|
a |
|
b/common_scripts/statistics/functions_statistics.R |
|
|
1 |
fisher.2x2=function(lv1, lv2, alternative="two.sided", usefast=T){ |
|
|
2 |
cont=table(lv1, lv2) |
|
|
3 |
cont[is.na(cont)]=0 |
|
|
4 |
|
|
|
5 |
if(usefast){ |
|
|
6 |
p=HighSpeedStats::ultrafastfet(cont[1,1], cont[1,2], cont[2,1], cont[2,2]) |
|
|
7 |
odds=NA |
|
|
8 |
} |
|
|
9 |
|
|
|
10 |
else{ |
|
|
11 |
ft=fisher.test(cont, alternative=alternative) |
|
|
12 |
p=ft$p.value |
|
|
13 |
odds=ft$estimate |
|
|
14 |
} |
|
|
15 |
|
|
|
16 |
data.frame("p"=p, "log.odds"=odds, stringsAsFactors = F) |
|
|
17 |
} |
|
|
18 |
|
|
|
19 |
TestGeneWilcox=function(gene, datam, logicalVectors, logicalVector_normals=NULL, ALTERNATIVE="greater", prettynum=T){ |
|
|
20 |
if(!gene%in%rownames(datam)) return(NULL) |
|
|
21 |
D = as.numeric(datam[rownames(datam)%in%gene,]) |
|
|
22 |
|
|
|
23 |
d_list=lapply(logicalVectors, function(v){ |
|
|
24 |
D[v][!is.na(D[v])] |
|
|
25 |
}) |
|
|
26 |
|
|
|
27 |
# in this case, compute against rest of the samples for the logicalV |
|
|
28 |
if(is.null(logicalVector_normals)){ |
|
|
29 |
logicalVector_normals=lapply(logicalVectors, '!') # negate |
|
|
30 |
names(logicalVector_normals)=rep("Rest", length(logicalVector_normals)) |
|
|
31 |
|
|
|
32 |
d_list2=lapply(logicalVector_normals, function(v){ |
|
|
33 |
D[v][!is.na(D[v])] |
|
|
34 |
}) |
|
|
35 |
|
|
|
36 |
stats=do.call(rbind, lapply(seq(d_list), function(i, d_list, d_list2){ |
|
|
37 |
l=d_list[[i]] |
|
|
38 |
name1=names(d_list)[i] |
|
|
39 |
name2=names(d_list2)[i] |
|
|
40 |
|
|
|
41 |
P.value=sapply(seq(d_list2)[i], function(j, l, d_list2){ |
|
|
42 |
l2=d_list2[[j]] |
|
|
43 |
signif(wilcox.test(l, l2, ALTERNATIVE)$p.value,2) |
|
|
44 |
}, l, d_list2) |
|
|
45 |
|
|
|
46 |
FC=sapply(d_list2[i], function(l2, l1){ |
|
|
47 |
2^(mean(l)-mean(l2)) |
|
|
48 |
}) |
|
|
49 |
|
|
|
50 |
df=data.frame("Gene"=gene, "Group1"=name1, "Group2"=name2, FC, "p"=P.value, "alternative"=ALTERNATIVE, stringsAsFactors=F) |
|
|
51 |
rownames(df)=NULL |
|
|
52 |
df=df[!df$Group1==df$Group2,] |
|
|
53 |
|
|
|
54 |
if(prettynum){ |
|
|
55 |
df[,4]=prettyNum(signif(df[,4], 2)) |
|
|
56 |
df[,5]=prettyNum(signif(df[,5], 2)) |
|
|
57 |
} |
|
|
58 |
|
|
|
59 |
return(df) |
|
|
60 |
},d_list, d_list2)) |
|
|
61 |
return(stats) |
|
|
62 |
} |
|
|
63 |
|
|
|
64 |
d_list2=lapply(logicalVector_normals, function(v){ |
|
|
65 |
D[v][!is.na(D[v])] |
|
|
66 |
}) |
|
|
67 |
|
|
|
68 |
stats=do.call(rbind, lapply(seq(d_list), function(i, d_list, d_list2){ |
|
|
69 |
l=d_list[[i]] |
|
|
70 |
name1=names(d_list)[i] |
|
|
71 |
name2=names(d_list2) |
|
|
72 |
|
|
|
73 |
P.value=sapply(seq(d_list2), function(j, l, d_list2){ |
|
|
74 |
l2=d_list2[[j]] |
|
|
75 |
signif(wilcox.test(l, l2, ALTERNATIVE)$p.value,2) |
|
|
76 |
}, l, d_list2) |
|
|
77 |
|
|
|
78 |
FC=sapply(d_list2, function(l2, l1){ |
|
|
79 |
2^(mean(l)-mean(l2)) |
|
|
80 |
}) |
|
|
81 |
|
|
|
82 |
df=data.frame("Gene"=gene, "Group1"=name1, "Group2"=name2, FC, "p"=P.value, "alternative"=ALTERNATIVE, stringsAsFactors=F) |
|
|
83 |
rownames(df)=NULL |
|
|
84 |
df=df[!df$Group1==df$Group2,] |
|
|
85 |
|
|
|
86 |
if(prettynum){ |
|
|
87 |
df[,4]=prettyNum(signif(df[,4], 2)) |
|
|
88 |
df[,5]=prettyNum(signif(df[,5], 2)) |
|
|
89 |
} |
|
|
90 |
|
|
|
91 |
return(df) |
|
|
92 |
},d_list, d_list2)) |
|
|
93 |
|
|
|
94 |
return(stats) |
