|
a |
|
b/Figures/Figure1_drivers.R |
|
|
1 |
|
|
|
2 |
################################################ |
|
|
3 |
# File Name:Figure1_drivers.R |
|
|
4 |
# Author: Baoyan Bai |
|
|
5 |
|
|
|
6 |
|
|
|
7 |
################################################# |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
########Manually plot driver genes (DO NOT USE GENVISR) |
|
|
11 |
########date: 20211012, plot 51 genes with VAF adjusted for tumor% >=0.15 |
|
|
12 |
########add clinic features: group, POD24 infor |
|
|
13 |
########genes ordered based on mutation frequency |
|
|
14 |
|
|
|
15 |
library(maftools) |
|
|
16 |
library(plyr) |
|
|
17 |
library(dplyr) |
|
|
18 |
library(pheatmap) |
|
|
19 |
library(xlsx) |
|
|
20 |
library(reshape) |
|
|
21 |
library(readxl) |
|
|
22 |
library(ggplot2) |
|
|
23 |
library(RColorBrewer) |
|
|
24 |
library(egg) |
|
|
25 |
setwd("~/Desktop/FL/fl_latest") |
|
|
26 |
flreseq<- read.table(file="16_combined/fl44_reseq_final_060619.txt",sep="\t",header = T, |
|
|
27 |
stringsAsFactors = F,quote="") |
|
|
28 |
|
|
|
29 |
drivers<- read.table(file="28_drivergenes/51drivers.txt",header=T,stringsAsFactors = F) |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
###clinical information |
|
|
33 |
|
|
|
34 |
clinic_biopsy<- read.table(file="2_clinic_infor/FL94biopsies_Sigve_20211125.txt",sep="\t",header=T,stringsAsFactors = F) |
|
|
35 |
clinic_biopsy$type[clinic_biopsy$type=="pre&transform"]<- "transform" |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
|
40 |
clinic_biopsy_redced<- clinic_biopsy%>%select(Sample_name, type, group, POD24.1) |
|
|
41 |
names(clinic_biopsy_redced)<- c("sample", "type", "group", "POD24") |
|
|
42 |
clinic_biopsy_redced.melt<- melt(clinic_biopsy_redced, id.vars = "sample") |
|
|
43 |
clinic_biopsy_redced.melt$variable<- factor(clinic_biopsy_redced.melt$variable, levels=c("group","POD24","type")) |
|
|
44 |
|
|
|
45 |
####clinic information |
|
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
|
49 |
|
|
|
50 |
###making data.frame for waterfall plot |
|
|
51 |
|
|
|
52 |
plot_df_all<- unique(flreseq%>%filter(Region=="Coding"& VARIANT!="Silent")%>%select(SAMPLE, SYMBOL,VARIANT)) |
|
|
53 |
names(plot_df_all)<- c("sample", "gene", "variant_class") |
|
|
54 |
plot_df_all$variant_class[plot_df_all$variant_class=="Frame_Shift_Ins" |plot_df_all$variant_class=="Frame_Shift_Del"]<- "Frame_Shift" |
|
|
55 |
plot_df_all$variant_class[plot_df_all$variant_class=="In_Frame_Ins" |plot_df_all$variant_class=="In_Frame_Del"]<- "In_Frame" |
|
|
56 |
|
|
|
57 |
sample_order<- c(as.character(clinic_biopsy_redced$sample[clinic_biopsy_redced$group=="nFL"]), |
|
|
58 |
as.character(clinic_biopsy_redced$sample[clinic_biopsy_redced$group=="tFL"& clinic_biopsy_redced$type!="transform"]) , |
