[4ff317]: / Figures / clonevol / clonevol_P56_201118.R

Download this file

305 lines (235 with data), 12.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
library(dplyr)
library(plyr)
library(clonevol)
library(fishplot)
library(reshape)
####coverage: from reseq BAM files
####step1: Using mpileup to extract coverage for each site. (Prepared 27/10/18), default parameter
####step2: Prepare input for pyclone, using segments from ASCAT
####step3: Run Pyclone twice. The first run is to identify founding cluster,
#### the second run adding --tumour_content based on the cellular prevalence for each biopsy (29/10/18)
###step4: using clonevol to build evolution tree and model (in this script) (30/10/18)
### using Fishplot to visulaize
###P56, 2 biopsies, nFL
#T1: LN_left_inguinal
#T2: LN_left_inguinal
setwd("G:/FL_resequncing/FL_exome_final/fl_latest/11_pyclone/BED_bam/counts_new/pyclone_output_301018")
pyclone_out<- read.table(file="ouput_pyclone/output_200X_i2/P56_200X_i2/tables/loci.tsv",sep="\t",header=T)
mutations<-cast(pyclone_out[,1:4], mutation_id~sample_id, value="cellular_prevalence")
id<-unique(pyclone_out[, c(1,3)] )
P_case<- merge(id, mutations,by="mutation_id")
vafs = data.frame(cluster=P_case$cluster_id,
T1_vaf=(P_case$`GCF0150-0056-T01`/2)*100,
T2_vaf=(P_case$`GCF0150-0056-T02`/2)*100,
stringsAsFactors=F)
vafs$cluster<- vafs$cluster+1
###needs manully check density plot to identify which cluster is founding cluster
##clonevol requires founding cluster=1
samples<-c("P56_1","P56_2")
samples1<-c("P56_1\nPrimary","P56_2\nRelapsed")
samples2<-c("P56_1\nPrimary\nLN_left_inguinal","P56_2\nRelapsed\nLN_left_inguinal")
names(vafs)[2:3] = samples
##step 2: run infer.clonal.models, run twice: 1. include all cluster.
###########2. manual review density plot and exlcude cluster with small number of mutations
dir.create("./clonevol/P56")
##
##first: use all clusters, no consensus models
#vafs$P14_2[vafs$cluster=="4"]<-vafs$P14_2[vafs$cluster=="4"]-1
res = infer.clonal.models(variants=vafs, cluster.col.name="cluster", vaf.col.names=samples,
subclonal.test="bootstrap", subclonal.test.model="non-parametric",
founding.cluster=1,
cluster.center="mean", num.boots=1000,
min.cluster.vaf=0.01, sum.p=0.01, alpha=0.01)
res = infer.clonal.models(variants=vafs, cluster.col.name="cluster", vaf.col.names=samples,
subclonal.test="bootstrap", subclonal.test.model="non-parametric",
founding.cluster=1,ignore.clusters = c(2,5,7,8),
,cluster.center="mean", num.boots=1000,
min.cluster.vaf=0.01, sum.p=0.01, alpha=0.01)
vafs_used<- subset(vafs, !cluster %in% c(2,5,7,8))
vafs_used$cluster[vafs_used$cluster==6]<-2
res = infer.clonal.models(variants=vafs_used, cluster.col.name="cluster", vaf.col.names=samples,
subclonal.test="bootstrap", subclonal.test.model="non-parametric",
founding.cluster=1,
cluster.center="mean", num.boots=1000,
min.cluster.vaf=0.01, sum.p=0.01, alpha=0.01)
res<-convert.consensus.tree.clone.to.branch(res, branch.scale = 'sqrt')
pdf("./clonevol/P56/P56_trees.pdf", useDingbats = FALSE)
plot.all.trees.clone.as.branch(res, branch.width = 0.5, node.size = 1, node.label.size = 0.5)
dev.off()
plot.clonal.models(res,
# box plot parameters
box.plot = TRUE,
fancy.boxplot = TRUE,
fancy.variant.boxplot.highlight = 'is.driver',
fancy.variant.boxplot.highlight.shape = 21,
fancy.variant.boxplot.highlight.fill.color = 'red',
fancy.variant.boxplot.highlight.color = 'black',
fancy.variant.boxplot.highlight.note.col.name = 'gene',
fancy.variant.boxplot.highlight.note.color = 'blue',
fancy.variant.boxplot.highlight.note.size = 2,
fancy.variant.boxplot.jitter.alpha = 1,
fancy.variant.boxplot.jitter.center.color = 'grey50',
fancy.variant.boxplot.base_size = 12,
fancy.variant.boxplot.plot.margin = 1,
fancy.variant.boxplot.vaf.suffix = '.VAF',
# bell plot parameters
clone.shape = 'bell',
bell.event = TRUE,
bell.event.label.color = 'blue',
bell.event.label.angle = 60,
clone.time.step.scale = 1,
bell.curve.step = 2,
# node-based consensus tree parameters
merged.tree.plot = TRUE,
tree.node.label.split.character = NULL,
tree.node.shape = 'circle',
tree.node.size = 30,
tree.node.text.size = 0.5,
merged.tree.node.size.scale = 1.25,
merged.tree.node.text.size.scale = 2,
merged.tree.cell.frac.ci = FALSE,
# branch-based consensus tree parameters
merged.tree.clone.as.branch = TRUE,
mtcab.event.sep.char = ',',
mtcab.branch.text.size = 1,
mtcab.branch.width = 0.75,
mtcab.node.size = 3,
mtcab.node.label.size = 1,
mtcab.node.text.size = 1.5,