|
|
95 |
} |
|
|
96 |
|
|
|
97 |
hgt.enrichment=function(genes, logicalVector, profile = profile, adjust.method="bonferroni") { |
|
|
98 |
|
|
|
99 |
# Initialize stuff |
|
|
100 |
genes = genes[genes%in%colnames(profile)] |
|
|
101 |
P = profile[,colnames(profile)%in%genes] |
|
|
102 |
|
|
|
103 |
R = as.data.frame(matrix(NA, nrow = length(genes), ncol = 3)) |
|
|
104 |
colnames(R) = c("gene", "pvalue", "adj.pvalue") |
|
|
105 |
R[,1] = genes |
|
|
106 |
|
|
|
107 |
|
|
|
108 |
#************ Hyperg test, disease association *************** |
|
|
109 |
FUN=function(j){ |
|
|
110 |
r = genes[j] |
|
|
111 |
k = sum(logicalVector) |
|
|
112 |
x = P[,colnames(P)==r] |
|
|
113 |
m = sum(x) |
|
|
114 |
n = length(x) - m |
|
|
115 |
q = sum(x[logicalVector]) |
|
|
116 |
phyper(q-1,m,n,k, lower.tail = F) |
|
|
117 |
} |
|
|
118 |
|
|
|
119 |
R[,2]=unlist(mclapply(1:nrow(R), FUN, mc.cores=CORES)) |
|
|
120 |
|
|
|
121 |
R[,3] = p.adjust(R[,2], adjust.method) |
|
|
122 |
|
|
|
123 |
# log10 transformation and filtering |
|
|
124 |
R = R[order(R$adj.pvalue),] |
|
|
125 |
R$pvalue = round(abs(log10(R$pvalue)),1) |
|
|
126 |
R$adj.pvalue = round(abs(log10(R$adj.pvalue)),1) |
|
|
127 |
return(R) |
|
|
128 |
} |
|
|
129 |
|
|
|
130 |
fisher.matrix.lv=function(logicalVector.list, data, features=NULL, fisher.alternative="greater", adjust.method=NULL, to.log10=T, cores=5){ |
|
|
131 |
if(!is.null(features))data=data[rownames(data)%in%features,] |
|
|
132 |
|
|
|
133 |
m=do.call(cbind, mclapply(logicalVector.list, function(lv){ |
|
|
134 |
|
|
|
135 |
featsA=lv |
|
|
136 |
featsB=as.list(as.data.frame(t(data))) |
|
|
137 |
|
|
|
138 |
grid=data.frame(do.call(rbind, mclapply(seq(featsB), function(i)c(table(featsA, featsB[[i]])), mc.cores=1))) |
|
|
139 |
colnames(grid)=c("a", "b", "c", "d") |
|
|
140 |
|
|
|
141 |
if(fisher.alternative=="two.sided"){ |
|
|
142 |
p.ft <- with(grid, HighSpeedStats::ultrafastfet(a, b, c, d)) |
|
|
143 |
|
|
|
144 |
}else{ |
|
|
145 |
p.ft <- with(grid, mapply(ft.alt, a, b, c, d, fisher.alternative)) |
|
|
146 |
} |
|
|
147 |
}, mc.cores=5)) |
|
|
148 |
|
|
|
149 |
rownames(m)=rownames(data) |
|
|
150 |
colnames(m)=names(logicalVector.list) |
|
|
151 |
|
|
|
152 |
# order data; |
|
|
153 |
m=m[do.call(order, as.data.frame(m)),] |
|
|
154 |
|
|
|
155 |
if(to.log10)m=round(abs(log10(m)),1) |
|
|
156 |
|
|
|
157 |
return(m) |
|
|
158 |
} |
|
|
159 |
|
|
|
160 |
FUN_HGT_MW_TEST=function(genes, logicalVector,logicalVector_normals, name, TEST_FAILS, ALTERNATIVE="greater", data = data, profile = profile, CORES=3, HG_PVAL=0.001, MW_PVAL=0.001, P.ADJUST.METH="bonferroni") { |
|
|
161 |
|
|
|
162 |
# transpose if needed |
|
|
163 |
if(any(grepl("TP53", rownames(data))))data=t(data) |
|
|
164 |
if(any(grepl("TP53", rownames(profile))))profile=t(profile) |
|
|
165 |
|
|
|
166 |
# Check some prerequisites |
|
|
167 |
if(nrow(data)!=nrow(profile)) stop("data and profile dimension mismatch") |
|
|
168 |
if(length(logicalVector)!=nrow(data)) stop("logicalVector dimension mismatch.") |
|
|
169 |
|
|
|
170 |
# Initialize stuff |
|
|
171 |
genes = genes[genes%in%colnames(data)] |
|
|
172 |
P = profile[,colnames(profile)%in%genes] |
|
|
173 |
D = data[,colnames(data)%in%genes] |
|
|
174 |
|
|
|
175 |
R = as.data.frame(matrix(NA, nrow = length(genes), ncol = 3)) |
|
|
176 |
colnames(R) = c("gene", "pvalue", "adj.pvalue") |
