|
a |
|
b/FigS4D_TCGA_AML_global_hypermethylation.R |
|
|
1 |
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/" |
|
|
2 |
source(file.path(GIT_HOME, "common_scripts/featurematrix/functions_generate_fm.R")) |
|
|
3 |
source(file.path(GIT_HOME, "common_scripts/statistics/functions_statistics.R")) |
|
|
4 |
|
|
|
5 |
library(data.table) |
|
|
6 |
library(parallel) |
|
|
7 |
|
|
|
8 |
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures") |
|
|
9 |
|
|
|
10 |
fm=get(load("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/TCGA_AML/DUFVA_TCGA_AML_FM_meth.Rdata")) |
|
|
11 |
fm=fm[!(!grepl("^B:GNAB:*.*chr*.*y_n_somatic", rownames(fm))&grepl("^B:GNAB:", rownames(fm))),] |
|
|
12 |
|
|
|
13 |
# add methylation global in heatmap: |
|
|
14 |
meth_global=fread("450array_methylation_GMM_profile_3m.txt", data.table=F) |
|
|
15 |
meth_global[,1]=gsub("\\.", "-", meth_global[,1]) |
|
|
16 |
|
|
|
17 |
fm=fm[,match(meth_global$V1, colnames(fm))] |
|
|
18 |
|
|
|
19 |
meth=t(meth_global[,-1]) |
|
|
20 |
|
|
|
21 |
hlaII=as.numeric(fm["N:SAMP:HLAIIScore",]) |
|
|
22 |
|
|
|
23 |
clusters=as.character(fm["C:SAMP:cancermap_cluster",]) |
|
|
24 |
clusters2=as.character(fm["C:SAMP:cancermap_cluster",]) |
|
|
25 |
clusters2[clusters%in%3&hlaII<8]="3 CIITA methylated" |
|
|
26 |
|
|
|
27 |
clu=get.logical(list(clusters2)) |
|
|
28 |
|
|
|
29 |
a=plot.boxplot("high_pct", logicalVectors = clu, names.lv = names(clu), data = meth, spread = F, ylab = "% High Methylated", color.v = c("#e8c5e4", "#ab3724", "#93a891","#93a891", "#917e99", "#7cb7d8", "#f18aad", "#95dbb2")) |
|
|
30 |
|
|
|
31 |
ggsave(plot = a, filename = "FigS4D_Global_hypermethylation_HLAIIlow_TCGA_clusters.pdf", width = 4, height = 3) |
|
|
32 |
|
|
|
33 |
wilcox.test(x = meth["high_pct",clu[[8]]], y = meth["high_pct",!clu[[8]]], alternative = "greater") |
|
|
34 |
0.00173 |