|
|
59 |
as.character(clinic_biopsy_redced$sample[clinic_biopsy_redced$group=="tFL" & clinic_biopsy_redced$type=="transform"])) |
|
|
60 |
|
|
|
61 |
remove_sample<- c("P34_1", "P35_1", "P58_2") |
|
|
62 |
sample_order_94<- setdiff(sample_order, remove_sample ) |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
|
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
|
|
|
70 |
plot_df_all$variant_class[plot_df_all$variant_class=="Translation_Start_Site" |plot_df_all$variant_class=="Nonstop_Mutation"]<- "Translation_Site" |
|
|
71 |
|
|
|
72 |
plot_df_all$variant_class[plot_df_all$variant_class=="Missense_Mutation"]<- "Missense" |
|
|
73 |
|
|
|
74 |
plot_df_all$variant_class[plot_df_all$variant_class=="Nonsense_Mutation"]<- "Nonsense" |
|
|
75 |
|
|
|
76 |
plot_df_all$variant_class<- factor(plot_df_all$variant_class, |
|
|
77 |
levels=c("Frame_Shift","Nonsense", "Splice_Site", "In_Frame", "Translation_Site", "Missense")) |
|
|
78 |
|
|
|
79 |
########## |
|
|
80 |
plot_df<- ddply(plot_df_all, .(sample, gene), mutate, variant_class_correct=min(as.integer( variant_class ))) |
|
|
81 |
|
|
|
82 |
|
|
|
83 |
|
|
|
84 |
plot_df$variant_1<-levels(plot_df$variant_class)[plot_df$variant_class_correct] |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
plot_df.reduced<- unique(plot_df%>%select(sample, gene, variant_1)) |
|
|
88 |
plot_df.cast<- cast(plot_df.reduced, gene~ sample) |
|
|
89 |
|
|
|
90 |
plot_df.melt<- melt(plot_df.cast, id.vars="gene") |
|
|
91 |
|
|
|
92 |
plot_df.drivers<- subset(plot_df.melt, gene %in%drivers$SYMBOL) |
|
|
93 |
|
|
|
94 |
|
|
|
95 |
plot_df.drivers$sample<-factor(plot_df.drivers$sample, levels=sample_order_94) |
|
|
96 |
plot_df.drivers$value<- as.character(plot_df.drivers$value) |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
plot_df.drivers$value<- factor(plot_df.drivers$value, |
|
|
100 |
levels=c("Frame_Shift", "Nonsense","Splice_Site", "In_Frame", "Translation_Site","Missense")) |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
#####sort genes based on patient-level frequency |
|
|
104 |
|
|
|
105 |
plot_df_pat<- unique(flreseq%>%filter(Region=="Coding"& VARIANT!="Silent")%>%select(Patient, SYMBOL)%>% filter(SYMBOL %in% drivers$SYMBOL)) |
|
|
106 |
|
|
|
107 |
########### |
|
|
108 |
|
|
|
109 |
drivers.sum.pat<- ddply(plot_df_pat, .(SYMBOL), summarise,, Patient=length(Patient)) |
|
|
110 |
|
|
|
111 |
drivers.sum.pat$SYMBOL<- reorder(drivers.sum.pat$SYMBOL, drivers.sum.pat$Patient) |
|
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
|
115 |
### |
|
|
116 |
plot_df.drivers$gene<- factor(plot_df.drivers$gene, levels=levels(drivers.sum.pat$SYMBOL)) |
|
|
117 |
|
|
|
118 |
|
|
|
119 |
