[8e0848]: / common_scripts / featurematrix / functions_generate_fm.R

Download this file

312 lines (248 with data), 10.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
is.binary=function(x) { all(na.omit(x) %in% 0:1) }
is.categorical=function(x) {data.table::uniqueN(na.omit(x))>=2&data.table::uniqueN(na.omit(x))!=length(na.omit(x))&class(x)=="character"}
# datatypes
datatypes=function(d){
types=sapply(d, class)
binary=sapply(d, is.binary)
categorical=sapply(d, is.categorical)
types[binary]="binary"
types[categorical]="categorical"
return(types)
}
make.binary.feats=function(df, datatype="CLIN", prefix=""){
d=t(df)
rownames(d)=paste("B:", datatype, ":", prefix, colnames(df), sep="")
return(d)
}
make.numeric.feats=function(df, datatype="CLIN", prefix=""){
d=t(df)
rownames(d)=paste("N:", datatype, ":", prefix, colnames(df), sep="")
return(d)
}
# make features from clinical
make.features=function(df, datatype="CLIN", prefix="", make.pairwise=T, max.level=50, cores=10){
bin=NULL
cat=NULL
num=NULL
if(!prefix=="")prefix=paste0(prefix ,"_")
if(class(df)!="data.frame")stop("df needs to be data.frame")
# clean names
colnames(df)=FIX_NAME(colnames(df))
check=datatypes(df)
print(check)
# make all binary feats:
if(any(check=="binary")){
bdat=df[,check=="binary", drop=F]
lvl=apply(bdat, 2, function(d){length(unique(d))})
bdat=bdat[,!lvl<2,drop=F]
if(dim(bdat)[2]>0){
bin=data.matrix(make.binary.feats(bdat,datatype, prefix))
}
}
# make all categorical feats:
if(any(check=="categorical")){
cdat=df[,check=="categorical", drop=F]
#compute number of levels
lvl=apply(cdat, 2, function(d){length(unique(d))})
cdat=cdat[,!(lvl>max.level|lvl==1),drop=F]
if(dim(cdat)[2]>0){
# cat=do.call(rbind, parallel::mclapply(seq(dim(cdat)[2]), function(i)FUN_MAKE_ALL(annovector = cdat[,i], prefix = colnames(cdat)[i], datatype = datatype, make.pairwise = make.pairwise), mc.cores=cores))
cat=do.call(rbind, lapply(seq(dim(cdat)[2]), function(i)FUN_MAKE_ALL(annovector = cdat[,i], prefix = colnames(cdat)[i], datatype = datatype, make.pairwise = make.pairwise)))
# as integer, counts
cat <- apply (cat, c (1, 2), function (x) {
(as.integer(x))
})
}
}
# make all numeric feats:
if(any(check=="numeric"|check=="integer")){
num=data.matrix(make.numeric.feats(df[,check=="numeric"|check=="integer", drop=F],datatype, prefix))
}
dfres=data.frame(rbind(bin, cat, num), stringsAsFactors = F, check.rows = F)
colnames(dfres)=rownames(df)
return(dfres)
}
FIX_NAME=function(name){
pwname=gsub(" |\\.", "_", name)
pwname=gsub("[^[:alnum:][:space:]:-]", "_", pwname)
pwname=gsub("__", "_", pwname)
pwname=gsub("___", "_", pwname)
pwname=gsub("____", "_", pwname)
pwname=gsub("_$", "", pwname)
pwname=gsub("$_", "", pwname)
pwname=gsub(" ", "_", pwname)
return(pwname)
}
gm_mean = function(x, na.rm=TRUE, zero.propagate = FALSE){
if(any(x < 0, na.rm = TRUE)){
return(NaN)
}
if(zero.propagate){
if(any(x == 0, na.rm = TRUE)){
return(0)
}
exp(mean(log(x), na.rm = na.rm))
} else {
exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
