Diff of /app.py [000000] .. [9dc5df]

Switch to unified view

a b/app.py
1
2
3
from __future__ import division, print_function
4
# coding=utf-8
5
import sys
6
import os
7
import glob
8
import re
9
import numpy as np
10
11
# Keras
12
from tensorflow.keras.applications.imagenet_utils import preprocess_input, decode_predictions
13
from tensorflow.keras.models import load_model
14
from tensorflow.keras.preprocessing import image
15
16
# Flask utils
17
from flask import Flask, redirect, url_for, request, render_template
18
from werkzeug.utils import secure_filename
19
#from gevent.pywsgi import WSGIServer
20
21
# Define a flask app
22
app = Flask(__name__)
23
24
# Model saved with Keras model.save()
25
MODEL_PATH ='model_resnet50.h5'
26
27
# Load your trained model
28
model = load_model(MODEL_PATH)
29
30
31
32
33
def model_predict(img_path, model):
34
    img = image.load_img(img_path, target_size=(224, 224))
35
36
    # Preprocessing the image
37
    x = image.img_to_array(img)
38
    # x = np.true_divide(x, 255)
39
    ## Scaling
40
    x=x/255
41
    x = np.expand_dims(x, axis=0)
42
   
43
44
   
45
46
    preds = model.predict(x)
47
    preds=np.argmax(preds, axis=1)
48
    if preds==0:
49
        preds="The Patient has Lymphotic Cancer"
50
    elif preds==1:
51
        preds="The Patient has Promyelocytic Cancer"
52
    else:
53
        preds="The Patient has Segmented Neutrophils Cancer"
54
    
55
    
56
    return preds
57
58
59
@app.route('/', methods=['GET'])
60
def index():
61
    # Main page
62
    return render_template('index.html')
63
64
65
66
@app.route('/predict', methods=['GET', 'POST'])
67
def upload():
68
    if request.method == 'POST':
69
        # Get the file from post request
70
        f = request.files['file']
71
72
        # Save the file to ./uploads
73
        basepath = os.path.dirname(__file__)
74
        file_path = os.path.join(
75
            basepath, 'uploads', secure_filename(f.filename))
76
        f.save(file_path)
77
78
        # Make prediction
79
        preds = model_predict(file_path, model)
80
        result=preds
81
        return result
82
    return None
83
84
85
if __name__ == '__main__':
86
    app.run(debug=True)