|
|
177 |
R[,1] = genes |
|
|
178 |
|
|
|
179 |
|
|
|
180 |
#************ Hyperg test, disease association *************** |
|
|
181 |
FUN=function(j){ |
|
|
182 |
r = genes[j] |
|
|
183 |
k = sum(logicalVector) |
|
|
184 |
x = P[,colnames(P)==r] |
|
|
185 |
m = sum(x) |
|
|
186 |
n = length(x) - m |
|
|
187 |
q = sum(x[logicalVector]) |
|
|
188 |
phyper(q-1,m,n,k, lower.tail = F) |
|
|
189 |
} |
|
|
190 |
|
|
|
191 |
R[,2]=unlist(mclapply(1:nrow(R), FUN, mc.cores=CORES)) |
|
|
192 |
|
|
|
193 |
R[,3] = p.adjust(R[,2], P.ADJUST.METH) |
|
|
194 |
|
|
|
195 |
# log10 transformation and filtering |
|
|
196 |
R = R[order(R$adj.pvalue),] |
|
|
197 |
R = R[R$adj.pvalue < HG_PVAL,] # FILTER |
|
|
198 |
R$pvalue = round(abs(log10(R$pvalue)),1) |
|
|
199 |
R$adj.pvalue = round(abs(log10(R$adj.pvalue)),1) |
|
|
200 |
|
|
|
201 |
#****************************************************************** |
|
|
202 |
|
|
|
203 |
if(dim(R)[1]>0){ |
|
|
204 |
|
|
|
205 |
# Mann-whitney, higher expression in normal |
|
|
206 |
MW = do.call(rbind, mclapply(1:dim(R)[1],function(i) { |
|
|
207 |
x=R[i,] |
|
|
208 |
gene = as.character(x[1]) |
|
|
209 |
S = as.numeric(D[,colnames(D)==gene]) |
|
|
210 |
logicalVector2=as.numeric(P[,colnames(D)==gene]) |
|
|
211 |
|
|
|
212 |
# choose |
|
|
213 |
S_D = S[logicalVector&logicalVector2] |
|
|
214 |
S_D = S[logicalVector] |
|
|
215 |
|
|
|
216 |
ttp=sapply(logicalVector_normals, function(lv){ |
|
|
217 |
S_normal = D[lv,colnames(D)==gene] |
|
|
218 |
tt = wilcox.test(S_D, S_normal,alternative=ALTERNATIVE) |
|
|
219 |
return(tt$p.value) |
|
|
220 |
}) |
|
|
221 |
|
|
|
222 |
ttp = p.adjust(ttp, P.ADJUST.METH) |
|
|
223 |
})) |
|
|
224 |
|
|
|
225 |
testsig=MW>MW_PVAL |
|
|
226 |
|
|
|
227 |
name_normals=names(logicalVector_normals) |
|
|
228 |
|
|
|
229 |
res=do.call(cbind, lapply(seq(name_normals), function(i){ |
|
|
230 |
ifelse(testsig[,i], name_normals[i], "") |
|
|
231 |
})) |
|
|
232 |
|
|
|
233 |
fails=apply(res, 1, function(v)paste(v[!v==""], collapse=",")) |
|
|
234 |
|
|
|
235 |
# also compute fold change against all normals |
|
|
236 |
options("scipen"=100, "digits"=3) |
|
|
237 |
FC = do.call(rbind, mclapply(1:dim(R)[1],function(i) { |
|
|
238 |
x=R[i,] |
|
|
239 |
gene = as.character(x[1]) |
|
|
240 |
S = as.numeric(D[,colnames(D)==gene]) |
|
|
241 |
logicalVector2=as.numeric(P[,colnames(D)==gene]) |
|
|
242 |
|
|
|
243 |
# choose |
|
|
244 |
S_D = S[logicalVector&logicalVector2] |
|
|
245 |
S_D = S[logicalVector] |
|
|
246 |
|
|
|
247 |
fc=sapply(logicalVector_normals, function(lv){ |
|
|
248 |
S_normal = D[lv,colnames(D)==gene] |
|
|
249 |
FC=mean(S_normal)-mean(S_D) |
|
|
250 |
}) |
|
|
251 |
}, mc.cores=CORES)) |
|
|
252 |
|
|
|
253 |
FoldChange=round(rowMeans(FC)*-1,1) |
|
|
254 |
|
|
|
255 |
FoldChange_min=round(apply(FC, 1, min)*-1,1) |
|
|
256 |
FoldChange_max=round(apply(FC, 1, max)*-1,1) |
|
|
257 |
|
|
|
258 |
# report all of these |
|
|
259 |
df=data.frame(R, FoldChange, fails, FoldChange_min, FoldChange_max) |
|
|
260 |
|
|
|
261 |
}else{ |
|
|
262 |
return(NULL) |
|
|
263 |
} |
|
|
264 |
|
|
|
265 |
# output |
|
|
266 |
if(dim(df)[1]>0) return(cbind(df, name, stringsAsFactors=F)) |
|
|
267 |
} |
|
|
268 |
|
|
|
269 |