}
}
FUN_BINARYFEAT=function(type, annovector, prefix, datatype){
logv=t(as.matrix(annovector%in%type))*1
rownames(logv)=paste("B:", datatype, ":", prefix, type, sep="")
return(logv)
}
FUN_MAKEPW=function(annovector){
write.table(annovector, "pw_annovector2.txt", row.names=F, col.names=F, quote=F)
system("python /research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/scripts/pairwise.py pw_annovector2.txt pw_annovector2_res.txt")
pw_annovector2=read.delim("pw_annovector2_res.txt", stringsAsFactors = FALSE, header=F)
}
# makes vs. and comparisons
FUN_COMPARISONS=function(i,pw_annovector2, annovector, annovector2, PERCENTAGE, prefix, datatype){
if(!prefix=="")prefix=paste0(prefix ,"_")
row=pw_annovector2[i,]
type_annovector2=table(annovector2[annovector%in%row[,2]])
all_annovector2=table(annovector2)
all_annovector2=all_annovector2[match(names(type_annovector2), names(all_annovector2))]
test=signif(type_annovector2/all_annovector2,2)>=PERCENTAGE
annovector2_to_correlate=names(type_annovector2)[test]
type_annovector2=table(annovector2[annovector%in%row[,3]])
all_annovector2=table(annovector2)
all_annovector2=all_annovector2[match(names(type_annovector2), names(all_annovector2))]
test=signif(type_annovector2/all_annovector2,2)>=PERCENTAGE
annovector2_to_correlate2=names(type_annovector2)[test]
na_vector=rep("NA", length(annovector2))
na_vector[annovector2%in%annovector2_to_correlate]=1
na_vector[annovector2%in%annovector2_to_correlate2]=0
logv=t(na_vector)
name=paste(row[,2],"vs", row[,3], sep="_")
rownames(logv)=paste("B:", datatype, ":", prefix, name, sep="")
# double annovector2
logv2=t(as.matrix(annovector2%in%annovector2_to_correlate|annovector2%in%annovector2_to_correlate2))*1
name=paste(row[,2],row[,3], sep="_and_")
rownames(logv2)=paste("B:", datatype, ":", prefix, name, sep="")
if(length(unique(as.character(logv)))==3){
return(rbind(logv, logv2))
}else{
NULL
}
}
FUN_MAKE_ALL=function(annovector, prefix="", annovector2=NULL, PERCENTAGE=0, datatype="SAMP", make.pairwise=T){
if(is.null(annovector2))annovector2=annovector
if(!prefix=="")prefix=paste0(prefix ,"_")
annovector[annovector=="NA"]=NA
#checking:
if(length(annovector)!=length(annovector2))stop(paste("annotation vector length differs from cluster length?"))
# these are the types
a=unique(annovector)
a=a[!is.na(a)]
# make binary features
binaryfeats=do.call(rbind, lapply(a, FUN_BINARYFEAT, annovector, prefix, datatype))
if(make.pairwise){
# make pairwise comparisons
pw=FUN_MAKEPW(a)
# make contrasting features out of pairwise
comp=do.call(rbind, lapply(seq(dim(pw)[1]), FUN_COMPARISONS, pw, annovector, annovector2, PERCENTAGE, prefix, datatype))
}else{
comp=NULL
}
if(!is.null(comp)){
data=rbind(data.matrix(binaryfeats), data.matrix(comp))
}else{
data=data.matrix(binaryfeats)
}
return(data)
}
FUN_MAKE_ALL_LOGICAL=function(annovector, prefix, annovector2){
#checking:
if(length(annovector)!=length(annovector2))stop(paste("annotation vector length differs from cluster length?"))