mutation<-ggplot(plot_df.drivers, aes(x=sample, y=gene,fill=value))+geom_tile(color="gray", size=0.1)+ |
|
|
120 |
scale_fill_manual(values=c("#e7298a","firebrick","navyblue","#1b9e77", "#7570b3","#66a61e","white"),na.translate=FALSE)+scale_x_discrete(drop=FALSE)+ |
|
|
121 |
theme(panel.background = element_blank(), |
|
|
122 |
legend.text = element_text(size=14,face="bold"), |
|
|
123 |
legend.title = element_text(size=16,face="bold"), |
|
|
124 |
axis.ticks.x=element_blank(), |
|
|
125 |
axis.ticks.y=element_blank(), |
|
|
126 |
legend.position = "none", |
|
|
127 |
axis.text.x =element_blank(), |
|
|
128 |
axis.text.y =element_text(size=10,hjust =0), |
|
|
129 |
plot.margin = unit(c(0.5,0.5,-0.2,0.5), "cm"))+ xlab("")+ylab("") |
|
|
130 |
guides(fill=guide_legend(title="Mutation Type")) |
|
|
131 |
|
|
|
132 |
|
|
|
133 |
|
|
|
134 |
#####frequency plot |
|
|
135 |
pat<- unique(clinic_biopsy%>% select(Patient, group)) |
|
|
136 |
|
|
|
137 |
drivers.pat.clinic<-merge(plot_df_pat, pat,by="Patient") |
|
|
138 |
drivers.pat.clinic$SYMBOL<- factor(drivers.pat.clinic$SYMBOL, levels=levels(plot_df.drivers$gene)) |
|
|
139 |
drivers.pat.clinic$group<- factor(drivers.pat.clinic$group, levels=c("tFL", "nFL")) |
|
|
140 |
|
|
|
141 |
plot_freq<- ggplot(drivers.pat.clinic, aes(x=SYMBOL, fill=group))+ geom_bar()+ scale_fill_manual(values=c("red","blue"))+ |
|
|
142 |
coord_flip()+theme_bw()+ theme(axis.text.y = element_blank() , |
|
|
143 |
axis.text.x=element_text(size=12), |
|
|
144 |
legend.position = c(0.80, 0.1), |
|
|
145 |
axis.ticks.y=element_blank(), |
|
|
146 |
plot.margin = unit(c(0.3,0.3,-0.8,-0.5), "cm"))+ |
|
|
147 |
ylab("Number of patients")+xlab("") |
|
|
148 |
|
|
|
149 |
freq<-plot_freq+ guides(fill = guide_legend(reverse=TRUE)) |
|
|
150 |
|
|
|
151 |
|
|
|
152 |
|
|
|
153 |
|
|
|
154 |
|
|
|
155 |
#######clinic information |
|
|
156 |
clinic_biopsy_redced.melt$sample<- factor(clinic_biopsy_redced.melt$sample, levels=sample_order_94) |
|
|
157 |
clinic.final<- subset(clinic_biopsy_redced.melt,sample %in%sample_order_94) |
|
|
158 |
clinic.final$variable<- as.character(clinic.final$variable) |
|
|
159 |
|
|
|
160 |
clinic.final$variable[clinic.final$variable=="group"]<- "Group" |
|
|
161 |
clinic.final$variable[clinic.final$variable=="type"]<- "Biopsy" |
|
|
162 |
clinic.final$variable<- factor(clinic.final$variable,levels=c("Group", "POD24", "Biopsy")) |
|
|
163 |
|
|
|
164 |
clinic.final$value<- factor(clinic.final$value, levels=c("pre", "relapse", "transform", "nFL", "tFL","0", "1")) |
|
|
165 |
clinic.plot<- ggplot(clinic.final, aes(x=sample, y=variable, fill=value))+geom_tile()+ |
|
|
166 |
scale_fill_manual(values=c("dark cyan","#fbb4ae", "purple","#998EC3","#F1A340", "grey", "black"))+ |
|
|
167 |