fun.kapplanMeier=function(TIME, STATUS, GROUPS=NULL, CONTINUOUS=NULL, CONTINUOUS_SUMMARY=c("maxrank", "5quantiles","4quantiles","3quantiles","85th_15th_percentile", "80th_20th_percentile", "75th_25th_percentile", "median"), NAME="", MONTHS=F, PVAL=1, INDIVIDUAL_GROUPS=T, LWD=3, labels=NULL, COLORV=NULL, conf.int=F,font.size=8, xlab="Time in months"){ |
|
|
270 |
|
|
|
271 |
CONTINUOUS_SUMMARY <- match.arg(CONTINUOUS_SUMMARY) |
|
|
272 |
|
|
|
273 |
# cutpoints https://github.com/kassambara/survminer/issues/41 |
|
|
274 |
if(MONTHS){ |
|
|
275 |
TIME=as.numeric(TIME)*0.0328767 |
|
|
276 |
} |
|
|
277 |
|
|
|
278 |
if(is.null(GROUPS)&!is.null(CONTINUOUS)){ |
|
|
279 |
df=data.frame("time"=TIME, "status"=STATUS, "continuous"=CONTINUOUS, stringsAsFactors = F) |
|
|
280 |
|
|
|
281 |
NAME=paste(NAME, CONTINUOUS_SUMMARY) |
|
|
282 |
|
|
|
283 |
if(CONTINUOUS_SUMMARY=="maxrank"){ |
|
|
284 |
library(survminer) |
|
|
285 |
cutoff <- surv_cutpoint( |
|
|
286 |
df, |
|
|
287 |
time = "time", |
|
|
288 |
event = "status", |
|
|
289 |
variables = c("continuous") |
|
|
290 |
) |
|
|
291 |
# print(plot(cutoff)) |
|
|
292 |
GROUPS=rep(paste0("low (<", signif(cutoff$cutpoint$cutpoint,1), ")"), length(CONTINUOUS)) |
|
|
293 |
GROUPS[CONTINUOUS>cutoff$cutpoint$cutpoint]=paste0("High (>=", signif(cutoff$cutpoint$cutpoint,1), ")") |
|
|
294 |
} |
|
|
295 |
|
|
|
296 |
if(CONTINUOUS_SUMMARY=="4quantiles"){ |
|
|
297 |
|
|
|
298 |
library(dplyr) |
|
|
299 |
GROUPS <- paste0("Q",ntile(CONTINUOUS, 4)) |
|
|
300 |
|
|
|
301 |
} |
|
|
302 |
|
|
|
303 |
if(CONTINUOUS_SUMMARY=="3quantiles"){ |
|
|
304 |
|
|
|
305 |
library(dplyr) |
|
|
306 |
GROUPS <- paste0("Q",ntile(CONTINUOUS, 3)) |
|
|
307 |
|
|
|
308 |
} |
|
|
309 |
|
|
|
310 |
if(CONTINUOUS_SUMMARY=="5quantiles"){ |
|
|
311 |
|
|
|
312 |
library(dplyr) |
|
|
313 |
GROUPS <- paste0("Q",ntile(CONTINUOUS, 5)) |
|
|
314 |
|
|
|
315 |
} |
|
|
316 |
|
|
|
317 |
|
|
|
318 |
if(CONTINUOUS_SUMMARY=="85th_15th_percentile"){ |
|
|
319 |
|
|
|
320 |
q=quantile(CONTINUOUS, probs = c(0.15, 0.85)) # quartile |
|
|
321 |
GROUPS=rep("Q2", length(CONTINUOUS)) |
|
|
322 |
GROUPS[CONTINUOUS>q[2]]="Q3" |
|
|
323 |
GROUPS[CONTINUOUS<q[1]]="Q1" |
|
|
324 |
|
|
|
325 |
} |
|
|
326 |
|
|
|
327 |
if(CONTINUOUS_SUMMARY=="80th_20th_percentile"){ |
|
|
328 |
|
|
|
329 |
q=quantile(CONTINUOUS, probs = c(0.2, 0.8)) # quartile |
|
|
330 |
GROUPS=rep("Q2", length(CONTINUOUS)) |
|
|
331 |
GROUPS[CONTINUOUS>q[2]]="Q3" |
|
|
332 |
GROUPS[CONTINUOUS<q[1]]="Q1" |
|
|
333 |
|
|
|
334 |
} |
|
|
335 |
|
|
|
336 |
if(CONTINUOUS_SUMMARY=="75th_25th_percentile"){ |
|
|
337 |
|
|
|
338 |
q=quantile(CONTINUOUS, probs = c(0.25, 0.75)) # quartile |
|
|
339 |
GROUPS=rep("Q2", length(CONTINUOUS)) |
|
|
340 |
GROUPS[CONTINUOUS>q[2]]="Q3" |
|
|
341 |
GROUPS[CONTINUOUS<q[1]]="Q1" |
|
|
342 |
|
|
|
343 |
} |
|
|
344 |
|
|
|
345 |
if(CONTINUOUS_SUMMARY=="median"){ |
|
|
346 |
|
|
|
347 |
library(dplyr) |
|
|
348 |
GROUPS <- paste0("Q",ntile(CONTINUOUS, 2)) |
|
|
349 |
|
|
|
350 |
} |
|
|
351 |
} |
|
|
352 |
NAME=gsub("_", " ", NAME) |
|
|
353 |
classes=as.character(GROUPS) |
|
|
354 |
size=c(length(unique(classes))) |
|
|
355 |
|
|
|
356 |
if(!is.null(COLORV)){ |
|
|
357 |
col1 <- COLORV |
|
|
358 |
}else{ |
|
|
359 |
size=c(length(unique(classes))) |
|
|
360 |
col1=c("red", "gray75") |
|
|
361 |
if(size>2){ |
|
|
362 |
col1 <- colorRampPalette(c(brewer.pal(min(size, 9), "Set1"), brewer.pal(min(size, 8), "Set2"), brewer.pal(min(size, 9), "Set3")))(size) |
