|
a |
|
b/FigS5C.R |
|
|
1 |
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/" |
|
|
2 |
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R")) |
|
|
3 |
source(file.path(GIT_HOME, "common_scripts/statistics/functions_statistics.R")) |
|
|
4 |
source(file.path(GIT_HOME, "common_scripts/statistics/statistics_wrappers.R")) |
|
|
5 |
source(file.path(GIT_HOME, "common_scripts/pathway_analysis/functions.GSEA.R")) |
|
|
6 |
source(file.path(GIT_HOME, "common_scripts/scRNA/functions.scRNA.analysis.R")) |
|
|
7 |
source(file.path(GIT_HOME, "common_scripts/statistics/useful_functions.R")) |
|
|
8 |
|
|
|
9 |
library(Matrix) |
|
|
10 |
library(Seurat) |
|
|
11 |
library(data.table) |
|
|
12 |
library(ComplexHeatmap) |
|
|
13 |
library(circlize) |
|
|
14 |
library(parallel) |
|
|
15 |
library(ggplot2) |
|
|
16 |
|
|
|
17 |
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures") |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
# analyze FIMM and Galen AML and find costim associations to certain clusters. |
|
|
21 |
co.stim=data.table::fread("costim_ligands_final.txt", data.table = F)[,c(1,3,5)] |
|
|
22 |
co.stimR=data.table::fread("costim_ligands_final.txt", data.table = F) |
|
|
23 |
co.stimR.f=c(unlist(strsplit(co.stimR$`Receptor gene`, ", ")), "LAG3") |
|
|
24 |
co.stim=rbind(co.stim, c("FGL1", "LAG3", "Inhibitory")) |
|
|
25 |
|
|
|
26 |
load("AML_Galen_scRNA.Rdata") |
|
|
27 |
galen=scmat |
|
|
28 |
|
|
|
29 |
load("HCA_scRNA.Rdata") |
|
|
30 |
HCA=scmat |
|
|
31 |
|
|
|
32 |
load("FIMM_AML_scRNA.Rdata") |
|
|
33 |
|
|
|
34 |
# plot from each dataset all significant genes: |
|
|
35 |
subtype.order=c("MDS-like", "Progenitor-like", "Monocyte-like", "Monocyte-like-MLL", "CEBPA", "RUNX1-RUNX1T1", "CBFB-MYH11", "PML-RARA") |
|
|
36 |
|
|
|
37 |
fimm=scmat[,scmat[["SingleR.label"]][,1]%in%c("HSC", "MPP", "GMP", "CMP", "MEP", "Monocytes", "Erythrocytes")] |
|
|
38 |
galen.sub=galen[,galen[["SingleR.label"]][,1]%in%c("HSC", "MPP", "GMP", "CMP", "MEP", "Monocytes", "Erythrocytes")] |
|
|
39 |
hca=HCA[,HCA[["SingleR.label"]][,1]%in%c("HSC", "MPP", "GMP", "CMP", "MEP", "Monocytes", "Erythrocytes")] |
|
|
40 |
|
|
|
41 |
Idents(fimm)=fimm[["SingleR.label"]][,1] |
|
|
42 |
Idents(galen.sub)=factor(galen.sub[["SingleR.label"]][,1], levels=c("HSC", "MPP", "GMP", "CMP", "MEP", "Monocytes", "Erythrocytes")) |
|
|
43 |
Idents(hca)=hca[["SingleR.label"]][,1] |
|
|
44 |
|
|
|
45 |
# do DE gene tests: |
|
|
46 |
DE.FIMM=FindAllMarkers(object = fimm, features = genelist[genelist%in%rownames(scmat)], only.pos = T, logfc.threshold = 0.15) |
|
|
47 |
DE.galen=FindAllMarkers(object = galen.sub, features = genelist[genelist%in%rownames(galen)], only.pos = T, logfc.threshold = 0.15) |
|
|
48 |
DE.HCA=FindAllMarkers(object = hca, features = genelist[genelist%in%rownames(HCA)], only.pos = T, logfc.threshold = 0.15) |
|
|
49 |
|
|
|
50 |
all=rbind(DE.FIMM, DE.galen, DE.HCA) |
|
|
51 |
all=all[order(match(all$cluster, c("HSC", "MPP", "GMP", "CMP", "MEP", "Monocytes", "Erythrocytes"))),] |
|
|
52 |
|
|
|
53 |
a=table(all$cluster, all$gene) |
|
|
54 |
genelist.filt=c(colnames(a[,apply(a, 2, function(v)any(v>1))]), "C10orf54") |
|
|
55 |
|
|
|
56 |
# these were selected for the figure: |
|
|
57 |
genelist.filt=c("CD34", "CLEC2B", "TNFRSF14", "CD84", "VSIR", "C10orf54", "CD68", "CD48","CD86","ENTPD1") |
|
|
58 |
|
|
|
59 |
pdf("FigS5C_VISTA_FIMM_dotplot.pdf", width = 4.5, height = 2.5) |
|
|
60 |
plot.DotPlot(fimm, features = genelist.filt[genelist.filt%in%rownames(scmat)], cols=c("grey75", "red"), scale.max = 50, scale.min = 10, dot.scale = 4) |
|
|
61 |
plot.DotPlot(galen.sub, features = genelist.filt[genelist.filt%in%rownames(galen)], cols=c("grey75", "red"), scale.max = 50, scale.min = 10, dot.scale = 4) |
|
|
62 |
plot.DotPlot(hca, features = genelist.filt[genelist.filt%in%rownames(HCA)], cols=c("grey75", "red"), scale.max = 50, scale.min = 10, dot.scale = 4) |
|
|
63 |
dev.off() |