--- a
+++ b/Figures/clonevol/clonevol_P11_081118.R
@@ -0,0 +1,321 @@
+library(dplyr)
+library(plyr)
+library(clonevol)
+library(fishplot)
+library(reshape)
+
+####coverage: from reseq BAM files 
+####step1: Using mpileup to extract coverage for each site. (Prepared 27/10/18), default parameter
+
+####step2: Prepare input for pyclone, using segments from ASCAT
+
+####step3: Run Pyclone twice. The first run is to identify founding cluster, 
+####       the second run adding --tumour_content based on the cellular prevalence for each biopsy (29/10/18)
+
+###step4: using clonevol to build evolution tree and model (in this script) (30/10/18)
+
+###       using Fishplot to visulaize
+
+
+###P11, 2 biopsies, nFL
+
+#T1:LN_left_inguinal
+#T2:LN_left_inguinal
+
+
+
+setwd("G:/FL_resequncing/FL_exome_final/fl_latest/11_pyclone/BED_bam/counts_new/pyclone_output_301018")
+
+pyclone_out<- read.table(file="ouput_pyclone/output_200X_i2/P11_200X_i2/tables/loci.tsv",sep="\t",header=T)
+
+mutations<-cast(pyclone_out[,1:4], mutation_id~sample_id, value="cellular_prevalence")
+id<-unique(pyclone_out[, c(1,3)] )
+
+P_case<- merge(id, mutations,by="mutation_id")
+
+vafs = data.frame(cluster=P_case$cluster_id,
+                  T1_vaf=(P_case$`GCF0150-0011-T01`/2)*100,
+                  T2_vaf=(P_case$`GCF0150-0011-T02`/2)*100,
+                  stringsAsFactors=F)
+
+vafs$cluster<- vafs$cluster+1
+
+###needs manully check density plot to identify which cluster is founding cluster
+##clonevol requires founding cluster=1
+
+max_id<- max(vafs$cluster)+1
+
+vafs$cluster[vafs$cluster==1]<-max_id
+vafs$cluster[vafs$cluster==2]<-1
+vafs$cluster[vafs$cluster==max_id]<-2
+
+
+
+samples<-c("P11_1","P11_2")
+
+samples1<-c("P11_1\nPrimary","P10_2\nRelapse")
+samples2<-c("P11_1\nPrimary\nLN_left_inguinal","P11_2\nRelapse\nLN_left_inguinal")
+
+names(vafs)[2:3] = samples 
+##step 2: run infer.clonal.models, run twice: 1. include all cluster. 
+###########2. manual review density plot and exlcude cluster with small number of mutations
+
+
+dir.create("./clonevol/P11")
+##
+
+
+##first: use all clusters, no consensus models
+
+res = infer.clonal.models(variants=vafs, cluster.col.name="cluster", vaf.col.names=samples,
+                          
+                          subclonal.test="bootstrap", subclonal.test.model="non-parametric",
+                          founding.cluster=1,
+                          cluster.center="mean", num.boots=1000,
+                          min.cluster.vaf=0.01, sum.p=0.01, alpha=0.01)
+
+res = infer.clonal.models(variants=vafs, cluster.col.name="cluster", vaf.col.names=samples,
+                          
+                          subclonal.test="bootstrap", subclonal.test.model="non-parametric",
+                          founding.cluster=1,ignore.clusters = c(6:7,9:11),
+                          cluster.center="mean", num.boots=1000,
+                          min.cluster.vaf=0.01, sum.p=0.01, alpha=0.01)
+
+
+#Finding consensus models across samples...