# these are the types
a=unique(annovector)
a=a[!is.na(a)]
# make binary features
binaryfeats=lapply(a, FUN_BINARYFEAT, annovector, prefix)
names(binaryfeats)=a
return(binaryfeats)
}
FUN_MAKE_CATEGORICAL=function(annovector, prefix){
# these are the types
a=unique(annovector)
a=a[!is.na(a)]
# categorical, check if levels are too high
if(length(a)<36){
clust_fm=t(as.matrix(annovector))
rownames(clust_fm)=paste0("C:SAMP:", prefix)
}else{
clust_fm=NULL
}
return(clust_fm)
}
FIND_LOGICAL=function(name, vector){
data=data.frame(t(grepl(name, vector, fixed = T)*1))
rownames(data)=paste0("B:CLIN:cytogenetic_", name)
return(data)
}
make.gam=function(maf, cnv_arm_org, sv=NULL,del.genes, amp.genes, case.list, NAME="data_gam.Rdata"){
# gistic data
cnv_anno=cnv_arm_org[!grepl("CN values", cnv_arm_org[,1]),(1:9)]
cnv_arm=cnv_arm_org[!grepl("CN values", cnv_arm_org[,1]),-(1:9)]
cnv_arm2=cnv_arm_org[!grepl("CN values", cnv_arm_org[,1]),-(1:9)]
filt1=maf$Variant_Classification%in%c("Silent", "Intron", "3'UTR", "3'Flank", "5'UTR", "5'Flank")
maf=maf[!filt1,]
maf.m=as.data.frame.matrix(table(maf$Hugo_Symbol, maf$Tumor_Sample_Barcode))
maf.m=maf.m[,match(case.list, colnames(maf.m))]
cnv_arm=cnv_arm[,match(case.list, colnames(cnv_arm))]
n=toupper(cnv_anno$Descriptor)
n[grepl("Amp",cnv_anno$`Unique Name`)]=paste0(gsub("\\(.*.", "", cnv_anno$`Wide Peak Limits`[grepl("Amp",cnv_anno$`Unique Name`)]), ":", n[grepl("Amp",cnv_anno$`Unique Name`)], ":AMP")
n[grepl("Del",cnv_anno$`Unique Name`)]=paste0(gsub("\\(.*.", "", cnv_anno$`Wide Peak Limits`[grepl("Del",cnv_anno$`Unique Name`)]), ":", n[grepl("Del",cnv_anno$`Unique Name`)], ":DEL")
n=gsub(":|-", ".", n)
rownames(cnv_arm)=n
# make CNV annotations, significant genes:
del=apply(del.genes[-(1:4),-1], 2, function(v)unique(v[!(is.na(v)|v%in%"")]))
amp=apply(amp.genes[-(1:4),-1], 2, function(v)unique(v[!(is.na(v)|v%in%"")]))
del.name=gsub(":|-", ".", paste0(del.genes[4,-1], ":", toupper(del.genes[1,-1]), ":DEL"))
amp.name=gsub(":|-", ".", paste0(amp.genes[4,-1], ":", toupper(amp.genes[1,-1]), ":AMP"))
r.d=do.call(rbind, lapply(seq(del.name), function(i)cbind(del.name[i], unlist(del[i]))))
r.a=do.call(rbind, lapply(seq(amp.name), function(i)cbind(amp.name[i], unlist(amp[i]))))
cnv_annotations=rbind(r.d, r.a)
# make genie in GAM format:
AMP=t(cnv_arm[grepl("AMP", rownames(cnv_arm)),]==2)
GAIN=t(cnv_arm[grepl("AMP", rownames(cnv_arm)),]==1)
DEL=t(cnv_arm[grepl("DEL", rownames(cnv_arm)),]==2)
LOSS=t(cnv_arm[grepl("DEL", rownames(cnv_arm)),]==1)
MUT=t(maf.m>0)
colnames(AMP)=paste0(colnames(AMP), ":AMP")
colnames(DEL)=paste0(colnames(DEL), ":DEL")
colnames(GAIN)=paste0(colnames(GAIN), ":GAIN")
colnames(LOSS)=paste0(colnames(LOSS), ":LOSS")
colnames(MUT)=paste0(colnames(MUT), ":MUT")
AMP=AMP[,!colSums(AMP)==0]
MUT=MUT[,!colSums(MUT)==0]
DEL=DEL[,!colSums(DEL)==0]
GAIN=GAIN[,!colSums(GAIN)==0]
LOSS=LOSS[,!colSums(LOSS)==0]
if(!is.null(sv)){
SV=t(sv[,match(common, colnames(sv))])
SV=SV[,!colSums(SV)==0]
colnames(SV)=paste0(gsub("SV_", "", colnames(SV)), ":SV")
MUT=cbind(MUT, SV)
}
gam=data.frame(MUT,DEL,AMP,GAIN,LOSS, check.names = F)
save(list = c("gam", "cnv_annotations"), file=NAME)
}
make.cnv.gam=function(cnv, cores=5){
res=do.call(rbind, mclapply(rownames(cnv), function(g){
n=cnv[g,,drop=F]
n[n==2]="AMP"
n[n==-2]="DEL"
n[n==1]="GAIN"
n[n==-1]="LOSS"
n[n==0]="DIPLOID"
go.through=unique(as.character(n))
go.through=go.through[!go.through%in%c("NA", "DIPLOID")|is.na(go.through)]
dat=do.call(rbind, lapply(go.through, function(name)n%in%name*1))
rownames(dat)=paste(g, go.through, sep=":")
colnames(dat)=colnames(cnv)
return(dat)
}, mc.cores=cores))
return(res)
}