# cellular population parameters
cell.plot = TRUE,
num.cells = 100,
cell.border.size = 0.25,
cell.border.color = 'black',
clone.grouping = 'horizontal',
#meta-parameters
scale.monoclonal.cell.frac = TRUE,
show.score = FALSE,
cell.frac.ci = TRUE,
disable.cell.frac = FALSE,
# output figure parameters
out.dir = './clonevol/P56/',
out.format = 'pdf',
overwrite.output = TRUE,
width = 10,
height = 4,
# vector of width scales for each panel from left to right
panel.widths = c(1.5,2.5,1.5,2.5,2))
###removing cell.frac annotation
plot.clonal.models(res,
# box plot parameters
box.plot = TRUE,
fancy.boxplot = TRUE,
fancy.variant.boxplot.highlight = 'is.driver',
fancy.variant.boxplot.highlight.shape = 21,
fancy.variant.boxplot.highlight.fill.color = 'red',
fancy.variant.boxplot.highlight.color = 'black',
fancy.variant.boxplot.highlight.note.col.name = 'gene',
fancy.variant.boxplot.highlight.note.color = 'blue',
fancy.variant.boxplot.highlight.note.size = 2,
fancy.variant.boxplot.jitter.alpha = 1,
fancy.variant.boxplot.jitter.center.color = 'grey50',
fancy.variant.boxplot.base_size = 12,
fancy.variant.boxplot.plot.margin = 1,
fancy.variant.boxplot.vaf.suffix = '.VAF',
# bell plot parameters
clone.shape = 'bell',
bell.event = TRUE,
bell.event.label.color = 'blue',
bell.event.label.angle = 60,
clone.time.step.scale = 1,
bell.curve.step = 2,
# node-based consensus tree parameters
merged.tree.plot = TRUE,
tree.node.label.split.character = NULL,
tree.node.shape = 'circle',
tree.node.size = 30,
tree.node.text.size = 0.5,
merged.tree.node.size.scale = 1.25,
merged.tree.node.text.size.scale = 2,
merged.tree.cell.frac.ci = FALSE,
# branch-based consensus tree parameters
merged.tree.clone.as.branch = TRUE,
mtcab.event.sep.char = ',',
mtcab.branch.text.size = 1,
mtcab.branch.width = 0.75,
mtcab.node.size = 3,
mtcab.node.label.size = 1,
mtcab.node.text.size = 1.5,
# cellular population parameters
cell.plot = TRUE,
num.cells = 100,
cell.border.size = 0.25,
cell.border.color = 'black',
clone.grouping = 'horizontal',
#meta-parameters
scale.monoclonal.cell.frac = TRUE,
show.score = FALSE,
cell.frac.ci = TRUE,
disable.cell.frac = TRUE,
# output figure parameters
out.dir = './clonevol/P56/',
out.format = 'pdf',
overwrite.output = TRUE,
width = 10,
height = 4,
# vector of width scales for each panel from left to right
panel.widths = c(1.5,2.5,1.5,2.5,2))
##generating fish plot
f<- generateFishplotInputs(results = res)
fishes=createFishPlotObjects(f)
pdf('./clonevol/P56/P56_fish_200x_pyclone_anno_loc.pdf', width=14, height=7)
for (i in 1:length(fishes)){
fish = layoutClones(fishes[[i]])
fish = setCol(fish,f$clonevol.clone.colors)
fishPlot(fish,shape="spline", title.btm="P1", cex.title=0.7,cex.vlab = 1.4,
vlines=seq(1, length(samples2)), vlab=samples2, pad.left=0.5)
}
dev.off()
pdf("./clonevol/P56/P56_box.pdf", width=3, height=3,useDingbats = FALSE, title='')
pp<-plot.variant.clusters(vafs_used,
cluster.col.name = 'cluster',
show.cluster.size = FALSE,
cluster.size.text.color = 'blue',
vaf.col.names = samples,
vaf.limits = 70,
sample.title.size = 20,
violin = FALSE,
box = FALSE,
jitter = TRUE,
jitter.shape = 1,
jitter.size = 3,
jitter.alpha = 1,
jitter.center.method = 'median',
jitter.center.size = 1,
jitter.center.color = 'darkgray',
jitter.center.display.value = 'none',
highlight = 'is.driver',
highlight.shape = 21,
highlight.color = 'blue',
highlight.fill.color = 'green',
highlight.note.col.name = 'gene',
highlight.note.size = 2,
order.by.total.vaf = FALSE)
dev.off()
plot.pairwise(vafs_used, col.names = samples,
out.prefix = './clonevol/P56/P56_variants.pairwise.plot')
pdf('./clonevol/P56/P56_flow.pdf')
plot.cluster.flow(vafs_used, vaf.col.names = samples,
sample.names = c('Primary', 'Relapsed'))
dev.off()
####checking coverage f
Pcase<-do.call("rbind", lapply( list.files("input_pyclone_271018_newpara/200X/GCF0150-0056-N01_200X/",full=TRUE),
read.table, header=TRUE, sep="\t"))
########
#min (dp) =min(c1inP4_1$var_counts+c1inP4_1$ref_counts)=273
#max (dp) =max(c1inP4_1$var_counts+c1inP4_1$ref_counts)=648
#median (dp) =median(c1inP4_1$var_counts+c1inP4_1$ref_counts)=380
#mean (dp) =mean(c1inP4_1$var_counts+c1inP4_1$ref_counts)=417
library(ggplot2)
pdf("clonevol/P56/coverage.pdf")
ggplot(Pcase, aes(x=(var_counts+ref_counts)))+
geom_histogram(position="dodge")+
facet_grid(~sample)
dev.off()
save.image("G:/FL_resequncing/FL_exome_final/fl_latest/11_pyclone/BED_bam/counts_new/pyclone_output_301018/P56.RData")