|
a |
|
b/Fig7_Univariate_Coxph_survival.R |
|
|
1 |
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/" |
|
|
2 |
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R")) |
|
|
3 |
source(file.path(GIT_HOME, "common_scripts/statistics/functions_statistics.R")) |
|
|
4 |
source(file.path(GIT_HOME, "common_scripts/statistics/statistics_wrappers.R")) |
|
|
5 |
source(file.path(GIT_HOME, "common_scripts/featurematrix/compute.pairwise.R")) |
|
|
6 |
source(file.path(GIT_HOME, "common_scripts/featurematrix/functions_generate_fm.R")) |
|
|
7 |
|
|
|
8 |
library(RColorBrewer) |
|
|
9 |
library(survival) |
|
|
10 |
library(data.table) |
|
|
11 |
library(ggplot2) |
|
|
12 |
library(ComplexHeatmap) |
|
|
13 |
library(survMisc) |
|
|
14 |
library(survminer) |
|
|
15 |
library(plyr) |
|
|
16 |
|
|
|
17 |
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures") |
|
|
18 |
|
|
|
19 |
#******************************************** Hemap ********************************************* |
|
|
20 |
|
|
|
21 |
annot = get(load("Hemap_immunology_Annotations.Rdata")) |
|
|
22 |
annot=annot[!is.na(annot$OS_Time),] |
|
|
23 |
|
|
|
24 |
# survival time and status |
|
|
25 |
TIME=annot$OS_Time |
|
|
26 |
STATUS=as.numeric(annot$OS_Status) |
|
|
27 |
TIME2=annot$PFS_Time |
|
|
28 |
STATUS2=as.numeric(annot$PFS_Status) |
|
|
29 |
|
|
|
30 |
#************************************** Process gene expression data ************************************ |
|
|
31 |
profile=data.matrix(get(load("mixtureM_profile.Rdata"))) |
|
|
32 |
profile[profile==-1] = 0 |
|
|
33 |
profile2=profile[,colnames(profile)%in%annot$GSM.identifier..sample.] |
|
|
34 |
data=t(get(load("data9544_with_gene_symbols.RData"))) |
|
|
35 |
data=data[,colnames(data)%in%annot$GSM.identifier..sample.] |
|
|
36 |
|
|
|
37 |
# take only high expressed into account, for CGA score |
|
|
38 |
profile2[data<5]=0 |
|
|
39 |
|
|
|
40 |
#******************************************************************************************************** |
|
|
41 |
|
|
|
42 |
|
|
|
43 |
#********************************** Make necessary gene lists *************************************** |
|
|
44 |
|
|
|
45 |
# other lists from each analysis |
|
|
46 |
cga = read.delim("t.antigen_df.txt", stringsAsFactors=F, header=T)[,1] |
|
|
47 |
co.stim=fread("costim_ligands_final.txt", data.table = F) |
|
|
48 |
|
|
|
49 |
hlagenes=c("B2M", "HLA-A", "HLA-B", "HLA-C", "HLA-DMA", "HLA-DMB", "HLA-DPA1", "HLA-DPB1", "HLA-DRA", "HLA-DRB1", "CIITA") |
|
|
50 |
immunoscore=c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA") |
|
|
51 |
|
|
|
52 |
# for AML: |
|
|
53 |
MDS=get(load("MDS_genesets.Rdata")) |
|
|
54 |
|
|
|
55 |
# significant per disease |
|
|
56 |
microenv=get(load("Hemap_cytolytic_correlated_genes_TableS2_onlysignif.Rdata")) |
|
|
57 |
|
|
|
58 |
#**************************************************************************************************** |
|
|
59 |
# data for survival |
|
|
60 |
df=data.frame("time"=annot$OS_Time, "status"=annot$OS_Status, "HLAI"=annot$HLAIScore, "HLAII"=annot$HLAIIScore, "CytolyticScore"=annot$CytolyticScore, "Freq.CGA"=colSums(profile2[rownames(profile2)%in%cga,]), stringsAsFactors = F) |
|
|
61 |
|
|
|
62 |
#********************************* just AML ********************************* |
|
|
63 |
filterv = annot$subclasses%in%"AML"&annot$CELLS_SORTED==0 |
|
|
64 |
logicalv=get.logical(annovector = list(annot$GSE.identifier..experiment.), filterv = filterv) |
|
|
65 |
names(logicalv)=unique(paste(names(logicalv), annot$subclasses[filterv])) |
|
|
66 |
|
|
|
67 |
filterv = annot$subclasses%in%"AML"&annot$CELLS_SORTED==0 |
|
|
68 |
logicalv2=get.logical(annovector = list(annot$subclasses), filterv = filterv) |
|
|
69 |
names(logicalv2)="Hemap_AML" |
|
|
70 |
logicalv=append(logicalv2, logicalv) |
|
|
71 |
logicalv=logicalv[lapply(logicalv, sum)>2] |
|
|
72 |
|
|
|
73 |
# HLA, cytolytic |
|
|
74 |
DATA=data.frame("HLAI"=scale(annot$HLAIScore), "HLAII"=scale(annot$HLAIIScore), "CytolyticScore"=scale(annot$CytolyticScore)) |
|
|
75 |
aml_res=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
76 |
aml_res_multivar=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = F, pretty=F)) |
|
|
77 |
|
|
|
78 |
DATA_clin=data.frame("Age"=annot$AGE, "Gender"=annot$GENDER) |
|
|
79 |
aml_res_clin=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_clin,TIME,STATUS, univariate = T, pretty=F)) |
|
|
80 |
aml_res_multivar=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_clin,TIME,STATUS, univariate = F, pretty=F)) |
|
|
81 |
|
|
|
82 |
DATA_hla=data.frame(t(data[hlagenes,])) |
|
|
83 |
aml_res_HLA=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_hla,TIME,STATUS, univariate = T, pretty=F)) |
|
|
84 |
|
|
|
85 |
# costim |
|
|
86 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(co.stim[,1]),]))) |
|
|
87 |
aml_res_costim=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
88 |
|
|
|
89 |
# MDS: |
|
|
90 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(MDS$MDS_signature_all_filt),]))) |
|
|
91 |
aml_res_MDS=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
92 |
|
|
|
93 |
# microenvironment |
|
|
94 |
ME=microenv[microenv$disease%in%"AML",] |
|
|
95 |
DATA=data.frame(scale(t(data[rownames(data)%in%ME$gene,]))) |
|
|
96 |
aml_res_microenvironment=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
97 |
aml_res_microenvironment[aml_res_microenvironment$Adj.P<0.1,] |
|
|
98 |
|
|
|
99 |
# subtype: |
|
|
100 |
load("Hemap_AML_subtypes.Rdata") |
|
|
101 |
coordinates.subtype=coordinates.subtype[!is.na(coordinates.subtype$subtype),] |
|
|
102 |
|
|
|
103 |
samples=lapply(unique(coordinates.subtype$subtype), function(type)coordinates.subtype$ID[coordinates.subtype$subtype%in%type]) |
|
|
104 |
DATA=data.frame(do.call(cbind, lapply(samples, function(id)annot$GSM.identifier..sample.%in%id))*1) |
|
|
105 |
colnames(DATA)=gsub("-", ".", unique(coordinates.subtype$subtype)) |
|
|
106 |
|
|
|
107 |
aml_res_subtype=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
108 |
|
|
|
109 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
110 |
tableS7=rbind(aml_res, aml_res_subtype, aml_res_costim, aml_res_MDS, aml_res_microenvironment, aml_res_clin) |
|
|
111 |
tableS7=tableS7[tableS7$Name%in%c("Hemap_AML"),] |
|
|
112 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
113 |
|
|
|
114 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
115 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
116 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
117 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
118 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
119 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
120 |
|
|
|
121 |
# annotate these genes, needed later: |
|
|
122 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
123 |
|
|
|
