a b/Fig6H_FigS6H_CGA_heatmap_GSE98588.R
1
GIT_HOME="/research/users/ppolonen/git_home/ImmunogenomicLandscape-BloodCancers/"
2
source(file.path(GIT_HOME, "common_scripts/visualisation/plotting_functions.R"))
3
source(file.path(GIT_HOME, "common_scripts/featurematrix/functions_generate_fm.R"))
4
source(file.path(GIT_HOME, "common_scripts/statistics/functions_statistics.R"))
5
source(file.path(GIT_HOME, "common_scripts/pathway_analysis/functions.GSEA.R"))
6
7
library(data.table)
8
library(parallel)
9
library(GSVA)
10
11
setwd("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/Published_data_figures")
12
13
fm=get(load("GSE98588_fm.Rdata"))
14
annot=get(load("GSE98588_annot.Rdata"))
15
profile=get(load("GSE98588_DLBCL_mixtureM_profile.Rdata"))
16
17
# exclude testis dlbcl
18
profile=profile[,!colnames(fm)%in%"DLBCL_LS2208"]
19
annot=annot[!colnames(fm)%in%"DLBCL_LS2208",]
20
fm=fm[,!colnames(fm)%in%"DLBCL_LS2208"]
21
22
# CGAs
23
t.df = read.delim("t.antigen_df.txt", stringsAsFactors=F, header=T)
24
25
26
# Choose GCB or ABC, or ""
27
name="ABC"
28
GSE="GSE98588_DLBCL"
29
30
if(name=="GCB"){
31
  GSE="GSE98588_DLBCL_GCB"
32
  annot=annot[fm["B:SAMP:COO_byGEP_GCB",]==1,]
33
  profile=profile[,fm["B:SAMP:COO_byGEP_GCB",]==1]
34
  fm=fm[,fm["B:SAMP:COO_byGEP_GCB",]==1]
35
}
36
37
if(name=="ABC"){
38
  GSE="GSE98588_DLBCL_ABC"
39
  annot=annot[fm["B:SAMP:COO_byGEP_ABC",]==1,]
40
  profile=profile[,fm["B:SAMP:COO_byGEP_ABC",]==1]
41
  fm=fm[,fm["B:SAMP:COO_byGEP_ABC",]==1]
42
}
43
44
gexp=fm[grepl("N:GEXP:", rownames(fm)),]
45
rownames(gexp)=gsub("N:GEXP:", "", rownames(gexp))
46
47
res=fread("/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/GSE98588_DLBCL_antigen_correlations.tsv", data.table = F)
48
49
scores=c("N:SAMP:CytolyticScore",  "N:SAMP:HLAIScore",  "N:SAMP:HLAIIScore")
50
51
feats=c("N:SAMP:numberOfCNAs","N:SAMP:numberOfMutations", "N:SAMP:numberOfChromosomalRearrangements")
52
53
mut=c("B:GNAB:KLHL6", "B:GNAB:CD58","B:GNAB:SGK1", "B:GNAB:CD83", "B:GNAB:MYD88","B:GNAB:HIST1H1E", "B:GNAB:HIST1H2BK","B:CNVR:6Q:LOSS","B:GNAB:BTG1","B:GNAB:HLA-A", "B:GNAB:ETV6", "B:GNAB:UBE2A", "B:CNVR:1P13_1:LOSS", "B:GNAB:SPEN", "B:GNAB:NFKBIA", "B:GNAB:GNA13")
54
55
other.genes="N:GEXP:CD58"
56
57
#************************************** GSEA **************************************
58
59
GENESETS="Combined_pathway_signatures_2017_filtered_robust.gmt"
60
WD=file.path(getwd(), "GSEA")
61
OUTDIR=file.path(getwd(), "GSEA")
62
63
if(name=="GCB"){
64
  # run GSEA:
65
  # command=run.GSEA(data=gexp, cls.vector = as.numeric(fm["N:SAMP:nCGA",]), datatype = "N", GENESETS = GENESETS, dataname = GSE, clsname = "nCGA", WD=WD, OUTDIR=OUTDIR)
66
  # try(system(command))
67
  
68
  a=read.delim(file.path(WD, "GSE98588_DLBCL_GCB_nCGA_continuous_phenotype.Gsea.1552654676702/gsea_report_for_feat_pos_1552654676702.xls"), stringsAsFactors = F)
69
  b=read.delim(file.path(WD, "GSE98588_DLBCL_GCB_nCGA_continuous_phenotype.Gsea.1552654676702/gsea_report_for_feat_neg_1552654676702.xls"), stringsAsFactors = F)
