|
a |
|
b/FigS6G_CGA_GSEA_hemapMM.R |
|
|
1 |
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/" |
|
|
2 |
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R")) |
|
|
3 |
source(file.path(GIT_HOME, "common_scripts/statistics/functions_statistics.R")) |
|
|
4 |
source(file.path(GIT_HOME, "common_scripts/pathway_analysis/functions.GSEA.R")) |
|
|
5 |
|
|
|
6 |
library(GSVA) |
|
|
7 |
library(parallel) |
|
|
8 |
library(ComplexHeatmap) |
|
|
9 |
|
|
|
10 |
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures") |
|
|
11 |
|
|
|
12 |
t.df = read.delim("t.antigen_df.txt", stringsAsFactors=F, header=T) |
|
|
13 |
t.df=t.df[order(t.df[,3]),] |
|
|
14 |
|
|
|
15 |
annot = get(load("Hemap_immunology_Annotations.Rdata")) |
|
|
16 |
|
|
|
17 |
# gexp data |
|
|
18 |
data=t(get(load("data9544_with_gene_symbols.RData"))) |
|
|
19 |
data=data[,colnames(data)%in%annot$GSM.identifier..sample.] |
|
|
20 |
|
|
|
21 |
# data: |
|
|
22 |
genelist=t.df[t.df[,3]%in%"Cancer_Myeloma",1] |
|
|
23 |
|
|
|
24 |
# take MM |
|
|
25 |
GSE=c("GSE16716,GSE24080") |
|
|
26 |
# GSE=c("GSE19784") |
|
|
27 |
|
|
|
28 |
gexp=data[,annot$GSE.identifier..experiment.%in%GSE] |
|
|
29 |
annot2=annot[annot$GSE.identifier..experiment.%in%GSE,] |
|
|
30 |
|
|
|
31 |
# GSE="All_samples" |
|
|
32 |
# gexp=data[,annot$colorClass=="MM"] |
|
|
33 |
# annot2=annot[annot$colorClass=="MM",] |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
# rank patients by number of testis antigens expressed |
|
|
37 |
# profiles |
|
|
38 |
profile=get(load("mixtureM_profile.Rdata")) |
|
|
39 |
profile[profile==-1] = 0 |
|
|
40 |
profile2=profile[,colnames(profile)%in%annot2$GSM.identifier..sample.] |
|
|
41 |
|
|
|
42 |
# take only high expressed into account |
|
|
43 |
profile2[data.matrix(gexp)<5]=0 |
|
|
44 |
|
|
|
45 |
expressed_testis_num=colSums(profile2[rownames(profile2)%in%unique(t.df$gene),]) |
|
|
46 |
feat_class=expressed_testis_num |
|
|
47 |
feat_class[expressed_testis_num==0]="0_Antigens" |
|
|
48 |
feat_class[expressed_testis_num>=1&expressed_testis_num<=4]="1to4_Antigens" |
|
|
49 |
feat_class[expressed_testis_num>=5&expressed_testis_num<=6]="5to6_Antigens" |
|
|
50 |
feat_class[expressed_testis_num>=7]="over7_Antigens" |
|
|
51 |
|
|
|
52 |
GENESETS="Combined_pathway_signatures_2017_filtered_robust.gmt" |
|
|
53 |
WD=file.path(getwd(), "GSEA") |
|
|
54 |
OUTDIR=file.path(getwd(), "GSEA") |
|
|
55 |
|
|
|
56 |
# # run GSEA: |
|
|
57 |
# command=run.GSEA(data=gexp, cls.vector = as.numeric(expressed_testis_num), datatype = "N", GENESETS = GENESETS, dataname = "MM", clsname = "Testis_antigen_groups", WD=WD, OUTDIR=OUTDIR) |
|
|
58 |
# try(system(command)) |
|
|
59 |
# |
|
|
60 |
# command=run.GSEA(data=gexp, cls.vector = as.numeric(annot2$HLAIScore), datatype = "N", GENESETS = GENESETS, dataname = paste0("MM_", GSE[1]), clsname = "HLAI", WD=WD, OUTDIR=OUTDIR) |
|
|
61 |
# try(system(command)) |
|
|
62 |
# |
|
|
63 |
# command=run.GSEA(data=gexp, cls.vector = as.numeric(annot2$HLAIIScore), datatype = "N", GENESETS = GENESETS, dataname = paste0("MM_", GSE[1]), clsname = "HLAII", WD=WD, OUTDIR=OUTDIR) |
|
|
64 |
# try(system(command)) |
|
|
65 |
|
|
|
66 |
a=read.delim(file.path(WD, "MM_Testis_antigen_groups_continuous_phenotype.Gsea.1549532122926/gsea_report_for_feat_neg_1549532122926.xls"), stringsAsFactors = F) |
