--- a +++ b/FigS4J_CIITA_methylation_validation_GSE49031.R @@ -0,0 +1,104 @@ +GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/" +source(file.path(GIT_HOME, "common_scripts/featurematrix/functions_generate_fm.R")) +source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R")) + +library(limma) +library(edgeR) +library(parallel) +library(gridExtra) + +setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures") + +anno = read.delim("cytogenetics_GSE49031.txt", stringsAsFactors=F, header=T) + +# extract interesting probes: +meth_probeinfo = read.csv("GPL13534_HumanMethylation450_15017482_v.1.1.csv",skip=7, stringsAsFactors=F, header=T) + +# find CIITA locus chr16:10959400-10965899 +find=meth_probeinfo$CHR=="16"&meth_probeinfo$MAPINFO>10959400&meth_probeinfo$MAPINFO<11020097 +locus_interest=meth_probeinfo[find,] + +write.table(locus_interest$IlmnID, "probenames.txt", sep="\t", quote=F, row.names=F, col.names=F, append=F) +system("grep -f probenames.txt GSE49031_processed.txt > GSE49031_ciita.txt") + +# can start here +header=unlist(strsplit(readLines("GSE49031_processed.txt", n = 1),split = "\t")) +meth = read.delim("GSE49031_ciita.txt", stringsAsFactors=F, header=F, row.names=1) +colnames(meth)=header[2:length(header)] + +meth=meth[,grep("Average Beta", colnames(meth))] +colnames(meth)=gsub(" Average Beta", "", colnames(meth)) + +meth_subset=meth[,na.omit(match(anno[,1], colnames(meth)))] +anno=anno[match(colnames(meth_subset), anno[,1]),] + + +A=meth_subset[,anno$X11q23.MLL==1&!anno$T.ALL==1] +B=meth_subset[,anno$t.12.21.==1&!anno$T.ALL==1] +C=meth_subset[,anno$t.1.19.==1&!anno$T.ALL==1] +D=meth_subset[,anno$dic.9.20.==1&!anno$T.ALL==1] +E=meth_subset[,anno$t.9.22.==1&!anno$T.ALL==1] +G=meth_subset[,anno$T.ALL==1] + +result=cbind(rownames(A), locus_interest$UCSC_RefGene_Name, + locus_interest$UCSC_RefGene_Accession, + locus_interest$UCSC_RefGene_Group, + locus_interest$UCSC_CpG_Islands_Name, + paste0(locus_interest$CHR, ":", locus_interest$MAPINFO,"-", locus_interest$MAPINFO+nchar(locus_interest$AlleleA_ProbeSeq)) +) + +d=data.frame(t(meth_subset), anno$Subtype) +library(reshape) + +plotd=melt(d) + +plotd=plotd[plotd[,2]=="cg04945379",] + +logicalVectors=lapply(unique(anno$Subtype), function(a)anno$Subtype%in%a) +names(logicalVectors)=unique(anno$Subtype) + +genelist=rownames(A) + +plot.boxplot(gene = "cg04945379", logicalVectors = logicalVectors,data = meth_subset,order = T,spread = T) + +# Check gene expression to confirm its higher: +data_gexp=get(load("reRMA210915.RData")) + +library(org.Hs.eg.db) +## Bimap interface: +x <- org.Hs.egSYMBOL +# Get the gene symbol that are mapped to an entrez gene identifiers +mapped_genes <- mappedkeys(x) +# Convert to a list +xx <- as.list(x[mapped_genes]) + +rownames(data_gexp)=xx[match(rownames(data_gexp), names(xx))] + +# colnames(data)=gsub("_ALL*.*","", colnames(data)) +colnames(data_gexp)=paste0("ALL_", gsub("GSM*.*_|.CEL.gz","", colnames(data_gexp))) + +data2=data_gexp[,na.omit(match(anno[,1], colnames(data_gexp)))] + +anno2=anno[match(colnames(data2), anno[,1]),] + +logicalVectors=lapply(unique(anno2$Subtype), function(a)anno2$Subtype%in%a) +names(logicalVectors)=unique(anno2$Subtype) + +genelist=c("CIITA", grep("HLA-D", rownames(data2), value=T)) + +annotv=colnames(data2)[colnames(data2)%in%colnames(meth_subset)[meth_subset["cg04945379",]>0.6]] +methv=meth_subset["cg04945379",match(colnames(data2), colnames(meth_subset))] + +# also HLAII +dat_a3=data2[rownames(data2)%in%c("HLA-DMA","HLA-DMB","HLA-DPA1","HLA-DPB1","HLA-DRA","HLA-DRB1"),] + +dat3=2^dat_a3+0.01 +gm3=log2(t(apply(dat3, 2, gm_mean))) +rownames(gm3)="HLAIIScore" + +data2=rbind(data2, gm3) + +genelist=c("HLAIIScore", "CIITA") +p.all=lapply(genelist, plot.boxplot, logicalVectors = logicalVectors, data = data2, order.bl = T,spread = T, sample.color.continuous = as.numeric(methv), outlier.size = 2) +p.all=append(p.all, lapply(genelist, plot.boxplot, logicalVectors = logicalVectors, data = data2, order.bl = T,spread = T, outlier.size = 2)) +ggsave("FigS4J_GSE49031_CIITA_methylation.pdf", do.call(marrangeGrob, append(list(grobs=p.all, nrow=4, ncol=2),list(top=NULL))), width = 260 , height = 297, units = "mm", dpi=150, limitsize = FALSE)