124 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
125 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
126 |
genelist_signif$type[genelist_signif[,1]%in%unique(coordinates.subtype$subtype)]="Subtype" |
|
|
127 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho > 0)",1]]="Stromal/cancer gene (Rho > 0)" |
|
|
128 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho < 0)",1]]="Stromal/cancer gene (Rho < 0)" |
|
|
129 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"CTL/NK gene",1]]="CTL/NK gene" |
|
|
130 |
genelist_signif$type[genelist_signif[,1]%in%aml_res_MDS[,1]]="MDS-signature gene" |
|
|
131 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
132 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
133 |
tableS7$Type=genelist_signif$type |
|
|
134 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
135 |
|
|
|
136 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_AML.tsv", sep="\t") |
|
|
137 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_AML_signif.tsv", sep="\t") |
|
|
138 |
|
|
|
139 |
# save cohort and survival |
|
|
140 |
gexp=data.frame(scale(t(data))) |
|
|
141 |
immunoscore=data.frame("HLAI"=scale(annot$HLAIScore), "HLAII"=scale(annot$HLAIIScore), "CytolyticScore"=scale(annot$CytolyticScore)) |
|
|
142 |
|
|
|
143 |
samples=lapply(unique(coordinates.subtype$subtype), function(type)coordinates.subtype$ID[coordinates.subtype$subtype%in%type]) |
|
|
144 |
subtypes=do.call(cbind, lapply(samples, function(id)annot$GSM.identifier..sample.%in%id))*1 |
|
|
145 |
colnames(subtypes)=gsub("-", ".", unique(coordinates.subtype$subtype)) |
|
|
146 |
samp=data.frame(subtypes, "Age"=annot$AGE, "Gender"=annot$GENDER) |
|
|
147 |
|
|
|
148 |
save(list = c("gexp","immunoscore", "TIME", "STATUS", "logicalv", "samp"), file="Hemap_AML_survival_data.Rdata") |
|
|
149 |
|
|
|
150 |
#************************************* just MM ************************************* |
|
|
151 |
filterv = annot$subclasses%in%"Cancer_Myeloma"&!is.na(annot$MM_ISS) |
|
|
152 |
logicalv=get.logical(annovector = list(annot$GSE.identifier..experiment.), filterv = filterv) |
|
|
153 |
names(logicalv)=unique(paste(names(logicalv), annot$subclasses[filterv])) |
|
|
154 |
|
|
|
155 |
# just MM |
|
|
156 |
filterv = annot$subclasses%in%"Cancer_Myeloma"&!is.na(annot$MM_ISS) |
|
|
157 |
logicalv2=get.logical(annovector = list(annot$subclasses), filterv = filterv) |
|
|
158 |
names(logicalv2)="MM_all" |
|
|
159 |
logicalv=append(logicalv2, logicalv) |
|
|
160 |
names(logicalv)=c("Hemap_MM", "GSE19784_Hemap_MM", "GSE16716,GSE24080_Hemap_MM") |
|
|
161 |
|
|
|
162 |
data.test=data.frame("time"=TIME[logicalv[[1]]], "status"=STATUS[logicalv[[1]]]) |
|
|
163 |
|
|
|
164 |
ggsurvplot(survfit(Surv(time, status) ~ 1, data = data.test), |
|
|
165 |
xlab = "months", |
|
|
166 |
ylab = "Overall survival probability") |
|
|
167 |
|
|
|
168 |
|
|
|
169 |
DATA=data.frame("HLAI"=scale(annot$HLAIScore), "HLAII"=scale(annot$HLAIIScore), "ISS3"=(annot$MM_ISS==3)*1, "ISS1"=(annot$MM_ISS==1)*1, "Freq.CGA"=as.numeric(df$Freq.CGA),"Age"=annot$AGE, "Gender"=annot$GENDER, check.names = F) |
|
|
170 |
|
|
|
171 |
mm_res=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
172 |
# mm_res_multivar=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA[,3:5],TIME,STATUS, univariate = F, pretty=F)) |
|
|
173 |
|
|
|
174 |
# costim |
|
|
175 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(co.stim[,1]),]))) |
|
|
176 |
mm_res_costim=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
177 |
|
|
|
178 |
DATA=data.frame(scale(t(data[rownames(data)%in%cga,]))) |
|
|
179 |
mm_res_antigen=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
180 |
|
|
|
181 |
# subtype: |
|
|
182 |
load("Hemap_MM_subtypes.Rdata") |
|
|
183 |
|
|
|
184 |
samples=lapply(unique(coordinates.subtype$subtype), function(type)coordinates.subtype$ID[coordinates.subtype$subtype%in%type]) |
|
|
185 |
DATA=data.frame(do.call(cbind, lapply(samples, function(id)annot$GSM.identifier..sample.%in%id))*1) |
|
|
186 |
colnames(DATA)=gsub("-", "_", unique(coordinates.subtype$subtype)) |
|
|
187 |
|
|
|
188 |
mm_res_subtype=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
189 |
|
|
|
190 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
191 |
tableS7=rbind(mm_res, mm_res_costim, mm_res_antigen, mm_res_subtype) |
|
|
192 |
tableS7=tableS7[tableS7$Name%in%c("GSE16716,GSE24080_Hemap_MM"),] |
|
|
193 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
194 |
|
|
|
195 |
|
|
|
196 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
197 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
198 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
199 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
200 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
201 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
202 |
|
|
|
203 |
# annotate these genes, needed later: |
|
|
204 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
205 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
206 |
genelist_signif$type[genelist_signif[,1]%in%gsub("-", "_", unique(coordinates.subtype$subtype))]="Subtype" |
|
|
207 |
genelist_signif$type[genelist_signif[,1]%in%cga]="CGA" |
|
|
208 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
209 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
210 |
tableS7$Type=genelist_signif$type |
|
|
211 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
212 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
213 |
|
|
|
214 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_MM_GSE24080.tsv", sep="\t") |
|
|
215 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_MM_GSE24080_signif.tsv", sep="\t") |
|
|
216 |
|
|
|
217 |
|
|
|
218 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
219 |
tableS7=rbind(mm_res, mm_res_costim, mm_res_antigen) |
|
|
220 |
tableS7=tableS7[tableS7$Name%in%c("GSE19784_Hemap_MM"),] |
|
|
221 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
222 |
|
|
|
223 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
224 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
225 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
226 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
227 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
228 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
229 |
|
|
|
230 |
# annotate these genes, needed later: |
|
|
231 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
232 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
233 |
genelist_signif$type[genelist_signif[,1]%in%gsub("-", "_", unique(coordinates.subtype$subtype))]="Subtype" |
|
|
234 |
genelist_signif$type[genelist_signif[,1]%in%cga]="CGA" |
|
|
235 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
236 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
237 |
tableS7$Type=genelist_signif$type |
