[8e0848]: / preprocessing / Preprocessing_MM_subtyping.R

Download this file

172 lines (123 with data), 7.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# created with 3.3.3 Rtsne_0.13
# first make cancer map and validate clusters:
# gexp annot:
source("/research/users/ppolonen/git_home/Hemap_published_scripts/Cancermap.R")
source("/research/users/ppolonen/git_home/Hemap_published_scripts/Plot_color_vector.R")
source("/research/users/ppolonen/git_home/Hemap_published_scripts/Plot_cancermap_clusters.R")
source("/research/users/ppolonen/git_home/Hemap_published_scripts/Example_useCases/useCase3/Find_correlated_genes.R")
source("/research/users/ppolonen/git_home/common_scripts/statistics/functions_statistics.R")
source("/research/users/ppolonen/git_home/common_scripts/statistics/statistics_wrappers.R")
# cancermap coordinates:
library(reshape2)
library(gridExtra)
library(GSVA)
library(RColorBrewer)
library(ggplot2)
library(Rtsne)
library(LPCM)
library(parallel)
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/MM_COMPASS/")
# gexp data
data=get(load("/research/groups/sysgen/PROJECTS/HEMAP/HEMAP/dat2figs/data/data9544_with_gene_symbols.RData"))
# annotations
annot = get(load("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/data/Hemap_immunology_Annotations.Rdata"))
gexp.hemap=t(data[rownames(data)%in%annot[annot$colorClass=="MM"&annot$Sample.type=="Cancer"&annot$GSE.identifier..experiment.%in%c("GSE16716,GSE24080"),1],]) # GSE16716,GSE24080 and GSE19784
annot.sub=annot[annot$colorClass=="MM"&annot$Sample.type=="Cancer"&annot$GSE.identifier..experiment.%in%c("GSE16716,GSE24080"),]
# remove gender spesific genes
res2=wrapper.wilcoxtest(genelist = rownames(gexp.hemap), data = gexp.hemap, logicalVectors = list("gender"=annot.sub$GENDER=="male"), ALTERNATIVE = "two.sided", adj.method = "BH", CORES = 8, prettynum = F)
rm2=res2[res2$FDR<0.05,1]
coord=CancerMap(data = t(as.matrix(gexp.hemap[!rownames(gexp.hemap)%in%rm2,])), name = "Hemap_MM", VAR = 12.5, BW = 1.5, perplexity = 30, PATH_OUTPUT = "/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/HEMAP_MM/")
coord.hemap=read.delim("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/HEMAP_MM/cancermap_Hemap_MM_12.5pct_genes_BH-SNE_mean-shift_BW1.5.txt", header=T, stringsAsFactors = F)
peaks.hemap=read.delim("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/HEMAP_MM/cancermap_Hemap_MM_12.5pct_genes_BH-SNE_mean-shift_BW1.5_cluster_centroids.txt", header=T, stringsAsFactors = F)
a1=Plot_cancermap_clusters(X = coord, peaks = peaks)
#*********************** make genesets from COMPASS MM: ********************
load("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/MM_COMPASS/MM_COMPASS_FM.Rdata")
load("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/MM_COMPASS/MM_COMPASS_ANNOT.Rdata")
annot=annot[!is.na(annot$subtype.cluster),]
gex=fm[grepl("N:GEXP", rownames(fm)),match(rownames(annot), colnames(fm))]
rownames(gex)=gsub("N:GEXP:", "", rownames(gex))
gex=gex[rownames(gex)%in%rownames(gexp),]
#clusters
clusters=annot$subtype.cluster[rownames(annot)%in%colnames(gex)]
# make gene sets
genesets.cor=unlist(mclapply(sort(unique(clusters)), Find_correlated_genes_new, gex, clusters, mc.cores=7), recursive=F)
# save data:
coordinates.subtype=annot[,c(109:112, 108)]
colnames(coordinates.subtype)=c("ID", "x", "y", "subtype", "cluster")
coordinates.subtype$subtype[coordinates.subtype$subtype%in%"Hyperdiploid"]="Hyperdiploid_gain11q"
coordinates.subtype$subtype[coordinates.subtype$subtype%in%"Hyperdiploid_amp1q"]="Hyperdiploid_gain1q"
gexp=as.matrix(gex)
save(list = c("gexp", "coordinates.subtype"), file="CoMMpass_MM_subtypes.Rdata")
#*******************************************************************************
gs=c(genesets.cor)
append.list=function(vector.lists){
unlist(lapply(vector.lists, list), recursive=F)
}
gs=append.list(gs)
# run GSVA
gsva_es <- gsva(as.matrix(gexp.hemap), method="gsva", gs, mx.diff=F, tau=0.25, verbose=T, min.sz=5, max.sz=500, parallel.sz=8)
#********************************************* Step 3: Plot GSVA scores to hemap cancermap ************************************************************
feats=rownames(gsva_es)
gsva_es2=t(scale(t(gsva_es)))
Plot_GSVA_scores=function(feat, data_plot, VALUE, SIZE, CLUSTER_CENTRE, coord, peaks){
# Find specified feature(feat) from data_plot
data=data_plot[rownames(data_plot)%in%feat,]