|
|
363 |
col1=col1[order(unique(classes))] |
|
|
364 |
} |
|
|
365 |
if(all(unique(classes)%in%c("Q1", "Q2", "Q3"))){ |
|
|
366 |
unique(classes) |
|
|
367 |
|
|
|
368 |
col1=data.frame(c("Q1", "Q2", "Q3"), c("darkblue", "grey75", "red"), stringsAsFactors = F) |
|
|
369 |
|
|
|
370 |
col1=col1[match(unique(classes), col1[,1]),2] |
|
|
371 |
} |
|
|
372 |
} |
|
|
373 |
|
|
|
374 |
if(!INDIVIDUAL_GROUPS){ |
|
|
375 |
DF.surv2=data.frame("time"=as.numeric(TIME), "status"=as.character(STATUS)=="DECEASED"|as.character(STATUS)=="1"|as.character(STATUS)=="Dead", "x"=factor(GROUPS, levels=unique(GROUPS)), stringsAsFactors=T) |
|
|
376 |
d.surv2 <- survfit(Surv(time,status) ~ x, data = DF.surv2, type="kaplan-meier", conf.type="log") |
|
|
377 |
|
|
|
378 |
|
|
|
379 |
# OLD |
|
|
380 |
# plot(d.surv2, col=col1, lwd=rep(as.numeric(LWD), length(col1)), mark.time=c(as.numeric(TIME)), mark=3, cex=LWD/2, fun="log", conf.int=F, ylim=c(0, 1), ylab="Percentage Surviving", xlab="Months") |
|
|
381 |
# legend("topright", paste(names(d.surv2$strata)," n=",d.surv2$n, sep=""), lwd=rep(LWD, length(col1)), col=col1) |
|
|
382 |
# title(paste("Kaplan-Meier Curves\n", NAME)) |
|
|
383 |
|
|
|
384 |
theme0 <- function(...) theme( |
|
|
385 |
# legend.position = "none", |
|
|
386 |
panel.background = element_blank(), |
|
|
387 |
panel.grid.major = element_blank(), |
|
|
388 |
panel.grid.minor = element_blank(), |
|
|
389 |
axis.line = element_line(), |
|
|
390 |
plot.margin=unit(c(1,1,1,1), "mm"), |
|
|
391 |
axis.text.y = element_text(colour="grey20",size=font.size,face="plain", family="Helvetica"), |
|
|
392 |
axis.text.x = element_text(colour="grey20",size=font.size,face="plain", family="Helvetica"), |
|
|
393 |
text = element_text(colour="grey20",size=font.size,face="plain", family="Helvetica"), |
|
|
394 |
plot.title = element_text(size=font.size, face = "plain", family="Helvetica") |
|
|
395 |
# panel.spacing = unit(0,"null"), |
|
|
396 |
# axis.ticks = element_blank(), |
|
|
397 |
# axis.text.x = element_blank(), |
|
|
398 |
# axis.text.y = element_blank(), |
|
|
399 |
# axis.title.x = element_blank(), |
|
|
400 |
# axis.title.y = element_blank(), |
|
|
401 |
# axis.ticks.length = unit(0,"null"), |
|
|
402 |
# panel.border=element_rect(color=NA) |
|
|
403 |
) |
|
|
404 |
|
|
|
405 |
ggsurv <- survminer::ggsurvplot( |
|
|
406 |
d.surv2, # survfit object with calculated statistics. |
|
|
407 |
data = DF.surv2, # data used to fit survival curves. |
|
|
408 |
risk.table = F, # show risk table. |
|
|
409 |
pval = TRUE, # show p-value of log-rank test. |
|
|
410 |
conf.int = conf.int, # show confidence intervals for |
|
|
411 |
# point estimates of survival curves. |
|
|
412 |
palette = col1, |
|
|
413 |
pval.size=3, |
|
|
414 |
pval.method = T, |
|
|
415 |
size = LWD, |
|
|
416 |
censor.size = LWD*1.5, |
|
|
417 |
censor.shape="|", |
|
|
418 |
title=NAME, |
|
|
419 |
# xlim = c(0,500), # present narrower X axis, but not affect |
|
|
420 |
# survival estimates. |
|
|
421 |
xlab = xlab, |
|
|
422 |
# break.time.by = 100, # break X axis in time intervals by 500. |
|
|
423 |
ggtheme = theme0(), # customize plot and risk table with a theme. |
|
|
424 |
risk.table.y.text.col = F,# colour risk table text annotations. |
|
|
425 |
risk.table.height = 0.25, # the height of the risk table |
|
|
426 |