|
|
238 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
239 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
240 |
|
|
|
241 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_MM_GSE19784.tsv", sep="\t") |
|
|
242 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_MM_GSE19784_signif.tsv", sep="\t") |
|
|
243 |
|
|
|
244 |
# save cohort and survival |
|
|
245 |
gexp=data.frame(scale(t(data))) |
|
|
246 |
immunoscore=data.frame("HLAI"=scale(annot$HLAIScore), "HLAII"=scale(annot$HLAIIScore), "Freq.CGA"=as.numeric(df$Freq.CGA), check.names = F) |
|
|
247 |
|
|
|
248 |
samples=lapply(unique(coordinates.subtype$subtype), function(type)coordinates.subtype$ID[coordinates.subtype$subtype%in%type]) |
|
|
249 |
subtype=do.call(cbind, lapply(samples, function(id)annot$GSM.identifier..sample.%in%id))*1 |
|
|
250 |
colnames(subtype)=c(gsub("-", ".", unique(coordinates.subtype$subtype)), colnames(subtype)) |
|
|
251 |
samp=data.frame(subtype, "Age"=annot$AGE, "Gender"=annot$GENDER, "ISS3"=(annot$MM_ISS==3)*1, "ISS1"=(annot$MM_ISS==1)*1) |
|
|
252 |
|
|
|
253 |
save(list = c("gexp","immunoscore", "TIME", "STATUS", "logicalv", "samp"), file="Hemap_MM_survival_data.Rdata") |
|
|
254 |
|
|
|
255 |
#***************************** just DLBCL ************************************ |
|
|
256 |
# remove genes not in chapyu dataset: |
|
|
257 |
gexp=get(load("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/data/GSE98588/GSE98588_symbol_rma_normalized.Rdata")) |
|
|
258 |
|
|
|
259 |
ME=microenv[microenv$disease%in%"DLBCL"µenv$category=="Stromal/cancer gene (Rho > 0)"µenv$Rho>0.4,] |
|
|
260 |
microenv_dlbcl=ME[,1] |
|
|
261 |
microenv_dlbcl=microenv_dlbcl[microenv_dlbcl%in%rownames(gexp)] |
|
|
262 |
|
|
|
263 |
filterv = annot$subclasses%in%"BCL_DLBCL"&!is.na(annot$dlbcl_ipi) |
|
|
264 |
logicalv=get.logical(annovector = list(annot$GSE.identifier..experiment.), filterv = filterv) |
|
|
265 |
names(logicalv)=unique(paste(names(logicalv), annot$subclasses[filterv])) |
|
|
266 |
|
|
|
267 |
filterv = annot$subclasses%in%"BCL_DLBCL" |
|
|
268 |
logicalv2=get.logical(annovector = list(annot$subclasses), filterv = filterv) |
|
|
269 |
names(logicalv2)="BCL_DLBCL_all" |
|
|
270 |
|
|
|
271 |
logicalv=append(logicalv2, logicalv) |
|
|
272 |
logicalv=logicalv[lapply(logicalv, sum)>2] |
|
|
273 |
|
|
|
274 |
RCHOP=list(annot$Chemotherapy_RCHOP==1&!is.na(STATUS)&!TIME==0) |
|
|
275 |
CHOP=list(annot$Chemotherapy_CHOP==1&!is.na(STATUS)&!TIME==0) |
|
|
276 |
names(RCHOP)="Hemap_DLBCL_RCHOP" |
|
|
277 |
names(CHOP)="Hemap_DLBCL_CHOP" |
|
|
278 |
|
|
|
279 |
logicalv <- append(logicalv, append(RCHOP, CHOP)) |
|
|
280 |
|
|
|
281 |
# HLA, cytolytic |
|
|
282 |
DATA=data.frame("HLAI"=scale(annot$HLAIScore), "HLAII"=scale(annot$HLAIIScore), "CytolyticScore"=scale(annot$CytolyticScore), "IPI_0to1"=(annot$dlbcl_ipi%in%c(0,1))*1, "IPI_4to5"=(annot$dlbcl_ipi%in%c(4,5))*1, "Freq.CGA"=as.numeric(df$Freq.CGA), "ABC"=(grepl("ABC", annot$tbLY))*1, "GCB"=(grepl("GCB", annot$tbLY))*1,check.names = F) |
|
|
283 |
|
|
|
284 |
dlbcl_res=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
285 |
# dlbcl_res_multivar=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA[,4:6],TIME,STATUS, univariate = F, pretty=F)) |
|
|
286 |
|
|
|
287 |
# costim |
|
|
288 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(co.stim[,1]),]))) |
|
|
289 |
dlbcl_res_costim=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
290 |
|
|
|
291 |
# microenv |
|
|
292 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(microenv_dlbcl),]))) |
|
|
293 |
dlbcl_res_microenv=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
294 |
|
|
|
295 |
DATA=data.frame(scale(t(data[rownames(data)%in%cga,]))) |
|
|
296 |
dlbcl_res_antigen=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
297 |
|
|
|
298 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
299 |
tableS7=rbind(dlbcl_res, dlbcl_res_costim, dlbcl_res_microenv, dlbcl_res_antigen) |
|
|
300 |
tableS7=tableS7[tableS7$Name%in%c("Hemap_DLBCL_RCHOP"),] |
|
|
301 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
302 |
|
|
|
303 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
304 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
305 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
306 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
307 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
308 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
309 |
|
|
|
310 |
# annotate these genes, needed later: |
|
|
311 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
312 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
313 |
genelist_signif$type[genelist_signif[,1]%in%cga]="CGA" |
|
|
314 |
genelist_signif$type[tableS7$Feature%in%c("ABC", "GCB")]="Subtype" |
|
|
315 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho > 0)",1]]="Stromal/cancer gene (Rho > 0)" |
|
|
316 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho < 0)",1]]="Stromal/cancer gene (Rho < 0)" |
|
|
317 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"CTL/NK gene",1]]="CTL/NK gene" |
|
|
318 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
319 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
320 |
|
|
|
321 |
tableS7$Type=genelist_signif$type |
|
|
322 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
323 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
324 |
|
|
|
325 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_DLBCL_RCHOP.tsv", sep="\t") |
|
|
326 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_DLBCL_RCHOP_signif.tsv", sep="\t") |
|
|
327 |
|
|
|
328 |
|
|
|
329 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
330 |
tableS7=rbind(dlbcl_res, dlbcl_res_costim, dlbcl_res_microenv, dlbcl_res_antigen) |
|
|
331 |
tableS7=tableS7[tableS7$Name%in%c("Hemap_DLBCL_CHOP"),] |
|
|
332 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
333 |
|
|
|
334 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
335 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
336 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
337 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
338 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
339 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
340 |
|
|
|
341 |
# annotate these genes, needed later: |
|
|
342 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
343 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
344 |
genelist_signif$type[genelist_signif[,1]%in%cga]="CGA" |
|
|
345 |
genelist_signif$type[tableS7$Feature%in%c("ABC", "GCB")]="Subtype" |
|
|
346 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho > 0)",1]]="Stromal/cancer gene (Rho > 0)" |
|
|
347 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho < 0)",1]]="Stromal/cancer gene (Rho < 0)" |
|
|
348 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"CTL/NK gene",1]]="CTL/NK gene" |
