[8e0848]: / common_scripts / statistics / statistics_wrappers.R

Download this file

326 lines (248 with data), 12.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
wrapper.wilcoxtest=function(genelist, data, logicalVectors, logicalVector_normals=NULL, ALTERNATIVE="greater", adj.method="BH", CORES=1, prettynum=T){
library(parallel)
data=do.call(rbind, mclapply(genelist, TestGeneWilcox, data, logicalVectors, logicalVector_normals=logicalVector_normals, ALTERNATIVE, prettynum, mc.cores = CORES))
data$adj.p=p.adjust(data$p, method = adj.method)
data$adj.method=adj.method
# signifcode
data$signifCode=""
data$signifCode[as.numeric(data$adj.p)<0.1]="."
data$signifCode[as.numeric(data$adj.p)<0.05]="*"
data$signifCode[as.numeric(data$adj.p)<0.01]="**"
data$signifCode[as.numeric(data$adj.p)<0.001]="***"
data$signifCode[as.numeric(data$adj.p)<0.0001]="****"
if(prettynum){
data$adj.p=prettyNum(signif(data$adj.p,2))
}
if(adj.method=="BH"){
colnames(data)[colnames(data)%in%"adj.p"]="FDR"
}
data=data[,c(1:5, 7,9, 6,8)]
return(data)
}
FUN_GOTHROUGH=function(i, genelist, list_cancers, logicalVector_normals, TEST_FAILS=F, HG_PVAL=0.001, MW_PVAL=0.001, ALTERNATIVE="greater"){
name=names(list_cancers)[i]
logicalVector=as.logical(unlist(list_cancers[[i]]))
logicalVector_normals=logicalVector_normals[!names(logicalVector_normals)%in%name]
result=FUN_HGT_MW_TEST(genelist, logicalVector,logicalVector_normals, name, TEST_FAILS=F, data = data, profile = profile,HG_PVAL = HG_PVAL, MW_PVAL=MW_PVAL, ALTERNATIVE = ALTERNATIVE, CORES = 10)
}
fisher.wrapper=function(lv.list1, lv.list2, alternative="two.sided", method="bonferroni",log10=F, prettyNumbers=F,orderdata=F, cores=1){
n1=names(lv.list1)
n2=names(lv.list2)
res=do.call(rbind,mclapply(seq(lv.list1), function(i){
do.call(rbind,lapply(seq(lv.list2), function(j){
data.frame("featureA"=n1[i], "featureB"=n2[j],fisher.2x2(lv.list1[[i]], lv.list2[[j]]))
}))
}, mc.cores=cores))
res$adj.p=p.adjust(res$p, method=method)
res$signifCode=""
res$signifCode[as.numeric(res$adj.p)<0.1]="."
res$signifCode[as.numeric(res$adj.p)<0.05]="*"
res$signifCode[as.numeric(res$adj.p)<0.01]="**"
res$signifCode[as.numeric(res$adj.p)<0.001]="***"
res$signifCode[as.numeric(res$adj.p)<0.0001]="****"
if(log10){
res$p=abs(log10(res$p))
res$adj.p=abs(log10(res$p))
}
if(prettyNumbers){
res$log.odds=prettyNum(signif(res$log.odds,2))
res$p=prettyNum(signif(res$p,2))
res$adj.p=prettyNum(signif(res$adj.p,2))
}
if(orderdata)res=res[order(res$featureA, as.numeric(res$adj.p), decreasing = F),]
return(res)
}
fisher.matrix.pairwise=function(E, plot=F, alternative="two.sided"){
# perform a fisher exact test for each pairs of gene and saves the oddsRatio and p-value
res <- NULL
for(i in seq(dim(E)[2])){
for(j in seq(dim(E)[2])){
if(i!=j){
f <- fisher.test(E[,i], E[,j], alternative = alternative)
res <- rbind(res,cbind(geneA=colnames(E)[i],geneB=colnames(E)[j],oddsRatio=f$estimate,pvalue=f$p.value))
}
}
}
# some formatting
res <- as.data.frame(res)
res$geneA <- factor(res$geneA,levels=unique(res$geneA))
res$geneB <- factor(res$geneB,levels=unique(res$geneB))
res$oddsRatio <- as.numeric(as.character(res$oddsRatio))
# avoid inf values
res$oddsRatio[res$oddsRatio>10]=10
res$oddsRatio[res$oddsRatio<=0]=0.01
res$pvalue <- as.numeric(as.character(res$pvalue))
# use p.adjust to correct for multi testing using a FDR
res <- cbind(res,fdr=p.adjust(res$pvalue,"fdr"))
# change the FDR in labels for plotting
res$stars <- cut(res$fdr, breaks=c(-Inf, 0.001, 0.01, 0.05, Inf), label=c("***", "**", "*", ""))
if(plot){
# plot with ggplot 2
require(ggplot2)
require(cowplot) # not necessary but the plot is nicer
p <- ggplot(res, aes(geneA, geneB)) + geom_tile(aes(fill = log2(oddsRatio+0.01)),colour = "white") + scale_fill_gradient2(midpoint=1) + geom_text(aes(label=stars), color="black", size=5)
p
return(p)
}
return(res)
}
fun.get.cox=function(i, logicalv, DATA, univariate=T, pretty=T, TIME, STATUS){
