[8e0848]: / Fig6D_CCLE_CGA_heatmap.R

Download this file

270 lines (214 with data), 13.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Plot heatmap of cancer-germline antuigen expression and methylation in CCLE hematologic cell line data (Figure 6D)
library(CePa)
library(biomaRt)
library(ggplot2)
library(cowplot)
library(reshape2)
library(matrixStats)
library(data.table)
library(ggrepel)
library(dplyr)
library(gridExtra)
library(ggpubr)
library(ComplexHeatmap)
library(circlize)
library(RColorBrewer)
# load data
meth <- fread("CCLE_RRBS_TSS_1kb_20180614.txt", data.table = F)
meth_cpg <- fread("CCLE_RRBS_TSS_CpG_clusters_20180614.txt", data.table = F)
rpkm <- read.gct(file = "CCLE_DepMap_18q3_RNAseq_RPKM_20180718.gct") # read in CCLE RNA-seq rpkm table
annot <- fread(file = "DepMap-2018q3-celllines.csv", data.table = F)
annot2 <- fread(file = "CCLE_sample_info_file_2012-10-18_modified.csv", data.table = F, check.names = T) # read in CCLE annotation file (2012 publication) with lineage data added by Olli
# clean rpkm column names
colnames(rpkm) <- gsub("..ACH.*", "", colnames(rpkm))
# subset rpkm to methylation data
samples_rkpm_meth <- colnames(rpkm)[colnames(rpkm) %in% colnames(meth_cpg)]
# subset annotations to data
annot <- annot[annot$CCLE_Name%in%samples_rkpm_meth,]
# select hematopoietic cell lines from annot
annot_hem <- annot[grepl("HAEMATOPOIETIC", annot$CCLE_Name),]
colnames(meth) <- gsub("_name|TSS_|cluster_", "", colnames(meth_cpg))
colnames(meth_cpg) <- gsub("_name|TSS_|cluster_", "", colnames(meth_cpg))
# rpkm data frame with hematopoietic cell lines
rpkm_hem <- rpkm[,as.character(annot_hem$CCLE_Name)]
# combine TSS and CpG methylation data
colnames(meth[,c("id", "gene", as.character(annot_hem$CCLE_Name))])==colnames(meth_cpg[,c("id", "gene", as.character(annot_hem$CCLE_Name))]) # check that column names match before joining
meth_hem <- rbind(meth[,c("id", "gene", as.character(annot_hem$CCLE_Name))], meth_cpg[,c("id", "gene", as.character(annot_hem$CCLE_Name))])
meth_hem[,!colnames(meth_hem)%in%c("id", "gene")] <- sapply(meth_hem[,!colnames(meth_hem)%in%c("id", "gene")], as.numeric) # make numeric
# get gene symbols
ensembl_hs_mart <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")
ensembl_df <- getBM(attributes=c("ensembl_gene_id", "ensembl_gene_id_version",
"hgnc_symbol", "description", "chromosome_name", "start_position"),
mart=ensembl_hs_mart)
gene_annot <- ensembl_df[match(gsub("\\..*", "", rownames(rpkm)), ensembl_df$ensembl_gene_id),] # match biomart data using Ensembl gene symbols
rownames(gene_annot) <- rownames(rpkm)
# get cga genes:
genelist <- as.character(read.table("cga.txt")[,1])
gene_annot_cga <- gene_annot[gene_annot$hgnc_symbol%in%gsub("C11orf85", "MAJIN", genelist),]
rpkm_hem_cga <- rpkm_hem
rownames(rpkm_hem_cga) <- gsub("\\..*", "", rownames(rpkm))
rpkm_hem_cga <- rpkm_hem_cga[gene_annot_cga$ensembl_gene_id,]
rownames(rpkm_hem_cga) <- gsub("MAJIN", "C11orf85", gene_annot_cga$hgnc_symbol)
rpkm_hem_cga_log2 <- log2(rpkm_hem_cga + 0.25)
meth_hem_cga <- as.data.frame(meth_hem[meth_hem$gene%in%gene_annot_cga$hgnc_symbol,])
rownames(meth_hem_cga) <- gsub("MAJIN", "C11orf85", meth_hem_cga$id)
meth_hem_cga$id <- NULL
meth_hem_cga$gene <- NULL
hem_cga <- t(rbind(rpkm_hem_cga_log2, meth_hem_cga))
hem_cga <- merge(hem_cga, annot_hem, by.x = "row.names", by.y = "CCLE_Name")
hem_cga <- merge(hem_cga, annot2, by.x = "Row.names", by.y = "CCLE.name")
hem_cga <- hem_cga[grepl("lymphoma|leukaemia|myeloma", hem_cga$Hist.Subtype1),]
colnames(hem_cga)[1] <- "CCLE_Name"
# add shortened annotations
grep("lymphoma|leukaemia|myeloma", hem_cga$Hist.Subtype1, value=T)