|
|
349 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
350 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
351 |
|
|
|
352 |
tableS7$Type=genelist_signif$type |
|
|
353 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
354 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
355 |
|
|
|
356 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_DLBCL_CHOP.tsv", sep="\t") |
|
|
357 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Hemap_DLBCL_CHOP_signif.tsv", sep="\t") |
|
|
358 |
|
|
|
359 |
# save cohort and survival |
|
|
360 |
gexp=data.frame(scale(t(data))) |
|
|
361 |
immunoscore=data.frame("HLAI"=scale(annot$HLAIScore), "HLAII"=scale(annot$HLAIIScore), "Freq.CGA"=as.numeric(df$Freq.CGA), check.names = F) |
|
|
362 |
|
|
|
363 |
samp=data.frame("Age"=annot$AGE, "Gender"=annot$GENDER, "IPI_0to1"=(annot$dlbcl_ipi%in%c(0,1))*1, "IPI_4to5"=(annot$dlbcl_ipi%in%c(4,5))*1,"ABC"=(grepl("ABC", annot$tbLY))*1, "GCB"=(grepl("GCB", annot$tbLY))*1) |
|
|
364 |
|
|
|
365 |
save(list = c("gexp","immunoscore","samp", "TIME", "STATUS", "logicalv"), file="Hemap_DLBCL_survival_data.Rdata") |
|
|
366 |
|
|
|
367 |
|
|
|
368 |
#******************************************** TCGA AML ***************************************************** |
|
|
369 |
fm_org=get(load("TCGA_AML_FM_DUFVA.Rdata")) |
|
|
370 |
fm=fm_org[,!is.na(fm_org["N:SAMP:CytolyticScore",])] |
|
|
371 |
|
|
|
372 |
risks=c("N:CLIN:Age:::::", |
|
|
373 |
"C:CLIN:acute_myeloid_leukemia_calgb_cytogenetics_risk_category:::::" , |
|
|
374 |
"C:CLIN:FISH_test_component:::::", |
|
|
375 |
"B:GNAB:NPM1:chr5:170814708:170837888:+:y_n_somatic", |
|
|
376 |
"B:GNAB:FLT3:chr13:28577411:28674729:-:y_n_somatic", |
|
|
377 |
"B:GNAB:CEBPA:chr19:33790840:33793430:-:y_n_somatic", |
|
|
378 |
"B:GNAB:TP53:chr17:7565097:7590863:-:y_n_somatic") |
|
|
379 |
|
|
|
380 |
df=t(fm[rownames(fm)%in%risks,]) |
|
|
381 |
colnames(df)=do.call(rbind, strsplit(colnames(df), ":"))[,3] |
|
|
382 |
|
|
|
383 |
data=data.matrix(fm[grepl("GEXP", rownames(fm)),]) |
|
|
384 |
rownames(data)=make.unique(do.call(rbind, strsplit(rownames(data), ":"))[,3]) |
|
|
385 |
|
|
|
386 |
|
|
|
387 |
OS=as.numeric(fm["N:CLIN:OS.months..3.31.12:::::",]) |
|
|
388 |
TIME=OS |
|
|
389 |
STATUS=as.numeric(fm["C:CLIN:vital_status_TCGA_paper:::::",]=="DECEASED") |
|
|
390 |
PFS=as.numeric(fm["N:CLIN:EFS.months....4.30.13:::::",]) |
|
|
391 |
|
|
|
392 |
DATA=data.frame("HLAI"=scale(as.numeric(fm["N:SAMP:HLAIScore",])), "HLAII"=scale(as.numeric(fm["N:SAMP:HLAIIScore",])), "CytolyticScore"=scale(as.numeric(fm["N:SAMP:CytolyticScore",]))) |
|
|
393 |
|
|
|
394 |
logicalv=list("TCGA_AML"=rep(T, dim(DATA)[1])) |
|
|
395 |
|
|
|
396 |
TCGA_AML_res=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
397 |
# TCGA_AML_multivar=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = F, pretty=F)) |
|
|
398 |
|
|
|
399 |
# clinical |
|
|
400 |
DATA_clin=data.frame("Age"=scale(as.numeric(fm["N:CLIN:Age:::::",])), "Blast.percentage"=scale(as.numeric(fm["N:CLIN:X.BM.Blast:::::",])), "Gender"=as.character(fm["C:CLIN:Sex:::::",])) |
|
|
401 |
TCGA_AML_clin=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_clin,TIME,STATUS, univariate = T, pretty=F)) |
|
|
402 |
|
|
|
403 |
# costim |
|
|
404 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(co.stim[,1]),]))) |
|
|
405 |
TCGA_AML_costim=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
406 |
|
|
|
407 |
DATA_hla=data.frame(scale(t(data[rownames(data)%in%hlagenes,]))) |
|
|
408 |
TCGA_AML_HLA=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_hla,TIME,STATUS, univariate = T, pretty=F)) |
|
|
409 |
|
|
|
410 |
# MDS |
|
|
411 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(MDS$MDS_signature_all_filt),]))) |
|
|
412 |
TCGA_AML_MDS=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
413 |
|
|
|
414 |
# mikroenvironment |
|
|
415 |
ME=microenv[microenv$disease%in%"AML",] |
|
|
416 |
DATA=data.frame(scale(t(data[rownames(data)%in%ME$gene,]))) |
|
|
417 |
TCGA_res_microenvironment=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
418 |
TCGA_res_microenvironment[TCGA_res_microenvironment$Adj.P<0.1,] |
|
|
419 |
|
|
|
420 |
# subtype: |
|
|
421 |
load("TCGA_AML_subtypes.Rdata") |
|
|
422 |
|
|
|
423 |
DATA_subtypes=data.frame(do.call(cbind, get.logical(list(coordinates.subtype$subtype)))*1) |
|
|
424 |
|
|
|
425 |
TCGA_aml_res_subtype=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_subtypes,TIME,STATUS, univariate = T, pretty=F)) |
|
|
426 |
|
|
|
427 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
428 |
tableS7=rbind(TCGA_AML_res, TCGA_AML_costim, TCGA_AML_MDS, TCGA_res_microenvironment, TCGA_aml_res_subtype, TCGA_AML_clin) |
|
|
429 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
430 |
|
|
|
431 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
432 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
433 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
434 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
435 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
436 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
437 |
|
|
|
438 |
# annotate these genes, needed later: |
|
|
439 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
440 |
|
|
|
441 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
442 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
443 |
genelist_signif$type[genelist_signif[,1]%in%unique(coordinates.subtype$subtype)]="Subtype" |
|
|
444 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho > 0)",1]]="Stromal/cancer gene (Rho > 0)" |
|
|
445 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho < 0)",1]]="Stromal/cancer gene (Rho < 0)" |
|
|
446 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"CTL/NK gene",1]]="CTL/NK gene" |
|
|
447 |
genelist_signif$type[genelist_signif[,1]%in%aml_res_MDS[,1]]="MDS-signature gene" |
|
|
448 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
449 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
450 |
|
|
|
451 |
tableS7$Type=genelist_signif$type |
|
|
452 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
453 |
|
|
|
454 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_TCGA_AML.tsv", sep="\t") |
|
|
455 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_TCGA_AML_signif.tsv", sep="\t") |
|
|
456 |
|
|
|
457 |
# save cohort and survival |
|
|
458 |
gexp=data.frame(scale(t(data))) |
|
|
459 |
immunoscore=data.frame("HLAI"=scale(as.numeric(fm["N:SAMP:HLAIScore",])), "HLAII"=scale(as.numeric(fm["N:SAMP:HLAIIScore",])), "CytolyticScore"=scale(as.numeric(fm["N:SAMP:CytolyticScore",]))) |
|
|
460 |
|
|
|
461 |
samp=cbind(DATA_clin, DATA_subtypes) |
|
|
462 |
|
|
|
463 |
save(list = c("gexp","immunoscore", "samp", "TIME", "STATUS", "logicalv"), file="TCGA_AML_survival_data.Rdata") |