+#Found  0 consensus model(s)
+#Found 0 consensus model(s)
+
+
+##second: ignore cluster 5:7 consensus model based on manual review
+
+
+vafs_used<- subset(vafs, !cluster %in% c(6:7,9:11))
+
+vafs_used$cluster[vafs_used$cluster=="8"]<-6
+
+
+res = infer.clonal.models(variants=vafs_used, cluster.col.name="cluster", vaf.col.names=samples,
+                          subclonal.test="bootstrap", subclonal.test.model="non-parametric",
+                          founding.cluster=1, 
+                          cluster.center="mean", num.boots=1000,
+                          min.cluster.vaf=0.01, sum.p=0.01, alpha=0.01)
+
+
+
+res<-convert.consensus.tree.clone.to.branch(res, branch.scale = 'sqrt')
+
+pdf("./clonevol/P11/P11_trees.pdf", useDingbats = FALSE)
+plot.all.trees.clone.as.branch(res, branch.width = 0.5, node.size = 1, node.label.size = 0.5)
+dev.off()
+
+
+plot.clonal.models(res,
+                   # box plot parameters
+                   box.plot = TRUE,
+                   fancy.boxplot = TRUE,
+                   fancy.variant.boxplot.highlight = 'is.driver',
+                   fancy.variant.boxplot.highlight.shape = 21,
+                   fancy.variant.boxplot.highlight.fill.color = 'red',
+                   fancy.variant.boxplot.highlight.color = 'black',
+                   fancy.variant.boxplot.highlight.note.col.name = 'gene',
+                   fancy.variant.boxplot.highlight.note.color = 'blue',
+                   fancy.variant.boxplot.highlight.note.size = 2,
+                   fancy.variant.boxplot.jitter.alpha = 1,
+                   fancy.variant.boxplot.jitter.center.color = 'grey50',
+                   fancy.variant.boxplot.base_size = 12,
+                   fancy.variant.boxplot.plot.margin = 1,
+                   fancy.variant.boxplot.vaf.suffix = '.VAF',
+                   # bell plot parameters
+                   clone.shape = 'bell',
+                   bell.event = TRUE,
+                   bell.event.label.color = 'blue',
+                   bell.event.label.angle = 60,
+                   clone.time.step.scale = 1,
+                   bell.curve.step = 2,
+                   # node-based consensus tree parameters
+                   merged.tree.plot = TRUE,
+                   tree.node.label.split.character = NULL,
+                   tree.node.shape = 'circle',
+                   tree.node.size = 30,
+                   tree.node.text.size = 0.5,
+                   merged.tree.node.size.scale = 1.25,
+                   merged.tree.node.text.size.scale = 2,
+                   merged.tree.cell.frac.ci = FALSE,
+                   # branch-based consensus tree parameters
+                   merged.tree.clone.as.branch = TRUE,
+                   mtcab.event.sep.char = ',',
+                   mtcab.branch.text.size = 1,
+                   mtcab.branch.width = 0.75,
+                   mtcab.node.size = 3,
+                   mtcab.node.label.size = 1,
+                   mtcab.node.text.size = 1.5,
+                   # cellular population parameters
+                   cell.plot = TRUE,
+                   num.cells = 100,
+                   cell.border.size = 0.25,
+                   cell.border.color = 'black',
+                   clone.grouping = 'horizontal',
+                   #meta-parameters
+                   scale.monoclonal.cell.frac = TRUE,
+                   show.score = FALSE,
+                   cell.frac.ci = TRUE,
+                   disable.cell.frac = FALSE,
+                   # output figure parameters
+                   out.dir = './clonevol/P11/',
+                   out.format = 'pdf',
+                   overwrite.output = TRUE,
+                   width = 10,
+                   height = 4,
+                   # vector of width scales for each panel from left to right
+                   panel.widths = c(1.5,2.5,1.5,2.5,2))
+
+###removing cell.frac annotation
+
+plot.clonal.models(res,
+                   # box plot parameters
+                   box.plot = TRUE,
+                   fancy.boxplot = TRUE,
+                   fancy.variant.boxplot.highlight = 'is.driver',
+                   fancy.variant.boxplot.highlight.shape = 21,
+                   fancy.variant.boxplot.highlight.fill.color = 'red',
+                   fancy.variant.boxplot.highlight.color = 'black',
+                   fancy.variant.boxplot.highlight.note.col.name = 'gene',
+                   fancy.variant.boxplot.highlight.note.color = 'blue',
+                   fancy.variant.boxplot.highlight.note.size = 2,
+                   fancy.variant.boxplot.jitter.alpha = 1,
+                   fancy.variant.boxplot.jitter.center.color = 'grey50',
+                   fancy.variant.boxplot.base_size = 12,
+                   fancy.variant.boxplot.plot.margin = 1,
+                   fancy.variant.boxplot.vaf.suffix = '.VAF',
+                   # bell plot parameters