risk.table.y.text = FALSE,# show bars instead of names in text annotations |
|
|
427 |
# in legend of risk table. |
|
|
428 |
ncensor.plot = F, # plot the number of censored subjects at time t |
|
|
429 |
ncensor.plot.height = 0.25, |
|
|
430 |
conf.int.style = "step", # customize style of confidence intervals |
|
|
431 |
# surv.median.line = "hv", # add the median survival pointer. |
|
|
432 |
legend.labs = paste0(unique(DF.surv2$x)," n=", d.surv2$n) # change legend labels. |
|
|
433 |
) |
|
|
434 |
return(ggsurv) |
|
|
435 |
|
|
|
436 |
}else{ |
|
|
437 |
|
|
|
438 |
unfeat=unique(as.character(GROUPS)) |
|
|
439 |
|
|
|
440 |
plots=lapply(unfeat, function(a){ |
|
|
441 |
group=ifelse(GROUPS%in%a, a, "Rest") |
|
|
442 |
|
|
|
443 |
|
|
|
444 |
DF.surv2=data.frame("time"=as.numeric(TIME), "status"=as.character(STATUS)=="DECEASED"|as.character(STATUS)=="1"|as.character(STATUS)=="Dead", "x"=as.character(group), stringsAsFactors=F) |
|
|
445 |
d.surv2 <- survfit(Surv(time,status) ~ x, data = DF.surv2, type="kaplan-meier", conf.type="log") |
|
|
446 |
|
|
|
447 |
classes=as.character(GROUPS) |
|
|
448 |
size=c(length(unique(classes))) |
|
|
449 |
|
|
|
450 |
if(!is.null(COLORV)){ |
|
|
451 |
col1 <- COLORV |
|
|
452 |
}else{ |
|
|
453 |
size=c(length(unique(classes))) |
|
|
454 |
col1=c("red", "gray75") |
|
|
455 |
} |
|
|
456 |
|
|
|
457 |
# why is this here? |
|
|
458 |
# if(all(table(DF.surv2[,2], DF.surv2[,3])>=2)){ |
|
|
459 |
Hazard.t=coxph(Surv(time,status) ~ x, data = DF.surv2) |
|
|
460 |
add=signif(summary(Hazard.t)$logtest["pvalue"],2)[1] |
|
|
461 |
# }else{ |
|
|
462 |
# add=NA |
|
|
463 |
# } |
|
|
464 |
|
|
|
465 |
if(!is.na(add)&add<=PVAL){ |
|
|
466 |
|
|
|
467 |
# plot(d.surv2, col=col1, lwd=rep(as.numeric(LWD), length(col1)), mark.time=c(as.numeric(TIME)), mark=3,cex=LWD/2, fun="log", conf.int=F, ylim=c(0, 1), xlab="Months", ylab="Percentage Surviving") |
|
|
468 |
# legend("topright", paste(gsub("x=", "", names(d.surv2$strata))," n=",d.surv2$n, " ", c("", paste0("p.value=", add)), sep=""), lwd=rep(LWD, length(col1)), col=col1) |
|
|
469 |
# title(paste("Kaplan-Meier Curves\n", NAME)) |
|
|
470 |
theme0 <- function(...) theme( |
|
|
471 |
# legend.position = "none", |
|
|
472 |
panel.background = element_blank(), |
|
|
473 |
panel.grid.major = element_blank(), |
|
|
474 |
panel.grid.minor = element_blank(), |
|
|
475 |
axis.line = element_line(), |
|
|
476 |
plot.margin=unit(c(1,1,1,1), "mm"), |
|
|
477 |
axis.text.y = element_text(colour="grey20",size=font.size,face="plain", family="Helvetica"), |
|
|
478 |
axis.text.x = element_text(colour="grey20",size=font.size,face="plain", family="Helvetica"), |
|
|
479 |
text = element_text(colour="grey20",size=font.size,face="plain", family="Helvetica"), |
|
|
480 |
plot.title = element_text(size=font.size, face = "plain", family="Helvetica") |
|
|
481 |
# panel.spacing = unit(0,"null"), |
|
|
482 |
# axis.ticks = element_blank(), |
|
|
483 |
# axis.text.x = element_blank(), |
|
|
484 |
# axis.text.y = element_blank(), |
|
|
485 |
# axis.title.x = element_blank(), |
|
|
486 |
# axis.title.y = element_blank(), |
|
|
487 |
# axis.ticks.length = unit(0,"null"), |
|
|
488 |
# panel.border=element_rect(color=NA) |
|
|
489 |
) |
|
|
490 |
|
|
|
491 |
|
|
|
492 |
ggsurv <- survminer::ggsurvplot( |
|
|
493 |
d.surv2, # survfit object with calculated statistics. |
|
|