|
|
464 |
|
|
|
465 |
#********************************************************* Compass MM ********************************************************* |
|
|
466 |
fm=get(load("MM_COMPASS_FM.Rdata")) |
|
|
467 |
annot=get(load("MM_COMPASS_ANNOT.Rdata")) |
|
|
468 |
|
|
|
469 |
annot=annot[match(colnames(fm), rownames(annot)),] |
|
|
470 |
|
|
|
471 |
data=fm[grepl("N:GEXP:", rownames(fm)),] |
|
|
472 |
rownames(data)=gsub("N:GEXP:", "", rownames(data)) |
|
|
473 |
|
|
|
474 |
data.mut=fm[grepl("B:GNAB:", rownames(fm)),] |
|
|
475 |
rownames(data.mut)=gsub("B:GNAB:", "", rownames(data.mut)) |
|
|
476 |
data.mut.filt=data.mut[!rowSums(data.mut, na.rm = T)<10,] |
|
|
477 |
|
|
|
478 |
TIME=as.numeric(fm["N:CLIN:OS",]) |
|
|
479 |
STATUS=as.numeric(fm["B:CLIN:STATUS",]) |
|
|
480 |
|
|
|
481 |
STATUS[TIME>1825&!is.na(STATUS)&STATUS==1]=0 # change to 4year survival, 5 year sharp drop |
|
|
482 |
TIME[TIME>1825]=1825 |
|
|
483 |
|
|
|
484 |
# compute antigen scores |
|
|
485 |
t.df = read.delim("t.antigen_df.txt", stringsAsFactors=F, header=T) |
|
|
486 |
t.df=t.df[order(t.df[,3]),] |
|
|
487 |
genelist=t.df[,1] |
|
|
488 |
|
|
|
489 |
data.test=data.frame("time"=TIME[logicalv[[1]]]*0.0328767, "status"=STATUS[logicalv[[1]]]) |
|
|
490 |
|
|
|
491 |
ggsurvplot(survfit(Surv(time, status) ~ 1, data = data.test), |
|
|
492 |
xlab = "months", |
|
|
493 |
ylab = "Overall survival probability") |
|
|
494 |
|
|
|
495 |
expressed_testis_num=as.numeric(fm["N:SAMP:nCGA",]) |
|
|
496 |
|
|
|
497 |
l.regulon.gene=regulon.feats(fm, co.stim[,1]) |
|
|
498 |
|
|
|
499 |
hlagenes=c("B2M", "HLA-A", "HLA-B", "HLA-C", "HLA-DMA", "HLA-DMB", "HLA-DPA1", "HLA-DPB1", "HLA-DRA", "HLA-DRB1", "CIITA") |
|
|
500 |
|
|
|
501 |
DATAcostim=scale(data.frame(t(gexp[rownames(gexp)%in%co.stim[,1],]))) |
|
|
502 |
DATAhla=scale(data.frame(t(gexp[rownames(gexp)%in%hlagenes,]))) |
|
|
503 |
DATAcga=scale(data.frame(t(gexp[rownames(gexp)%in%t.df[,1],]))) |
|
|
504 |
|
|
|
505 |
DATA=data.frame("HLAI"=scale(as.numeric(fm["N:SAMP:HLAIScore",])), "HLAII"=scale(as.numeric(fm["N:SAMP:HLAIIScore",])), "ISS1"=as.numeric(fm["B:CLIN:R_ISS_1",]),"ISS2"=as.numeric(fm["B:CLIN:R_ISS_2",]),"ISS3"=as.numeric(fm["B:CLIN:R_ISS_3",]), "Freq.CGA"=as.numeric(expressed_testis_num), stringsAsFactors = F) |
|
|
506 |
|
|
|
507 |
logicalv=list(!is.na(expressed_testis_num)) |
|
|
508 |
|
|
|
509 |
names(logicalv)="CoMMPass" |
|
|
510 |
|
|
|
511 |
# plot overall survival |
|
|
512 |
r=lapply(seq(logicalv), function(i){ |
|
|
513 |
data.test=data.frame("time"=TIME[logicalv[[i]]], "status"=STATUS[logicalv[[i]]]) |
|
|
514 |
|
|
|
515 |
ggsurvplot(survfit(Surv(time, status) ~ 1, data = data.test), |
|
|
516 |
xlab = "months", |
|
|
517 |
ylab = "Overall survival probability",title=(names(logicalv)[i]) |
|
|
518 |
) |
|
|
519 |
}) |
|
|
520 |
|
|
|
521 |
names(r)=names(logicalv) |
|
|
522 |
|
|
|
523 |
pdf("CoMMpass_MM_cohorts.pdf", width =5, height = ceiling(length(r)/2)*2.75) |
|
|
524 |
plots.together=arrange_ggsurvplots(r, print = TRUE, ncol = 2, nrow = ceiling(length(r)/2)) |
|
|
525 |
dev.off() |
|
|
526 |
|
|
|
527 |
commpass_res=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
528 |
commpass_res_multivar=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = F, pretty=F)) |
|
|
529 |
|
|
|
530 |
# costim, no mut |
|
|
531 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(co.stim[,1]),]))) |
|
|
532 |
commpass_costim=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
533 |
|
|
|
534 |
# mutations |
|
|
535 |
mut=t(data.mut.filt[rownames(data.mut.filt)%in%c(t.df[,1]),]) |
|
|
536 |
colnames(mut)=paste0("MUT:", colnames(mut)) |
|
|
537 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(t.df[,1]),])), mut) |
|
|
538 |
|
|
|
539 |
commpass_antig=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
540 |
|
|
|
541 |
# subtype: |
|
|
542 |
load("CoMMpass_MM_subtypes.Rdata") |
|
|
543 |
coordinates.subtype=coordinates.subtype[match(colnames(fm), coordinates.subtype$ID),] |
|
|
544 |
|
|
|
545 |
coordinates.subtype$subtype[coordinates.subtype$cluster=="CGA_Prolif"&!is.na(coordinates.subtype$cluster)]="CGA_Prolif" |
|
|
546 |
DATA_subtypes=data.frame(do.call(cbind, get.logical(list(coordinates.subtype$subtype)))*1) |
|
|
547 |
commpass_subtype=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_subtypes,TIME,STATUS, univariate = T, pretty=F)) |
|
|
548 |
|
|
|
549 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
550 |
tableS7=rbind(commpass_res, commpass_costim, commpass_antig, commpass_subtype) |
|
|
551 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
552 |
|
|
|
553 |
# annotate these genes, needed later: |
|
|
554 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
555 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
556 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
557 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
558 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
559 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
560 |
|
|
|
561 |
# annotate these genes, needed later: |
|
|
562 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
563 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
564 |
genelist_signif$type[genelist_signif[,1]%in%cga]="CGA" |
|
|
565 |
genelist_signif$type[genelist_signif[,1]%in%commpass_subtype$Feature]="Subtype" |
|
|
566 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
567 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
568 |
|
|
|
569 |
tableS7$Type=genelist_signif$type |
|
|
570 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
571 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
572 |
|
|
|
573 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_CoMMpass.tsv", sep="\t") |
|
|
574 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_CoMMpass_signif.tsv", sep="\t") |
|
|
575 |
|
|
|
576 |
# save cohort and survival |
|
|
577 |
gexp=data.frame(scale(t(data))) |
|
|
578 |
immunoscore=data.frame("HLAI"=scale(as.numeric(fm["N:SAMP:HLAIScore",])), "HLAII"=scale(as.numeric(fm["N:SAMP:HLAIIScore",])), "Freq.CGA"=as.numeric(expressed_testis_num), stringsAsFactors = F) |
|
|
579 |
|
|
|
580 |
samp=cbind(data.frame("ISS1"=as.numeric(fm["B:CLIN:R_ISS_1",]),"ISS2"=as.numeric(fm["B:CLIN:R_ISS_2",]),"ISS3"=as.numeric(fm["B:CLIN:R_ISS_3",]), stringsAsFactors = F), DATA_subtypes) |
|
|
581 |
|
|
|
582 |
save(list = c("gexp","immunoscore", "samp", "TIME", "STATUS", "logicalv"), file="CoMMpass_survival_data.Rdata") |
|
|
583 |
|
|
|
584 |
#********************************************************* Chapyu DLBCL ********************************************************* |
|
|
585 |
|
|
|
586 |
fm=get(load("GSE98588_fm.Rdata")) |
|
|
587 |
annot=get(load("GSE98588_annot.Rdata")) |
|
|
588 |
|
|
|
589 |
TIME=as.numeric(fm["N:CLIN:OS",]) |
|
|
590 |
PFS=as.numeric(fm["N:CLIN:PFS",]) |