70
}
71
72
if(name=="ABC"){
73
  # run GSEA:
74
  # command=run.GSEA(data=gexp, cls.vector = as.numeric(fm["N:SAMP:nCGA",]), datatype = "N", GENESETS = GENESETS, dataname = GSE, clsname = "nCGA", WD=WD, OUTDIR=OUTDIR)
75
  # try(system(command))
76
  
77
  a=read.delim(file.path(WD, "GSE98588_DLBCL_ABC_nCGA_continuous_phenotype.Gsea.1552654669505/gsea_report_for_feat_pos_1552654669505.xls"), stringsAsFactors = F)
78
  b=read.delim(file.path(WD, "GSE98588_DLBCL_ABC_nCGA_continuous_phenotype.Gsea.1552654669505/gsea_report_for_feat_neg_1552654669505.xls"), stringsAsFactors = F)
79
}
80
#*****************************************************************************************************
81
82
c=rbind(a, b)
83
84
# get GSVA visualization for the pathways
85
library(GSVA)
86
library(parallel)
87
88
# Geneset list
89
Onc.pathways=read.delim(GENESETS, stringsAsFactors = FALSE, header=F, col.names = paste("V",1:max(count.fields(GENESETS, sep = '\t'), na.rm = T)), fill = TRUE)
90
91
# Make list
92
listA=mclapply(1:length(Onc.pathways[,1]), function(i){A=as.character(Onc.pathways[i,3:length(Onc.pathways),])
93
B=A[!A==""&!A=="NA"]}, mc.cores=6)
94
95
names(listA) <- Onc.pathways[,1]
96
97
# visualize using GSVA
98
viz_scores=gsva(expr = data.matrix(gexp), gset.idx.list = listA, parallel.sz=8, method="gsva", tau=0.25)
99
100
# make a complex heatmap
101
significant=c(c[c$FWER.p.val<0.001,1])
102
103
if(length(significant)>11)significant=significant[1:11]
104
105
dat_plot=viz_scores[match(significant, toupper(rownames(viz_scores))),]
106
107
profile[profile==-1] = 0
108
profile[data.matrix(gexp)<5]=0
109
f=sort(rowSums(profile[rownames(profile)%in%unique(t.df[,1]),]), decreasing = T)
110
f2=signif(f/dim(profile)[2],2)
111
names(f2)=f2
112
f2=f2[!f==0]
113
f=f[!f==0]
114
115
ag=c(paste0("N:GEXP:", names(f)))
116
117
ag=ag[ag%in%rownames(fm)]
118
119
add=data.frame(scale(t(pl2)))
120
add[add>2]=2
121
add[add<(-2)]=-2
122
123
pl1=data.matrix(fm[scores,order(fm["N:SAMP:nCGA",], decreasing = F)])
124
pl1=t(scale(t(pl1)))
125
pl1[pl1>2]=2
126
pl1[pl1<(-2)]=-2
127
128
pl2=data.matrix(fm[feats,order(fm["N:SAMP:nCGA",], decreasing = F)])
129
pl2[pl2>250]=250
130
# pl2=t(scale(t(pl2)))
131
# pl2[pl2>2]=2
132
# pl2[pl2<(-2)]=-2
133
134
pl3=data.matrix(fm[ag,order(fm["N:SAMP:nCGA",], decreasing = F)])
135
pl3=t(scale(t(pl3)))
136
pl3[pl3>2]=2
137
pl3[pl3<(-2)]=-2
138
139
pl4=data.matrix(fm[mut,order(fm["N:SAMP:nCGA",], decreasing = F)])
140
141
pl5=data.matrix(fm[other.genes,order(fm["N:SAMP:nCGA",], decreasing = F)])
142
pl5=t(scale(t(pl5)))
143
pl5[pl5>2]=2
144
pl5[pl5<(-2)]=-2
145
146
pl6=data.matrix(dat_plot[,order(fm["N:SAMP:nCGA",], decreasing = F)])
147
148
ann=data.frame("n.CGA"=t(fm["N:SAMP:nCGA",order(fm["N:SAMP:nCGA",], decreasing = F)]), stringsAsFactors = F)
149
150
library(ComplexHeatmap)
151
library(circlize)
152
library(multipanelfigure)
153