logicalvector=logicalv[[i]]
n=names(logicalv)[i]
# remove if all are NA
DATA=DATA[,!apply(DATA[logicalvector,,drop=F], 2, function(v)all(is.na(v)))]
if(univariate){
univ=do.call(rbind, lapply(seq(dim(DATA)[2]), function(j){
y=Surv(TIME[logicalvector], STATUS[logicalvector])
fit=coxph(formula = as.formula(paste("y ~ ", paste(colnames(DATA)[j], collapse="+"))), DATA[logicalvector,,drop=F])
b=cox.zph(fit)[[1]][3] # p.value
a=summary(fit)
pval=a$coefficients[1,5]
coef=a$conf.int[c(1,3,4)]
v=data.frame(colnames(DATA)[j], t(coef), pval,"","", a$concordance[1], b<0.05, stringsAsFactors = F)
rownames(v)=NULL
return(v)
}))
# adjust P-value depending on number of genes tested:
univ[,6]=p.adjust(univ[,5], method="BH")
}else{
y=Surv(TIME[logicalvector], STATUS[logicalvector])
fit=coxph(formula = as.formula(paste("y ~ ", paste(colnames(DATA), collapse="+"))), DATA[logicalvector,])
b=cox.zph(fit)$table[,3] # p.value
b=b[!names(b)%in%"GLOBAL"]
a=summary(fit)
pval=a$coefficients[,5]
coef=a$conf.int[,c(1,3,4)]
univ=data.frame(rownames(a$coefficients), coef, pval, "", "", a$concordance[1], b<0.05, stringsAsFactors = F)
rownames(univ)=NULL
# no need to adjust P-value here:
univ[,6]=univ[,5]
}
univ=univ[order(univ[,5]),]
univ[,7][as.numeric(univ[,6 ])<0.1]="."
univ[,7][as.numeric(univ[,6 ])<0.05]="*"
univ[,7][as.numeric(univ[,6 ])<0.01]="**"
univ[,7][as.numeric(univ[,6 ])<0.001]="***"
univ[,7][as.numeric(univ[,6 ])<0.0001]="****"
univ[,7][is.na(univ[,7])]=""
val=data.frame(univ, n, stringsAsFactors = F)
colnames(val)=c("Feature", "exp(coef)", "lower .95", "upper .95", "P", "Adj.P", "Signif", "concordance", "zph P < 0.05", "Name")
if(pretty){
for(i in c(2:6,8)){
val[,i]=prettyNum(signif(val[,i],2))
}
}
return(val)
}
fun.cox.elasticnet=function(DATA_ORG, time, status, cores=8, nfold=10,min.elnet=0.01,max.elnet=0.99, summary.km="85th_15th_percentile", percentage=0.25, REPEATS=100){
library(glmnet)
# run regularized regression
a <- seq(min.elnet, max.elnet, 0.05)
if(percentage==0){
y=Surv(time, status)
formdf1 <- as.formula(paste(" ~ ", paste(colnames(DATA_ORG),collapse="+")))
x=model.matrix(formdf1, data=DATA_ORG)
# go through alpha sequence with nfolds and repeat (100 times etc) cross validation on different sets of samples
enet.rep=do.call(rbind, parallel::mclapply(seq(REPEATS), function(r){
s <- do.call(rbind, lapply(a, function(i){
cv <- cv.glmnet(x=x,y=y, family = "cox", nfold = nfold, type.measure = "deviance", alpha = i, standardize=F)
data.frame(cvm = cv$cvm[cv$lambda == cv$lambda.min], lambda.min = cv$lambda.min, alpha = i)
}))
return(s)
}, mc.cores=cores))
# find mean alpha and lambda using all repeats
search_m=do.call(rbind, lapply(a, function(alpha){
cvm=mean(enet.rep$cvm[enet.rep$alpha==alpha])
lambda=mean(enet.rep$lambda.min[enet.rep$alpha==alpha])
data.frame(alpha, cvm, lambda)
}))
# minimum cvm error:
cv3 <- search_m[search_m$cvm == min(search_m$cvm), ]
print(cv3$alpha)
print(cv3$lambda)
print(cv3$cvm)
# fit model with tuned alpha, use lambda sequence here, not single value
md3 <- glmnet(x=x,y=y, family = "cox", alpha = cv3$alpha, standardize=F)
coefficients <- coef(md3, s = cv3$lambda)[-1,,drop=F]
coefficients=coefficients[order(abs(coefficients[,1]), decreasing = T),,drop=F]
active_coefficients <- coefficients[,1] != 0
coefficients_all=coefficients[active_coefficients,,drop=F]
comprisk=DATA_ORG[,match(rownames(coefficients_all), colnames(DATA_ORG))]
risk_patient=as.numeric(as.numeric(coefficients_all) %*% data.matrix(t(comprisk)))
df=data.frame(x=risk_patient)
ggplot(df, aes(x=x))+
geom_density(color="lightblue", fill="lightblue")
fun.kapplanMeier(time, status, CONTINUOUS=risk_patient, CONTINUOUS_SUMMARY = summary.km, MONTHS=F, PVAL=1, INDIVIDUAL_GROUPS=F, NAME = "predicted risk")
a=list(summary(coxph(y ~ PI.train, data.frame("PI.train"=risk_patient))))
c=list(coefficients_all)
out=c(a,c)
names(out)=c("PI.test", "coefficients")
return(out)
}else{
print("Splitting to test and train data")
