases.nFL, .(Patient,SYMBOL), mutate, status=length(Patient))
tmp.nFL$clonal_correct<-tmp.nFL$clonal
tmp.nFL$clonal_correct[tmp.nFL$status=="2"]<-"Both"
nFL_plot<- unique(tmp.nFL[, -c(3)])
nFL_plot$clonal_correct[nFL_plot$clonal_correct=="dominant"]<- "Late"
nFL_plot$clonal_correct[nFL_plot$clonal_correct=="early_dominant"]<- "CPC"
nFL_plot$clonal_correct<-factor(nFL_plot$clonal_correct, levels=c("Both","Late","CPC"))
nFL<-ggplot(nFL_plot, aes(x=SYMBOL,fill=clonal_correct,drop=FALSE))+geom_bar(width=0.5) +
scale_fill_manual(values=c("dark blue","pink","purple" ))+theme_bw()+coord_flip()+
theme(legend.position = "none",
axis.text.y=element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(size = 18,face="bold"),
legend.text=element_text(size=8,face="bold"),
legend.title = element_text(size=8, face="bold"),
plot.margin = unit(c(0.2,0,0.2,0.2), "cm"),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.border= element_rect(color="blue",size=2))+
scale_x_discrete(drop=FALSE)+
scale_y_continuous(breaks = c(0,5,10,15))+xlab("")+ylab("")
############separate tFL group
dominant_4cases.tFL<- dominant_4cases%>%filter(group=="tFL")
tmp.tFL<-ddply(dominant_4cases.tFL, .(Patient,SYMBOL), mutate, status=length(Patient))
tmp.tFL$clonal_correct<-tmp.tFL$clonal
tmp.tFL$clonal_correct[tmp.tFL$status=="2"]<-"Both"
tFL_plot<- unique(tmp.tFL[, -c(3)])
tFL_plot$clonal_correct[tFL_plot$clonal_correct=="dominant"]<- "Late"
tFL_plot$clonal_correct[tFL_plot$clonal_correct=="early_dominant"]<- "CPC"
tFL_plot$clonal_correct<-factor(tFL_plot$clonal_correct, levels=c("Both","Late","CPC"))
tFL<-ggplot(tFL_plot, aes(x=SYMBOL,fill=clonal_correct))+geom_bar(width=0.5) +
scale_fill_manual(values=c("dark blue","pink","purple" ))+coord_flip()+theme_bw()+
theme(legend.position = "none",
axis.text.y=element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(size = 18,face="bold"),
legend.text=element_text(size=8,face="bold"),
legend.title = element_text(size=8, face="bold"),
plot.margin = unit(c(0.2,0.2,0.2,-0.1), "cm"),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.border=element_rect(color="red", size=2))+xlab("")+ylab("")+
scale_x_discrete(drop=FALSE)+scale_y_continuous(breaks = c(0,5,10,15))
pdf(file="CPC_plots/24genes_freq_groups_20191203.pdf",width=4, height=6)
plot_grid(nFL,
tFL, align="h"
, nrow = 1,rel_widths=c(1,1))
dev.off()
#######try to plot them together, waterfall plot, frequency plot, clinic data
all<- rbind(nFL_plot, tFL_plot)
patient_order_nFL<- unique(fl32.dominant.clinic.clean$Patient[fl32.dominant.clinic.clean$group=="nFL"])
patient_order_tFL<- unique(fl32.dominant.clinic.clean$Patient[fl32.dominant.clinic.clean$group=="tFL"])
all$Patient<- factor(all$Patient, levels=c(patient_order_nFL,patient_order_tFL))
all$clonal_correct<- factor(all$clonal_correct,levels=c("Both", "CPC", "Late", "NA"))
all.tmp<- all%>%select(Patient, SYMBOL, clonal_correct)
all.tmp.cast<- cast(all.tmp, Patient~SYMBOL)
all.melt.again<- melt(all.tmp.cast, id.vars="Patient")
all.melt.again$value<- factor(all.melt.again$value, levels=c("Both", "CPC", "Late"))
all.plot<- ggplot(all.melt.again, aes(x=Patient, y=SYMBOL, fill=value))+
geom_tile(color="gray", size=0.1)+ scale_fill_manual(values=c("dark blue","purple","pink"),drop=FALSE)+scale_x_discrete(drop=FALSE)+
theme(panel.background = element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
axis.text.y =element_text(size=15,face="bold"),
legend.position = "NULL",
plot.margin = unit(c(0.5,-0.5,-0.5,0.5), "cm"))+ xlab("")+ylab("")
clinic.32<-unique(fl32.dominant.clinic.clean%>%select(Patient, group, POD24))
names(clinic.32)<- c("Patient", "Group", "POD24")
clinic.32$POD24<- factor(clinic.32$POD24, levels=c(0,1))
clinic.32$Patient<- factor(clinic.32$Patient, levels=c(patient_order_nFL,patient_order_tFL))
clinic.32.melt<- melt(clinic.32, id.vars = "Patient")
clinic_plot<- ggplot(clinic.32.melt, aes(x=Patient, y=variable, fill=value))+
geom_tile()+
scale_fill_manual(values=c("blue", "red", "grey","black"))+
theme(panel.background = element_blank(),
axis.text.x = element_blank(),
axis.text.y =element_text(size=16,face="bold"),
axis.ticks.x=element_blank(),
legend.position = "none",
plot.margin = unit(c(-0.1,0.5,-0.5,0.5), "cm"))+
xlab("")+ylab("")
library(egg)
####legend
tFL_plot$clonal_correct<- factor(tFL_plot$clonal_correct, levels=c("Both", "CPC", "Late"))
pdf(file="CPC_plots/Figure4B_20191112_legend.pdf",width=12,height=13)
ggplot(tFL_plot, aes(x=SYMBOL,fill=clonal_correct))+geom_bar(width=0.5) +
scale_fill_manual(values=c("dark blue","purple","pink"))+coord_flip()+theme_bw()+
theme(
axis.text.y=element_blank(),
axis.ticks.y = element_blank(),
axis.text.x = element_text(size = 18,face="bold"),
legend.text=element_text(size=14,face="bold"),
legend.title = element_text(size=16, face="bold"),
plot.margin = unit(c(0.2,0.2,0.2,-0.2), "cm"),
panel.grid.major = element_blank(), panel.grid.minor = element_blank())+xlab("")+ylab("")+labs(fill = "Timing")+
scale_x_discrete(drop=FALSE)+panel_border(color="red", size=2)+scale_y_continuous(breaks = c(0,5,10,15))
dev.off()
save.image("G:/FL_resequncing/FL_exome_final/fl_latest/11_pyclone/BED_bam/counts_new/CPC_codingPlusUTR_pyclone/All_codingPlusUTR/All_codingPlusUTR_i1/Figure4B_20191112.RData")
###updated on 2019.11.15
pdf(file="CPC_plots/24genes_groups_20191203.pdf",width=6, height=5.8)
plot_grid(all.plot,
clinic_plot, align="v"
, nrow = 2,rel_heights =c(14,2))
dev.off()