|
|
67 |
a=read.delim(file.path(WD, "MM_Testis_antigen_groups_continuous_phenotype.Gsea.1549532122926/gsea_report_for_feat_pos_1549532122926.xls"), stringsAsFactors = F) |
|
|
68 |
|
|
|
69 |
# # GSE19784 |
|
|
70 |
# a=read.delim("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/MM_Testis_antigen_groups_continuous_phenotype.Gsea.1549542936287/gsea_report_for_feat_pos_1549542936287.xls", stringsAsFactors = F) |
|
|
71 |
# b=read.delim("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/MM_Testis_antigen_groups_continuous_phenotype.Gsea.1549542936287/gsea_report_for_feat_neg_1549542936287.xls", stringsAsFactors = F) |
|
|
72 |
|
|
|
73 |
c=rbind(a,b) |
|
|
74 |
|
|
|
75 |
# get GSVA visualization for the pathways |
|
|
76 |
# Geneset list |
|
|
77 |
Onc.pathways=read.delim(GENESETS, stringsAsFactors = FALSE, header=F, col.names = paste("V",1:max(count.fields(GENESETS, sep = '\t'), na.rm = T)), fill = TRUE) |
|
|
78 |
|
|
|
79 |
# Make list |
|
|
80 |
listA=mclapply(1:length(Onc.pathways[,1]), function(i){A=as.character(Onc.pathways[i,3:length(Onc.pathways),]) |
|
|
81 |
B=A[!A==""&!A=="NA"]}, mc.cores=6) |
|
|
82 |
|
|
|
83 |
names(listA) <- Onc.pathways[,1] |
|
|
84 |
|
|
|
85 |
viz_scores=gsva(expr = data.matrix(gexp), gset.idx.list = listA, parallel.sz=8, tau=0.25) |
|
|
86 |
|
|
|
87 |
# make a complex heatmap |
|
|
88 |
significant=c(c[c$FWER.p.val<0.001,1])[1:10] |
|
|
89 |
dat_plot=viz_scores[match(significant, toupper(rownames(viz_scores))),] |
|
|
90 |
|
|
|
91 |
annof=data.frame("HLAI"=annot2$HLAIScore, "HLAII"=annot2$HLAIIScore) |
|
|
92 |
|
|
|
93 |
df_anno=data.frame("cytogeneticAbnormalities"=as.double(annot2$MM_CYTOGENETIC_ABNORMALITIES),"age"=annot2$AGE, "iss"=as.character(annot2$MM_ISS), "iss1"=annot2$MM_ISS==1,"iss2"=annot2$MM_ISS==2,"iss3"=annot2$MM_ISS==3, "OS"=annot2$OS_Time, "PFS"=annot2$PFS_Time, "number.T.Antigenes"=as.numeric(expressed_testis_num), "antigen.group"=feat_class) |
|
|
94 |
|
|
|
95 |
expressed_testis_num2=expressed_testis_num[order(expressed_testis_num)] |
|
|
96 |
|
|
|
97 |
df_anno=df_anno[match(names(expressed_testis_num2), rownames(df_anno)),] |
|
|
98 |
dat_plot=dat_plot[,match(names(expressed_testis_num2), colnames(dat_plot))] |
|
|
99 |
annof=annof[match(names(expressed_testis_num2), colnames(gexp)),] |
|
|
100 |
feat_class=feat_class[match(names(expressed_testis_num2), names(feat_class))] |
|
|
101 |
gexp=gexp[,match(names(expressed_testis_num2), colnames(gexp))] |
|
|
102 |
|
|
|
103 |
ha = HeatmapAnnotation(df=df_anno,NUM_TESTIS = anno_barplot(expressed_testis_num2, axis = T, gp = gpar(fill = "indianred")), HLA = anno_barplot(annof$HLAI, axis = T, gp = gpar(fill = "indianred")), HLAII = anno_barplot(annof$HLAII, axis = T, gp = gpar(fill = "darkgoldenrod"),ylim = c(5,10))) |
|
|
104 |
ha2 = HeatmapAnnotation(df=data.frame(as.character(feat_class)), height = unit(20, "mm")) |
|
|
105 |
|
|
|
106 |
pl=data.frame(df_anno$antigen.group, annof$HLAI) |
|
|
107 |
|
|
|
108 |
logicalVectors=lapply(unique(feat_class), function(cl)feat_class%in%cl) |
|
|
109 |
names(logicalVectors)=unique(feat_class) |
|
|
110 |
|
|
|
111 |
rownames(dat_plot)=gsub("-.*.|_IN_CANCER_HOMO_SAPIENS-WIKIPW", "", rownames(dat_plot)) |
|
|
112 |
|
|
|
113 |