theme(panel.background = element_blank(), |
|
|
168 |
axis.ticks.x=element_blank(), |
|
|
169 |
legend.text = element_text(size=12,face="bold"), |
|
|
170 |
legend.title = element_text(size=14,face="bold"), |
|
|
171 |
axis.ticks.y=element_blank(), |
|
|
172 |
axis.text.x=element_blank(), |
|
|
173 |
legend.position="right", |
|
|
174 |
axis.text.y =element_text(size=14,face="bold"), |
|
|
175 |
plot.margin = unit(c(0.1,0.2,0,2,0.5), "cm"))+ xlab("")+ylab("")+ |
|
|
176 |
guides(fill=guide_legend(ncol=2, title="Biopsy Group")) |
|
|
177 |
|
|
|
178 |
###select colors |
|
|
179 |
|
|
|
180 |
"#998EC3","#F1A340", |
|
|
181 |
|
|
|
182 |
clinic.plot.nolegend<- ggplot(clinic.final, aes(x=sample, y=variable, fill=value))+geom_tile()+ |
|
|
183 |
scale_fill_manual(values=c("dark cyan","#fbb4ae", "purple","#998EC3","#F1A340", "grey", "black"))+ |
|
|
184 |
theme(panel.background = element_blank(), |
|
|
185 |
axis.ticks.x=element_blank(), |
|
|
186 |
legend.text = element_text(size=12,face="bold"), |
|
|
187 |
legend.title = element_text(size=14,face="bold"), |
|
|
188 |
axis.ticks.y=element_blank(), |
|
|
189 |
axis.text.x=element_blank(), |
|
|
190 |
legend.position="null", |
|
|
191 |
axis.text.y =element_text(size=12), |
|
|
192 |
plot.margin = unit(c(-0.2,0.5,0.5,0.5), "cm"))+ xlab("")+ylab("") |
|
|
193 |
|
|
|
194 |
########## |
|
|
195 |
|
|
|
196 |
#####arrange the plots |
|
|
197 |
|
|
|
198 |
|
|
|
199 |
pdf(file="figures/Final_figures/51drivers_complete_clinic_20211130.pdf", width=13,height=8) |
|
|
200 |
ggarrange(mutation, clinic.plot.nolegend, nrow=2, ncol=1, heights=c(10,1)) |
|
|
201 |
|
|
|
202 |
dev.off() |
|
|
203 |
|
|
|
204 |
###########stop |
|
|
205 |
|
|
|
206 |
#####making forest plot |
|
|
207 |
clinic<- read_excel("./2_clinic_infor/FL_Baoyan_clinical_file_FINAL_020719_use.xlsx", sheet = 1) |
|
|
208 |
|
|
|
209 |
clinic$group<- ifelse(is.na(clinic$Date_transf), "nFL", "tFL") |
|
|
210 |
|
|
|
211 |
clinic.info<- clinic%>%select(Patient_ID, group) |
|
|
212 |
|
|
|
213 |
names(clinic.info)<- c("Patient", "Group") |
|
|
214 |
|
|
|
215 |
flreseq$chrom<- as.character(lapply(strsplit(as.character(flreseq$VAR_ID), "\\_"),"[",1)) |
|
|
216 |
flreseq$pos<-as.character(lapply(strsplit(as.character(flreseq$VAR_ID), "\\_"),"[",2)) |
|
|
217 |
flreseq$ref<-as.character(lapply(strsplit(as.character(flreseq$VAR_ID), "\\_"),"[",3)) |
|
|
218 |
flreseq$alt<-as.character(lapply(strsplit(as.character(flreseq$VAR_ID), "\\_"),"[",4)) |
|
|
219 |
|
|
|
220 |
|
|
|
221 |
|
|
|
222 |
flreseq_sample.maf<- unique(flreseq%>%select(Patient, SYMBOL, chrom, pos, ref, alt, VARIANT,VARIANT_CLASS, HGVSp_short)) |
|
|
223 |
|
|
|
224 |
|
|
|
225 |
|
|
|
226 |
names(flreseq_sample.maf)<- c("Tumor_Sample_Barcode", |
|
|