494 |
data = DF.surv2, # data used to fit survival curves. |
|
|
495 |
risk.table = F, # show risk table. |
|
|
496 |
pval = TRUE, # show p-value of log-rank test. |
|
|
497 |
conf.int = conf.int, # show confidence intervals for |
|
|
498 |
# point estimates of survival curves. |
|
|
499 |
palette = col1, |
|
|
500 |
pval.size=3, |
|
|
501 |
pval.method = T, |
|
|
502 |
title=NAME, |
|
|
503 |
size = LWD, |
|
|
504 |
censor.size = LWD*1.5, |
|
|
505 |
censor.shape="|", |
|
|
506 |
# xlim = c(0,500), # present narrower X axis, but not affect |
|
|
507 |
# survival estimates. |
|
|
508 |
xlab = xlab, |
|
|
509 |
# break.time.by = 100, # break X axis in time intervals by 500. |
|
|
510 |
ggtheme = theme0(), # customize plot and risk table with a theme. |
|
|
511 |
risk.table.y.text.col = F,# colour risk table text annotations. |
|
|
512 |
risk.table.height = 0.25, # the height of the risk table |
|
|
513 |
risk.table.y.text = FALSE,# show bars instead of names in text annotations |
|
|
514 |
# in legend of risk table. |
|
|
515 |
ncensor.plot = F, # plot the number of censored subjects at time t |
|
|
516 |
ncensor.plot.height = 0.25, |
|
|
517 |
conf.int.style = "step", # customize style of confidence intervals |
|
|
518 |
# surv.median.line = "hv", # add the median survival pointer. |
|
|
519 |
legend.labs = paste0(unique(unique(group))," n=", d.surv2$n) # change legend labels. |
|
|
520 |
) |
|
|
521 |
# print(ggsurv) |
|
|
522 |
return(ggsurv) |
|
|
523 |
} |
|
|
524 |
}) |
|
|
525 |
plots.together=arrange_ggsurvplots(plots, print = TRUE, |
|
|
526 |
ncol = 2, nrow = ceiling(length(plots)/2)) |
|
|
527 |
return(plots.together) |
|
|
528 |
} |
|
|
529 |
} |
|
|
530 |
|
|
|
531 |
ft.alt <- function(a, b, c, d, alternative="greater") { |
|
|
532 |
as.numeric(fisher.test(matrix(c(a, b, c, d), 2), alternative = alternative)$p.value) |
|
|
533 |
} |
|
|
534 |
|
|
|
535 |
cor.test.p=function(x, y, method="spearman", use="pairwise.complete.obs") cor.test(x, y, method=method, use=use)[["p.value"]] |
|
|
536 |
|
|
|
537 |
cor.test.p.m <- function(x, method="spearman", use="pairwise.complete.obs"){ |
|
|
538 |
|
|
|
539 |
z <- outer( |
|
|
540 |
colnames(x), |
|
|
541 |
colnames(x), |
|
|
542 |
Vectorize(function(i,j){ |
|
|
543 |
no.pairs=sum(complete.cases(x[,j]==x[,i]))<3 |
|
|
544 |
if(no.pairs)return(NA) |
|
|
545 |
cor.test.p(x[,i], x[,j], method=method, use=use) |
|
|
546 |
}) |
|
|
547 |
) |
|
|
548 |
dimnames(z) <- list(colnames(x), colnames(x)) |
|
|
549 |
z |
|
|
550 |
} |
|
|
551 |
|
|
|
552 |
flat_cor_mat <- function(cor_rho, cor_pval){ |
|
|
553 |
# cor_3 <- rcorr(as.matrix(mtcars[, 1:7])) |
|
|
554 |
#This function provides a simple formatting of a correlation matrix |
|
|
555 |
#into a table with 4 columns containing : |
|
|
556 |
# Column 1 : row names (variable 1 for the correlation test) |
|
|
557 |
# Column 2 : column names (variable 2 for the correlation test) |
|
|
558 |
# Column 3 : the correlation coefficients |
|
|
559 |
# Column 4 : the p-values of the correlations |
|
|
560 |
library(tidyr) |
|
|
561 |
library(dplyr) |
|
|
562 |
library(tibble) |
|
|
563 |
options(scipen=4) |
|
|
564 |
cor_rho <- rownames_to_column(as.data.frame(cor_rho), var = "row") |
|
|
565 |
cor_rho <- gather(cor_rho, column, cor, -1) |
|
|
566 |
cor_pval <- rownames_to_column(as.data.frame(cor_pval), var = "row") |