# Transform matrix to numeric.
data=as.numeric(data)
# Color vector for gradient colors from blue to red.
rbPal <- colorRampPalette(c('blue','red'))
# Adjust data for gradient colors.
data=c(data, 2, -2) # adjust range
datCol <- rbPal(10)[as.numeric(cut(data,breaks = 10))]
datCol=datCol[-c(length(datCol)-1, length(datCol))]
data=data[-c(length(data)-1, length(data))]
# Samples below cutoff colored grey.
datCol[abs(data)<VALUE]="grey75"
front=abs(data)>VALUE
# Prepare coordinate data for plotting.
dat2show <- cbind(coord$x, coord$y)
df=as.data.frame(dat2show)
colnames(df) = c("X1","X2")
# Generate plot title.
cutoff=paste("GSVA score >", VALUE)
plotname=paste(feat, cutoff, sep="\n")
# Call actual plotting function.
drawFig(df, CLUSTER_CENTRE, datCol, front, plotname, SIZE, peaks)
}
# Plot GSVA scores to Hemap cancermap, obtain plotting data
p.all=lapply(feats, Plot_GSVA_scores, gsva_es2, VALUE=0.5, SIZE=0.7, CLUSTER_CENTRE=T, coord, peaks)
p.all=p.all[!sapply(p.all, is.null)] # remove empty just in case
# Save PDF figure (A4) with multiple panels
ggsave(paste0("Hemap_MM_COMPASS_multipage_GSE16716,GSE24080.pdf"),
do.call(marrangeGrob, list(grobs=p.all, nrow=4, ncol=3)), width = 210, height = 297, units = "mm", dpi=150)
coord2=coord.hemap
# checked the genetics and combined the subtypes as larger subtypes:
coord2$subtype[coord$cluster%in%c(10)]="MAF_Ig"
coord2$subtype[coord$cluster%in%c(4)]="WHSC1_FGFR3_Ig"
coord2$subtype[coord$cluster%in%c(1,3,9)]="CCND1_Ig"
coord2$subtype[coord$cluster%in%c(2,7,5)]="Hyperdiploid_gain11q"
coord2$subtype[coord$cluster%in%c(8)]="TRAF3_Aberrated"
coord2$subtype[coord$cluster%in%c(6)]="Hyperdiploid_gain1q"
pl=gsva_es[,order(coord2$subtype)]
pl=t(scale(t(pl)))
pl[pl>2]=2
# add CGA number:
t.df = read.delim("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/t.antigen_df.txt", stringsAsFactors=F, header=T)
CGA=c(unique(t.df[,1]))
profile=get(load("/research/groups/sysgen/PROJECTS/HEMAP/HEMAP/dat2figs/revision_2018/petri/mixtureM_profile.Rdata"))
profile[profile==-1] = 0
profile2=profile[,colnames(profile)%in%annot.sub$GSM.identifier..sample.]
# take only high expressed into account
profile2[data.matrix(t(data[rownames(data)%in%annot.sub$GSM.identifier..sample.,]))<5]=0
expressed_testis_num=colSums(profile2[rownames(profile2)%in%unique(t.df$gene),])
ha=HeatmapAnnotation(n.CGA=anno_barplot(expressed_testis_num), "TSNE"=as.character(coord2$cluster)[order(coord2$cluster)])
pdf("CoMMpass_cluster_hemapMM.pdf", height = 8, width = 8)
Heatmap(pl,top_annotation = ha, cluster_rows = F, cluster_columns=F, show_column_names = F, cluster_column_slices = T)
Heatmap(pl[grepl("UP", rownames(pl)),],top_annotation = ha, cluster_rows = F, cluster_columns=F, show_column_names = F, cluster_column_slices = T)
pl=lapply(unique(coord2$cluster), function(clu)expressed_testis_num[coord2$cluster%in%clu])
names(pl)=unique(coord2$cluster)
boxplot(pl)
dev.off()
coordinates.subtype=coord2
gexp=as.matrix(gexp.hemap)
save(list = c("gexp", "coordinates.subtype"), file="Hemap_MM_subtypes.Rdata")