227 |
"Hugo_Symbol", "Chromosome", "Start_Position", "Reference_Allele", |
|
|
228 |
"Tumor_Seq_Allele2", "Variant_Classification", "Variant_Type", "HGVSp_short") |
|
|
229 |
|
|
|
230 |
flreseq_sample.maf$End_Position<- flreseq_sample.maf$Start_Position |
|
|
231 |
flreseq_sample.maf$Variant_Type[flreseq_sample.maf$Variant_Type=="snv"]<- "SNP" |
|
|
232 |
flreseq_sample.maf$Variant_Classification[flreseq_sample.maf$Variant_Classification=="3' UTR"]<- "3'UTR" |
|
|
233 |
flreseq_sample.maf$Variant_Classification[flreseq_sample.maf$Variant_Classification=="5' UTR"]<- "5'UTR" |
|
|
234 |
|
|
|
235 |
|
|
|
236 |
flreseq_sample.maf$Variant_Type[flreseq_sample.maf$Variant_Type=="deletion"]<- "DEL" |
|
|
237 |
flreseq_sample.maf$Variant_Type[flreseq_sample.maf$Variant_Type=="inDEL"]<- "DEL" |
|
|
238 |
flreseq_sample.maf$Variant_Type[flreseq_sample.maf$Variant_Type=="insertion"]<- "INS" |
|
|
239 |
flreseq_sample.maf$Variant_Type[flreseq_sample.maf$Variant_Type=="INdel"]<- "INS" |
|
|
240 |
flreseq_sample.maf$Variant_Type[flreseq_sample.maf$Variant_Type=="substitution"]<- "SUB" |
|
|
241 |
flreseq_sample.maf$Variant_Type[flreseq_sample.maf$Variant_Type=="SNV"]<- "SNP" |
|
|
242 |
#######seperate nFL and tFL |
|
|
243 |
|
|
|
244 |
|
|
|
245 |
|
|
|
246 |
flreseq.nFL<- subset(flreseq_sample.maf, Tumor_Sample_Barcode%in% clinic.info$Patient[clinic.info$Group=="nFL"]) |
|
|
247 |
flreseq.tFL<- subset(flreseq_sample.maf, Tumor_Sample_Barcode%in% clinic.info$Patient[clinic.info$Group=="tFL"]) |
|
|
248 |
|
|
|
249 |
###taking only drivers |
|
|
250 |
flreseq.nFL.drivers<- flreseq.nFL%>%filter (Hugo_Symbol%in% drivers$SYMBOL) |
|
|
251 |
flreseq.tFL.drivers<- flreseq.tFL%>%filter (Hugo_Symbol%in% drivers$SYMBOL) |
|
|
252 |
|
|
|
253 |
##### |
|
|
254 |
|
|
|
255 |
|
|
|
256 |
nFL.maf<- read.maf(flreseq.nFL.drivers) |
|
|
257 |
tFL.maf<- read.maf(flreseq.tFL.drivers) |
|
|
258 |
nFL.vs.tFL<- mafCompare(m1=nFL.maf, m2=tFL.maf, m1Name = "nFL group", m2Name = "tFL group", minMut=0) |
|
|
259 |
print(nFL.vs.tFL) |
|
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
|
263 |
drivers.sum.pat$SYMBOL<- reorder(drivers.sum.pat$SYMBOL, drivers.sum.pat$Patient) |
|
|
264 |
|
|
|
265 |
trace(forestPlot, edit=TRUE) |
|
|
266 |
###change |
|
|
267 |
#m.sigs$Hugo_Symbol <- factor(m.sigs$Hugo_Symbol, levels = levels(drivers.sum.pat$SYMBOL)) |
|
|
268 |
#m.sigs = m.sigs[order(m.sigs$Hugo_Symbol)] |
|
|
269 |
|
|
|
270 |
#m.sigs$or_new = ifelse(test = m.sigs$or > 3, yes = 3, no = m.sigs$or) |
|
|
271 |
#m.sigs$upper = ifelse(test = m.sigs$ci.up > 3, yes = 3, |
|
|
272 |
# no = m.sigs$ci.up) |
|
|
273 |
#m.sigs$lower = ifelse(test = m.sigs$ci.low > 3, yes = 3, |
|
|
274 |
# no = m.sigs$ci.low) |
|
|
275 |
|
|
|
276 |
#####arrage |