# divide data so that there are equal proportions of outcomes with training and test set!
nr.samples=floor(percentage*dim(DATA_ORG)[1])
nr.events=floor(table(status)*percentage)
set.seed(0)
x <- which(status==1)
vf <- logical(length(status==1))
vf[x[sample.int(length(x), nr.events[2])]] <- TRUE
set.seed(0)
x <- which(status==0)
vf2 <- logical(length(status==0))
vf2[x[sample.int(length(x), nr.events[1])]] <- TRUE
find=vf|vf2
# define training and testing datasets
TRAIN=DATA_ORG[!find,]
TEST=DATA_ORG[find,]
ytrain=Surv(time[!find], status[!find])
ytest=Surv(time[find], status[find])
# this must look the same:
log=fun.kapplanMeier(time, status, GROUPS=(rownames(DATA_ORG)%in%rownames(TRAIN)*1), MONTHS=F, PVAL=1, INDIVIDUAL_GROUPS=T, NAME = "These must be similar\nand high pval: 1 TRAIN, 0 TEST")
formdf1 <- as.formula(paste(" ~ ", paste(colnames(TRAIN),collapse="+")))
x=model.matrix(formdf1, data=TRAIN)
# go through alpha sequence with nfolds and repeat (100 times etc) cross validation on different sets of samples
enet.rep=do.call(rbind, parallel::mclapply(seq(REPEATS), function(r){
s <- do.call(rbind, lapply(a, function(i){
cv <- cv.glmnet(x=x,y=ytrain, family = "cox", nfold = floor((dim(DATA_ORG)[1]/10)), type.measure = "deviance", alpha = i, standardize=F)
data.frame(cvm = cv$cvm[cv$lambda == cv$lambda.min], lambda.min = cv$lambda.min, alpha = i)
}))
return(s)
}, mc.cores=cores))
# find mean alpha and lambda using all repeats
search_m=do.call(rbind, lapply(a, function(alpha){
cvm=mean(enet.rep$cvm[enet.rep$alpha==alpha])
lambda=mean(enet.rep$lambda.min[enet.rep$alpha==alpha])
data.frame(alpha, cvm, lambda)
}))
# minimum cvm error:
cv3 <- search_m[search_m$cvm == min(search_m$cvm), ]
print(cv3$alpha)
print(cv3$lambda)
print(cv3$cvm)
# fit model with tuned alpha, use lambda sequence here, not single value
md3 <- glmnet(x=x,y=ytrain, family = "cox", alpha = cv3$alpha, standardize=F)
coefficients <- coef(md3, s = cv3$lambda)[-1,,drop=F]
coefficients=coefficients[order(abs(coefficients[,1]), decreasing = T),,drop=F]
active_coefficients <- coefficients[,1] != 0
coefficients_all=coefficients[active_coefficients,,drop=F]
comprisk=TRAIN[,match(rownames(coefficients_all), colnames(TRAIN))]
risk_patient=as.numeric(as.numeric(coefficients_all) %*% data.matrix(t(comprisk)))
comprisk=TEST[,match(rownames(coefficients_all), colnames(TEST))]
risk_patient_test=as.numeric(as.numeric(coefficients_all) %*% data.matrix(t(comprisk)))
df=data.frame(x=risk_patient)
ggplot(df, aes(x=x))+
geom_density(color="lightblue", fill="lightblue")
df=data.frame(x=risk_patient_test)
ggplot(df, aes(x=x))+
geom_density(color="indianred", fill="indianred")
fun.kapplanMeier(time[!find], status[!find], CONTINUOUS=risk_patient, CONTINUOUS_SUMMARY = summary.km, MONTHS=F, PVAL=1, INDIVIDUAL_GROUPS=F, NAME = "predicted risk")
fun.kapplanMeier(time[find], status[find], CONTINUOUS=risk_patient_test, CONTINUOUS_SUMMARY = summary.km, MONTHS=F, PVAL=1, INDIVIDUAL_GROUPS=F, NAME = "validated risk")
a=list(summary(coxph(ytrain ~ PI.train, data.frame("PI.train"=risk_patient))))
b=list(summary(coxph(ytest ~ PI.test, data.frame("PI.test"=risk_patient_test))))
c=list(coefficients_all)
out=c(a,b,c)
names(out)=c("PI.train", "PI.test", "coefficients")
return(out)
}
}