pdf("FigS6G_CGA_GSVA_GSE16716_GSE24080.pdf", height = 8, width = 8) |
|
|
114 |
Heatmap(dat_plot, bottom_annotation = ha,use_raster = F, top_annotation=HeatmapAnnotation("# CGA"=anno_barplot(data.frame(expressed_testis_num2), height = unit(10, "mm"))), cluster_columns = F, cluster_rows = F, row_names_side = "right", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="GSVA\nScore", col=colorRamp2(c(-0.5,0,0.5), c("grey50", "white", "red")), show_column_names = F, width = unit(40, "mm"), height = unit(1.25*20, "mm")) |
|
|
115 |
Heatmap(t(annof$HLAII), cluster_columns = F, cluster_rows = F, row_names_side = "right", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="HLAII\nScore", show_column_names = F, width = unit(40, "mm"), height = unit(1.25*1, "mm")) |
|
|
116 |
|
|
|
117 |
a=t(scale(annof$HLAII)) |
|
|
118 |
a[a>2]=2 |
|
|
119 |
a[a<(-2)]=-2 |
|
|
120 |
|
|
|
121 |
Heatmap(a, cluster_columns = F, cluster_rows = F, row_names_side = "right", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="HLAII\nScore", show_column_names = F, width = unit(40, "mm"), height = unit(1.25*dim(a)[1], "mm")) |
|
|
122 |
dev.off() |
|
|
123 |
|
|
|
124 |
|
|
|
125 |
# verify HLA association |
|
|
126 |
|
|
|
127 |
GSE=c("GSE16716,GSE24080") |
|
|
128 |
# GSE=c("GSE19784") |
|
|
129 |
# GSE=c("GSE15695,GSE21349", "GSE16716,GSE24080", "GSE17306", "GSE19784", "GSE2134") |
|
|
130 |
|
|
|
131 |
annot2=annot[annot$GSE.identifier..experiment.%in%GSE,] |
|
|
132 |
|
|
|
133 |
# gexp data |
|
|
134 |
gexp=data[,colnames(data)%in%annot2$GSM.identifier..sample.] |
|
|
135 |
|
|
|
136 |
t.df=t.df[order(t.df[,3]),] |
|
|
137 |
|
|
|
138 |
# data: |
|
|
139 |
genelist=t.df[t.df[,3]%in%"Cancer_Myeloma",1] |
|
|
140 |
genelist=t.df[,1] |
|
|
141 |
|
|
|
142 |
# rank patients by number of testis antigens expressed |
|
|
143 |
# profiles |
|
|
144 |
profile[profile==-1] = 0 |
|
|
145 |
profile2=profile[,colnames(profile)%in%annot2$GSM.identifier..sample.] |
|
|
146 |
|
|
|
147 |
# take only high expressed into account |
|
|
148 |
profile2[data.matrix(gexp)<5]=0 |
|
|
149 |
|
|
|
150 |
expressed_testis_num=colSums(profile2[rownames(profile2)%in%unique(t.df$gene),]) |
|
|
151 |
feat_class=expressed_testis_num |
|
|
152 |
feat_class[expressed_testis_num==0]="0 CGA" |
|
|
153 |
feat_class[expressed_testis_num>=1&expressed_testis_num<=4]="1-4 CGA" |
|
|
154 |
feat_class[expressed_testis_num>=5&expressed_testis_num<=6]="5-6 CGA" |
|
|
155 |
feat_class[expressed_testis_num>=7]=">7 CGA" |
|
|
156 |
|
|
|
157 |
logicalVectors=lapply(unique(feat_class), function(cl)feat_class%in%cl) |
|
|
158 |
names(logicalVectors)=unique(feat_class) |
|
|
159 |
|
|
|
160 |
annof=data.frame("HLAI"=annot2$HLAIScore, "HLAII"=annot2$HLAIIScore) |
|
|
161 |
|
|
|
162 |
genelist=c("HLAI", "HLAII") |
|
|
163 |
p.all=lapply(genelist, plot.boxplot, logicalVectors = logicalVectors, data = t(annof), order = T,spread = F) |
|
|
164 |
|
|
|
165 |
TestGeneWilcox("HLAII", data = t(annof), logicalVectors = logicalVectors, logicalVector_normals = logicalVectors, ALTERNATIVE = "less") |
|
|
166 |
TestGeneWilcox("HLAII", data = t(annof), logicalVectors = logicalVectors, ALTERNATIVE = "less") |
|
|
167 |
|
|
|
168 |
ggsave(plot = p.all[[2]], filename = "FigureS6G_HLAII_MM_hemap.pdf", width = unit(3.25, "cm"), height = unit(3, "cm")) |