|
|
567 |
cor_pval <- gather(cor_pval, column, p, -1) |
|
|
568 |
cor_pval_matrix <- left_join(cor_rho, cor_pval, by = c("row", "column")) |
|
|
569 |
colnames(cor_pval_matrix)[1:2]=c("featureA", "featureB") |
|
|
570 |
cor_pval_matrix=cor_pval_matrix[!cor_pval_matrix[,1]==cor_pval_matrix[,2],] |
|
|
571 |
cor_pval_matrix=cor_pval_matrix[order(cor_pval_matrix[,1], cor_pval_matrix[,3]),] |
|
|
572 |
rownames(cor_pval_matrix)=NULL |
|
|
573 |
cor_pval_matrix |
|
|
574 |
} |
|
|
575 |
|
|
|
576 |
chart.Correlation.custom=function (R,filterv=NULL, histogram = TRUE, method = c("pearson", "kendall","spearman"), ...){ |
|
|
577 |
x = checkData(R, method = "matrix") |
|
|
578 |
if (missing(method)) |
|
|
579 |
method = method[1] |
|
|
580 |
panel.cor <- function(x, y, digits = 2, prefix = "", use = "pairwise.complete.obs", |
|
|
581 |
method, cex.cor, ...) { |
|
|
582 |
usr <- par("usr") |
|
|
583 |
on.exit(par(usr)) |
|
|
584 |
par(usr = c(0, 1, 0, 1)) |
|
|
585 |
r <- cor(x, y, use = use, method = method) |
|
|
586 |
txt <- format(c(r, 0.123456789), digits = digits)[1] |
|
|
587 |
txt <- paste(prefix, txt, sep = "") |
|
|
588 |
if (missing(cex.cor)) |
|
|
589 |
cex <- 0.8/strwidth(txt) |
|
|
590 |
test <- cor.test(x, y, method = method) |
|
|
591 |
Signif <- symnum(test$p.value, corr = FALSE, na = FALSE, |
|
|
592 |
cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("***", |
|
|
593 |
"**", "*", ".", " ")) |
|
|
594 |
text(0.5, 0.5, txt, cex = cex * (abs(r) + 0.3)/1.3) |
|
|
595 |
text(0.8, 0.8, Signif, cex = cex, col = 2) |
|
|
596 |
} |
|
|
597 |
f <- function(t) { |
|
|
598 |
dnorm(t, mean = mean(x), sd = sd.xts(x)) |
|
|
599 |
} |
|
|
600 |
hist.panel = function(x, ...) { |
|
|
601 |
par(new = TRUE) |
|
|
602 |
hist(x, col = "light gray", probability = TRUE, axes = FALSE, |
|
|
603 |
main = "", breaks = "FD") |
|
|
604 |
lines(density(x, na.rm = TRUE), col = "red", lwd = 1) |
|
|
605 |
rug(x) |
|
|
606 |
} |
|
|
607 |
if (histogram) |
|
|
608 |
pairs(x, gap = 0, lower.panel = panel.smooth, upper.panel = panel.cor, |
|
|
609 |
diag.panel = hist.panel, method = method, subset=colnames(x)%in%rownames(test)[1:5]) |
|
|
610 |
else pairs(x, gap = 0, lower.panel = panel.smooth, upper.panel = panel.cor, |
|
|
611 |
method = method, ...) |
|
|
612 |
} |
|
|
613 |
|
|
|
614 |
# make sure data is on a linear non-log scale |
|
|
615 |
# check 0 values, if a lot between 0-1 better to use add.one. If counts, remove works too quite well |
|
|
616 |
# zero fix methods: https://arxiv.org/pdf/1806.06403.pdf |
|
|
617 |
gm_mean=function(x, na.rm=TRUE, zero.handle=c("remove", "add.one", "zero.propagate")){ |
|
|
618 |
zero.handle=match.arg(zero.handle) |
|
|
619 |
if(any(x < 0, na.rm = TRUE)){ |
|
|
620 |
warning("Negative values produced NaN - is the data on linear - non-log scale?") |
|
|
621 |
return(NaN) |
|
|
622 |
} |
|
|
623 |
|
|
|
624 |
if(zero.handle=="remove"){ |
|
|
625 |
return(exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))) |
|
|
626 |
} |
|
|
627 |
|
|
|
628 |
if(zero.handle=="add.one"){ |
|
|
629 |
return(exp(mean(log(x+1), na.rm = na.rm))-1) |
|
|
630 |
} |
|
|
631 |
|
|
|
632 |
if(zero.handle=="zero.propagate"){ |
|
|
633 |
if(any(x == 0, na.rm = TRUE)){ |
|
|
634 |
return(0) |
|
|
635 |
} |
|
|
636 |
return(exp(mean(log(x), na.rm = na.rm))) |
|
|
637 |
} |
|
|
638 |
|
|
|
639 |
} |