+                   clone.shape = 'bell',
+                   bell.event = TRUE,
+                   bell.event.label.color = 'blue',
+                   bell.event.label.angle = 60,
+                   clone.time.step.scale = 1,
+                   bell.curve.step = 2,
+                   # node-based consensus tree parameters
+                   merged.tree.plot = TRUE,
+                   tree.node.label.split.character = NULL,
+                   tree.node.shape = 'circle',
+                   tree.node.size = 30,
+                   tree.node.text.size = 0.5,
+                   merged.tree.node.size.scale = 1.25,
+                   merged.tree.node.text.size.scale = 2,
+                   merged.tree.cell.frac.ci = FALSE,
+                   # branch-based consensus tree parameters
+                   merged.tree.clone.as.branch = TRUE,
+                   mtcab.event.sep.char = ',',
+                   mtcab.branch.text.size = 1,
+                   mtcab.branch.width = 0.75,
+                   mtcab.node.size = 3,
+                   mtcab.node.label.size = 1,
+                   mtcab.node.text.size = 1.5,
+                   # cellular population parameters
+                   cell.plot = TRUE,
+                   num.cells = 100,
+                   cell.border.size = 0.25,
+                   cell.border.color = 'black',
+                   clone.grouping = 'horizontal',
+                   #meta-parameters
+                   scale.monoclonal.cell.frac = TRUE,
+                   show.score = FALSE,
+                   cell.frac.ci = TRUE,
+                   disable.cell.frac = TRUE,
+                   # output figure parameters
+                   out.dir = './clonevol/P11/',
+                   out.format = 'pdf',
+                   overwrite.output = TRUE,
+                   width = 10,
+                   height = 4,
+                   # vector of width scales for each panel from left to right
+                   panel.widths = c(1.5,2.5,1.5,2.5,2))
+
+
+##generating fish plot
+f<- generateFishplotInputs(results = res)
+fishes=createFishPlotObjects(f)
+
+
+
+pdf('./clonevol/P11/P11_fish_200x_pyclone_anno_loc.pdf', width=14, height=7)
+for (i in 1:length(fishes)){
+  
+  fish = layoutClones(fishes[[i]])
+  fish = setCol(fish,f$clonevol.clone.colors)
+  fishPlot(fish,shape="spline", title.btm="P1", cex.title=0.7,cex.vlab = 1.4,
+           vlines=seq(1, length(samples2)), vlab=samples2, pad.left=0.5)
+}
+dev.off()
+
+
+
+pdf("./clonevol/P11/P11_box.pdf", width=3, height=3,useDingbats = FALSE, title='')
+pp<-plot.variant.clusters(vafs_used,
+                          cluster.col.name = 'cluster',
+                          show.cluster.size = FALSE,
+                          cluster.size.text.color = 'blue',
+                          vaf.col.names = samples,
+                          vaf.limits = 70,
+                          sample.title.size = 20,
+                          violin = FALSE,
+                          box = FALSE,
+                          jitter = TRUE,
+                          jitter.shape = 1,
+                          
+                          jitter.size = 3,
+                          jitter.alpha = 1,
+                          jitter.center.method = 'median',
+                          jitter.center.size = 1,
+                          jitter.center.color = 'darkgray',
+                          jitter.center.display.value = 'none',
+                          highlight = 'is.driver',
+                          highlight.shape = 21,
+                          highlight.color = 'blue',
+                          highlight.fill.color = 'green',
+                          highlight.note.col.name = 'gene',
+                          highlight.note.size = 2,
+                          order.by.total.vaf = FALSE)
+
+dev.off()
+
+
+plot.pairwise(vafs_used, col.names = samples,
+              out.prefix = './clonevol/P11/P11_variants.pairwise.plot')
+
+
+pdf('./clonevol/P11/P11_flow.pdf')
+plot.cluster.flow(vafs_used, vaf.col.names = samples,
+                  sample.names = c('Primary', 'Relapse'))
+dev.off()
+
+
+####checking coverage f
+
+
+
+P11_1<- read.table(file="input_pyclone_271018_newpara/200X/GCF0150-0011-N01_200X/GCF0150-0011-T01.txt",sep="\t",header=T)
+P11_2<- read.table(file="input_pyclone_271018_newpara/200X/GCF0150-0011-N01_200X/GCF0150-0011-T02.txt",sep="\t",header=T)
+Pcase<- rbind(P11_1, P11_2)
+
+
+
+########
+#min (dp) =min(c1inP4_1$var_counts+c1inP4_1$ref_counts)=273
+
+#max (dp) =max(c1inP4_1$var_counts+c1inP4_1$ref_counts)=648
+#median (dp) =median(c1inP4_1$var_counts+c1inP4_1$ref_counts)=380
+#mean (dp) =mean(c1inP4_1$var_counts+c1inP4_1$ref_counts)=417
+
+library(ggplot2)
+
+
+
+pdf("clonevol/P11/coverage.pdf")
+ggplot(Pcase, aes(x=var_counts+ref_counts, fill=sample))+geom_histogram()
+
+dev.off()
+
+
+