|
|
591 |
STATUS=as.numeric(fm["B:CLIN:OS_STAT",]) |
|
|
592 |
STATUS2=as.numeric(fm["B:CLIN:PFS_STAT",]) |
|
|
593 |
|
|
|
594 |
# compute antigen scores |
|
|
595 |
genelist=t.df[,1] |
|
|
596 |
|
|
|
597 |
data=get(load("GSE98588_symbol_rma_normalized.Rdata")) |
|
|
598 |
colnames(data)=gsub("_DLBCL", "", colnames(data)) |
|
|
599 |
gexp=data |
|
|
600 |
|
|
|
601 |
load("GSE98588_DLBCL_mixtureM_profile.Rdata") |
|
|
602 |
profile[profile==-1] = 0 |
|
|
603 |
profile[data.matrix(data)<5]=0 |
|
|
604 |
|
|
|
605 |
expressed_testis_num=as.numeric(colSums(profile[rownames(profile)%in%genelist,])) |
|
|
606 |
|
|
|
607 |
cnv_annot=fread("41591_2018_16_MOESM8_ESM_CNV_ANNOT.txt", data.table=F) |
|
|
608 |
|
|
|
609 |
l.regulon.gene=regulon.feats(fm, c(co.stim[,1], hlagenes), cnv_annot) |
|
|
610 |
|
|
|
611 |
ME=microenv[microenv$disease%in%"DLBCL"µenv$category=="Stromal/cancer gene (Rho > 0)"µenv$Rho>0.4,] |
|
|
612 |
|
|
|
613 |
# all costim-cytolytic-CGA correlated mutations: |
|
|
614 |
costim_feats=data.matrix(fm[rownames(fm)%in%unlist(l.regulon.gene),]) |
|
|
615 |
rownames(costim_feats)=sapply(rownames(costim_feats), function(n){ |
|
|
616 |
if(!grepl("CNVR", n))return(n) |
|
|
617 |
a=names(l.regulon.gene)[sapply(l.regulon.gene, function(a)any(a%in%n))] |
|
|
618 |
if(length(a))paste0(n,"@", paste(a, collapse=",")) |
|
|
619 |
}) |
|
|
620 |
|
|
|
621 |
DATAmut=data.frame(t(costim_feats[grepl("GNAB|CNVR", rownames(costim_feats)),])) |
|
|
622 |
|
|
|
623 |
DATA=data.frame("HLAI"=scale(as.numeric(fm["N:SAMP:HLAIScore",])), "HLAII"=scale(as.numeric(fm["N:SAMP:HLAIIScore",])), "CytolyticScore"=scale(as.numeric(fm["N:SAMP:CytolyticScore",])), "Freq.CGA"=as.numeric(expressed_testis_num), stringsAsFactors = F) |
|
|
624 |
|
|
|
625 |
logicalv=list(rep(T, dim(DATA)[1])) |
|
|
626 |
names(logicalv)="GSE98588_DLBCL" |
|
|
627 |
|
|
|
628 |
GSE98588_DLBCL_res=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
629 |
# GSE98588_DLBCL_multivar=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA[,4:6],TIME,STATUS, univariate = F, pretty=F)) |
|
|
630 |
|
|
|
631 |
# Clinical |
|
|
632 |
DATA_clin=data.frame("IPI_0to1"=annot$IPI%in%c(0,1)*1,"IPI_4to5"=annot$IPI%in%c(4,5)*1, "ABC"=(annot$COO_byGEP=="ABC")*1 ,"GCB"=(annot$COO_byGEP=="GCB")*1, stringsAsFactors = F) |
|
|
633 |
GSE98588_DLBCL_clin=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_clin,TIME,STATUS, univariate = T, pretty=F)) |
|
|
634 |
|
|
|
635 |
# immuno-editing: |
|
|
636 |
GSE98588_DLBCL_immunoediting=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATAmut,TIME,STATUS, univariate = T, pretty=F)) |
|
|
637 |
GSE98588_DLBCL_immunoediting$Feature=gsub("B.GNAB.", "MUT:", GSE98588_DLBCL_immunoediting$Feature) |
|
|
638 |
GSE98588_DLBCL_immunoediting$Feature=gsub("HLA.", "HLA-", GSE98588_DLBCL_immunoediting$Feature) |
|
|
639 |
GSE98588_DLBCL_immunoediting$Feature=gsub("B.CNVR.", "", GSE98588_DLBCL_immunoediting$Feature) |
|
|
640 |
|
|
|
641 |
# costim |
|
|
642 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(co.stim[,1]),])), DATAmut, "costim.mut"=(rowSums(DATAmut))) |
|
|
643 |
GSE98588_DLBCL_costim=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
644 |
|
|
|
645 |
# monocyte |
|
|
646 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(ME[,1]),]))) |
|
|
647 |
GSE98588_DLBCL_microenvironment=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
648 |
|
|
|
649 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(t.df[,1]),]))) |
|
|
650 |
GSE98588_DLBCL_antigen=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
651 |
|
|
|
652 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
653 |
tableS7=rbind(GSE98588_DLBCL_res,GSE98588_DLBCL_clin, GSE98588_DLBCL_costim, GSE98588_DLBCL_microenvironment, GSE98588_DLBCL_antigen, GSE98588_DLBCL_immunoediting) |
|
|
654 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
655 |
|
|
|
656 |
|
|
|
657 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
658 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
659 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
660 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
661 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
662 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
663 |
|
|
|
664 |
# annotate these genes, needed later: |
|
|
665 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
666 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
667 |
genelist_signif$type[genelist_signif[,1]%in%colnames(DATAmut)]="Immune Editing mutation" |
|
|
668 |
genelist_signif$type[genelist_signif[,1]%in%cga]="CGA" |
|
|
669 |
genelist_signif$type[tableS7$Feature%in%c("ABC", "GCB")]="Subtype" |
|
|
670 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho > 0)",1]]="Stromal/cancer gene (Rho > 0)" |
|
|
671 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho < 0)",1]]="Stromal/cancer gene (Rho < 0)" |
|
|
672 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"CTL/NK gene",1]]="CTL/NK gene" |
|
|
673 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
674 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
675 |
|
|
|
676 |
tableS7$Type=genelist_signif$type |
|
|
677 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
678 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
679 |
|
|
|
680 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_GSE98588_DLBCL.tsv", sep="\t") |
|
|
681 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_GSE98588_DLBCL_signif.tsv", sep="\t") |
|
|
682 |
|
|
|
683 |
# save cohort and survival |
|
|
684 |
gexp=data.frame(scale(t(data))) |
|
|
685 |
immunoscore=data.frame("HLAI"=scale(as.numeric(fm["N:SAMP:HLAIScore",])), "HLAII"=scale(as.numeric(fm["N:SAMP:HLAIIScore",])), "CytolyticScore"=scale(as.numeric(fm["N:SAMP:CytolyticScore",])), "Freq.CGA"=as.numeric(expressed_testis_num), stringsAsFactors = F) |
|
|
686 |
|
|
|
687 |
samp=DATA_clin |
|
|
688 |
|
|
|
689 |
save(list = c("gexp","immunoscore", "samp", "TIME", "STATUS", "logicalv"), file="GSE98588_DLBCL_survival_data.Rdata") |
|
|
690 |
|
|
|
691 |
#********************************************************* Reddy DLBCL ********************************************************* |
|
|
692 |
fm=get(load("REDDY_DLBCL_fm.Rdata")) |
|
|
693 |
annot=get(load("REDDY_DLBCL_annot.Rdata")) |
|
|
694 |
|
|
|
695 |
data=data.matrix(fm[grepl("GEXP", rownames(fm)),]) |
|
|
696 |
rownames(data)=gsub("N:GEXP:", "", rownames(data)) |
|
|
697 |
|
|
|
698 |
TIME=as.numeric(annot$Overall.Survival.years) |
|
|
699 |
STATUS=(as.numeric(annot$Censored)==0)*1 # 0 indicates no censoring, meaning that the death was observed, whereas a 1 indicates that the patient was alive |
|
|
700 |
|
|
|
701 |
ME=microenv[microenv$disease%in%"DLBCL"µenv$category=="Stromal/cancer gene (Rho > 0)"µenv$Rho>0.4,] |
|
|
702 |
|
|
|
703 |