154
rownames(pl3)=gsub(".*.:", "", rownames(pl3))
155
rownames(pl4)=gsub(".*.:", "", rownames(pl4))
156
rownames(pl6)=gsub("-.*.|_HOMO_SAPIENS", "", rownames(pl6))
157
158
p1=Heatmap(pl1, top_annotation = HeatmapAnnotation("n.CGA"=anno_barplot(ann, height = unit(10, "mm")), df = annot$COO_byGEP), cluster_columns = F, cluster_rows = F, row_names_side = "left", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="cluster", col = colorRamp2(c(2, 0, -2), c("red", "white", "blue")), show_column_names = F, width = unit(40, "mm"), height = unit(2*dim(pl1)[1]+10, "mm"))
159
160
p2=Heatmap(pl2, top_annotation = HeatmapAnnotation("nr.cnv"=anno_barplot(data.frame(pl2[1,]), height = unit(10, "mm")), "nr.mut"=anno_barplot(data.frame(pl2[2,]), height = unit(10, "mm"), ylim=c(0,250)),"nr.strrearr"=anno_barplot(data.frame(pl2[3,]), height = unit(10, "mm"))), cluster_columns = F, cluster_rows = F, row_names_side = "left", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="Samp-features", col=colorRamp2(c(-2, 0, 2), c("grey85", "white", "indianred")), show_column_names = F, width = unit(40, "mm"), height = unit(2*dim(pl2)[1]+10, "mm"))
161
162
p3=Heatmap(pl3, cluster_columns = F, cluster_rows = F, row_names_side = "left", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="Scaled log2\nexpression", col=colorRamp2(c(-2,0,2), c("blue", "white", "red")), show_column_names = F, width = unit(40, "mm"), height = unit(2*dim(pl3)[1], "mm")) + Heatmap(f2, width = unit(5, "mm"), row_names_gp = gpar(fontsize = 6))
163
164
p4=Heatmap(pl4, cluster_columns = F, cluster_rows = F, row_names_side = "left", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="Mutations", col=colorRamp2(c(0,1), c("grey85", "darkgreen")), show_column_names = F, width = unit(40, "mm"), height = unit(2*dim(pl4)[1], "mm")) 
165
166
p5=Heatmap(pl5, cluster_columns = F, cluster_rows = F, row_names_side = "left", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="Scaled log2\nexpression", col=colorRamp2(c(-2,0,2), c("blue", "white", "red")), show_column_names = F, width = unit(40, "mm"), height = unit(2*dim(pl5)[1], "mm"))
167
168
p6=Heatmap(pl6, cluster_columns = F, cluster_rows = F, row_names_side = "left", column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 6), name="Scaled log2\nexpression", col=colorRamp2(c(-0.6, 0, 0.6), c("grey50", "white", "red")), show_column_names = F, width = unit(40, "mm"), height = unit(2*dim(pl6)[1], "mm"))
169
170
panels=list(p1, p2, p3, p4, p5, p6)
171
panels=panels[!is.null(panels)]
172
nrows=sum(c(dim(pl1)[1], dim(pl2)[1], dim(pl3)[1], dim(pl4)[1], dim(pl5)[1], dim(pl6)[1]))
173
174
figure <- multi_panel_figure(width = 200, height = 220+nrows*3, rows = length(panels), columns = 1, panel_label_type = "lower-alpha")
175
176
for(i in seq(panels))figure <- fill_panel(figure,panels[[i]], row = i, column = 1)
177
178
save_multi_panel_figure(figure, filename=paste0("Fig6H_FigS6H_", "_", GSE, "_CGA_heatmap.pdf"))
179
180
181
