[8e0848]: / FigS6C_Hemap_CGA_dotplots.R

Download this file

130 lines (95 with data), 5.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/"
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R"))
# Plot CGA expression dot plots for (Figure S6C)
library(parallel)
library(gridExtra)
library(ggplot2)
library(ggrepel)
library(cowplot)
# load Hemap gene expression data
data = get(load("data9544_with_gene_symbols.RData"))
# load Hemap annotations
annot = get(load("Hemap_immunology_Annotations.Rdata"))
data=data[annot[,1],]
# plotting functions
FUN_PLOT=function(gene, logicalVectors, namesLV, data=NULL, matrix=NULL, col=NULL, ORDER=F, RANGE=NULL) {
if(is.null(matrix)&is.null(data))stop("No data to plot, check data/matrix")
GNAME=gsub("N:....:|:::::|DUFVA_", "", gene)
GNAME=gsub("_", " ", GNAME)
namesLV=gsub("Cancer_", " ", namesLV)
cols <- read.table("colors_hemap_immunology.tsv", header = TRUE, sep = "\t", comment.char = " ")
samples <- gsub("LCH", "MDS", gsub("AITL|PTCLNOS|ALCL", "TCL", gsub("FL|MALT", "BCL", gsub("Healthy", "NonCancerHealthy", gsub("_", "", names(logicalVectors))))))
if(is.null(col)){
col=as.character(cols[match(samples, cols$sample),2])
}
if(!is.null(matrix)){
gene2=ifelse(grepl("GEXP", gene), gene, paste0("'N:GEXP:", gene, ":::::'"))
D=as.numeric(read.delim(pipe(paste0("grep -Fw ", gene2, " ", matrix)), row.names = 1, header=F))
}
if(!is.null(data)){
D = as.numeric(data[,colnames(data)%in%gene])
}
bplot_list=lapply(logicalVectors, function(v){
D[v]
})
names(bplot_list)=gsub("_", " ", namesLV)
if(ORDER){
ord=sapply(bplot_list, median)
col=col[order(ord, decreasing = T)]
bplot_list=bplot_list[order(ord, decreasing = T)]
}
plots=FUNCTION_PLOT_LIST(bplot_list, gene, col, ORDER, RANGE)
return(plots)
}
FUNCTION_PLOT_LIST=function(bplot_list, GNAME, col, ORDER, RANGE){
df=melt(bplot_list)
df$class <- factor(df[,2], levels = unique(as.character(df[,2])),ordered = TRUE)
df$Expression=as.numeric(as.vector(df[,1]))
p <- ggplot(data=df, aes(x=class, y=Expression, color=class)) +
geom_jitter(width = 0.25, size = 0.1) +
scale_color_manual(values = col)
p2 <- p +
#theme with white background
theme_bw() +
# titles
theme(plot.title = element_text(face="italic", color="black", size=16, hjust=0)) +
theme(axis.title = element_text(color="black", face=NULL, size=12,angle = 90)) +
theme(axis.title.y = element_text(size = 14, angle = 90, color="black", face=NULL)) +
guides(color = FALSE) +
ylab("Expression (log2)") +
xlab("") +
labs(title=GNAME) +
#eliminates background, gridlines, and chart border
theme(plot.background = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())+
theme(panel.border= element_blank())+
#draws x and y axis line
theme(axis.line = element_line(),
axis.line.x = element_line(color="black", size = 0.5),
axis.line.y = element_line(color="black", size = 0.5)) +
# X - axis text
theme(axis.text.x = element_text(angle=45, hjust=1, color="black", size = 14, face=NULL),
axis.text.y = element_text(hjust=1, color="black", size = 12, face=NULL))+
# if want to limit to range
if(!is.null(RANGE))scale_y_continuous(breaks=seq(2,14,2), limits = RANGE)
return(p2)
}
boxplots_grid_topcga_subtypes <- function(x){
p.all=lapply(c("MAGEC1", "MAGEC2", "MORC1", "DSCR8", "MAGEB1", "MAGEB2", "ADAM29", "DMRT1", "SAGE1"), FUN_PLOT, logicalVectors, namesLV=names(logicalVectors), data=data, ORDER=F)
ggsave(paste0(GENELIST, ".pdf"), do.call(marrangeGrob, append(list(grobs=p.all, nrow=3, ncol=3),list(top=NULL))), width = 350 , height = 250, units = "mm", dpi=250)
}
# make logical vector with cancer subtypes and healthy sample
annot$logicalvector <- annot$Sample.type
annot$logicalvector[annot$Sample.type!="NonCancerHealthy"] <- annot$Category.specifying.subtype[annot$Sample.type!="NonCancerHealthy"]
annot$logicalvector[annot$Sample.type=="NonCancerHealthy"] <- "Healthy"
annot$logicalvector[annot$Category.specifying.lineage.tumor.origin=="AML"] <- "AML"
annot$logicalvector[annot$Category.specifying.lineage.tumor.origin=="MDS"] <- "MDS"
annot$logicalvector[annot$Category.specifying.lineage.tumor.origin=="CLL"] <- "CLL"
annot$logicalvector[annot$Category.specifying.subtype=="AILT"] <- "AITL"
annot$logicalvector[annot$Category.specifying.subtype=="LC"] <- "LCH"
# plot selected genes
logicalVectors=get.logical(annovector = list(annot$logicalvector), filterv = annot$Sample.type%in%c("Cancer", "Prolif", "NonCancerHealthy"), PREFIX = "")
logicalVectors=logicalVectors[paste0(c("MM", "DLBCL", "MCL", "CHL", "FL", "MALT", "ALCL", "PTCLNOS", "AITL", "T-ALL", "pre-B-ALL", "AML", "MDS", "LCH", "CML", "CLL", "Healthy"), "_")]
GENELIST="FigureS6C_Hemap_CGA_dotplots"
boxplots_grid_topcga_subtypes()