|
|
277 |
|
|
|
278 |
#if (is.null(fdr)) { |
|
|
279 |
# m.sigs = mafCompareRes$results[pval < pVal] |
|
|
280 |
#} |
|
|
281 |
#else { |
|
|
282 |
# m.sigs = mafCompareRes$results[adjPval < fdr] |
|
|
283 |
#} |
|
|
284 |
|
|
|
285 |
pdf(file="2021_codes/figures/51drivers_complete_clinic_20211125.pdf", width=13, height=8) |
|
|
286 |
ggarrange(mutation, clinic.plot.nolegend, nrow=2, heights=c(8.5,1)) |
|
|
287 |
|
|
|
288 |
dev.off() |
|
|
289 |
|
|
|
290 |
pdf(file="figures/51drivers_forest_20211130.pdf",width=6, height=10) |
|
|
291 |
forestPlot(mafCompareRes = nFL.vs.tFL, color=c("#F1A340","#998EC3"),geneFontSize = 1,pVal = 1) |
|
|
292 |
dev.off() |
|
|
293 |
|
|
|
294 |
|
|
|
295 |
|
|
|
296 |
################################## |
|
|
297 |
flreseq.ns<- unique(flreseq%>%filter(Region=="Coding" & VARIANT !="Silent")%>%select(Patient, SYMBOL)) |
|
|
298 |
clinic<- read.xlsx(file="2_clinic_infor/FL_Baoyan_clinical_file_FINAL_020719 - survival.xlsx",sheetIndex = 1,header=T) |
|
|
299 |
fl.drivers<- subset(flreseq.ns, SYMBOL %in% drivers$Genes) |
|
|
300 |
|
|
|
301 |
clinic$trans<- ifelse(is.na(clinic$Date_transf),"0","1") |
|
|
302 |
patient<- clinic%>%select(Patient_ID, trans) |
|
|
303 |
names(patient)<- c("Patient", "Trans_status") |
|
|
304 |
|
|
|
305 |
fl.drivers.clinic<- merge(fl.drivers, patient, by="Patient") |
|
|
306 |
fl.drivers.clinic$SYMBOL_ordered<- factor(fl.drivers.clinic$SYMBOL, levels=drivers$Genes) |
|
|
307 |
|
|
|
308 |
fl.drivers.summary<-ddply(fl.drivers.clinic,.(SYMBOL, Trans_status), summarise, num_pat=length(Patient)) |
|
|
309 |
|
|
|
310 |
fl.drivers.sum.cast<- cast(fl.drivers.summary, SYMBOL~ Trans_status) |
|
|
311 |
fl.drivers.sum.cast[is.na(fl.drivers.sum.cast)]<-0 |
|
|
312 |
|
|
|
313 |
fl.drivers.melt<- melt(fl.drivers.sum.cast, id.vars = 'SYMBOL') |
|
|
314 |
|
|
|
315 |
fl.drivers.melt$value[fl.drivers.melt$Trans_status=="0"]<- fl.drivers.melt$value[fl.drivers.melt$Trans_status=="0"]*-1 |
|
|
316 |
|
|
|
317 |
fl.drivers.melt$SYMBOL<- factor(fl.drivers.melt$SYMBOL, levels=rev(drivers$Genes)) |
|
|
318 |
|
|
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
|
322 |
|
|
|
323 |
mutation_nolegend<-mutation<-ggplot(plot_df.drivers, aes(x=sample, y=gene,fill=value))+geom_tile(color="gray", size=0.1)+ |
|
|
324 |
scale_fill_manual(values=c("#e7298a","firebrick","navyblue","#1b9e77", "#7570b3","#66a61e","white"),na.translate=FALSE)+scale_x_discrete(drop=FALSE)+ |
|
|
325 |
theme(panel.background = element_blank(), |
|
|
326 |
legend.text = element_text(size=14,face="bold"), |
|
|
327 |
legend.title = element_text(size=16,face="bold"), |
|
|
328 |
axis.ticks.x=element_blank(), |
|
|
329 |
legend.position = "", |
|
|
330 |
axis.text.x =element_blank(), |
|
|