l.regulon.gene=regulon.feats(fm, c(co.stim[,1], hlagenes)) |
|
|
704 |
|
|
|
705 |
# all costim-cytolytic-CGA correlated mutations: |
|
|
706 |
costim_feats=data.matrix(fm[rownames(fm)%in%unlist(l.regulon.gene),]) |
|
|
707 |
rownames(costim_feats)=sapply(rownames(costim_feats), function(n){ |
|
|
708 |
if(!grepl("CNVR", n))return(n) |
|
|
709 |
a=names(l.regulon.gene)[sapply(l.regulon.gene, function(a)any(a%in%n))] |
|
|
710 |
# if(length(a))paste0(n,"@", paste(a, collapse=",")) |
|
|
711 |
}) |
|
|
712 |
|
|
|
713 |
DATAmut=data.frame(t(costim_feats[grepl("GNAB|CNVR", rownames(costim_feats)),])) |
|
|
714 |
|
|
|
715 |
DATA=data.frame("HLAII"=scale(as.numeric(fm["N:SAMP:HLAIIScore",])), "CytolyticScore"=scale(as.numeric(fm["N:SAMP:CytolyticScore",])), stringsAsFactors = F) |
|
|
716 |
|
|
|
717 |
logicalv=list("Reddy_DLBCL"=!is.na(data[1,]), "Reddy_DLBCL_ABC"=!is.na(data[1,])&annot$ABC.GCB..RNAseq.=="ABC", "Reddy_DLBCL_GCB"=!is.na(data[1,])&annot$ABC.GCB..RNAseq.=="GCB") |
|
|
718 |
|
|
|
719 |
Reddy_DLBCL_res=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
720 |
Reddy_DLBCL_multivar=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = F, pretty=F)) |
|
|
721 |
|
|
|
722 |
# Clinical |
|
|
723 |
DATA_clin=data.frame("IPI_0to1"=annot$IPI%in%c(0,1)*1,"IPI_4to5"=annot$IPI%in%c(4,5)*1, "ABC"=(annot$ABC.GCB..RNAseq.=="ABC")*1 ,"GCB"=(annot$ABC.GCB..RNAseq.=="GCB")*1, stringsAsFactors = F) |
|
|
724 |
Reddy_DLBCL_clin=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_clin,TIME,STATUS, univariate = T, pretty=F)) |
|
|
725 |
|
|
|
726 |
# immuno-editing: |
|
|
727 |
Reddy_DLBCL_immunoediting=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATAmut,TIME,STATUS, univariate = T, pretty=F)) |
|
|
728 |
Reddy_DLBCL_immunoediting$Feature=gsub("B.GNAB.", "MUT:", Reddy_DLBCL_immunoediting$Feature) |
|
|
729 |
Reddy_DLBCL_immunoediting$Feature=gsub("HLA.", "HLA-", Reddy_DLBCL_immunoediting$Feature) |
|
|
730 |
Reddy_DLBCL_immunoediting$Feature=gsub("N.CNVR.", "", Reddy_DLBCL_immunoediting$Feature) |
|
|
731 |
|
|
|
732 |
# costim |
|
|
733 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(co.stim[,1]),]))) |
|
|
734 |
Reddy_DLBCL_costim=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
735 |
|
|
|
736 |
# microenvironment |
|
|
737 |
DATA=data.frame(scale(t(data[rownames(data)%in%c(ME[,1]),]))) |
|
|
738 |
Reddy_DLBCL_microenvironment=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
739 |
|
|
|
740 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
741 |
tableS7=rbind(Reddy_DLBCL_res,Reddy_DLBCL_clin[!is.na(Reddy_DLBCL_clin$`exp(coef)`),], Reddy_DLBCL_immunoediting, Reddy_DLBCL_costim, Reddy_DLBCL_microenvironment) |
|
|
742 |
tableS7=tableS7[tableS7$Name%in%"Reddy_DLBCL",] |
|
|
743 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
744 |
|
|
|
745 |
|
|
|
746 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
747 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
748 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
749 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
750 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
751 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
752 |
|
|
|
753 |
# annotate these genes, needed later: |
|
|
754 |
genelist_signif=data.frame(tableS7[,1], type="Clinical", stringsAsFactors = F) |
|
|
755 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
756 |
genelist_signif$type[genelist_signif[,1]%in%Reddy_DLBCL_immunoediting$Feature]="Immune Editing mutation" |
|
|
757 |
genelist_signif$type[genelist_signif[,1]%in%cga]="CGA" |
|
|
758 |
genelist_signif$type[tableS7$Feature%in%c("ABC", "GCB")]="Subtype" |
|
|
759 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho > 0)",1]]="Stromal/cancer gene (Rho > 0)" |
|
|
760 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho < 0)",1]]="Stromal/cancer gene (Rho < 0)" |
|
|
761 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"CTL/NK gene",1]]="CTL/NK gene" |
|
|
762 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
763 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
764 |
|
|
|
765 |
tableS7$Type=genelist_signif$type |
|
|
766 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
767 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
768 |
|
|
|
769 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Reddy_DLBCL.tsv", sep="\t") |
|
|
770 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_Reddy_DLBCL_signif.tsv", sep="\t") |
|
|
771 |
|
|
|
772 |
# save cohort and survival |
|
|
773 |
gexp=data.frame(scale(t(data))) |
|
|
774 |
immunoscore=data.frame("HLAII"=scale(as.numeric(fm["N:SAMP:HLAIIScore",])), "CytolyticScore"=scale(as.numeric(fm["N:SAMP:CytolyticScore",])), stringsAsFactors = F) |
|
|
775 |
|
|
|
776 |
samp=DATA_clin |
|
|
777 |
|
|
|
778 |
save(list = c("gexp","immunoscore", "samp", "TIME", "STATUS", "logicalv"), file="Reddy_DLBCL_survival_data.Rdata") |
|
|
779 |
|
|
|
780 |
|
|
|
781 |
#************************************ beatAML: |
|
|
782 |
load("BeatAML_fm.Rdata") |
|
|
783 |
annot=get(load("BeatAML_fm_annot.Rdata")) |
|
|
784 |
|
|
|
785 |
gexp=fm[grepl("GEXP", rownames(fm)),] |
|
|
786 |
rownames(gexp)=gsub("N:GEXP:", "", rownames(gexp)) |
|
|
787 |
|
|
|
788 |
annot$vitalStatus[annot$vitalStatus=="Unknown"]=NA |
|
|
789 |
TIME=as.numeric(annot$overallSurvival) |
|
|
790 |
STATUS=as.numeric(annot$vitalStatus=="Dead") |
|
|
791 |
|
|
|
792 |
STATUS[TIME>1825&!is.na(STATUS)&STATUS==1]=0 # change to 5year survival |
|
|
793 |
TIME[TIME>1825]=1825 |
|
|
794 |
TIME[TIME==0]=0.1 |
|
|
795 |
|
|
|
796 |
filtv=annot$specimenType%in%"Bone Marrow Aspirate"&!(is.na(TIME)|is.na(STATUS)|is.na(annot$TCGA_coord))&annot$causeOfDeath%in%c("Alive", "Dead-Disease", "Dead-Unknown") |
|
|
797 |
filtv=annot$specimenType%in%"Bone Marrow Aspirate"&!(is.na(annot$TCGA_coord))&annot$causeOfDeath%in%c("Alive", "Dead-Disease", "Dead-Unknown") |
|
|
798 |
filtv2=annot$specimenType%in%"Bone Marrow Aspirate"&!(is.na(annot$TCGA_coord))&annot$TCGA_coord%in%c("CMP-like","MDS-like","Monocyte-like")&annot$causeOfDeath%in%c("Alive", "Dead-Disease", "Dead-Unknown") |
|
|
799 |
filtv3=annot$specimenType%in%"Bone Marrow Aspirate"&!(is.na(annot$TCGA_coord))&annot$TCGA_coord%in%c("MDS-like")&annot$causeOfDeath%in%c("Alive", "Dead-Disease", "Dead-Unknown") |
|
|
800 |
filtv4=annot$specimenType%in%"Bone Marrow Aspirate"&!(is.na(annot$TCGA_coord))&annot$TCGA_coord%in%c("CMP-like")&annot$causeOfDeath%in%c("Alive", "Dead-Disease", "Dead-Unknown") |
|
|
801 |
filtv5=annot$specimenType%in%"Bone Marrow Aspirate"&!(is.na(annot$TCGA_coord))&annot$TCGA_coord%in%c("Monocyte-like")&annot$causeOfDeath%in%c("Alive", "Dead-Disease", "Dead-Unknown") |
|
|
802 |
|
|
|
803 |
logicalv=list("BeatAML"=!(is.na(TIME)|is.na(STATUS)|is.na(annot$TCGA_coord))&annot$causeOfDeath%in%c("Alive", "Dead-Disease", "Dead-Unknown"), "beatAML_BMonly"=filtv, "normal_karyotype"=filtv2, "MDS-like"=filtv3, "CMP-like"=filtv4, "Monocyte-like"=filtv5) |