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"plasma_cell_myeloma"]="MM"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"mantle_cell_lymphoma"]="MCL"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"diffuse_large_B_cell_lymphoma"]="DLBCL"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"chronic_lymphocytic_leukaemia-small_lymphocytic_lymphoma"]="CLL"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"blast_phase_chronic_myeloid_leukaemia"]="CML"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"anaplastic_large_cell_lymphoma"]="ALCL"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"adult_T_cell_lymphoma-leukaemia"]="TCL other"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"acute_myeloid_leukaemia"]="AML"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"acute_lymphoblastic_T_cell_leukaemia"]="T-ALL"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"acute_lymphoblastic_B_cell_leukaemia"]="pre-B-ALL"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"Hodgkin_lymphoma"]="CHL"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%"Burkitt_lymphoma"]="BL"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%c("B_cell_lymphoma_unspecified")]="BCL other"
hem_cga$Hist.Subtype_hem[hem_cga$Hist.Subtype1%in%c("peripheral_T_cell_lymphoma_unspecified")]="TCL other"
# add lineage annotations
hem_cga$Lineage <- ifelse(grepl("ALCL|T-ALL|TCL", hem_cga$Hist.Subtype_hem), "T/NK cell",
ifelse(grepl("AML|CML", hem_cga$Hist.Subtype_hem), "Myeloid", "B cell"))
# add methylation means to data frame for plotting
meth_mean <- function(gene){
df <- data.frame(gene = rowMeans(data.frame(hem_cga[,colnames(hem_cga)[grepl(paste0(gene, "_"), colnames(hem_cga))]]), na.rm = T))
return(df)
}
cga_meth_mean <- do.call(cbind, lapply(gsub("MAJIN", "C11orf85", genelist), meth_mean))
colnames(cga_meth_mean) <- paste0(gsub("MAJIN", "C11orf85", genelist), "_meth_mean")
hem_cga_meth_mean <- cbind(hem_cga, cga_meth_mean)
hem_cga_meth_mean <- hem_cga_meth_mean[order(hem_cga_meth_mean$Hist.Subtype_hem),]
# order cancers for plotting
hem_cga_meth_mean$Hist.Subtype_hem <- factor(hem_cga_meth_mean$Hist.Subtype_hem, levels = c("T-ALL", "pre-B-ALL", "AML", "CML", "CLL", "MM", "BL", "CHL", "DLBCL", "MCL", "BCL other", "ALCL", "TCL other"))
# data prepared
## --------------------------------------------------------------------------------------
## Test correlations for all methylation values averaged per gene
# function to correlate gexp to averaged same gene methylation features
corr_mean <- function(gene) {
cor.result <- cor.test(hem_cga[,gene],
as.numeric( # numeric vector for cor.test
rowMeans( # average methylation values
data.frame( # data frame for rowMeans
hem_cga[,colnames(hem_cga)[grepl(paste0(gene, "_"), colnames(hem_cga))]]), na.rm = T)), method = "spearman") # grep columns with underscore to get methylation values only
p <- cor.result$p.value
r <- cor.result$estimate
return(data.frame(gexp = gene, meth = gene, r = r, p = p))
}
# select genes that have methylation data
genes = genelist[genelist%in%gsub("_.*", "", colnames(hem_cga)[grepl("_", colnames(hem_cga))])]
# apply function on gene list
result_mean <- do.call(rbind, lapply(genes, corr_mean))
result_mean$q <- p.adjust(result_mean$p, method = "fdr")
# check results sorted by siginificance
result_mean %>%
arrange(q)
# write sorted mean methylation correlations
result_mean_sorted <- result_mean %>%
arrange(r)
# add significance codes to mean gexp to meth correlation for each gene
mean_corr <- result_mean %>%
mutate(signifCode = ifelse(q<0.0001, "****",
ifelse(q<0.001, "***",
ifelse(q<0.01, "**",
ifelse(q<0.05, "*", "")))))
## -------------------------------------------------------------------------------
# Heatmap
mat <- data.matrix(rpkm_hem_cga_log2[,hem_cga_meth_mean$CCLE_Name])
mat <- t(apply(mat, 1, scale))
colnames(mat) <- gsub("_.*", "", colnames(rpkm_hem_cga_log2[,hem_cga_meth_mean$CCLE_Name]))
mat <- mat[gene_annot_cga$hgnc_symbol,]
mat
# colors
cols <- read.table("colors_hemap_immunology.tsv", header = TRUE, sep = "\t", comment.char = " ")
cols <- cols %>% mutate(combinedcolor = ifelse(subtypecolor!="", as.character(subtypecolor), as.character(color)))
cols$sample <- gsub("^BCL", "BCL other", gsub("TCL", "TCL other", cols$sample))