182
gexp=fm[grepl("N:GEXP:", rownames(fm)),]
183
rownames(gexp)=gsub("N:GEXP:", "", rownames(gexp))
184
185
# All pathways
186
GENESETS="/research/work/ppolonen/genesets/Combined_pathway_signatures_2017_filtered_robust.gmt"
187
WD="/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/"
188
OUTDIR="/research/groups/sysgen/PROJECTS/HEMAP_IMMUNOLOGY/petri_work/HEMAP_IMMUNOLOGY/"
189
190
# get GSVA visualization for the pathways
191
# Geneset list
192
Onc.pathways=read.delim(GENESETS, stringsAsFactors = FALSE, header=F, col.names = paste("V",1:max(count.fields(GENESETS, sep = '\t'), na.rm = T)), fill = TRUE)
193
194
# Make list
195
listA=mclapply(1:length(Onc.pathways[,1]), function(i){A=as.character(Onc.pathways[i,3:length(Onc.pathways),])
196
B=A[!A==""&!A=="NA"]}, mc.cores=6)
197
198
names(listA) <- Onc.pathways[,1]
199
200
viz_scores=gsva(expr = data.matrix(gexp), gset.idx.list = listA, parallel.sz=8, method="gsva", tau=0.25)
201
202
expressed_testis_num=colSums(profile[rownames(profile)%in%unique(t.df$gene),])
203
feat_class=expressed_testis_num
204
feat_class[expressed_testis_num==0]="0 CGA"
205
feat_class[expressed_testis_num>=1&expressed_testis_num<=2]="1-2 CGA"
206
feat_class[expressed_testis_num>=3]=">3 CGA"
207
208
logicalVectors=lapply(unique(feat_class), function(cl)feat_class%in%cl)
209
names(logicalVectors)=paste("ABC", unique(feat_class))
210
211
annof=data.frame("HLAI"=annot$HLAIScore, "HLAII"=annot$HLAIIScore, "CytolyticScore"=annot$CytolyticScore, "TNFA_SIGNALING_VIA_NFKB"=viz_scores[rownames(viz_scores)%in%"TNFA_SIGNALING_VIA_NFKB-MsigDB_HALLMARKS",])
212
213
genelist=c("HLAI", "HLAII", "CytolyticScore", "TNFA_SIGNALING_VIA_NFKB")
214
p.all=lapply(genelist, plot.boxplot, logicalVectors = logicalVectors[c(1,3,2)], data = t(annof),order.bl = F,spread = T)
215
216
TestGeneWilcox("HLAI", data = t(annof), logicalVectors = logicalVectors[c(1,3,2)], logicalVector_normals = logicalVectors[c(1,3,2)], ALTERNATIVE = "less")
217
TestGeneWilcox("HLAII", data = t(annof), logicalVectors = logicalVectors[c(1,3,2)], logicalVector_normals = logicalVectors[c(1,3,2)], ALTERNATIVE = "less")
218
TestGeneWilcox("CytolyticScore", data = t(annof), logicalVectors = logicalVectors[c(1,3,2)], logicalVector_normals = logicalVectors[c(1,3,2)], ALTERNATIVE = "less")
219
TestGeneWilcox("TNFA_SIGNALING_VIA_NFKB", data = t(annof), logicalVectors = logicalVectors[c(1,3,2)], logicalVector_normals = logicalVectors[c(1,3,2)], ALTERNATIVE = "less")
220
221
ggsave(plot = p.all[[1]], filename = paste0(GSE, "_HLA.pdf"), width = unit(3.25, "cm"), height = unit(3, "cm"))
222
ggsave(plot = p.all[[2]], filename = paste0(GSE, "_HLAII.pdf"), width = unit(3.25, "cm"), height = unit(3, "cm"))
223
ggsave(plot = p.all[[3]], filename = paste0("FigS6I_", GSE, "_CytScore.pdf"), width = unit(3.25, "cm"), height = unit(3, "cm"))
224
ggsave(plot = p.all[[4]], filename = paste0(GSE, "_TNFA.pdf"), width = unit(3.25, "cm"), height = unit(3, "cm"))