331 |
axis.ticks.y=element_blank(), |
|
|
332 |
axis.text.y=element_blank(), |
|
|
333 |
|
|
|
334 |
plot.margin = unit(c(0.2,-0.2,-0.5,0.1), "cm"))+ xlab("")+ylab("")+ |
|
|
335 |
|
|
|
336 |
guides(fill=guide_legend(title="Mutation Type")) |
|
|
337 |
|
|
|
338 |
clinic.nolegend<- ggplot(clinic.final, aes(x=sample, y=variable, fill=value))+geom_tile()+ |
|
|
339 |
scale_fill_manual(values=c("dark cyan","#fbb4ae", "purple","blue", "red"))+ |
|
|
340 |
theme(panel.background = element_blank(), |
|
|
341 |
axis.ticks.x=element_blank(), |
|
|
342 |
legend.text = element_text(size=14,face="bold"), |
|
|
343 |
legend.title = element_text(size=16,face="bold"), |
|
|
344 |
axis.ticks.y=element_blank(), |
|
|
345 |
axis.text.x=element_blank(), |
|
|
346 |
legend.position="", |
|
|
347 |
axis.text.y =element_text(size=16,face="bold"), |
|
|
348 |
plot.margin = unit(c(-0.5,0.2,0,2,0.1), "cm"))+ xlab("")+ylab("")+ |
|
|
349 |
guides(fill=guide_legend(ncol=2, title="Biopsy Group")) |
|
|
350 |
|
|
|
351 |
|
|
|
352 |
|
|
|
353 |
|
|
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
|
357 |
|
|
|
358 |
|
|
|
359 |
|
|
|
360 |
mutation_legend<-mutation<-ggplot(plot_df.drivers, aes(x=sample, y=gene,fill=value))+geom_tile(color="gray", size=0.1)+ |
|
|
361 |
scale_fill_manual(values=c("#e7298a","firebrick","navyblue","#1b9e77", "#7570b3","#66a61e","white"),na.translate=FALSE)+scale_x_discrete(drop=FALSE)+ |
|
|
362 |
theme(panel.background = element_blank(), |
|
|
363 |
legend.text = element_text(size=14,face="bold"), |
|
|
364 |
legend.title = element_text(size=16,face="bold"), |
|
|
365 |
axis.ticks.x=element_blank(), |
|
|
366 |
legend.position = "left", |
|
|
367 |
axis.text.x =element_blank(), |
|
|
368 |
axis.ticks.y=element_blank(), |
|
|
369 |
axis.text.y=element_blank(), |
|
|
370 |
|
|
|
371 |
plot.margin = unit(c(0.2,-0.2,-0.5,0.1), "cm"))+ xlab("")+ylab("")+ |
|
|
372 |
|
|
|
373 |
guides(fill=guide_legend(title="Mutation Type")) |
|
|
374 |
|
|
|
375 |
|
|
|
376 |
clinic.legend<- ggplot(clinic.final, aes(x=sample, y=variable, fill=value))+geom_tile()+ |
|
|
377 |
scale_fill_manual(values=c("dark cyan","#fbb4ae", "purple","blue", "red"))+ |
|
|
378 |
theme(panel.background = element_blank(), |
|
|
379 |
axis.ticks.x=element_blank(), |
|
|
380 |
legend.text = element_text(size=14,face="bold"), |
|
|
381 |
legend.title = element_text(size=16,face="bold"), |
|
|
382 |
axis.ticks.y=element_blank(), |
|
|
383 |
axis.text.x=element_blank(), |
|
|
384 |
legend.position="left", |
|
|
385 |
axis.text.y =element_text(size=16,face="bold"), |
|
|
386 |
plot.margin = unit(c(-0.5,0.2,0,2,0.1), "cm"))+ xlab("")+ylab("")+ |
|
|
387 |
guides(fill=guide_legend(ncol=2, title="Biopsy Group")) |
|
|
388 |
|
|
|
389 |
|