# data frames for heatmap annotations
exprs_num <- colSums(rpkm_hem_cga[,hem_cga_meth_mean$CCLE_Name]>0.5)
meth_mat <- hem_cga_meth_mean[,grep("mean", colnames(hem_cga_meth_mean))]
colnames(meth_mat) <- gsub("_meth_mean", "", colnames(meth_mat))
meth_mat <- t(meth_mat)
colnames(meth_mat) <- gsub("_.*", "", hem_cga_meth_mean$CCLE_Name)
meth_mat <- meth_mat[,match(colnames(mat), colnames(meth_mat))]
meth_mat[meth_mat>0.5] = 1
meth_mat[meth_mat<0.5] = 0
meth_num <- colSums(meth_mat==0, na.rm = T)
disease_order <- data.frame(disease = unique(hem_cga_meth_mean$Hist.Subtype_hem), rank = c(13, 3, 11, 7, 8, 5, 4, 9, 10, 6, 2, 1, 12))
disease_order$disease <- as.character(disease_order$disease)
hem_cga_meth_mean <- merge(hem_cga_meth_mean, disease_order, by.x = "Hist.Subtype_hem", by.y = "disease")
sample_order <- order(hem_cga_meth_mean$rank, exprs_num)
exprs_num <- exprs_num[sample_order]
meth_num <- meth_num[sample_order]
annot_df <- data.frame(subtype = hem_cga_meth_mean$Hist.Subtype_hem[sample_order])
# heatmap annotations
ha1 = HeatmapAnnotation(exprs = anno_barplot(exprs_num,
bar_width = 0.75,
border = FALSE,
axis = TRUE,
axis_param = list(gp = gpar(fontsize = 5, lwd = 0.5)),
gp = gpar(col = NA, fill = "grey50")),
meth = anno_barplot(meth_num,
bar_width = 0.75,
border = FALSE,
axis = TRUE,
axis_param = list(gp = gpar(fontsize = 5, lwd = 0.5)),
gp = gpar(col = NA, fill = "#a52a2a")),
df = annot_df,
col = list(subtype = structure(as.character(cols$combinedcolor[cols$sample %in% hem_cga_meth_mean$Hist.Subtype_hem]),
names = as.character(cols$sample[cols$sample %in% hem_cga_meth_mean$Hist.Subtype_hem]))[as.character(disease_order$disease[order(disease_order$rank)])]
),
annotation_legend_param = list(subtype = list(title = "Cancer type", title_gp = gpar(fontsize = 7, fontface = "bold"),
labels_gp = gpar(fontsize = 7), grid_height = unit(3, "mm"), grid_width = unit(3, "mm"))
),
show_annotation_name = F,
height = unit(2, "cm"))
meth_corr_df <- data.frame(corr = mean_corr$r[match(rownames(mat), mean_corr$gexp)])
colnames(meth_corr_df) <- "Correlation to methylation"
mat <- mat[order(meth_corr_df$`Correlation to methylation`),sample_order]
meth_corr_df <- data.frame(corr = mean_corr$r[match(rownames(mat), mean_corr$gexp)])
colnames(meth_corr_df) <- "meth_corr"
ha2 = HeatmapAnnotation(df = meth_corr_df,
which = "row",
col = list(meth_corr = colorRamp2(c(-1, -0.5, -0.375, -0.25, -0.125, 0, 0.125, 0.25, 0.375, 0.5, 1), rev(brewer.pal(11, "PuOr")))),
annotation_legend_param = list(meth_corr = list(title = "Correlation to methylation", title_gp = gpar(fontsize = 7, fontface = "bold"),
labels_gp = gpar(fontsize = 7)), width = unit(0.1, "cm"), grid_height = unit(2, "mm"), grid_width = unit(2, "mm"), legend_direction = "horizontal", legend_width = unit(2, "cm"), title_position = "topcenter"))
# print heatmap
pdf(file = "Figure6D_CCLE_CGA_heatmap.pdf", height = 4, width = 5)
draw(
ha2 +
Heatmap(mat,
name = "Expression Z-score",
col = colorRamp2(seq(-3, 3, length.out = 11), rev(brewer.pal(11, "RdBu"))),
row_names_side = "right",
row_names_gp = gpar(fontsize = 6),
show_column_names = FALSE,
cluster_rows = FALSE,
cluster_columns = FALSE,
top_annotation = ha1,
heatmap_legend_param = list(title_gp = gpar(fontsize = 7, fontface = "bold"),
labels_gp = gpar(fontsize = 7),
legend_direction = "horizontal",
legend_width = unit(2, "cm"), title_position = "topcenter",
grid_height = unit(2, "mm"),
grid_width = unit(2, "mm")
)
),
auto_adjust = F,
padding = unit(c(2, 15, 2, 2), "mm"), heatmap_legend_side = "bottom")
decorate_annotation("exprs", {
grid.text("# CGAs expressed", unit(0, "npc") + unit(1, "mm"), 0.5,
default.units = "npc", just = c("left", "bottom"), gp = gpar(fontsize = 7))
})
decorate_annotation("meth", {
grid.text("# CGAs hypomethylated", unit(0, "npc") + unit(1, "mm"), 0.5,
default.units = "npc", just = c("left", "bottom"), gp = gpar(fontsize = 7))
})
dev.off()