|
|
804 |
|
|
|
805 |
# plot overall survival |
|
|
806 |
r=lapply(seq(logicalv), function(i){ |
|
|
807 |
ggsurvplot(survfit(Surv(time, status) ~ 1, data = data.frame("time"=TIME[logicalv[[i]]], "status"=STATUS[logicalv[[i]]])), |
|
|
808 |
xlab = "months", |
|
|
809 |
ylab = "Overall survival probability",title=(names(logicalv)[i]) |
|
|
810 |
) |
|
|
811 |
}) |
|
|
812 |
|
|
|
813 |
names(r)=names(logicalv) |
|
|
814 |
|
|
|
815 |
pdf("BeatAML_cohorts.pdf", width =5, height = ceiling(length(r)/2)*2.75) |
|
|
816 |
plots.together=arrange_ggsurvplots(r, print = TRUE, ncol = 2, nrow = ceiling(length(r)/2)) |
|
|
817 |
dev.off() |
|
|
818 |
|
|
|
819 |
data.test=data.frame("time"=TIME[logicalv[[1]]]*0.0328767, "status"=STATUS[logicalv[[1]]]) |
|
|
820 |
|
|
|
821 |
ggsurvplot(survfit(Surv(time, status) ~ 1, data = data.test), |
|
|
822 |
xlab = "months", |
|
|
823 |
ylab = "Overall survival probability") |
|
|
824 |
|
|
|
825 |
# HLA, cytolytic |
|
|
826 |
DATA=data.frame(scale(t(fm[grepl("N:SAMP:.*.Score", rownames(fm)),])), check.names = F) |
|
|
827 |
colnames(DATA)=c("HLAI", "HLAII", "CytolyticScore") |
|
|
828 |
beatAML=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
829 |
|
|
|
830 |
# Clinical: |
|
|
831 |
DATA_clin=data.frame(t(fm[grepl("ELN2017", rownames(fm)),]),"Age"=as.numeric(fm[grepl("ageAtDiagnosis", rownames(fm)),,drop=F]), t(fm[grepl("BM_Transplant", rownames(fm)),,drop=F]),t(fm[grepl("B:CLIN:priorMDS_TRUE", rownames(fm)),,drop=F]), t(fm[grepl("in_PB|in_BM|B:CLIN:is|finalFusion_Complex", rownames(fm)),,drop=F])) |
|
|
832 |
DATA_clin$Age[is.na(DATA_clin$Age)]=median(DATA_clin$Age, na.rm = T) #one observation --> set to median |
|
|
833 |
|
|
|
834 |
colnames(DATA_clin)=gsub("..CLIN.", "", colnames(DATA_clin)) |
|
|
835 |
beatAML_clin=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_clin,TIME,STATUS, univariate = T, pretty=F)) |
|
|
836 |
|
|
|
837 |
# stroma |
|
|
838 |
ME=microenv[microenv$disease=="AML",] |
|
|
839 |
DATA=data.frame(t(gexp[rownames(gexp)%in%ME$gene,])) |
|
|
840 |
beatAML_microenv=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
841 |
beatAML_microenv[beatAML_microenv$P<0.01,] |
|
|
842 |
|
|
|
843 |
# MDS |
|
|
844 |
DATA=data.frame(t(gexp[rownames(gexp)%in%MDS$MDS_signature_all_filt,])) |
|
|
845 |
beatAML_MDS=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
846 |
beatAML_MDS[beatAML_MDS$P<0.05,] |
|
|
847 |
|
|
|
848 |
# costim |
|
|
849 |
DATA=data.frame(t(gexp[rownames(gexp)%in%co.stim[,1],])) |
|
|
850 |
beatAML_costim=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA,TIME,STATUS, univariate = T, pretty=F)) |
|
|
851 |
beatAML_costim[beatAML_costim$P<0.05,] |
|
|
852 |
|
|
|
853 |
# subtype: |
|
|
854 |
load("BeatAML_subtypes.Rdata") |
|
|
855 |
coordinates.subtype$subtype[coordinates.subtype$subtype%in%"Progenitor-like"]="CMP-like" |
|
|
856 |
coordinates.subtype=coordinates.subtype[match(colnames(fm), coordinates.subtype$ID),] |
|
|
857 |
|
|
|
858 |
DATA_subtypes=data.frame(do.call(cbind, get.logical(list(coordinates.subtype$subtype)))*1) |
|
|
859 |
|
|
|
860 |
beataml_res_subtype=do.call(rbind, lapply(seq(logicalv), fun.get.cox, logicalv, DATA_subtypes,TIME,STATUS, univariate = T, pretty=F)) |
|
|
861 |
|
|
|
862 |
fun.kapplanMeier(TIME[logicalv[[1]]], STATUS[logicalv[[1]]],GROUPS=coordinates.subtype$subtype[logicalv[[1]]], MONTHS=T, PVAL=1, INDIVIDUAL_GROUPS=F,LWD = 1, NAME = "Prognostic Index - validation") |
|
|
863 |
|
|
|
864 |
# make table S6, adjusted p-value set here to correct for number of comparisons in total: |
|
|
865 |
tableS7=rbind(beatAML, beataml_res_subtype, beatAML_costim, beatAML_MDS, beatAML_microenv) |
|
|
866 |
tableS7=tableS7[tableS7$Name%in%"BeatAML",] |
|
|
867 |
tableS7$Adj.P=p.adjust(tableS7$P, method="BH") |
|
|
868 |
|
|
|
869 |
tableS7[,2]=prettyNum(tableS7[,2]) |
|
|
870 |
tableS7[,3]=prettyNum(tableS7[,3]) |
|
|
871 |
tableS7[,4]=prettyNum(tableS7[,4]) |
|
|
872 |
tableS7[,5]=prettyNum(tableS7[,5]) |
|
|
873 |
tableS7[,6]=prettyNum(tableS7[,6]) |
|
|
874 |
tableS7[,8]=prettyNum(tableS7[,8]) |
|
|
875 |
|
|
|
876 |
# annotate these genes, needed later: |
|
|
877 |
genelist_signif=data.frame(tableS7[,1], type="", stringsAsFactors = F) |
|
|
878 |
genelist_signif$type[genelist_signif[,1]%in%c("HLAI", "HLAII", "CytolyticScore", "Freq.CGA")]="ImmunoScores" |
|
|
879 |
genelist_signif$type[genelist_signif[,1]%in%beataml_res_subtype$Feature]="Subtype" |
|
|
880 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho > 0)",1]]="Stromal/cancer gene (Rho > 0)" |
|
|
881 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"Stromal/cancer gene (Rho < 0)",1]]="Stromal/cancer gene (Rho < 0)" |
|
|
882 |
genelist_signif$type[genelist_signif[,1]%in%ME[ME$category%in%"CTL/NK gene",1]]="CTL/NK gene" |
|
|
883 |
genelist_signif$type[genelist_signif[,1]%in%MDS$MDS_signature_all_filt]="MDS-signature gene" |
|
|
884 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Inhibitory", co.stim$`Immune checkpoint function`),1]]="Inhibitory ligand" |
|
|
885 |
genelist_signif$type[genelist_signif[,1]%in%co.stim[grepl("Stimulatory", co.stim$`Immune checkpoint function`),1]]="Stimulatory ligand" |
|
|
886 |
|
|
|
887 |
tableS7$Type=genelist_signif$type |
|
|
888 |
tableS7=tableS7[order(tableS7$Type),] |
|
|
889 |
tableS7[,1]=gsub("\\.", "-", tableS7[,1]) |
|
|
890 |
|
|
|
891 |
data.table::fwrite(tableS7[,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_beatAML.tsv", sep="\t") |
|
|
892 |
data.table::fwrite(tableS7[tableS7$Adj.P<0.2,c(1,11,10,2,3,4,5,6,8,9)], "tableS7_beatAML_signif.tsv", sep="\t") |
|
|
893 |
|
|
|
894 |
# save cohort and survival |
|
|
895 |
gexp=data.frame(scale(t(gexp))) |
|
|
896 |
immunoscore=data.frame(scale(t(fm[grepl("N:SAMP:.*.Score", rownames(fm)),])), check.names = F) |
|
|
897 |
colnames(immunoscore)=c("HLAI", "HLAII", "CytolyticScore") |
|
|
898 |
|
|
|
899 |
samp=cbind(DATA_clin, DATA_subtypes) |
|
|
900 |
|
|
|
901 |
save(list = c("gexp","immunoscore", "samp", "TIME", "STATUS", "logicalv"), file="BeatAML_survival_data.Rdata") |
|
|
902 |
|
|
|
903 |
#******************************** make excel table |
|
|
904 |
files=list.files(pattern = "tableS7") |
|
|
905 |
files=files[!grepl("_CHOP", files)] |
|
|
906 |
|
|
|
907 |
univariate.results=lapply(files[grepl("signif", files)], fread, data.table=F) |
|
|
908 |
names(univariate.results)=gsub("tableS7_|_signif.tsv", "", files[grepl("signif", files)]) |
|
|
909 |
univariate.results=univariate.results[c(grep("DLBCL", names(univariate.results)), grep("MM", names(univariate.results)), grep("AML", names(univariate.results)))] |
|
|
910 |
|
|
|
911 |
require(openxlsx) |
|
|
912 |
|
|
|
913 |
write.xlsx(univariate.results, file = "TableS7_cox.xlsx", ) |